
Behavior Research Methods
https://doi.org/10.3758/s13428-023-02334-8

ORIG INAL MANUSCRIPT

thebeat: A Python package for working with rhythms and other
temporal sequences

Jelle van der Werff1,2 · Andrea Ravignani1,2,3 · Yannick Jadoul1,2

Accepted: 27 December 2023
© The Author(s) 2024

Abstract
thebeat is a Python package for working with temporal sequences and rhythms in the behavioral and cognitive sciences, as
well as in bioacoustics. It provides functionality for creating experimental stimuli, and for visualizing and analyzing temporal
data. Sequences, sounds, and experimental trials can be generated using single lines of code. thebeat contains functions for
calculating common rhythmic measures, such as interval ratios, and for producing plots, such as circular histograms. thebeat
saves researchers time when creating experiments, and provides the first steps in collecting widely accepted methods for use
in timing research. thebeat is an open-source, on-going, and collaborative project, and can be extended for use in specialized
subfields. thebeat integrates easily with the existing Python ecosystem, allowing one to combine our tested code with custom-
made scripts. The package was specifically designed to be useful for both skilled and novice programmers. thebeat provides
a foundation for working with temporal sequences onto which additional functionality can be built. This combination of
specificity and plasticity should facilitate research in multiple research contexts and fields of study.

Keywords Python ·Music · Rhythm · Timing · Acoustics · Bioacoustics

Introduction

Research involving temporal sequences (e.g., rhythms) often
relies on similar experimental principles. Events, such as
sounds, are placed at different points in time, possibly with
empty intervals between them (Fig. 1). Together, the events
may form a sequence, a rhythm, or a click train. The anal-
ysis of temporal sequences involves universally applicable
methods, such as calculating inter-onset intervals (IOIs)
or autocorrelations (Ravignani & Norton, 2017). Temporal
sequences are therefore created and analyzed using largely

B Jelle van der Werff
jelle.vanderwerff@uniroma1.it

Andrea Ravignani
andrea.ravignani@uniroma1.it

Yannick Jadoul
yannick.jadoul@uniroma1.it

1 Comparative Bioacoustics Group, Max Planck Institute for
Psycholinguistics, Wundtlaan 1, Nijmegen, The Netherlands

2 Department of Human Neurosciences, Sapienza University of
Rome, Piazzale Aldo Moro, 5, Rome, Italy

3 Center for Music in the Brain, Aarhus University,
Universitetsbyen 3, Aarhus, Denmark

equivalent computer scripts. For example: different MAT-
LAB scripts were written for creating sound stimuli in
two experiments that differed only in the used parameters
(Celma-Miralles & Toro, 2020; Zeni & Holmes, 2018). To
date, no commonly available software package exists that can
prevent such repetition,which iswhywepresent thebeat. The
package is completely focused on creating, analyzing, and
visualizing temporal data. thebeat is available from https://
github.com/jellevanderwerff/thebeat.

thebeat helps to reduce the time researchers spend pro-
gramming custom computer scripts when working with
temporal sequences. We see two additional advantages for
its use: First, inexperienced programmers will benefit from
our extensively tested code when creating experiments or
analyzing data. Warnings are issued in situations that can
lead to commonly made errors. Second, thebeat facilitates
the replication of studies, currently hindered by the use of
idiosyncratic computer scripts.Wehope that thebeatwill pro-
vide consistency in how we create, analyze, and report about
temporal sequences and rhythms, providing a straightforward
environment in which to create and explore temporal data.
thebeatwas designed so as to not require any in-depth knowl-
edge of computational concepts such as signal processing
or array programming, and can thus be used in educational
settings.

123

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-023-02334-8&domain=pdf
http://orcid.org/0000-0003-3575-7989
http://orcid.org/0000-0002-1058-0024
http://orcid.org/0000-0003-0540-3135
https://github.com/jellevanderwerff/thebeat
https://github.com/jellevanderwerff/thebeat

Behavior Research Methods

Fig. 1 Example of a temporal sequence or rhythm. Different types of
temporal sequences share a similar underlying structure. Events are
placed at different points on the time x axis. The event onsets are the

exact t values at which the events occur, and inter-onset intervals (IOIs)
are the intervals between the onset of one event and the onset of the
next event. In addition, each event has a duration

Table 1 provides examples of contexts in which thebeat
will help speedup the researchprocess, andwhere it canmake
the methods that are used more comparable. At present, most
of thebeat’s functionality is focused on sound, but fundamen-
tally it is not tied to anyperceptual domain. thebeat’smodules
are organized around three parts of the research process: stim-
ulus generation, data visualization, anddata analysis.Wehere
describe a few examples of functionality that is included in
the package. For a similar overview, but with direct links
to thebeat’s functions, the reader is referred to the package
documentation (https://thebeat.readthedocs.io). thebeat con-
tains a variety of functions for creating and manipulating
sequences or rhythms based on event onsets, IOIs, note val-
ues, and interval ratios. Importantly, it allows easy conversion
between all these types of timing data. thebeat also offers
functions for generating random timing data and random
rhythms. For creating stimuli, thebeat includes functions for
synthesizing sounds, but it can also use existing sound files or
import Praat sound objects through Parselmouth (Boersma
& Weenink, 2022; Jadoul et al., 2018, 2023). For visualiz-
ing temporal data, thebeat can be used to create waveforms,
event plots, and musical notation, as well as more complex
plots, such as recurrence plots (Burchardt, Picciulin, Parmen-
tier, & Bolgan, 2021), phase space plots (Ravignani, 2017),
and rose plots (circular histograms; Ravignani and Norton,
2017). For the analysis of temporal data, thebeat can calcu-
late cross-correlations and phase differences (cf. Ravignani
and Norton, 2017), and can perform beat extraction using
autocorrelations or Fourier transforms (Ravignani & Nor-
ton, 2017). As a final example, rhythmic complexity can be
calculated using measures such as information entropy and

edit distance (Lumaca&Baggio, 2017; Ravignani &Norton,
2017).

thebeat was designed with users of varying programming
proficiency in mind. The core focus was not on providing a
large amount of functionality, but rather on providing simple
methods with reliable internal checks and verifications. To
allow for exploratoryprogramming,webelieve it is important
that users obtain results in as few lines of code as possible,
without compromising on code intelligibility and flexibil-
ity. In fact, most functions achieve the desired result in one
line of code. Functionality was only implemented if use-
ful in research contexts and if not better handled by a more
specialized package. As an example, simple sounds can be
created using thebeat (useful for most research contexts),
but advanced audio manipulation is better performed using
packages such as Parselmouth (Jadoul et al., 2018) or librosa
(McFee et al., 2015).

thebeat is an on-going, open-source, and collaborative
project distributed under the GPL-3 license. We encour-
age its users to contribute and make suggestions, or to
start discussions about the idiom and methods used. To that
end, we provide a GitHub repository (https://github.com/
jellevanderwerff/thebeat) and a Gitter chatroom (https://
gitter.im/jellevanderwerff/thebeat. Extensive documentation
is available from https://thebeat.readthedocs.io. The docu-
mentation includes detailed descriptions of package func-
tionality and many examples that showwhat the package can
do. In addition, it contains tutorial-style examples in which
methods sections from existing research are replicated. We
hope to have created a strong foundation onto which addi-
tional functionality can be built, and we encourage thebeat’s

123

https://thebeat.readthedocs.io
https://github.com/jellevanderwerff/thebeat
https://github.com/jellevanderwerff/thebeat
https://gitter.im/jellevanderwerff/thebeat
https://gitter.im/jellevanderwerff/thebeat
https://thebeat.readthedocs.io

Behavior Research Methods

Table 1 Example uses of thebeat and example studies or reference
papers

Stimulus generation

Auditory stream segregation Simon and Winkler (2018)

Click trains Roach et al. (2019)

Fast periodic auditory
stimulation

Barbero et al. (2021)

Finger-tapping Guérin et al. (2021)

Isochrony Horr and Di Luca (2014)

Psycholinguistics Bosker (2017)

Rhythm perception/production Repp et al. (2005)

Rhythmic auditory stimulation
(RAS)

Gonzalez-Hoelling et al. (2022)

Rhythmic grouping Iversen et al. (2008)

Sensorimotor synchronization Merchant et al. (2005)

Speech segmentation Thornton et al. (2018)

Temporal regularity Celma-Miralles and Toro
(2020)

Tone clouds Bianco et al. (2020)

Data visualization

Circular histograms Kirschner and Tomasello
(2009)

Melodies in musical notation Morgan et al. (2019)

Recurrence plots Burchardt et al. (2021)

Phase space plots Ravignani (2017)

Rhythms in musical notation Repp et al. (2005)

Sequences as event plots Bouwer et al. (2016)

Data analysis

Autocorrelations,
cross-correlations

Ravignani and Norton (2017)

Beat-finding (Fourier,
autocorrelations, etc.)

Burchardt et al. (2021)

Coefficient of variation, ugof Burchardt et al. (2021)

nPVI Patel and Daniele (2003)

Shannon entropy, grammatical
complexity

Lumaca and Baggio (2020)

users to request or contribute functionality useful for timing
and rhythm research.

Package principles

Figure 2 shows examples of different types of temporal
sequences and rhythms. For describing the temporal struc-
ture of sequences, thebeat encourages using IOIs, for three
reasons. First, IOIs are onset-to-onset—and not offset-to-
onset—and so can be universally used for different types of

sequences, whether they be musical rhythms or click trains.
Second, IOIs induce the beat or rhythm percept, at least in
human listeners (Parncutt, 1994). Third, the structure of IOIs
is preserved when the durations of the events change.

In thebeat, two types of sequences are distinguished:
sequences that end with an event (Fig. 2A), and sequences
that end with an interval (Fig. 2B and C). Sequences that end
with an event contain n events, but n−1 IOIs. Sequences that
end with an interval contain an equal number of events and
IOIs. thebeat’s default option is for sequences to end with an
event. Rhythms, or two sequences that need to be concate-
nated, are required to end with an interval. This is necessary
because otherwise the last event of a sequence and the first
event of a following sequence would coincide.

thebeat’s core functionality revolves around three major
concepts: sequences, sound stimuli, and sound sequences.
These are implemented as different Python classes (respec-
tively, Sequence, SoundStimulus, and
SoundSequence). For musical contexts, two additional
concepts exist: rhythms (the Rhythm class) and melodies
(the Melody class). In Python, classes are simply variable
types that contain specific functions (methods). Figure 3
shows how to combine and convert between classes.

The most important class is the Sequence. It contains
timing information, but no information about the events
themselves, such as their duration. Figure 2D is an exam-
ple of a Sequence: it contains only information about the
intervals between the onsets of the events (here, the onsets of
the syllables) but no information about the produced sounds.
As such, the plotted lines are of arbitrary width, and only
indicate the intervals’ boundaries. A Sequence object is
agnostic about the used time unit (seconds, milliseconds,
etc.), and so can flexibly integrate with different datasets and
measurements, and other programs and packages. Together
with a SoundStimulus object—which represents the
audio of a single stimulus—Sequence objects combine
into a SoundSequence object, which holds timing infor-
mation as well as audio. Figure 2A–C are examples of
SoundSequence objects. One SoundSequence object
in rhythm or timing research is equivalent to one trial. A
Rhythm is a special kind of Sequence: in addition to con-
taining timing information, it has a time signature, a value
for the duration of a single beat in milliseconds (based on
the denominator of the time signature), and an indication of
which events to play (to allow for musical rests). Finally,
Melody objects are a combination of a Rhythm object and
a list of pitch names. For all these classes, plotting functions
are included (producing event plots, waveforms, or musi-
cal notation). SoundStimulus, SoundSequence, and
Melody objects can additionally be played, or written to
disk as a sound file.

123

Behavior Research Methods

Fig. 2 Examples of different sequences plotted using thebeat. For pan-
elsA–C, the thickness of the blue lines represents the events’ durations.
For panel D, the blue lines represent the boundaries between the inter-
onset intervals, rather than the durations of the events. Panels A–C are
examples of SoundSequence objects (which also contain informa-
tion about the events), whereas panel D is an example of a Sequence

object, which always contains only timing information but no infor-
mation about the events themselves. (A) A sequence that ends with an
event, based onYee et al. (1994). (B)A sequence that ends with an inter-
val, based on Yee et al. (1994). (C) Event plot for a musical rhythm,
based on Repp et al. (2005). (D)Event plot for a spokenDutch sentence,
based on van Son et al. (2001)

Getting started with thebeat

Installation and dependencies

thebeat can be installed from the Python package repos-
itory PyPI by typing pip install thebeat into a
command window or terminal. This installs a basic ver-

sion of thebeat. To additionally install thebeat’s function-
ality for plotting musical notation, use pip install
'thebeat[music_notation]'. thebeat is consistently
tested onWindows, Linux, andMac operating systems. Dur-
ing installation, the main dependencies necessary for most of
the functionality are automatically installed: NumPy (Harris
et al., 2020), SciPy (Virtanen et al., 2020), pandas (McK-

Fig. 3 The different object classes used in thebeat. Sequence objects
contain timing information, SoundStimulus objects contain a stim-
ulus sound. Together they combine into a SoundSequence object,

representing a trial. Rhythm objects can either be converted to a
Sequence object, or combined with a list of pitch names into a
Melody object

123

Behavior Research Methods

inney, 2010), and Matplotlib (Hunter, 2007). If installing
with the functionality to plot musical notation, the packages
abjad (Bača et al., 2015) and lilypond (Nienhuys&Nieuwen-
huizen, 2003) are additionally installed. More information
can be found in the Installation section of the package doc-
umentation.

Creating a simple trial

Below we use thebeat to create a simple isochronous (i.e.,
regular) trial of ten events at a tempo of 500ms (i.e., each IOI
is 500 ms, corresponding to 120 bpm or 2 Hz). It contains
only pure tones of 50 ms with a pitch of 440 Hz.

from thebeat import Sequence, SoundStimulus ,
SoundSequence

sequence = Sequence. generate_isochronous(n_events=10,
ioi=500)

sound = SoundStimulus . generate(freq=440, duration_ms=50)
t r i a l = SoundSequence(sound, sequence)

We start by importing the required object classes from
thebeat and by creating a Sequence object using its
Sequence.generate_isochronous() method. As
mentioned, by default a Sequence object ends with an
event, and so seq contains ten events, but nine IOIs. We
then use the SoundStimulus.generate() method
to synthesize a single sound stimulus. Finally, we com-
bine the Sequence and SoundStimulus objects into
a SoundSequence object, which can be played back,
plotted, or written to disk (respectively, trial.play(),
trial.plot_waveform(), or trial.write_wav()).

Below we illustrate how thebeat may be used in prac-
tice using three code examples. In the first, we create
a regular sound sequence and a randomly timed sound
sequence. Sequences like these are common in auditory tim-
ing research. In the second example, we create and plot
rhythms and melodies. In the final example, we demon-
strate how thebeat can be used for analyzing empirical
temporal data using a dataset of sperm whale vocalizations.
More examples can be found in the package documentation
(https://thebeat.readthedocs.io).

Example 1: Creating stimuli for an auditory
perception experiment

Hereweuse thebeat to create two types of trials: a regular trial
and a randomly timed trial forwhichwe sample the IOIs from
a uniform distribution. Both trials contain ten events. For the
regular trial we combine two isochronous sequences of five
events and place a random inter-trial interval (ITI) between

them. The regular trial contains ten identical pure tones,
and the randomly timed trial contains ten identical complex
sounds. We start by creating the Sequence objects, which
always contain only timing information:

from thebeat import Sequence
import random

Create an isochronous Sequence
reg_short = Sequence. generate_isochronous(n_events=5,

ioi=500)

Combine and add random inter−t r ial interval
i t i = random. randint (a=300, b=700)
reg_long = isoc_short + i t i + isoc_short

Create randomly timed Sequence
rand_long = Sequence.generate_random_uniform(n_events=10,

a=300,
b=700)

This code demonstrates a fewbasic functionalities of thebeat.
Sequences can be created or randomly generated in a variety
of ways, and the resulting Sequence objects can then be
manipulated using standard operators. The plus-operator can
be used for joining different sequences, or a sequence and a
number representing an interval, together. Similarly, themul-
tiplication operator might be used for repeating sequences.

Next, we create two different sounds: a pure tone sound,
and a complex sound composed of a sine wave and its first
two harmonics:

from thebeat import SoundStimulus

Create pure tone sound
stim_pure = SoundStimulus . generate(freq=440,

duration_ms=50,
onramp_ms=10,
offramp_ms=10)

Create complex sound
stim_f0 = SoundStimulus . generate(freq=440)
stim_f1 = SoundStimulus . generate(freq=880)
stim_f2 = SoundStimulus . generate(freq=1320)
stim_complex = stim_f0 .merge([stim_f1 , stim_f2])

On- and offramps (i.e., attack and decay) can be speci-
fied using the onramp_ms and offramp_ms arguments.
Complex sounds can be created by combining existing
SoundStimulus objects using their .merge() method.

Finally, the code below shows how to combine the
Sequence object’s timing information with the
SoundStimulus object’s acoustic information into a trial
(a SoundSequence object). We can pass SoundSe-
quence either a single SoundStimulus object, in which
case the same sound is used throughout, or a list of
SoundStimulus objects, in which case a different sound

123

https://thebeat.readthedocs.io

Behavior Research Methods

is used for each respective event. Here, for the isochronous
trial we use the created pure tone sound. For the random trial,
we use the created complex sound:

from thebeat import SoundSequence

Isochronous tr ial
trial_isoc = SoundSequence(sound=stim_pure ,

sequence=isoc_long)

Random trial
trial_rand = SoundSequence(sound=stim_complex,

sequence=rand_long)

These trials are ready to be used in an experiment after sav-
ing them to a .wav file, e.g., trial_isoc.write_wav
(‘file.wav’). Trials can also be created on the fly with-
out saving for use with other Python packages, such as
PsychoPy (Peirce et al., 2019).

Example 2: Rhythms andmelodies

Rhythms

Python is not a specializedmusic-making program, and so for
creating rhythms andmelodies researcherswill often resort to
commercial programs such asAbleton,Max, orGarageBand.
thebeat offers enough functionality forworkingwith rhythms
and melodies as required by most experimental methodolo-
gies.We can create them using simple commands, synthesize
them into sound, or plot them in musical notation. We can
also generate random rhythms and melodies after specifying
a few constraints.

Rhythm objects can be created from integer ratios or
note values, or from IOIs. The first, simple rhythm in the
example was used in Repp et al. (2005). We create it using
integer ratios. To illustrate, the integer ratios [1, 1, 2]
describe a sequence where the final note is twice as long as
the first two notes (e.g., Jacoby and McDermott, 2017). Dif-
ferent from Sequence objects, Rhythm objects require a
time signature and a duration for the beat in milliseconds.
Here, ‘beat’ refers to the denominator of the time signature.
In 5/8, the beat duration thus represents the duration of an
eighth note, whereas in 5/4 it represents the duration of a
quarter note. We plot the rhythm in musical notation using
the Rhythm.plot_rhythm() method (Fig. 4A).

For some research contexts, it is useful to be able to pro-
duce random rhythms given a few constraints. The second
rhythmintheexample is createdusing theRhythm.generate
_random_rhythm()method. This method chooses, with
equal probability, a rhythm out of all possible rhythms given
some desired constraints. As constraints, we pass it the
desired number of musical bars, the note values that may
be used, and the duration of one beat. The rhythm created in

the example contains one bar filled with half notes, quarter
notes, or eighth notes. It has a time signature of 4/4 and a
beat duration of 500 ms.

from thebeat .music import Rhythm, Melody
from thebeat import SoundStimulus , SoundSequence

Example 1
r1 = Rhythm. from_integer_ratios ([2 , 3, 2, 3, 2, 3] ,

beat_ms=170,
time_signature=(5, 8))

r1 .plot_rhythm()

Example 2
r2 = Rhythm.generate_random_rhythm(n_bars=1,

beat_ms=500,
time_signature=(4, 4) ,
allowed_note_values=
[2 , 4, 8, 16])

r2 .plot_rhythm()

Example 3
note_values = [16, 16, 16, 4, 2, 4, 4, 4, 4, 16]
r3 = Rhythm. from_note_values(note_values)
r3 .plot_rhythm()

sound = SoundStimulus . generate(duration_ms=50,
offramp_ms=10)

seq = r3 . to_sequence()
t r i a l = SoundSequence(sound, seq)
t r i a l .write_wav(‘syncopated_rhythm.wav’)

The final example shows how we might create a synco-
pated rhythm (Fig. 4C). In the example, we create it from a
list of note values, where e.g. 4 refers to the denominator of
the 1/4 note value. We then plot the Rhythm object, convert
it to a Sequence object, add sound, and save the file to disk.
The resulting .wav file can be found in the Supplementary
Materials.

Melodies

thebeat contains basic functionality for creating melodies. In
the code example, we create a random melody (Fig. 4D) and
a melody that we create using note names (Fig. 4E).

In the first example, the Melody.generate_ran-
dom_melody() method is used for creating a random
melody in the key of D (Fig. 4D). Random melodies can
be generated for different keys and octaves, though note that
this method does not impose any harmonic ‘rules’ (such as
starting or ending on the tonic). In the second example, we
manually create a melody by combining a Rhythm object
with a list of pitch names. Pitch names can be input as, for
instance, ‘G’, or as ‘G4’, where the number refers to the
used octave. After the Melody object has been created, we
can plot it (Fig. 4E), or synthesize it into sound and save the

123

Behavior Research Methods

Fig. 4 Example rhythms and melodies, plotted using thebeat

sound to disk. By default, when synthesizing a melody into
sound, the sounds have durations that are equal to the pro-
vided note values. In the example, this would mean that each
quarter note lasts 500 ms. In most cases this is undesirable,
and sowe require all sounds to have a duration of 50ms. Note
that the melody’s rhythmic structure is preserved. The result-
ing file again can be found in the Supplementary Materials.

from thebeat .music import Melody

Example 1
mel = Melody.generate_random_melody(n_bars=2, key=‘D’)
mel.plot_melody()
mel. synthesize_and_write(‘random_melody.wav’ ,

onramp_ms=50,
offramp_ms=50)

Example 2
r = Rhythm. from_note_values([4 , 4, 4, 4, 4, 4, 2])
pitch_names = [‘C4’ , ‘C4’ , ‘G4’ , ‘G4’ , ‘A4’ , ‘A4’ , ‘G4’]
twinkle = Melody(r , pitch_names)

twinkle .plot_melody()

twinkle . synthesize_and_write(‘ twinkle .wav’ ,
event_durations_ms=50)

Example 3: Analyzing spermwhale codas

Spermwhales live in so-called clans that have signature com-
municative signals by which they can be identified (Hersh,

Gero, Rendell, & Whitehead, 2021). These vocalizations,
or ‘codas’, consist of a pattern of ‘clicks’. Here, we use
two of thebeat’s plotting functions to visually contrast types
of sperm whale codas (Figs. 5 and 6), and calculate com-
monly used statistics for describing them (Fig. 5). We use an
abridged version of the dataset from Hersh et al. (2021) that
contains only recordings from2008. The dataset can be found
in the Supplementary Materials. Since these data are already
based on IOIs, we can create the objects by simply passing
the IOIs to the Sequence constructor (see code example).

We start by importing the necessary packages, and load-
ing the sperm whale data using pandas (McKinney, 2010).
We create a Sequence object for each of the distinct
calls—in the dataset uniquely identified by codanum—
and pass the codanum to the name argument. We then
save the objects to a list. For identifying different types
of codas we plot them in an event plot. We use thebeat’s
plot_multiple_sequences() to do so.We pass arbi-
trary linewidths because these data do not contain informa-
tion about the duration of the clicks. Contrary to the previous
examples, the IOIs are in seconds instead of milliseconds.
Different rhythmic patterns in the codas can now be visually
identified (Fig. 5).

To visualize these patterns in more detail, we can use one
of thebeat’s other plotting functions. Here, we create recur-
rence plots (Ravignani & Norton, 2017). The patterns that
emerge in these plots can be used for comparing sequences’
underlying rhythmic structures (Burchardt et al., 2021). In
the code example, we plot recurrence plots for the first 12
sperm whale codas.

123

Behavior Research Methods

After creating a grid of 12 Matplotlib Axes objects (i.e.,
subplots), the recurrence plots can be produced using the
recurrence_plot function from thebeat’s visualization
module. All plotting functions in thebeat allow plotting onto
an existing Matplotlib Axes object by passing the Axes
object to the function’sax argument. Looping over the codas,
we can thus create a recurrence plot for each of the 12
subplots. Among other things, the resulting plot (Fig. 6)
reveals that, even though coda DSWP11 has fewer events
than DSWP14, the two codas have a similar underlying
structure.

Import packages
from thebeat import Sequence
from thebeat . visualization import plot_multiple_sequences
import pandas as pd
import numpy as np
import matplotlib . pyplot as plt

Load dataset
df = pd. read_csv(‘hersh_spermwhales_2008 . csv’)

Create Sequence objects
codas = []

for codanum, group in df .groupby(‘codanum’) :
iois = group[‘ ioi ’] . values
seq = Sequence(iois=iois , name=codanum)
codas .append(seq)

Plot Sequence objects
plot_multiple_sequences(codas[:12] ,

linewidths=0.01,
figsize=(10, 10),
x_axis_label=‘Time (s) ’ ,
t i t l e=‘2008 sperm whale codas’)

Show the plot
plt .show()

from thebeat . visualization import recurrence_plot
import matplotlib . pyplot as plt

Create a grid of plots
fig , axs = plt . subplots (nrows=3,

ncols=4,
tight_layout=True,
figsize=(10, 10))

Loop over the f i r s t twelve codas and plot
for i , coda in enumerate(codas[:12]):

recurrence_plot (coda, ax=axs[i / / 4, i % 4])

Show the plot
plt .show()

Finally, we use thebeat’s statistics module to calculate
the normalized Pairwise Variability Index (nPVI; Patel and
Daniele, 2003), the coefficient of variation (cf. Burchardt
et al., 2021), and Shannon entropy (Shannon, 1948). These
statistics measure how much variability there is between the
IOIs in each of the codas (Fig. 5):

from thebeat . stats import get_npvi , get_cov
import pandas as pd

s ta t i s t i cs = {}

for coda in codas[:12]:
coda_stats = {‘CoV’ : get_cov(coda) ,

‘nPVI’ : get_npvi(coda) ,
‘duration ’ : coda . duration}

s ta t i s t i cs [coda .name] = coda_stats

df = pd.DataFrame. from_dict(s ta t is t ics , orient=‘index’)

Discussion

The examples above illustrate situations where researchers
can benefit from using thebeat. They also show that thebeat
can be combined with existing packages, such as NumPy
and Matplotlib. We created thebeat to standardize how we
work with temporal sequences and rhythms in the behav-
ioral and cognitive sciences, and we believe that its use will
advance research in five main ways. First, thebeat provides
consistent and quick methods for those aspects of tempo-
ral research that are universal across methodologies. Rather
than having to write scripts to convert between event onsets,
IOIs, or integer ratios, these operations can nowbe performed
using single lines of code. Second, temporal data analysis is
often complicated by the use of different in- and output for-
mats. thebeat’sSequence class provides a central data type
that can be used as the start- and endpoint for different anal-
ysis methods. Third, ease of use makes thebeat accessible
to researchers new to the field, allowing easy visualization
and analysis of temporal data. Fourth, thebeat is extensively
tested, and issues warnings in cases where its users might
expect a different output than the output produced. It also
provides helpful error messages in cases where operations
are attempted that are logically (or mathematically) impos-
sible. Finally, the package documentation includes detailed
descriptions and explanations for each method, as well as
references to relevant literature.

While thebeat contains functionality for analyzing and
visualizing temporal data, it does not contain functionality for

123

Behavior Research Methods

Fig. 5 The first 12 sperm whale codas from the 2008 recordings from
the dataset in Hersh et al. (2021). Top: event plot showing the codas
as a function of time. Bottom: the coefficient of variation, nPVI, and

Shannon entropy for the codas. The code for plotting the bottom row
of barplots is provided in the Supplementary Materials

automated analysis of audio or video. The input is expected
to either be pre-processed event onsets or IOIs. Even though
it was a deliberate choice to not include any methods for
raw data analysis, this might be reconsidered in the future.
Moreover, thebeat for now can only handle sequences and
rhythms that contain a single stream of events. In the future
we may integrate functionality for working with complex
sequences and rhythms as well. Asmentioned, at present the-
beat is focused on the auditory domain, and does not allow
working with, for instance, visual stimuli or visual data. We
hope to include such functionality in the future, and envision
the package being used for different modalities, as well as
for physiological data. Care was taken to allow for such inte-
gration in the future, and we invite anyone to contribute and
suggest such functionality.

We believe that thebeat can serve as an open-source plat-
formontowhich the research community can build, adding in

functionality that is useful for ourselves as well as for others.
We also think thebeat constitutes a starting point for discus-
sions about the methods that are used in rhythm and timing
research (cf. Hersh et al., 2023). Since these methods are far
from standardized, different methods exist for, for instance,
calculating phase differences or for creating sequences that
are temporally random (Madison &Merker, 2002). We hope
that thebeat will unite researchers in finding the most reli-
able and accurate methods, advancing the field through open
discussion.

To conclude, thebeat is a first step towards a more consis-
tent way of working with temporal sequences and rhythms
in the behavioral and cognitive sciences. It prevents repeti-
tive programming, and allows its users to explore temporal
data reproducibly, using simple code. We therefore expect
its use to extend beyond the auditory domain to any that is
concerned with temporal data.

123

Behavior Research Methods

Fig. 6 Recurrence plots for the first 12 codas in the sperm whale dataset from Hersh et al. (2021)

Funding information Open Access funding enabled and organized by
Projekt DEAL. The Comparative Bioacoustics Group was funded by
MaxPlanckGroupLeader funding toA.R.Center forMusic in theBrain
was funded by the Danish National Research Foundation (DNRF117).
A.R. is funded by the EuropeanUnion (ERC, TOHR, 101041885). A.R.
is supported by the HFSP research grant RGP0019/2022.

Declarations

Open Practices Statement All data and materials are available from
https://osf.io/jh8ep/. All code is available via https://github.com/
jellevanderwerff/thebeat.

Supplementary materials The supplementary materials contain code
for the examples used in this article, the resulting plots and sound files,
and the abridged version of the dataset from Hersh et al. (2021). It is
available from https://osf.io/jh8ep/.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-

tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Bača, T., Oberholtzer, J., & Treviño, J., & Víctor, Adán. (2015). Abjad:
An opensource software system for formalized score control. M.
Battier et al. (Eds.), Proceedings of the first international con-
ference on technologies for music notation and representation -
tenor2015 (pp. 162–169). Paris, France: Institut de Recherche en
Musicologie.

123

https://osf.io/jh8ep/
https://github.com/jellevanderwerff/thebeat
https://github.com/jellevanderwerff/thebeat
https://osf.io/jh8ep/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Behavior Research Methods

Barbero, F. M., Calce, R. P., Talwar, S., Rossion, B. & Col-
lignon, O. (2021). Fast periodic auditory stimulation reveals a
robust categorical response to voices in the human brain eNeuro
8(3),ENEURO.0471-20.2021. https://doi.org/10.1523/ENEURO.
0471-20.2021

Bianco, R., Harrison, P. M., Hu, M., Bolger, C., Picken, S., Pearce, M.
T. & Chait, M. (2020). Long-term implicit memory for sequential
auditory patterns in humans. eLife 9, e56073. https://doi.org/10.
7554/eLife.56073

Boersma, P., & Weenink, D. (2022). Praat: Doing phonetics by com-
puter. Retrieved from https://www.praat.org

Bosker, H. R. (2017). Accounting for rate-dependent category bound-
ary shifts in speech perception. Attention, Perception, & Psy-
chophysics, 79(1), 333–343. https://doi.org/10.3758/s13414-016-
1206-4

Bouwer, F. L., Werner, C. M., Knetemann, M., & Honing, H. (2016).
Disentangling beat perception from sequential learning and exam-
ining the influence of attention and musical abilities on erp
responses to rhythm. Neuropsychologia, 85, 80–90. https://doi.
org/10.1016/j.neuropsychologia.2016.02.018

Burchardt, L. S., Briefer, E. F., & Knörnschild, M. (2021). Novel
ideas to further expand the applicability of rhythm analysis. Ecol-
ogy andEvolution, 11(24), 18229–18237. https://doi.org/10.1002/
ece3.8417

Burchardt, L. S., Picciulin, M., Parmentier, E., & Bolgan, M. (2021). A
primer on rhythm quantification for fish sounds: A mediterranean
case study. Royal Society Open Science, 8(9), 210494. https://doi.
org/10.1098/rsos.210494

Celma-Miralles, A., & Toro, J. M. (2020). Discrimination of temporal
regularity in rats (rattus norvegicus) and humans (homo sapiens).
Journal of Comparative Psychology, 134(1), 3–10. https://doi.org/
10.1037/com0000202

Gonzalez-Hoelling, S., Reig-Garcia, G., Bertran-Noguer, C., &
Suñer-Soler, R. (2022). The Effect of Music-Based Rhyth-
mic Auditory Stimulation on Balance and Functional Outcomes
after Stroke. Healthcare, 10(5), 899. https://doi.org/10.3390/
healthcare10050899

Guérin, S. M. R., Boitout, J., & Delevoye-Turrell, Y. N. (2021). Atten-
tion guides the motor-timing strategies in finger-tapping tasks
when moving fast and slow. Frontiers in Psychology, 11, 3804.
https://doi.org/10.3389/fpsyg.2020.574396

Harris, C. R.,Millman, K. J., van derWalt, S. J., Gommers, R., Virtanen,
P., Cournapeau, D., Oliphant, & T.E. (2020). Array program-
ming with numpy. Nature, 585(7825), 357–362. https://doi.org/
10.1038/s41586-020-2649-2

Hersh, T. A., Gero, S., Rendell, L., & Whitehead, H. (2021). Using
identity calls to detect structure in acoustic datasets. Methods
in Ecology and Evolution, 12(9), 1668–1678. https://doi.org/10.
1111/2041-210X.13644

Hersh, T. A., Ravignani, A., & Burchardt, L. S. (2023). Robust rhythm
reportingwill advance ecological and evolutionary research.Meth-
ods in Ecology and Evolution, 14(6), 1398–1407. https://doi.org/
10.1111/2041-210X.14118

Horr, N. K., & Di Luca, M. (2014). Taking a long look at isochrony:
Perceived duration increases with temporal, but not stimulus reg-
ularity. Attention, Perception, & Psychophysics, 77(2), 592–602.
https://doi.org/10.3758/s13414-014-0787-z

Hunter, J.D. (2007).Matplotlib:A2dgraphics environment.Computing
in Science & Engineering, 9(3), 90–95. https://doi.org/10.1109/
MCSE.2007.55

Iversen, J. R., Patel, A. D., & Ohgushi, K. (2008). Perception of rhyth-
mic grouping depends on auditory experience. The Journal of the
Acoustical Society of America, 124(4), 2263–2271. https://doi.org/
10.1121/1.2973189

Jacoby, N., & McDermott, J. H. (2017). Integer ratio priors on musical
rhythm revealed cross-culturally by iterated reproduction. Cur-

rent Biology, 27(3), 359–370. https://doi.org/10.1016/j.cub.2016.
12.031

Jadoul, Y., de Boer, B., & Ravignani, A. (2023). Parselmouth for bioa-
coustics: Automated acoustic analysis in Python. Bioacoustics,
1–17,. https://doi.org/10.1080/09524622.2023.2259327

Jadoul, Y., Ravignani, A., Thompson, B., Filippi, P., & de Boer,
B. (2016). Seeking temporal predictability in speech: Compar-
ing statistical approaches on 18 world languages. Frontiers in
Human Neuroscience, 10, 586. https://doi.org/10.3389/fnhum.
2016.00586

Jadoul, Y., Thompson, B., & de Boer, B. (2018). Introducing parsel-
mouth: A python interface to praat. Journal of Phonetics, 71, 1–15.
https://doi.org/10.1016/j.wocn.2018.07.001

Kirschner, S., & Tomasello, M. (2009). Joint drumming: Social con-
text facilitates synchronization in preschool children. Journal of
Experimental Child Psychology, 102(3), 299–314. https://doi.org/
10.1016/j.jecp.2008.07.005

Lumaca, M., & Baggio, G. (2017). Cultural transmission and evolution
ofmelodic structures inmulti-generational signaling games.Artifi-
cial Life, 23(3), 406–423. https://doi.org/10.1162/ARTL_a_00238

Madison, G., &Merker, B. (2002). On the limits of anisochrony in pulse
attribution. Psychological Research, 66(3), 201–207. https://doi.
org/10.1007/s00426-001-0085-y

McFee, B., Raffel, C., Liang, D., Ellis, D., McVicar, M., Battenberg, E.,
& Nieto, O. (2015). Librosa: Audio and music signal analysis in
python. Python in science conference (pp. 18–24). Austin, Texas.
https://doi.org/10.25080/Majora-7b98e3ed-003

McKinney, W. (2010). Data structures for statistical computing in
python. S. van der Walt, & J. Millman (Eds.), Proceedings of the
9th python in science conference (pp. 56–61). https://doi.org/10.
25080/Majora-92bf1922-00a

Merchant, H., Pérez, O., Bartolo, R., Méndez, J. C., Mendoza, G.,
Gámez, J., Prado, & L. (2015). Sensorimotor neural dynamics
during isochronous tapping in the medial premotor cortex of the
macaque. European Journal of Neuroscience, 41(5), 586–602.
https://doi.org/10.1111/ejn.12811

Morgan, E., Fogel, A., Nair, A., & Patel, A. D. (2019). Statistical
learning and gestalt-like principles predict melodic expectations.
Cognition, 189, 23–34. https://doi.org/10.1016/j.cognition.2018.
12.015

Nienhuys, H. -W., & Nieuwenhuizen, J. (2003). Lilypond, a system for
automated music engraving. Proceedings of the xiv colloquium on
musical informatics (xiv cim 2003) (pp. 167–172). Firenze, Italy.

Parncutt, R. (1994). A perceptual model of pulse salience and metri-
cal accent in musical rhythms.Music Perception, 11(4), 409–464.
https://doi.org/10.2307/40285633

Patel,A.D.,&Daniele, J.R. (2003).Anempirical comparisonof rhythm
in language and music. Cognition, 87(1), B35–B45. https://doi.
org/10.1016/S0010-0277(02)00187-7

Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R.,
Sogo, H., Lindeløv, & J.K. (2019). Psychopy2: Experiments in
behavior made easy. Behavior ResearchMethods, 51(1), 195–203.
https://doi.org/10.3758/s13428-018-01193-y

Ravignani, A. (2017). Visualizing and interpreting rhythmic patterns
using phase space plots.Music Perception, 34(5), 557–568. https://
doi.org/10.1525/mp.2017.34.5.557

Ravignani, A., & Norton, P. (2017). Measuring rhythmic complexity:
A primer to quantify and compare temporal structure in speech,
movement, and animal vocalizations. Journal of Language Evolu-
tion, 2(1), 4–19. https://doi.org/10.1093/jole/lzx002

Repp, B. H., London, J., & Keller, P. E. (2005). Production and syn-
chronization of uneven rhythms at fast tempi. Music Perception,
23(1), 61–78. https://doi.org/10.1525/mp.2005.23.1.61

Roach, B. J., D’Souza, D. C., Ford, J. M., & Mathalon, D. H. (2019).
Test-retest reliability of time-frequency measures of auditory
steady-state responses in patients with schizophrenia and healthy

123

https://doi.org/10.1523/ENEURO.0471-20.2021
https://doi.org/10.1523/ENEURO.0471-20.2021
https://doi.org/10.7554/eLife.56073
https://doi.org/10.7554/eLife.56073
https://www.praat.org
https://doi.org/10.3758/s13414-016-1206-4
https://doi.org/10.3758/s13414-016-1206-4
https://doi.org/10.1016/j.neuropsychologia.2016.02.018
https://doi.org/10.1016/j.neuropsychologia.2016.02.018
https://doi.org/10.1002/ece3.8417
https://doi.org/10.1002/ece3.8417
https://doi.org/10.1098/rsos.210494
https://doi.org/10.1098/rsos.210494
https://doi.org/10.1037/com0000202
https://doi.org/10.1037/com0000202
https://doi.org/10.3390/healthcare10050899
https://doi.org/10.3390/healthcare10050899
https://doi.org/10.3389/fpsyg.2020.574396
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1111/2041-210X.13644
https://doi.org/10.1111/2041-210X.13644
https://doi.org/10.1111/2041-210X.14118
https://doi.org/10.1111/2041-210X.14118
https://doi.org/10.3758/s13414-014-0787-z
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1121/1.2973189
https://doi.org/10.1121/1.2973189
https://doi.org/10.1016/j.cub.2016.12.031
https://doi.org/10.1016/j.cub.2016.12.031
https://doi.org/10.1080/09524622.2023.2259327
https://doi.org/10.3389/fnhum.2016.00586
https://doi.org/10.3389/fnhum.2016.00586
https://doi.org/10.1016/j.wocn.2018.07.001
https://doi.org/10.1016/j.jecp.2008.07.005
https://doi.org/10.1016/j.jecp.2008.07.005
https://doi.org/10.1162/ARTL_a_00238
https://doi.org/10.1007/s00426-001-0085-y
https://doi.org/10.1007/s00426-001-0085-y
https://doi.org/10.25080/Majora-7b98e3ed-003
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1111/ejn.12811
https://doi.org/10.1016/j.cognition.2018.12.015
https://doi.org/10.1016/j.cognition.2018.12.015
https://doi.org/10.2307/40285633
https://doi.org/10.1016/S0010-0277(02)00187-7
https://doi.org/10.1016/S0010-0277(02)00187-7
https://doi.org/10.3758/s13428-018-01193-y
https://doi.org/10.1525/mp.2017.34.5.557
https://doi.org/10.1525/mp.2017.34.5.557
https://doi.org/10.1093/jole/lzx002
https://doi.org/10.1525/mp.2005.23.1.61

Behavior Research Methods

controls. NeuroImage: Clinical 23, 101878. https://doi.org/10.
1016/j.nicl.2019.101878

Shannon, C. E. (1948). A mathematical theory of communication.
Bell System Technical Journal, 27(3), 379–423. https://doi.org/
10.1002/j.1538-7305.1948.tb01338.x

Simon, J., & Winkler, I. (2018). The role of temporal integration in
auditory stream segregation. Journal of Experimental Psychology:
Human Perception and Performance, 44(11), 1683–1693. https://
doi.org/10.1037/xhp0000564

Thornton, D., Harkrider, A. W., Jenson, D., & Saltuklaroglu, T. (2018).
Sensorimotor activitymeasured via oscillations of eegmu rhythms
in speech and non-speech discrimination tasks with and without
segmentation demands. Brain and Language, 187, 62–73. https://
doi.org/10.1016/j.bandl.2017.03.011

van Son, R. J. J. H., Binnenpoorte, D., van den Heuvel, H., & Pols, L. C.
W. (2001). The ifa corpus: A phonemically segmented dutch “open
source” speech database. Eurospeech 2001 (pp. 2051–2054).

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy,
T., Cournapeau, D., & SciPy 1.0 Contributors. (2020). Scipy
1.0: Fundamental algorithms for scientific computing in python.
Nature Methods, 17, 261–272. https://doi.org/10.1038/s41592-
019-0686-2

Yee,W., Holleran, S., & Jones, M. R. (1994). Sensitivity to event timing
in regular and irregular sequences: Influences of musical skill.
Perception & Psychophysics, 56(4), 461–471.

Zeni, S., & Holmes, N.P. (2018). The Effect of a Regular Auditory
Context on Perceived Interval Duration. Frontiers in Psychology
9, SEP. https://doi.org/10.3389/fpsyg.2018.01567

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1016/j.nicl.2019.101878
https://doi.org/10.1016/j.nicl.2019.101878
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1037/xhp0000564
https://doi.org/10.1037/xhp0000564
https://doi.org/10.1016/j.bandl.2017.03.011
https://doi.org/10.1016/j.bandl.2017.03.011
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.3389/fpsyg.2018.01567

	thebeat: A Python package for working with rhythms and other temporal sequences
	Abstract
	Introduction
	Package principles
	Getting started with thebeat
	Installation and dependencies
	Creating a simple trial

	Example 1: Creating stimuli for an auditory perception experiment
	Example 2: Rhythms and melodies
	Rhythms
	Melodies

	Example 3: Analyzing sperm whale codas
	Discussion
	References

