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Introduction

Structural imaging based on computerized tomography (CT) and magnetic resonance 
imaging (MRI) has progressively replaced traditional post‐mortem studies in the 
process of identifying the neuroanatomical basis of language. In the clinical setting, 
the information provided by structural imaging has been used to confirm the exact 
diagnosis and formulate an individualized treatment plan. In the research arena, 
neuroimaging has permitted to understand neuroanatomy at the individual and 
group level. The possibility to obtain quantitative measures of lesions has improved 
correlation analyses between severity of symptoms, lesion load, and lesion location.

More recently, the development of structural imaging based on diffusion MRI has 
provided valid solutions to two major limitations of more conventional imaging. 
In stroke patients, diffusion can visualize early changes due to a stroke that are 
otherwise not detectable with more conventional structural imaging, with important 
implications for the clinical management of acute stroke patients. Beyond the sensi-
tivity to early changes, diffusion imaging tractography presents the possibility of 
visualizing the trajectories of individual white matter pathways connecting distant 
regions. A pathway analysis based on tractography is offering a new perspective in 
neurolinguistics. First, it permits to formulate new anatomical models of language 
function in the healthy brain and allows to directly test these models in the human 
population without any reliance on animal models. Second, by defining the exact 
location of the damage to specific white matter connections we can understand 
the contribution of different mechanisms to the emergence of language deficits 
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(e.g., cortical versus disconnection mechanisms). Finally, a better understanding of 
the anatomical variability of different language networks is helping to identify new 
anatomical predictors of language recovery. In this chapter we will focus on the 
principles of structural MRI and, in particular, diffusion imaging and tractography 
and present examples of how these methods have informed our understanding of 
variance in language performances in the healthy brain and language deficits in 
patient populations.

Assumptions and Rationale

In the last 30 years, advances in the field of structural imaging have primarily originated 
from a progressive improvement of spatial resolution of CT and MRI sequences and 
the development of diffusion imaging. Diffusion imaging on the one hand is highly 
sensitive towards tissue damage and on the other hand allows to visualize and quan-
tify white matter connections between cortical brain regions in the living human 
brain. Increased spatial resolution for structural images enabled scientists to obtain 
more precise quantitative measurements of cortical anatomy in the form of thickness, 
surface, and volume, and a better delineation of cortical and subcortical lesions. 
In addition, diffusion imaging has revealed tracts that are unique to the human brain 
and identified correlations between lesions to specific tracts and severity of behavioral 
symptoms. In this paragraph we briefly discuss how these approaches to structural 
imaging are applied to healthy volunteers and patients with language deficits.

Structural Imaging Methods Based on Conventional MRI

Current algorithms for structural imaging analysis are able to differentiate neuronal 
tissue into gray matter, white matter, and cerebrospinal fluid (CSF) and extract 
quantitative measurements in single subjects and across large populations. These 
brain morphometry methods require an excellent contrast between different tissues 
(gray and white matter, CSF) to define gray matter density, gray matter volume, and 
the inner and outer surface of the cortex. Tissue classification improves with increasing 
spatial resolution imaging.

Different automatic processing approaches to brain morphometry analysis have 
been developed and include voxel‐based morphometry (VBM), deformation‐based 
morphometry (DBM), and surface‐based morphometry (SBM).

VBM is a fully automated technique that aims at estimating local differences in 
tissue composition, after minimizing gross anatomical differences between individuals 
(Ashburner & Friston, 2000). This is achieved by, first, estimating tissue classification 
based on T1‐weighted images. Second, the segmentation mask (gray matter or white 
matter) is spatially linearly normalized to a standard space to assure that a specific 
voxel is at the same anatomical location across subjects. Third, to reduce the influence 
of inter‐individual anatomical variability spatial smoothing is applied. Voxel inten-
sities are corrected for intensity non‐uniformities, measured, and compared between 
groups or correlated with behavioral measurements (Ashburner & Friston, 2000). 
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Finally, the results need to be corrected for multiple comparisons to avoid type I error 
(false positive results). With VBM it is possible to either analyze the entire brain or 
focus on specific regions of interest, both in healthy subjects or patient groups 
(Geva, Baron, Jones, Price, & Warburton, 2012; Leff et al., 2009; Rowan et al., 2007). 
In the healthy brain, VBM has been used on large datasets to understand structural 
characteristics of language–related areas. For example, Good et al. (2001) studied 
465 healthy volunteers to show significant leftward asymmetry in Heschl’s gyrus, 
frontal operculum, superior and inferior frontal sulci, and limbic structures. When 
combined with other measures, VBM aids exploring structural–functional relation-
ships. Dorsaint‐Pierre et al. (2006), for example, showed no correlation between 
language dominance (assessed with the Wada test) and asymmetry of gray matter 
concentration in posterior language areas (assessed with VBM) in epileptic patients. 
However, when more anterior language regions in the frontal lobe were analyzed, a 
significant correlation emerged.

Deformation Based Morphometry (DBM) has been developed as complementary 
method to VBM to partially overcome the limitations due to potential misregistra-
tion. In DBM non‐linear registration algorithms are used to register the native image 
to a reference template and deformation field matrices are computed. The statistical 
analysis is then performed on the deformation matrices rather than on the registered 
voxels. In other words, DBM analyzes how much the voxel volumes change during 
subject image registration to the reference template, in contrast to VBM, which 
focuses on the residual image variability after its transformation. DBM is a preferred 
method to investigate longitudinal changes, for example, in patients with progressive 
neurodegenerative disease (Brambati et al., 2015; Heim et al., 2014).

Finally, Surface Based Morphometry (SBM) offers the possibility of analyzing 
separate features of gray matter anatomy, such as surface area, cortical thickness, 
curvature, and volume. While thickness measures may provide some indication of 
underlying neuronal loss, reduced size of neuronal cell bodies, or degradation, 
surface area measures may reflect underlying white matter fibers (Van Essen, 1997). 
Similar to VBM, the analysis requires a tissue segmentation of high‐resolution T1‐
weighted images. However, in SBM the surface boundary between white and gray 
matter (inner boundary of cortex) and the boundary between gray matter and CSF 
(outer surface or pial surface) are calculated separately. The output file is a scalar 
value measured in millimeters, which indicates the distance between the inner and 
the outer surface (Fischl & Dale, 2000). These techniques construct and analyze 
surfaces that represent structural boundaries within the brain. As such, it differs 
from VBM and DBM approaches, which ultimately analyze image properties at the 
level of voxels. Surface‐based cortical thickness measures have the advantage that 
they allow for sub‐voxel precision with thickness values being assigned to individual 
vertices rather than voxels. Studies combining measures of volume‐ and surface‐
based methods measuring cortical thickness and surface area have shown that both 
techniques lead to similar findings, but surface‐based methods are able to provide 
more sensitivity (Hutton, Draganski, Ashburner, & Weiskopf, 2009). In primary 
progressive aphasia (PPA) patients, Rogalski et al. (2011) used DBM to investigate a 
specific correspondence between the pattern of cortical thinning and the language 
deficit profile. When applied to stroke patients, these automatic methods have some 
shortfalls that authors have tried to overcome by developing alternative lesion‐based 
methods.

0003100288.INDD   290 4/17/2017   8:44:53 PM



 Structural Neuroimaging 291

These lesion‐based methods rely on the delineation of a lesion to estimate statistical 
associations between damaged tissue and behavioral deficits. Multiple algorithms 
are currently available to perform lesion‐deficit analysis, including voxel‐based 
lesion symptom mapping (VLSM) (Bates et al., 2003; see Chapter 16 for details), 
non‐parametric mapping (NPM) (Rorden, Karnath, & Bonilha, 2007), and Anatomo‐
Clinical Overlapping Maps (AnaCOM) (Kinkingnéhun et al., 2007). All these soft-
ware packages differ with regard to their required input data (e.g., binary versus 
continuous scores), statistical analysis (parametric vs. non‐parametric), underlying 
assumptions on voxel independence (e.g., single voxels analysis versus clusters of 
voxels analysis), and their need for different study designs (e.g., number and demo-
graphics of groups for comparison). Despite these differences, all lesion‐deficit 
approaches need to fulfill prerequisites, including accurate and precise anatomical 
delineation of the lesions, utilizing assessments with diagnostic sensitivity to the 
cognitive processes of interest, and reliable statistical methods to associate lesion 
characteristics with behavioral deficits (Medina, Kimberg, Chatterjee, & Coslett, 
2010).

Diffusion‐Weighted Imaging

Diffusion‐weighted imaging (DWI) based on MRI was initially applied to the brain 
in the mid–1980s (Le Bihan et al., 1986) and its potential for studying stroke–
related changes was immediately recognized (Moseley et al., 1990). The much later 
development of tractography algorithms made it possible to visualize white matter 
connections in the human brain and describe how these mature from childhood to 
adulthood and to characterize the effects of neurological and psychiatric disorders 
on network anatomy and function.

Enthusiasm for the first tractography visualizations of white matter pathways was 
partially due to the resemblance of the in vivo virtual reconstructions to classical 
post‐mortem dissections (Catani, Howard, Pajevic, & Jones, 2002; Lawes et al., 
2008). In addition, it became evident that tractography offered clear advantages 
compared to other invasive methods and could reveal new features of white matter 
anatomy that are unique to the human brain. For example, it became apparent that 
the arcuate fasciculus is a rather complex pathway formed by a direct long segment 
between the classical Broca’s and Wernicke’s regions and an indirect pathway passing 
via the inferior parietal lobule (i.e., Geschwind’s region). The indirect pathway 
includes the anterior segment between Broca’s and Geschwind’s regions and the 
posterior segment between Wernicke’s and Geschwind’s regions (Catani, Jones, & 
ffytche, 2005). The availability of diffusion imaging in large groups of healthy volunteers 
permitted to replicate these findings and at the same time identify inter‐individual 
differences. The three segments of the arcuate fasciculus are present in the left hemi-
sphere in all healthy individuals, but in the right hemisphere the long segment shows 
a great variability. Indeed, it is reported as being bilateral in 40% of the healthy 
population and extremely left lateralized in the remaining 60%, where this segment 
is either absent or very small in the right hemisphere (Catani et al., 2007). These 
percentages change when females and males are analyzed separately, with a greater 
number of males showing an extreme left asymmetry. In recent years, tractography 
has been used to identify previously undescribed language pathways, such as the 
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frontal aslant tract (FAT), which connects Broca’s area to pre‐supplementary motor 
cortex and medial prefrontal cortex (Catani et al., 2013). When applied to language 
disorders, tractography provides diffusion indices that can be used to map white matter 
degeneration along specific tracts and reveal a direct association between the severity 
of tract damage and language deficits.

Apparatus and Nature of the Data

1.5 or 3 Tesla MRI systems are used to acquire MR images by using a pulse sequence, 
which contains radiofrequency (RF) pulses and gradient pulses with carefully con-
trolled timings. There are various types of sequences, but they all have timing values, 
namely echo time (TE) and repetition time (TR), both of which can be modified by 
the operator and influence the weighting, or sensitivity, of the image to specific tissues. 
MRI utilizes the natural properties of hydrogen atoms as part of water or lipids and 
the most important properties are the proton density (number of hydrogen atoms in 
a particular volume) and two characteristic relaxation times called longitudinal 
and transverse relaxation time, denoted as T1 and T2 respectively. Relaxation times 
describe how long the tissue takes to return to equilibrium after an RF pulse. 
Structural T1‐weighted images are acquired using short TE/TR whereas T2‐weighted 
images are acquired using long TE/TR (Figure 15.1).

In clinical settings, T1‐ and T2‐weighted images are widely used to characterize 
lesions due to tumors, traumatic brain injury, infection, neurodegeneration, and 
chronic stroke, but their sensitivity to acute ischemic changes is very low.

Early changes in acute stroke can be best detected using perfusion‐ and diffusion‐
weighted imaging (Figure 15.1). Perfusion imaging is a method to measure cerebral 
blood flow (CBF) to the brain. Measurement of tissue perfusion depends on the 
ability to serially measure concentration of a tracer agent in the brain. These tracers 
are often exogenous (injected radioactive) contrast agents but more recently a less 
invasive sequence was developed that uses magnetic labeling of blood (endogenous) 
as the tracer. Perfusion imaging is a highly sensitive sequence as it measures CBF, 
which if reduced for a critical time period, will cause irreversible damage (Figure 15.1). 
A mismatch between the lesion extent depicted on T1‐weighted and perfusion images 
is often used to guide therapeutic decision making as this mismatch is considered to 
quantify salvageable tissue at risk.

Diffusion MRI quantifies water diffusion in biological tissues. In neuronal tissue, 
the displacement of water molecules is not random due to the presence of biological 
structures such as cell membranes, filaments, and nuclei. These structures reduce 
diffusion distances in the three‐dimensional space. In the white matter the overall 
displacement is reduced unevenly (i.e., anisotropic) due to the presence of axonal 
membranes and myelin sheets, which restricts water diffusion in a direction per-
pendicular to the axonal fibers. Diffusion MRI can therefore detect diffusion drops 
in infarcted tissue within only several minutes of an arterial occlusion. Hereafter 
the signal stabilizes (pseudonormalization) before it progressively increases to 
become elevated in the chronic stage. For diffusion imaging, scanning times depend 
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Figure  15.1 Imaging of an acute patient presenting with anomia following left inferior 
parietal and frontal lobe stroke.
A) Axial non‐contrast computerized tomography (CT) scan demonstrates diffuse hypo‐
density in the parietal (indicated by thick red arrow) and frontal regions (indicated by thin 
red arrow), predominantly in white matter. The low signal‐to‐noise resolution and low white/
gray matter boundary contrast of CT does not allow to determine the exact extent of the 
damage at the cortical level. B) T1‐ and T2‐weighted and fluid‐attenuated inverse recovery 
(FLAIR) images showing structural changes as hypo‐ and hyper‐intense areas in the white 
matter, respectively. In structural T1‐weighted images there is a clear contrast between white 
and gray matter, which is less evident in pathological T2‐weighted images. In T2‐weighted 
images the CSF signal is hyperintense (i.e., brighter) and gray matter appears brighter than 
white matter. Lesions appear hyperintense and may therefore be difficult to distinguish from 
CSF. To overcome this limitation a T2‐weighted image with fluid‐attenuated inversion 
recovery is often acquired in clinical populations, where an addition inversion pulse is applied 
with the purpose of nulling the signal from CSF. This results in a nearly full suppression of 
CSF, which appears dark, whilst the ischemic lesion appears bright. C) Pulsed continuous 
Arterial Spin labelling (pCASL) perfusion‐weighted MRI image of the lesion shows reduced 
cerebral blood flow (CBF) to a large cortical area in the inferior parietal region and to a 
smaller area in the left frontal lobe. The degree of hypo‐perfusion within the white matter is 
more difficult to determine. D) Series of diffusion images showing differences in the exact 
extension of the lesion depending on the b‐value used to acquire them (non‐diffusion 
weighted image: b=0 and diffusion‐weighting: b=500 and b=1500). These images lack the 
spatial resolution of conventional MRI sequences but are sensitive to acute lesions within 
minutes. (See insert for color representation of the figure.)
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on various settings, including the b‐value, which is a factor that reflects the strength 
and timing of the gradients used for the sequence: the higher the b‐value, the 
stronger the diffusion effects in the data (Figure 15.1). At a given b‐value, tissue 
with fast diffusion (e.g., CSF) experiences more signal loss, resulting in low inten-
sity in the image, whilst tissue with slow diffusion (e.g., gray matter) produces high 
intensity in the image (Figure 15.1). Other important parameters are the number 
of gradient directions (ideally ≥30 for diffusion tensor studies, and ≥60 for High 
Angular Resolution Diffusion Imaging; HARDI) and the number of non‐diffusion 
weighted images. Non–diffusion weighted scans are of importance to better fit the 
diffusion metrics and to improve the correction of diffusion‐weighted volumes for 
eddy current and motion artefacts. This is achieved by iterative alignment to the 
non‐diffusion weighted volumes and to minimize T1 and T2 shine through effects 
(Le Bihan & Johansen‐Berg, 2012). The rule of thumb is to acquire one non‐diffusion 
weighted scan interleaved between diffusion‐weighted volumes, usually with a 
1:10 ratio.

Collecting and Analyzing Data

Raw data are collected as Digital Imaging and Communications in Medicine 
(DICOM) files from the scanner and converted to 4D Neuroimaging Informatics 
Technology Initiative (NIFTI) format, which can be readily imported in any standard 
neuroimaging program for visualization and further processing.

For diffusion imaging, in addition to the 4D image a B‐matrix (which contains the 
gradient table that encodes the orientation of the gradients during the acquisition) 
needs to be extracted as a pivotal step to correctly preserve the orientational 
information by realigning the diffusion‐weighted images to the reoriented B–matrix 
(Leemans & Jones, 2009). The B‐matrix is usually provided by the analysis software 
during the initial processing steps. Prior to modeling, it is essential to perform manual 
quality control of the raw data (e.g., detecting missing volumes and misorientation 
of gradient tables) and automatic correction for artefacts (e.g., ghosting, wrapping, 
and ringing), head motion artefacts, and image distortions due to the scanner equip-
ment and environment (e.g., eddy current, field inhomogeneity, echo planar imaging 
geometric distortion) (Jones, Knösche, & Turner, 2013). Once these steps have been 
implemented, tracking algorithms can be chosen to propagate the streamline recon-
struction, using tensor or multi‐fiber models and deterministic or probabilistic 
tracking. Virtual reconstructions of pathways can be dissected and measurements 
can be extracted, such as volume and fractional anisotropy (FA) along the tract. 
The resulting average values per pathway per subject can be submitted to statistical 
analysis. This allows to create percentage overlay maps for pathways (Forkel, Thiebaut 
de Schotten, Kawadler et al., 2014b), establish group differences between controls 
and patients and between patients with different presentations (Catani et al., 2013), 
detect volumetric left‐right differences (Catani et al., 2007; Catani, Forkel, & 
Thiebaut de Schotten, 2010; Thiebaut de Schotten et al., 2011), and associate structural 
white matter anatomy with recovery from aphasia post stroke (Forkel, Thiebaut de 
Schotten, Dell’Acqua et al., 2014a).
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Diffusion Tensor Imaging

The displacement of water molecules measured in a voxel can be described geomet-
rically as an ellipsoid (the tensor) calculated from the diffusion coefficient values 
(eigenvalues, λ1‐3) and orientations (eigenvectors, ν1‐3) of its three principal axes. 
A detailed analysis of the tensor can provide precise information about not only the 
average water molecular displacement within a voxel (e.g., mean diffusivity, MD), 
but also the degree of tissue anisotropy (e.g., fractional anisotropy, FA), and the main 
orientation of the underlying white matter pathways (e.g., principal eigenvector or 
color‐coded maps). These indices provide complementary information about the 
microstructural composition and architecture of brain tissue.

Mean diffusivity (MD) is a rotational invariant quantitative index that describes 
the average mobility of water molecules and is calculated from the three eigenvalues 
(λ1, λ2, λ3) of the tensor (MD = [(λ1 + λ2 + λ3)/3]). Voxels containing gray and white 
matter tissue show similar MD values (Pierpaoli, Jezzard, Basser, Barnett, & Di Chiro, 
1996). MD reduces with age within the first years of life and increases in those disor-
ders characterized by demyelination, axonal injury, and edema (Beaulieu, 2009).

The fractional anisotropy (FA) index ranges from 0 to 1 and represents a 
quantitative measure of the degree of anisotropy in biological tissue. High FA values 
indicate a more anisotropic, that is, a non‐equal, diffusion. In the healthy adult 
brain, FA varies from 0.2 (e.g., in gray matter) to ≥0.8 in white matter. FA provides 
information about the organization of the tissue within a voxel (e.g., strongly or 
weakly anisotropic) and the microarchitecture of the fibers (e.g., parallel, crossing, 
kissing fibers). FA reduces in pathological tissue (e.g., demyelination, edema) and is 
therefore commonly used as an indirect index of microstructural organization.

Perpendicular [(λ2 + λ3)/2] and parallel diffusivity (λ1) describe the diffusivity 
along the principal directions of the diffusion. The perpendicular diffusivity, also 
indicated with the term radial diffusivity (RD), is generally considered a more 
sensitive index of axonal or myelin damage, although interpretation of changes in 
these indices in regions with crossing fibers is not always straightforward (Dell’Acqua 
& Catani, 2012). The principal eigenvector and color‐coded maps are particularly 
useful to visualize the principal orientation of the tensor within each voxel (Pajevic 
& Pierpaoli, 1999).

Diffusion tractography, which is a family of algorithms able to propagate the 
diffusion signal across voxels and allow to visualize continuous reconstructions 
of streamlines, can be used to generate indirect measures of tract volume and 
microstructural properties along pathways. Tractography‐derived inter‐hemispheric 
differences in tract volume are widely reported in the literature, especially for language 
pathways (Catani et al., 2007).

In addition to tract volume, for each voxel intersected by streamlines, other diffusion 
indices can be extracted and a total average can be extrapolated from these. Examples 
include fractional anisotropy, mean diffusivity, parallel and radial diffusivity. These 
can provide important information on the microstructural properties of streamlines 
and their organization. Asymmetry in FA, for example, could indicate differences 
in the axonal anatomy (intra‐axonal composition, axon diameter, and membrane 
permeability), fiber myelination (myelin density, internodal distance, and myelin 
distribution), or fiber arrangement and morphology (axonal dispersion, axonal 
crossing, and axonal branching) (Beaulieu, 2002).
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Other diffusion measurements may reveal more specific streamline properties. 
Changes in axial diffusivity, for example, could be related to intra‐axonal compo-
sition, while RD may be more sensitive to changes in membrane permeability and 
myelin density (Song et al., 2002). These in vivo diffusion–based measurements 
allow connectional anatomy to be defined at different scales during development 
and in the adult brain.

Advanced Tractography Models

One of the major improvements for both probabilistic tractography, where uncertainty 
is modelled within the reconstruction, and deterministic tractography (e.g., diffusion 
tensor imaging), was the introduction of novel advanced diffusion models to estimate 
multiple fiber orientations. Several models have been proposed and will be briefly 
mentioned below. It would be beyond the scope of this introductory chapter to detail 
each method and we therefore list the most commonly employed algorithms for the 
reader to know where to place these methods and self‐guide further reading.

Multiparametric methods, for example, multitensor (Alexander, Barker, & Arridge, 
2002; Tuch et al., 2002) or “Ball and Stick” models (Behrens et al., 2003) are 
model‐dependent approaches in which the diffusion data are fitted with a chosen 
model that assumes a discrete number of fiber orientations (e.g., two or more). 
Nonparametric, model‐independent methods such as diffusion spectrum imaging 
(DSI) (Wedeen, Hagmann, Tseng, Reese, & Weisskoff, 2005), q–Ball imaging (Tuch, 
Reese, Wiegell, & Van Wedeen, 2003), or diffusion orientation transform (Özarslan, 
Shepherd, Vemuri, Blackband, & Mareci, 2006) have been developed to better 
characterize the water molecular displacement by using a spherical function or the 
diffusion orientation distribution function (dODF). Whilst tensor‐based models 
only visualize one diffusion orientation per voxel, the multilobe shape of the dODF 
provides information on the number of fiber orientations, their orientation and the 
weight of each fiber component within a voxel.

A third group of methods try to take advantage of both approaches by extracting 
directly the underlying fiber orientation (i.e., fiber‐ODF) using a specific diffusion 
model for white matter fibers. The latter approaches are usually described as 
spherical deconvolution methods (Dell’Acqua, Simmons, Williams, & Catani, 2013) 
and they generally show higher angular resolution (i.e., the ability to resolve crossing 
fibers at smaller angles) compared with methods based on dODFs (Seunarine et al., 
2009). Spherical deconvolution methods are becoming the methods of choice in an 
increasing number of studies as they require acquisition protocols that are close to 
clinical tractography protocols (e.g., a low number of diffusion gradient directions 
and b–values that are accessible on most clinical scanners).

Tractography Reconstructions

Compared to deterministic approaches in which the estimated fiber orientation (e.g., the 
direction of maximum diffusivity for the tensor model) is assumed to represent the best 
estimate to propagate streamlines, probabilistic methods generate multiple solutions to 
reflect also the variability or “uncertainty” of the estimated fiber orientation (Jbabdi & 
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Johansen‐Berg, 2011). These methods, therefore, provide additional information on the 
reproducibility of each tractography reconstruction by mapping the intrinsic uncertainty 
of individual diffusion datasets. The uncertainty quantified by probabilistic tractography 
is mainly driven by the magnetic resonance noise, partial volume effects, and inaccuracy 
of the chosen diffusion model. Therefore, the probability of individual maps should not 
be considered as a direct measure of the anatomical probability of the tract. Indeed, in 
some cases artefactual trajectories can have high probability similar to true anatomical 
pathways. Ultimately, in datasets without noise both deterministic and probabilistic 
approaches based on the same diffusion model would generate identical tractography 
maps. Understanding these basic assumptions underlying probabilistic tractography is 
important to correctly interpret the obtained results.

Advanced diffusion models that resolve multiple white matter trajectories within 
a single voxel offer the possibility of describing tracts that are not visible using 
current diffusion tensor methods. This opens up the possibility to visualize and 
describe tracts, which until now have been impossible to identify due to methodolog-
ical limitations. Recently, an advanced method has been used to reveal new details of 
the short frontal lobe connections (Catani et al., 2012). Although an exact knowledge 
of these short fibers represents a significant step forward in our understanding of 
human anatomy, it is important to be aware that tractography based on advanced 
diffusion methods is prone to produce a higher number of false positives compared 
to the tensor model. Hence, validation of these tracts with complementary methods, 
such as intraoperative stimulation studies and postmortem staining (Elias, Zheng, 
Domer, Quigg, & Pouratian, 2012) is necessary before widely applying these 
anatomical models to clinical populations.

Atlasing

Until the advent of tractography, our knowledge of white matter anatomy was 
based on a small number of influential 19th and early 20th century post‐mortem 
dissection atlases (Burdach, 1819; Déjerine, 1895). In common with their contem-
porary counterparts (Talairach & Tournoux, 1988), these atlases emphasize the 
average anatomy of representative participants at the expense of variability between 
participants. In recent years, several research groups have used tractography to 
produce group atlases of the major white matter tracts (Catani & Thiebaut de 
Schotten, 2012; Rojkova et al., 2016). By extracting the anatomical location of 
each tract from several participants, these atlases provide probability maps of each 
pathway and quantify their anatomical variability. These atlases help clinicians to 
establish a relationship of focal lesions with nearby tracts and improve clinical‐
anatomical correlation (Figure 15.2) (Thiebaut de Schotten et al., 2014). It remains 
to be established, however, how much of this variability is due to a true underlying 
anatomical difference or the result of methodological limitations.

Tract Specific Measurements

Beyond visualizing white matter pathways, quantitative analyses can be conducted 
by extracting diffusion indices along the dissected tract. It is possible to characterize 
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Figure 15.2 Lesion mapping based on T1‐weighted data (A), on a diffusion tractography atlas 
(B), and an example of extracting tract–based measurements from tractography (C).
A) Group‐level lesion overlay percentage maps for an aphasic stroke patient cohort (n=16) 
reconstructed on an axial template brain and projected onto the left lateral cortical surface. 
This method identifies areas most commonly affected by lesions within a group of patients. 
B) Lesion mask (purple) from a single stroke patient overlaid onto a tractography‐based white 
matter atlas to extract measures of lesion load on pathways affected by the lesion. C) Differences 
in tract‐specific measurements of the frontal aslant tract and uncinate fasciculus between 
 control subjects and patients with non‐fluent/agrammatic and semantic variants of primary 
progressive aphasia (PPA). Tractography reconstructions show the fractional anisotropy values 
mapped onto the streamlines of the frontal aslant tract and uncinate fasciculus of a control 
subject and two representative patients with PPA with non‐fluent/agrammatic and semantic 
variant. Exemplary measurements of fractional anisotropy (FA) are reported for the frontal 
aslant tract (solid bars) and the uncinate fasciculus (patterned bars). **statistically significant 
different versus semantic group (P < 0.05), ††statistically significant different versus controls 
(P < 0.001). IFG: inferior frontal gryus, MFG: middle frontal gyrus, SFG: superior frontal gyrus, 
MTG: middle temporal gyrus, STG: superior temporal gyrus. Source: Modified from Forkel 
et al., 2014 and Catani et al., 2013. (See insert for color representation of the figure.)
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the microstructural properties of tissue in the normal and pathological brain and 
provide quantitative measurements for group comparisons or individual case studies 
(Figure 15.2).

The interpretation of these indices, however, is not always straightforward, espe-
cially in regions containing multiple fibers. An example of the complexity of this 
problem is the increase of fractional anisotropy commonly seen in the normal‐
appearing white matter regions distant to the lesioned area. Before interpreting 
these changes as indicative of “plasticity or remodeling,” other explanations should 
be taken into account. In voxels containing both degenerating and normal fibers, 
increases in fractional anisotropy values are, in fact, more likely due to the axonal 
degeneration of the perpendicular fibers (Wheeler‐Kingshott & Cercignani, 2009). 
The lack of specificity of current diffusion indices (i.e., diffusion changes depend 
on a number of biological, biochemical, and microstructural factors) and the 
intrinsic voxel‐specific rather than fiber‐specific information derived from current 
indices has stimulated scientists to work on new methods and novel diffusion 
indices (Dell’Acqua et al., 2013). More recently, true tract‐specific indices based on 
spherical deconvolution that better describe the microstructural diffusion changes 
of individual crossing fibers within the same voxel have been proposed. Changes 
in the hindrance modulated orientation anisotropy (HMOA) (Dell’Acqua et al., 
2013), for example, have a greater sensitivity than conventional fractional anisot-
ropy values to detect degeneration that occurs only in one population of fibers, 
whereas the other crossing fibers remain intact. In the future, tractography 
combined with multimodal imaging methods will allow to extract even more 
specific tissue microstructure indices.

An Exemplary Study

In this section, we discuss how Forkel et al. (2014a) used conventional MRI in 
conjunction with diffusion tractography to identify anatomical predictors of 
language recovery after stroke. In this study, 18 patients with unilateral first‐ever 
left hemisphere stroke and language impairment confirmed by the revised Western 
Aphasia Battery (WAB–R) (Kertesz, 2007) were prospectively recruited. Language 
and neuroimaging assessments were performed within two weeks after symptom 
onset and again after six months.

The 45‐minute MRI scan included a high‐resolution structural T1‐weighted 
volume for lesion analyses and diffusion imaging data with 60 diffusion‐weighted 
directions (b‐value 1500 mm2/s) and seven interleaved non‐diffusion weighted 
volumes. Matrix size was 128 × 128 × 60 and voxel size was 2.4 × 2.4 × 2.4 mm. 
Peripheral gating was applied to avoid brain pulsation artefacts. Diffusion tensor 
imaging data were preprocessed and corrected for eddy current and motion artefacts 
through iterative correction to the seven non‐diffusion weighted volumes using 
ExploreDTI (www.exploreDTI.com). Whole brain tractography was performed 
from all brain voxels with fractional anisotropy >0.2. Streamlines were propagated 
with a step‐size of 1 mm, using Euler integration and b‐spline interpolation of the 
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diffusion tensor field (Basser et al., 2000). Where fractional anisotropy was <0.2 or 
when the angle between two consecutive tractography steps was >45°, streamline 
propagation was stopped.

Tractography dissections of the three segments of the arcuate fasciculus were 
obtained using a three regions of interest approach as previously described (Catani 
& Thiebaut de Schotten, 2008). Regions of interest were defined on fractional 
anisotropy images in the patients’ native space and included an inferior frontal 
region, an inferior parietal region, and a posterior temporal region. All streamlines 
passing through both frontal and temporal regions of interest were considered as 
belonging to the long segment of the arcuate fasciculus. All streamlines between 
temporal and parietal regions of interest were classified as posterior segment of the 
arcuate fasciculus and those between parietal and frontal regions of interest were 
labelled as anterior segment of the arcuate fasciculus. The volume for each segment 
was calculated as the number of voxels intersected by the streamlines of each 
segment. To control for the possibility that hemisphere size might be driving the 
volume of the arcuate segments (i.e., larger hemisphere means larger arcuate 
 fasciculus), the tract volume was normalized by the hemisphere volume (segment 
volume/hemisphere volume). The hemispheric volume was obtained using FMRIB 
Software Library package (FSL, http://www.fmrib.ox.ac.uk/fsl/). The normalized 
segment volume was then used for further analysis.

Stroke lesions were manually delineated on T1‐weighted images and these delin-
eations were saved as lesion masks. Their volume (number of voxels) was extracted 
using FSL and lesion masks were subsequently binarized (i.e., assigning a value of 0 
or 1 to each voxel) and normalized to a standard space. Lesion masks were overlaid 
to create percentage maps to compute commonly damaged voxels. The average 
lesion size for this group was 21.62 cubic centimeters (standard deviation = 32.43 
cubic centimeters). This number can be obtained by extracting the number of voxels 
within the lesion mask and multiplying these with the volume of the voxel in the 
underlying imaging scan. Standard neuroimaging software will provide this value 
automatically without the need for the calculation. An overlay of the patients’ nor-
malized lesions is shown in Figure 15.2A.

The aphasia quotient (AQ) was used as a measure of the patients’ overall 
performance on the WAB‐R at the acute stage and at follow‐up. This measure 
was then inputted into a hierarchical regression analysis alongside demographic 
data (age, sex, education), lesion volume, and volume of the three segments. 
This analysis was run separately for the left and the right hemisphere. For the 
left hemisphere, adding tractography to the analysis did not significantly 
improve the predictive strength of longitudinal aphasia severity. In contrast, in 
the right hemisphere the addition of the normalized size of the long segment of 
the arcuate to a model based on age, sex, and lesion size increased the predic-
tive power of the variance at six months from nearly 30% to nearly 57% 
(Figure 15.3). Of the four predictors only age and the right long segment were 
independent predictors. Gender and lesion size were marginally significant 
predictors.

These results indicate that the use of structural imaging based on lesion mapping 
and tractography can help clinicians identify trajectories of language recovery after 
stroke.
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Advantages and Disadvantages of Diffusion Tractography

The ability of tracking connections in the living human brain allowed to move above 
and beyond network models based on non‐human primate tracing and human post 
mortem studies. This led to the description of new tracts, some of which are impor-
tant for language development. In addition, fast acquisition sequences are now avail-
able to obtain high‐quality data from patients who are prone to movement artefacts. 
When combining tractography with detailed linguistic assessment, neurobiological 
language models can be directly validated or falsified. However, despite a progressive 
amelioration of the spatial resolution of diffusion datasets, compared to classical 
axonal tracing studies, tractography is still unable to identify the smallest bundles 
and differentiate anterograde and retrograde connections. The level of noise in the 
diffusion data and the intrinsic MRI artefacts also constitute important factors that 
affect the precision and accuracy of the measurements and, as a consequence, the 
quality of the tractography reconstruction (Basser, Pajevic, Pierpaoli, Duda, & 
Aldroubi, 2000; Le Bihan, Poupon, Amadon, & Lethimonnier, 2006). Finally, diffu-
sion tensor tractography assumes that fibers in each voxel are well described by a 
single orientation estimate, which is a valid assumption for voxels containing only 
one population of fibers with a similar orientation. The majority of white matter 
voxels, however, contain populations of fibers with multiple orientations. In these 
regions fibers cross, kiss, merge, or diverge, and the tensor model is inadequate to 
capture this anatomical complexity. More recent tractography developments based 
on HARDI methods and appropriate processing techniques are able to partially 
resolve fiber crossings. All these limitations may lead to tracking pathways that do 
not exist (false positive) or fail to track those that do exist (false negative).

It is evident from all the considerations above that interpretation of tractography 
results requires experience and a priori anatomical knowledge. This is particularly 
true for the diseased brain, where alteration and anatomic distortion due to the 
presence of pathology generates tissue changes likely to lead to a greater number of 
artefactual reconstructions. Despite these limitations, tractography is the only tech-
nique that permits a quantitative assessment of white matter tracts in the living 
human brain. The recent development of MRI scanners with stronger gradients and 
multi‐band acquisition sequences represents one of many steps towards a significant 
improvement of the diffusion tractography approach. The possibility of combining 
tractography with other imaging modalities will provide a complete picture of the 
functional anatomy of human language pathways.

Key Terms

Brain morphometry Measures brain structures based on structural MRI data. 
Techniques include voxel‐based, surface‐based, and deformation‐based 
morphometry.

Cerebral blood flow (CBF) Blood supply to the brain in a given period of time. In an 
adult, CBF is typically 750 milliliters per minute or 15% of the cardiac output. 
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This equates to an average perfusion of 50 to 54 milliliters of blood per 100 grams 
of brain tissue per minute.

Cerebrospinal fluid (CSF) Fluid surrounding the brain and spinal cord and filling 
the cavities inside the brain. It is produced within the ventricles of the brain and 
provides basic mechanical and immunological protection to the nervous system.

Computerized Tomography (CT) An imaging procedure that uses special x‐ray 
equipment to create anatomical scans.

Contrast Various tissues have different signal intensities, or brightness, on MR 
images. The differences are described as the image, tissue, or signal contrast and 
allow to define boundaries between tissues, for example, gray‐white matter 
boundary.

Diffusion–weighted imaging (DWI) An advanced MRI pulse sequence based upon 
measuring the random Brownian motion of water molecules within a voxel (3D 
volume) of tissue.

Echo time (TE) Time between the radio frequency pulse and MR signal sampling, 
corresponding to maximum of echo.

Fractional Anisotropy (FA) A measure based on diffusion‐weighted imaging 
describing the deviation from isotropy (equal diffusion in all directions) and 
measured between 0 (isotropic) and 1 (anisotropic). High FA is found in brain 
voxels with minimal amounts of crossing fibers.

High Angular Resolution Diffusion Imaging (HARDI) A “family” of advanced 
diffusion modeling methods that tries to overcome limitations of diffusion tensor 
imaging by resolving multiple fiber orientations. The main feature of HARDI 
approaches is to collect diffusion data along a large number of diffusion direc-
tions (≥60) to better characterize microstructure angular complexity.

Hindrance modulated orientation anisotropy (HMOA) Tract specific diffusion 
metrics derived from spherical deconvolution analysis. This index provides 
along tract information about white matter anisotropy and microstructure orga-
nization. Differently from more common voxel‐based metrics (e.g., FA) that 
provide only a single average value per voxel, HMOA can have multiple values, 
one for each distinct fiber orientation resolved by spherical deconvolution.

Magnetic Resonance Imaging (MRI) Non‐invasive imaging technique for obtaining 
anatomical images based on the magnetic properties of hydrogen atoms.

Mean Diffusivity (MD) A measure based on diffusion‐weighted imaging describing 
the mean molecular motion, independent of tissue directionality.

Myelin: The myelin sheath is a lipid membrane wrapped around the nerve axons in 
a spiral fashion, which provides an electrically insulating layer. The myelin 
sheath originates from oligodendroglia cells in the central nervous system.

Pulse sequences MRI allows to produce a wide range of contrasts by using different 
imaging techniques (known as pulse sequences) which are composed of radio 
frequency pulses, gradient waveforms, and coding for data acquisition.

Radial Diffusivity (RD) A DWI‐based measure describing the diffusivity perpendicular 
to the axonal fibers, which is calculated from the mean magnitude of diffusion 
along two perpendicular directions that are orthogonal to the overall maximum 
diffusion direction.

Registration/normalization A neuroimaging registration method to spatially align a 
series of images, either from intra‐subject or inter‐subject image volumes, which 
is utilized in several steps of preprocessing.
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Repetition time (TR) Time between two excitation pulses during an MRI acquisition.
Segmentation mask Partition of an image into a set of tissues that compose the 

image, including masks for gray and white matter, CSF, and lesioned tissue.
Spatial smoothing The purpose of smoothing, or blurring of the image, is to cope 

with anatomical variability that is not compensated by normalization and to 
improve the signal to noise ratio.

Spatial resolution Spatial resolution of an image is determined by the size of the 
voxels. The smaller the size of the voxel, the higher the resolution and higher 
resolution allows to better segment tissues and identify lesions.

Standard space In order to compare brain scans they have to be aligned in a patient‐
orientation‐independent space. Often this is achieved by using a reference tem-
plate brain, a representative image with anatomical features in a coordinate 
space, which then provides a target to align individual images to.

Streamlines Tractography visualizes 3D reconstructions of the preferred orientation 
of water molecules which is indicative of the underlying axonal structures. Given 
the inference, the term “streamlines” should be used in preference of axons or 
fibers when referring to tractography results.

T1‐weighted image A basic pulse sequence (short TE/TR), which relies on the 
longitudinal relaxation after spins have been flipped into a transverse plane by a 
radiofrequency pulse.

T2‐weighted image A basic pulse sequence (long TE/TR), which relies upon the 
transverse relaxation of the net magnetization vector. After a radiofrequency 
excitation pulse, there is relaxation of the spins from the transverse plane toward 
the main longitudinal magnetic vector; this is T1‐weighting. At the same time, 
spins are decaying from their aligned precession in the transverse plane. 
Differences in this decay are captured in T2‐weighting. Different tissue types 
recover their equilibrium at different times, which allows T1‐ and T2‐weighted 
images to differentiate between tissues.

Tractography MR tractography is a technique to map fiber orientation and trajec-
tories in three dimensions based on diffusion data.

Voxel A 3D volume (a volume pixel), associated with a particular x‐y‐z coordinate 
in the brain, used in the analysis of 3D brain imaging findings.
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