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1 | General introduction

In our interactions with others, we employ both verbal and non-verbal signals

to convey our thoughts and feelings. Non-verbal signals/cues include gestures,

body postures, facial expressions, eye contact, voice modulation, spatial proxim-

ity, and many other aspects. At times, non-verbal behaviors can take precedence

over verbal language and communication can be exclusively non-verbal. For

instance, a simple wave of the hand can signify a greeting, and a nod of the

head can express agreement. The human face, in particular, plays a central role

in our non-verbal communication. It is a source of rich visual cues, including

facial expressions and gaze. We evolved to communicate non-verbally long be-

fore we learned to use language. This is evident in the existence of gestures

that are recognized to have the same meaning across cultures and languages

(Andersen, 1999). Early research on non-verbal communication emphasized its

significance, famously suggesting that 90% of communication is non-verbal ac-

cording to Mehrabian (1972). While this claim is exaggerated (questioned in

later studies (Burgoon, 1985; Lapakko, 1997)) and the exact percentage values

are very difficult to quantify, the underlying message remains clear: non-verbal

behavior is integral for effective communication.

With the rapid advancements in artificial intelligence and robotics technolo-

gies, social robots are poised to have greater integration in society. These robots

are designed specifically to conduct human-like interactions. So, understanding

and replicating essential non-verbal cues, such as facial expressions and gaze,

are essential for enhancing the effectiveness, human-likeness, and acceptance of

these robotic systems. Social robots are already being employed in a variety of

domains, including healthcare, education, and assistive roles, where their capac-

ity to convey and interpret human emotions and intentions can significantly im-

pact the quality of interactions. Modeling non-verbal behaviors on these robots

would make them more capable of providing a richer user experience. For ex-

ample, a social robot designed to provide companionship to the elderly could

express happiness when the user is cheerful and sadness when the user is up-

set, enhancing emotional connection, or look directly at the user when speaking,

creating a more personalized and attentive interaction.
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12 1 General introduction

My main goal is to investigate methods for making human-robot interactions

(HRI) more seamless and human-like by modeling non-verbal behaviors on so-

cial robots. My research centered on two key areas:

• Determining optimal methods for modeling these behaviors.

• Evaluating the human perception and influence of these behaviors during

HRI

This dissertation specifically focuses on modeling the eye gaze and affective be-

haviors of social robots. Subsequent sections offer background information on

the significance of gaze and affective behavior in human-human interactions

(HHI) (Section 1.1 and 1.3), an examination of existing models along with their

limitations, and the resulting research questions in Sections 1.2 and 1.4. The

robotic platform used in this dissertation is introduced and discussed briefly in

Section 1.5. Section 1.6 outlines the structure of this dissertation and explains

how the research inquiries were addressed.

1.1 Role of Eye Gaze in Communication

Gaze cues are regarded to be especially vital among non-verbal signals in HHI

(Kendon, 1967). A prior investigation revealed that the human brain possesses

unique, hard-wired pathways for interpreting these cues (Emery, 2000). The

manner in which we focus on an object, the timing of shifting our gaze away from

an interlocutor, and the duration of our gaze directed at our partner hold distinct

functions in human interactions. Studies on human communication shed light

on the multifaceted functions of gaze in social exchanges, encompassing con-

versation floor regulation (Rossano, 2012) and intimacy management (Abele,

1986). In this section, I briefly discuss several roles of gaze cues in HHI which

are crucial topics, investigated in this dissertation.

Turn-taking is the process through which conversational participants coordi-

nate and alternate their speaking roles. This coordination involves a range of

non-verbal cues involving the voice and facial expressions, with gaze being a

critical component (Kendrick, Holler, & Levinson, 2023; Skantze, 2021). Typi-

cally, when someone is speaking, they tend to avert their gaze from the listener,

particularly during lengthy speech segments and at the outset of their turn, in-

dicating their intention to hold the conversational floor (Kendon, 1967). In con-

trast, when it’s time to relinquish the floor, the speaker often initiates a mutual

gaze toward the conclusion of their utterance. According to Jokinen, Furukawa,
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1 General introduction 13

Nishida, and Yamamoto (2013), such eye gaze is crucial in determining when

the speaker intends to continue speaking.

Gaze aversion entails the purposeful redirection of one’s gaze away from their

conversational partner. It serves three primary functions: cognitive, intimacy

regulation, and facilitating turn-taking (Andrist, Tan, Gleicher, & Mutlu, 2014).

Throughout a conversation, speakers frequently look away from the listener, aid-

ing in the planning of their next statement and minimizing distractions (Argyle

& Cook, 1976). Research has revealed that maintaining mutual gaze can lead

to increased hesitations and false starts (Beattie, 1981). Moreover, gaze aver-

sion is an essential cue for signaling one’s intent to retain the conversational

floor. Additionally, gaze aversion significantly contributes to regulating the level

of intimacy within a conversation, as demonstrated by Abele (1986).

The capacity to track the direction of someone else’s gaze plays a pivotal role in

synchronizing attention during social interactions. When two or more individu-

als simultaneously focus on a shared point of interest and are mutually aware of

this focus, it is typically termed joint attention. This concept of joint attention

can be further classified into two primary components, known as responding

to joint attention (RJA) and initiating joint attention (IJA) as delineated by

Mundy and Newell (2007). IJA denotes the situation in which one participant

in the interaction takes the lead in establishing mutual eye contact and subse-

quently directs their gaze toward the referential point of interest. This act of

initiating joint attention is often referred to as "referential gaze," as it involves

guiding the attention of the interaction partner to a specific target. On the other

hand, RJA encompasses the action of observing and tracking the gaze direction

of others, while also discerning the implicit signal to collectively direct attention

toward a shared focal point. In essence, RJA involves the ability to follow and

understand someone else’s gaze cues and the underlying intention to engage in

joint attention.

1.2 Gaze in HRI

In light of the substantial role that gaze behavior plays in human communication,

it is reasonable to consider reproducing the same in HRI. A significant challenge

in HRI pertains to effectively communicating a robot’s intent to its human coun-

terparts. Achieving this necessitates the emulation of human behavior to the

greatest extent possible, which would facilitate easier perception and interpre-

tation of a robot’s cues. Consider a scenario where three cups are placed on a
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14 1 General introduction

table, and the robot is tasked with referring to a specific cup. Utilizing solely ver-

bal references renders it challenging to disambiguate the exact cup to which the

robot is referring. Conversely, when the robot supplements the verbal reference

with a synchronized gaze directed at the cup, the identification of the referred

cup becomes considerably more straightforward.

Efforts have been made by researchers to harness insights from HHI litera-

ture to develop models that govern and automate the gaze behavior of robots,

denoted as Gaze Control Systems (GCS). These GCS primarily adopt two key

approaches: data-driven (Andrist et al., 2014; Mutlu, Kanda, Forlizzi, Hodgins,

& Ishiguro, 2012) and heuristic (Boucher et al., 2012; Mehlmann et al., 2014;

Pereira, Oertel, Fermoselle, Mendelson, & Gustafson, 2019). In the data-driven

approach, data obtained from HHI experiments is harnessed to train models,

including deep learning models, to predict the gaze behavior for robots. Con-

versely, the heuristic approach involves the analysis of HHI data to formulate

generalized rules governing robotic gaze behavior. While both of these ap-

proaches have reasonably succeeded in modeling human-like gaze behaviors in

robots, several limitations persist.

The first limitation pertains to the lack of suitable robotic platforms equipped

to replicate nuanced human-like gaze behaviors. Many existing GCS have been

developed for robots like NAO1 and Pepper2, both of which lack independent

eye and head movement capabilities. Consequently, these GCS are confined to

modeling gaze behavior solely through head movements, overlooking the intri-

cate coordination between eye and head movements that human gaze behavior

entails when directing attention towards a target, as elucidated by Uemura, Arai,

and Shimazaki (1980) and Stahl (1999). Additional limitations encompass the

predominantly reactive and static nature of GCS. Typically, these models primar-

ily focus on directing a robot’s gaze in immediate response to events occurring

during interactions, often with fixed gaze durations. However, it is known that

HHI involves a lot of planning and the resulting gaze behavior is a combination

of both reactive and planning components. A study by Beattie (2010) showed

that gaze behavior is highly dependent on the underlying speech plan during

HHI. This leads to my first research question:

• RQ1: How can a comprehensive GCS be modeled for social robots?

The other aspect that I want to focus on is the perceptual aspects of gaze be-

haviors exhibited by social robots and their potential impact on human behavior

1NAO Website
2Pepper website
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1 General introduction 15

during HRI. Are robot gaze behaviors perceived similarly to human gaze behav-

ior? During an interaction, do robot gaze behaviors exert similar influence on

human interlocutors, as human gaze behaviors? Addressing these questions is

necessary as they lie at the center of designing better HRI interfaces. Whether or

not we need to model human-like gaze behaviors is dependent on the answers

to these questions.

Previous research has shown that human interlocutors perceive and recognize

robot gaze behaviors to be intentional (Andrist et al., 2014). This is an important

finding because it highlights that humans are ascribing intent to a robot’s behav-

ior and trying to interpret it. Yamazaki et al. (2008) conducted an experiment

where the robot directed its gaze towards the participants at transition relevant

places, resulting in observable influences on the participants’ non-verbal behav-

ior. Another study revealed that directing a robot’s gaze when participants were

being deceptive resulted in participants becoming more honest in subsequent

trials (Schellen, Bossi, & Wykowska, 2021). Others have explored the impact of

robot gaze on group activities, where the robot’s gaze can be used to steer the

conversational dynamics and improve participation equality (Gillet et al., 2021;

Skantze, 2017). However, the direct influence of human gaze behavior as a re-

sult of robot gaze behavior has remained less explored. Moreover, many studies

have used head motion instead of eye gaze to model robot gaze behavior due

to constraints imposed by the robotic platforms in use. This limitation restricts

the capacity to investigate the influence of nuanced, human-like gaze behaviors.

This leads to my second research question:

• RQ2: What influence does a robot’s gaze have on human gaze behavior?

1.3 Emotions in Communication

Facial expressions serve a dual purpose in human communication, functioning

as a means of conveying one’s emotions while also enabling the interpretation of

the emotional states of others, thereby enhancing the effectiveness of interper-

sonal communication. This capacity to perceive and express emotions, collec-

tively known as affective behavior, constitutes a fundamental aspect of human

interaction. In our everyday interactions, the natural expression of emotions

is a cornerstone for building and nurturing relationships with others (Lazarus,

2006). Facial expressions are also used to convey various meanings during in-

teractions (Elliott & Jacobs, 2013). Elfenbein and Ambady (2002) conducted a

study that underscored the universality of emotional recognition, highlighting
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the significance of emotional expressions in human interactions. Furthermore,

research has revealed the pivotal role that emotions play in the decision-making

process (So et al., 2015).

Emotion Theories define emotions while discussing the similarities and differ-

ences between them. There are two main models of emotion that are proposed

in emotion theories: Categorical and Dimensional. Categorical models propose

that emotions elicited as a response to certain stimuli are divided into specific

emotion categories such as the six basic emotions proposed by Ekman (1999).

Dimensional models, on the other hand, suggest that the emotions experienced

are influenced by fundamental dimensions, such as arousal and valence. Russell

(1980) proposed the famous Circumplex model of emotions where the emotion

categories were represented in a 2-D space, with transitions between emotions

governed by variations in arousal and valence in response to stimuli (as shown

in Fig. 1.1).

Figure 1.1: The Circumplex Model, which distributes the emotions along two
dimensions; Valence and Arousal. Based on the Arousal and Valence
levels in response to a stimulus, a specific emotional state can be
reached. Image adapted from Seo and Huh (2019)
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To gain a deeper comprehension of affective behavior, it is imperative to ex-

plore the factors that contribute to the generation of emotions during interac-

tions. Appraisal Theory, a subset of emotion theories, seeks to elucidate this

process by asserting that emotions are elicited through the appraisal of various

factors, including the present situation, desired goals, and agency. According to

Moors (2020),

“Appraisal theory of emotion proposes that emotions or emotional components

are caused and differentiated by an appraisal of the stimulus as mis/matching with

goals and expectations, as easy/difficult to control, and as caused by others, them-

selves, or impersonal circumstances.”

In essence, emotion models provide a quantitative framework for the represen-

tation and analysis of emotions, while appraisal theories offer insights into the

determinants of emotional states and the underlying processes involved in their

emergence.

1.4 Affective HRI

To enable robots to display affective behavior, it is essential to have the capac-

ity to perceive various communicative signals (expressions, body posture, gaze

direction, speech, spatial proximity, etc.) from human interlocutors. They must

appraise these signals and subsequently exhibit an appropriate emotional re-

sponse. Researchers have drawn inspiration from various models of emotions

(as expounded in Section 1.3) as foundational frameworks for the emotion ap-

praisal and emotion generation process in robots (Breazeal, 2003; Cully, Clune,

Tarapore, & Mouret, 2015; Kirby, Forlizzi, & Simmons, 2010; Paplu, Mishra, &

Berns, 2022; Tang et al., 2023). Breazeal (2003) introduced a framework that

interprets interaction events in terms of arousal, valence, and stance dimen-

sions, effectively mapping emotion categories in the affect space to determine

the robot’s appropriate emotional response. Similarly, Paplu et al. (2022) lever-

aged the Circumplex model of emotions to generate robot emotions. While these

models exhibit the potential to approximate human-like emotion appraisal and

generate contextually appropriate affective behaviors in robots, their develop-

ment necessitates extensive effort and time due to the complexity involved in

designing these architectures. Moreover, the computational intensity of such

architectures poses a challenge in generating real-time emotions in HRI.

The recent surge in Large Language Models (LLMs) such as GPT-3 (Brown et

al., 2020), PaLM (Chowdhery et al., 2022) and OPT (S. Zhang et al., 2022), have
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significantly impacted the field of natural language understanding and genera-

tion. LLMs are trained on very large-scale datasets comprising both dialogues

and publicly available web documents. These models have showcased remark-

able capabilities in solving diverse tasks that extend beyond the training data

through ’few-shot’ or ’zero-shot’ learning. For HRI, the capacity to design inter-

actions with ’zero-shot’ chatting using LLMs (Brown et al., 2020) is of particular

importance, as it significantly simplifies interaction design. Recent studies utiliz-

ing GPT-3 have demonstrated that LLMs can be employed to recognize emotions

in conversations (Lammerse, Hassan, Sabet, Riegler, & Halvorsen, 2022). Given

the real-time conversational capabilities of LLMs and their cloud services, this

prompts my third research question:

• RQ3: Can we leverage LLMs to model affective robot behavior reliably and

in real-time?

As previously mentioned, affective behavior encompasses both the perception

and generation of emotions. In this section, the focus is placed on the perception

of emotional behaviors, specifically facial expressions, by robots and the factors

that influence this process. Existing research establishes that human brains in-

terpret facial expressions exhibited by robots in a manner similar to how they

perceive human facial expressions (Chammat, Foucher, Nadel, & Dubal, 2010).

Previous studies on the impact of emotional expressions displayed by robots have

shown that robots exhibiting emotional behaviors are perceived as more likable

(Rhim et al., 2019), trustworthy (Cominelli et al., 2021) and intelligent (Gon-

sior et al., 2011). This underscores the potential of emotionally intelligent robots

in enhancing user experience, fostering effective communication, and building

stronger human-robot relationships. To assess the recognition of robot expres-

sions, researchers have largely employed the method of presenting participants

with images or videos of robot expressions and asking them to recognize the

emotions. Cañamero and Fredslund (2001) and Breazeal (2003) reported that

participants were able to recognize robot expressions similarly to human expres-

sions. Others have investigated the recognition rates across various form factors

(ranging from human-like to non-human-like) (Becker-Asano & Ishiguro, 2011;

Beer, Fisk, & Rogers, 2010; Danev, Hamann, Fricke, Hollarek, & Paillacho, 2017;

Lazzeri et al., 2015). However, the influence of a robot’s appearance on the

recognition of its emotional expressions has remained relatively uncharted.

Another aspect to consider when evaluating the recognition of robot emotions

is the specific facial regions employed to convey these emotions. Prior psycholog-

ical research underscores the importance of observing a full-face configuration
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in emotion recognition (Baron-Cohen, Wheelwright, & Jolliffe, 1997). However,

emotional information is not uniformly distributed across the entire face (Sul-

livan, Ruffman, & Hutton, 2007). In certain cases, the eye region alone can

provide sufficient information for emotion recognition (Wegrzyn, Vogt, Kirecli-

oglu, Schneider, & Kissler, 2017). Social robots come in a wide range of form

factors ranging from non-humanoid (e.g., iCat) to humanoid (Ameca). This in-

cludes static face designs, devoid of facial movements, as seen in robots like Nao,

to full-face designs with human-like movements, as seen in robots like Furhat

(Moubayed, Skantze, & Beskow, 2013). The influence of emotions expressed

in specific face regions on the recognition of robot emotions remains largely

unexplored. The answers to this question would highlight the significance of

particular facial regions in emotion recognition and offer guidelines for robot

face designs. These factors converge to frame my fourth research question:

• RQ4: How does the appearance of the robot affect the perception of emotions,

and what regions of the face are important?

1.5 Robot Platform

A common limitation that was identified in the literature for both affective and

gaze behavior was the selection of an optimal robotics platform capable of en-

abling the replication of human-like facial expressions and nuanced gaze be-

haviors. The primary objective of this dissertation is to model and evaluate

the affective and gaze behaviors exhibited by social robots. The Furhat robot

(Moubayed et al., 2013), which is a humanoid robotic head, has been chosen

as the robotic platform for this dissertation. The robot’s face is an animated

character that is projected onto a translucent human face-shaped mask using

back-projection. Using an animated face makes it possible to model realistic

characters capable of exhibiting human-like facial expressions. Moreover, its 3-

DoF (Degrees of Freedom) neck facilitates nuanced and independent eye and

head movements. Figure 1.2 illustrates a few examples showcasing the ability

of the robot to exhibit independent eye-head movements, facial expressions, and

assuming different animated characters.

1.6 Thesis Outline

This dissertation is divided into two parts; the first part is dedicated to model-

ing the gaze behaviors of social robots and assessing their effects on HRI. The
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Figure 1.2: A few examples showcasing the capabilities of the Furhat robot. Sub-
figures (A)-(C) depict 3 facial expressions; Surprise (A), Happy (B),
and Angry (C). Sub-figures (D)-(F) show 3 examples of independent
eye-head movements of Furhat; both eyes and head directed at a
target (D), eyes fully directed at the target but head directed halfway
(E), and only eyes directed at the target with no head movement (F)

second part investigates the affective behaviors of social robots and the factors

influencing their perception by humans.

Chapter 2 focuses on RQ1 which revolves around the development of a com-

prehensive GCS for social robots. As highlighted in Section 1.2), a key con-

sideration in designing a better GCS is to overcome the reactive only paradigm

characterizing existing models. The other aspect is to make the duration of gaze

directed at targets more dynamic in nature. Finally, the GCS needs to be com-

prehensive, in that it should be able to model multiple communicative functions

of gaze behavior (turn-taking, joint attention, gaze aversion, etc.). This chapter

introduces an architecture for a comprehensive GCS that incorporates a planning

component to pre-plan the robot’s gaze behavior. The duration of gaze directed

at a target is made dynamic and dependent on the plan. Additionally, the GCS
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introduces a novel approach to coordinating the robot’s eye-head movements

during gaze shifts using the gaze plan. The architecture is evaluated through

a user study involving an interactive multi-party card game. The participants

played two games (one employing the proposed GCS and the other with a purely

reactive GCS), with their subjective responses to a questionnaire serving as an

evaluation metric.

Chapter 3 studies the influence of robot gaze behavior on human gaze be-

havior (RQ2). The study narrows its focus to the examination of gaze aversion.

This particular choice is motivated by two primary factors. First, gaze aversion

serves multiple communicative functions, including regulating intimacy (Abele,

1986), signaling cognitive load (Doherty-Sneddon & Phelps, 2005), and coordi-

nating turn-taking (Ho, Foulsham, & Kingstone, 2015). Secondly, it is relatively

easier to generate and perceive gaze aversion in robots. This chapter discusses

the influence of robot gaze aversion on human gaze aversion behavior based

on the results obtained from a user study. The study compares the gaze behav-

ior of participants under two experimental conditions: the Fixed Gaze condition

(which is the control condition) where the robot does not avert its gaze away

from the participants and the Gaze Aversion condition where the robot’s gaze

is automated using the GCS proposed in Chapter 2. The analysis includes an

objective examination of gaze data collected through eye-tracking glasses and

subjective assessment based on questionnaire responses to draw conclusions.

Chapter 4 introduces and implements a model that leverages the capabilities

of Large Language Models (LLMs) to generate context-appropriate facial expres-

sions on a robot, aligning with RQ3. The chapter aims to achieve two primary

objectives. Firstly, it seeks to evaluate the reliability and speed of utilizing LLMs

(specifically GPT-3.5) for generating robot expressions. Secondly, it aims to as-

sess whether people can perceive the context appropriateness of LLM-generated

robot emotions. The implemented model is assessed through a user study in

which participants engage in an affective-image sorting game with the robot.

The game is intentionally designed to elicit emotional responses from the partic-

ipants. The user study incorporates three experimental conditions: the Neutral

condition, in which the robot displays no emotions on its face (serving as the

control condition), the Congruent condition in which the robot exhibits emotions

predicted by the LLM, and the Incongruent condition where the robot displays

emotions opposite to those predicted by the LLM. The analysis of subjective re-

sponses to a post-interaction questionnaire and the scores for each game aids in

validating the objectives of the study.
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Chapter 5 focuses on identifying the factors that might influence the percep-

tion of emotions exhibited by robots (RQ4). The study investigates two main

factors through an online user study: the impact of a human-like appearance

and the specific use of the eye-region in emotion recognition of robot expres-

sions. Recognition rates are compared across three appearance conditions: ex-

pressions by a human confederate, a human-like robot face, and a mechanical-

looking robot face. Additionally, the study evaluates recognition rates between

expressions displayed solely through the eye-region and those involving the full-

face.

Finally, the dissertation concludes with Chapter 6, summarizing the results,

presenting an overall discussion, and a conclusion.
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2 | Knowing Where to Look: A Planning-based

Architecture to Automate the Gaze Behavior

of Social Robots1

Abstract

Gaze cues play an important role in human communication and are used to
coordinate turn-taking and joint attention, as well as to regulate intimacy. In
order to have fluent conversations with people, social robots need to exhibit
human-like gaze behavior. Previous Gaze Control Systems (GCS) in HRI have
automated robot gaze using data-driven or heuristic approaches. However, these
systems tend to be mainly reactive in nature. Planning the robot gaze ahead
of time could help in achieving more realistic gaze behavior and better eye-
head coordination. In this paper, we propose and implement a novel planning-
based GCS. We evaluate our system in a comparative within-subjects user study
(N=26) between a reactive system and our proposed system. The results show
that the users preferred the proposed system and that it was significantly more
interpretable and better at regulating intimacy.

1Adapted from Mishra C and Skantze G (2022) Knowing Where to Look: A Planning-based
Architecture to Automate the Gaze Behavior of Social Robots". 31st IEEE International Conference
on Robot and Human Interactive Communication (RO-MAN), Napoli, Italy, 2022, pp. 1201-1208,
doi: 10.1109/RO-MAN53752.2022.9900740
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2.1 Introduction

Non-verbal cues play a crucial role in realizing effective communication in Human-

Human Interaction (HHI). Humans make use of many non-verbal cues such as

eye gaze, facial expressions, gestures, and prosody to convey meaning during

social interactions. Among these non-verbal cues, eye gaze cues are considered

to be especially important, as they are interpreted using dedicated and unique

hard-wired pathways in the brain (Emery, 2000). Interpreting and conveying

feelings and intentions through eye gaze during a social interaction is central to

HHI and comes naturally to humans. During social interactions, gaze cues are

used to coordinate turn-taking (Kendon, 1967), signal cognitive effort (Argyle

& Cook, 1976), and regulate intimacy (Abele, 1986), among other things.

As social robots become increasingly available in society, they are expected

to be able to communicate using both verbal and non-verbal cues, similar to

humans. Research has shown that the robot’s gaze behavior plays a similarly

important role in Human-Robot Interaction (HRI) (Imai, Kanda, Ono, Ishiguro,

& Mase, 2002; Yamazaki et al., 2008). Consequently, researchers have designed

architectures to control the gaze behaviors of robots to explore the impact of

social gaze in HRI and exploit the many uses of gaze cues in social interactions

(Admoni & Scassellati, 2017; Pereira et al., 2019). Most of these Gaze Control

Systems (GCS) have generally focused on modelling specific gaze cues such as

gaze aversion (Andrist et al., 2014) or turn-taking (Mutlu et al., 2012).

Even though these GCS have achieved good results in emulating human-like

gaze behaviors in robots, a common limitation is that they remain mainly reac-

tive in nature. Although some of these systems do plan the gaze behavior for the

upcoming utterance at the onset of the utterance (e.g. (Andrist et al., 2014)),

the plan does not get updated incrementally, and the plan does not really affect

the gaze behavior in the current moment. Another limitation of many systems is

that they are static, in the sense that they use fixed durations for gaze shifts. For

example, in Pereira et al. (2019), the gaze of the robot was fixed on the relevant

target for a duration of 1-5 seconds during the interaction, before moving to the

target with the lowest priority. In contrast, HHI involves a lot of planning. Re-

search has shown that gaze behavior is coordinated with the underlying speech

plan (Beattie, 2010). Depending on how long we plan to look at something, we

determine whether a quick glance would suffice or whether we need to move

the head and look. In this study, we focus on bringing a planning component

into GCS. More specifically, we address the following research question:

How can planning be used to generate better gaze behavior in HRI?
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Our model plans the priority for each potential gaze target (e.g., users or ob-

jects) in the environment incrementally (frame-by-frame) for a future rolling

time window. At each time step, various events in the conversation might up-

date these priorities, resulting in an evolving gaze plan which produces gaze

behavior that is dynamic and differs in frequency and duration based on the

state of the conversation. This planning allows the robot to better coordinate

eye and head movements, since it is possible to compute for how long the robot

will be attending a specific target in advance. In addition, the robot can better

plan when to avert the gaze to regulate intimacy. The model is comprehensive in

that it encompasses turn-taking, gaze aversion (GA), referential gaze (RG) and

responsive joint attention (RJA). We evaluate the proposed model and compare

it with a purely reactive heuristic model, using a multi-party interaction scenario

where the robot head Furhat collaborates with two human players to sort a deck

of cards in the right order.

The main contributions of this paper are:

• A comprehensive gaze control architecture that accounts for turn-taking,

joint attention and intimacy regulation in HRI, using a planning-based ap-

proach.

• A novel approach to make use of the planned gaze behaviors to coordinate

eye-head movements of the robot.

• An evaluation done in a complex multi-party HRI setting, which shows

that this system is better than a reactive version of the same system.

2.2 Related Work

Modelling approaches in HRI for GCS can be broadly categorized into data-driven

approaches (e.g., (Andrist et al., 2014; Mutlu et al., 2012)), where HHI gaze data

are used to build models that can predict the gaze of the robot, and heuristic

approaches, where the gaze of the robot is controlled using a set of rules, based

on findings from HHI literature (e.g., (Mehlmann et al., 2014; Pereira et al.,

2019)).

Turn-taking refers to the process in which interlocutors coordinate and take

turns while speaking (Jokinen et al., 2013; Skantze, 2021). Mutlu et al. (2012)

implemented data-driven models for role-signalling, turn-taking and topic sig-

nalling gaze mechanisms based on the formal observations of human communi-
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cation. It was found that the subjects were able to correctly interpret the turn-

yielding signals by the robot 99% of the time.

Gaze aversion is the intentional shifting of the gaze away from the interac-

tion partner during a conversation. Several studies have focused on modelling

this and evaluate human perception of it. Andrist et al. (2014) lists three pri-

mary functions of gaze aversion: cognitive, intimacy regulation and turn-taking.

They used human gaze aversion data to model gaze aversion on a NAO robot and

found that gaze aversion by the robot was perceived to be intentional. Zhong,

Schmiedel, and Dornberger (2019) implemented a GCS with four possible states

to model mutual gaze and gaze aversion using the captured gaze data of the par-

ticipants. Lala, Inoue, and Kawahara (2019) used a heuristic model to generate

appropriate gaze aversion along with verbal fillers as turn-taking cues.

When the interlocutors attend to a common target during a social interaction

(and are mutually aware of that), it is generally referred to as joint attention.

Joint attention is usually split into two categories: responding to joint attention

(RJA) and initiating joint attention (IJA) (Mundy & Newell, 2007). IJA refers

to when the interlocutor initiates a joint attention by directing the gaze at the

referent (also known as referential gaze). RJA refers to the act of following

others’ gaze direction and interpreting the need to share focus on a common

point. Mehlmann et al. (2014) proposed and implemented a GCS (Sceneflow)

that made use of the bi-directional and multimodal aspects of speech. The model

implemented referential gaze, RJA and mutual gaze as a hierarchical and con-

current state-chart-based architecture. Pereira et al. (2019) focused on the ef-

fects that RJA has on people’s perception of social robots. The GCS was divided

into two layers: Proactive Gaze Layer and Responsive Gaze Layer which modelled

RJA and IJA respectively with each module having a predefined priority used to

suppress gaze shifts issued by other modules with lower priorities.

Several studies have also developed models of human gaze behavior which

could then be transferred to robots. Stefanov, Salvi, Kontogiorgos, Kjellström,

and Beskow (2019) used a supervised learning approach to predict eye gaze

direction or head orientation of the participant in multi-party open world dia-

logues. A recent study modelled the robot’s gaze behavior using concepts from

animation instead of grounding it in human psychomotor behavior (Pan et al.,

2020).

Even though data-driven approaches are potentially able to provide a more ac-

curate representation of human gaze behavior as compared to heuristic models,

they are restricted by their dependence on collecting appropriate gaze data. It
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is also unclear how well they generalize to settings different from that in which

the data was recorded. Another problem is that the speakers’ intentions are not

available in the data, which makes it difficult for data-driven models to account

for planning.

Another aspect of gaze modelling is the coordination between eye and head

movements during gaze shifts. Previous studies have found that human eye and

head movements are coordinated based on the target angles to realize gaze shifts

(Stahl, 1999; Uemura et al., 1980). Hendrikse, Llorach, Grimm, and Hohmann

(2018) defined eye-head angle relationships to control the eye-head movements

of a virtual avatar during gaze shifts. Gu and Su (2006) and Wijayasinghe, Das,

Miller, Bugnariu, and Popa (2019) tried to model realistic eye-head coordina-

tion on humanoid robots. To the best of our knowledge, ours is the first work

that incorporates a planning component into a GCS to coordinate the eye-head

movement during gaze shifts and regulate intimacy during a conversation.

We summarize these previous works on modelling GCS in Table 2.1. Planning

here refers to the ability of a GCS to make use of the planned gaze behavior and

the executed gaze behavior to adjust the current gaze behavior. As can be seen,

our proposed model is unique in its comprehensiveness and its use of planning

to control the gaze behavior of the robot.

2.3 Test-bed: Card Game

Our GCS was tested with the Card Game scenario, which is a test-bed specifi-

cally designed for studying multi-party interactions involving joint attention to

objects (Skantze, Johansson, & Beskow, 2015). The Card Game setup consists

of a Furhat robot (Moubayed et al., 2013), a touchscreen and up to two players,

as seen in Fig. ??. A set of cards are shown on the touchscreen and the task is to

sort the cards based on some criterion. For example, the task could be to order

a set of animals from slowest to fastest based on their running speeds. Furhat

and the players then collaborate with each other to arrange the cards in the right

order by moving them on the touchscreen.

During the game, players are encouraged to discuss among each other and

with Furhat to reach a solution. Furhat’s arguments are based on a randomized

belief model, which means that the players have to choose whether they trust

Furhat’s beliefs or not. This results in a fairly free form of multi-party conver-

sation, and therefore constitutes a good test-bed for studying turn-taking, joint

attention and gaze aversions. When players look at or move a card, Furhat can
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Table 2.1: Review of Gaze Models in HRI.
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Figure 2.1: Third person view of the Card Game setup

display RJA behavior and when Furhat talks about the cards or the game, it can

generate referential gaze.

2.4 A Comprehensive Gaze Control Architecture

Fig. 2.2 shows the overall architecture of the GCS and how it is integrated.

The Robot Platform consists of Furhat’s output interfaces (projector, neck servo

motors, etc.), input devices (microphone, camera, touchscreen, etc.), as well

as the software modules for automatic speech recognition (ASR), text-to-speech

synthesis (TTS), face tracking, etc. All the sensory inputs, modules and actua-

tors in the Robot Platform are mediated by the Event System. The Gaze Planner

subscribes to high-level events, such as the position of the user, speech input,

and location of objects on the touchscreen, to generate a Gaze Plan. This plan is

then used by the Gaze Controller, to generate events that make the robot move

the eyes and turn the head. Interactions are implemented using the Skill API,

with which all the interaction specific details are defined, such as the utterances

of the robot, its facial expressions and head gestures, among others.

Algorithm 1 provides an overview of how the GCS works. During the course of

an interaction, the Gaze Planner identifies and maintains a set of gaze targets (Ti,

i ∈ [1 . . n]) along with their current locations in real-time. These gaze targets

could be of different types, such as users, task objects or the environment. The
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Figure 2.2: Overview of the proposed Gaze Control System

GCS continuously monitors the gaze targets to add new targets or remove targets

as necessary.

We introduce a priority score P ∈ [0, 1], which determines the priority with

which the GCS should be looking at a specific gaze target. The default priority

is always 0. The Gaze Planner maintains a Gaze Plan (GP) which is used by the

Gaze Controller to decide which gaze target to look at over a duration of time

into the future. The GP stores the priority Pi, j for each target Ti at each future

time frame j, with j = 0 being the immediate next time step in the future. We

use a time resolution of 200ms for the plan, i.e., each time frame is 200ms long.

As can be seen in Algorithm 1, at each time step, the Gaze Planner listens

to events and updates the relevant Pi, j values, as will be described in detail

in the following sections. The relative priorities and specific durations chosen

in this paper have either been obtained from literature or iteratively obtained

after running the architecture for different scenarios. Thus, we acknowledge

that these parameters are somewhat arbitrary, and that more optimal values can

very likely be found. It is also possible to generate different robot gaze behaviors

(e.g. introvert vs. extrovert) by tweaking the parameters. We leave this for

future work.
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Algorithm 1 Outline of the Gaze Control System

for each time step do:
In Gaze Planner:

updateTargets(GP) ▷ Add/Remove Ti

for each new event E do
when E is RobotSpeaking

checkPauses(GP) ▷ see 2.4.2
checkTurnYielding(GP) ▷ see 2.4.2
checkReferentialGaze(GP) ▷ see 2.4.3

when E is TargetsMoved
attendTarget(GP) ▷ see 2.4.3

when E is UserSpeaking
checkRJA(GP) ▷ see 2.4.3
attendSpeaker(GP) ▷ see 2.4.2

when E is RobotListening
attendUser(GP) ▷ see 2.4.2

checkIntimacyRegulation(GP) ▷ see 2.4.4
In Gaze Controller: ▷ see 2.4.5

GPc = summarize(GP)
Tc, slack = getTarget(GPc)
headAngle = getHeadAngle(Tc, slack)
setRobotEyes(Tc)
setRobotNeck(headAngle)

shift(GP)

At each time step, the Gaze Controller summarizes the current Gaze Plan, GPc,

by calculating the list of final gaze targets for the next 2 seconds into the future

(10 time steps). The final gaze targets (T f , j) are calculated as the target that has

the highest priority value in each frame j of the GP:

T f , j = Tn, arg max
n
(Pn, j) (2.1)

The current gaze target, Tc, is then equal to the immediate next final target,

T f ,0. As will be described in Section 2.4.5, the rest of the GPc is used to calculate

the slack value for the head movement, to achieve natural eye-head coordina-

tion.

After the Gaze Controller has executed the gaze and head movements for that

time step, the GP is shifted one step, so that Pi, j ←Pi, j+1. Since the updates to

the GP are done at each time step, it is possible for the Gaze Planner to overwrite

P values in the plan, which makes it possible to dynamically update the plan

depending on the events that occur during an interaction.
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Fig. 2.3 shows an example of how the GCS works. Let us consider a scenario

where a single user is playing the “Animal speed” Card Game, and a card with

Zebra is being discussed. The P for each T in the game is plotted below the

speech boxes. “Final Target” shows the calculated T f for the entire example

interaction. In the following subsections, we will use this example to discuss the

various components of our GCS in detail.

Figure 2.3: An example of gaze planning done by our GCS.(A) shows the plan
at onset of the utterance t0 and (B) shows the updated plan at time
step t1. The shaded parts show the already executed plan and the
non-shaded part show the plan at the current time step. Grey speech
boxes denote that the event is yet to take place.

2.4.1 Environment

As can be seen in Fig. 2.3, when the P value for all gaze targets in the plan

are 0, the final gaze target is defaulted to the ENVIRONMENT (Env). Thus, when

the user is given a low priority (e.g., due to gaze aversion) and no other target

is given priority, the robot will gaze away from the user. Andrist et al. (2014)

found that the distribution of eye gaze at various regions in the environment

depended on the type of gaze aversion being performed. However, to keep the
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model simple, we randomly select a location in the area around the currently

addressed user’s face as the location for the ENVIRONMENT gaze target.

2.4.2 Turn-taking

At the onset of a robot utterance, the Gaze Planner receives an event from the

TTS system which gives information about the entire utterance text, as well as

the phonetic transcription with precise timing information. This information can

be used to plan the robot’s gaze behavior related to speech production and turn-

taking (as well as referential gaze, as described in the next section). During

the course of the utterance (the RobotSpeaking event), the P values of the

currently addressed users are set to 0.3 which results in the robot looking at the

user during the utterance, in the absence of other gaze targets with a higher P
value. This can be seen at the beginning of the Gaze Plan (t0) in Fig. 2.3A. This

emulates mutual gaze/ individual gaze behavior where the speaker looks at

the listener (Admoni & Scassellati, 2017).

Speakers tend to avert their gaze to signal that they are thinking or will hold

the conversational floor (Andrist et al., 2014). The Gaze Planner calculates

pause durations in the utterances it is about to speak (using the phoneme tim-

ings). If the pause duration is greater than 800ms, the P of the addressed users

are set to 0 for that duration and the ENVIRONMENT becomes the T f resulting in

a turn-holding Gaze Aversion as seen in Fig. 2.3A.

By default, the robot will always hold the floor unless the yielding flag in the

RobotSpeaking event is set to TRUE. This can be controlled through the Skill

API (per default, yielding is set to TRUE in case of a question). When yielding

is set to TRUE, theP values of the currently addressed user targets are set to 0.9,

1000ms before the end of the utterance. This results in a turn-yielding gaze cue

(Admoni & Scassellati, 2017) as can be seen in Fig. 2.3A when the robot is asking

a question. In case yielding is set to FALSE, the P of the addressed users are

set to 0 about 2000ms before the end of the utterance where we do not want

the user to barge-in, and gaze aversion is a clear turn-holding cue (Jokinen et

al., 2013).

When the robot is not speaking and instead listening to the user (the Robot−
Listening event), the P of the addressed users are set to 0.4 for the dura-

tion of the listening event. This enables the robot to keep looking at the user

unless there is some higher-priority target. When a user starts to speak (the

UserSpeaking event), the P of that specific user target is increased to 0.6. In

a multi-party setting, the array microphone of the robot can be used to sense
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the speech direction, and thereby attribute the speech onset to the right user.

This helps in directing the gaze of the robot to the active speaker and is in line

with the findings in Vertegaal (1999), where it was found that the listeners al-

ways tend to spend the most time looking at the current speaker in multi-party

settings.

2.4.3 Joint Attention

In the Card Game skill, the locations of the cards on the touchscreen and their

order are being tracked as task object gaze targets. TheP of the task objects can

be raised if Furhat or a user talks about an object, or engages in joint attention in

some other way. We do a keyword matching at the onset of the robot utterance

(the RobotSpeaking event), to identify any references to a task object. If so,

the P value of that task object is set to 0.9, 1000ms before the specific word

is supposed to be spoken (timings are obtained from the TTS system) in order

to generate referential gaze. This corresponds to the finding from studies of

human communication, where gaze is directed at the referent about 800-1000ms

before the reference is made (Mehlmann et al., 2014). The same can be seen in

Fig. 2.3A, when the robot refers the Zebra card.

When a task object gaze target (i.e., a card on the touchscreen) is moved,

the Gaze Planner sets gaze target’s P to 1 for 2000ms which results in a re-

sponsive joint attention (RJA) and Furhat’s gaze follows the card that is being

moved. The current system is not capable of identifying and tracking objects

other than the touchscreen locations. When Furhat is listening to user speech

(the UserSpeaking event), we also do a keyword matching on the continuous

ASR output to check for any references to the task objects. If a match is found,

the corresponding task object’s P is set to 0.7 (for a period of 800ms) after

200ms of the reference being heard. This is in line with what was reported in

Mehlmann et al. (2014) and is also a form of RJA. This can be seen in Fig. 2.3B

at t1, when user refers the Zebra card.

2.4.4 Intimacy Regulation

Studies have shown that the preferred mutual gaze duration in interactions is

between 3-5 seconds before the interlocutor starts to feel uncomfortable (Bi-

netti, Harrison, Coutrot, Johnston, & Mareschal, 2016). To avoid this, the Gaze

Planner also takes care of intimacy regulating gaze aversion. At every time

step (200ms), the Gaze Planner checks the GP and makes sure that the Tc is not
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assigned to a specific user for a duration longer than 3-5 seconds. In example

Fig. 2.3A there is a small period of GA inserted when the planned final gaze

target was User for a long duration when listening to the user, which results in

intimacy regulating gaze aversions.

2.4.5 Eye-Head Coordination

While most of the previous works (see section 2.2) have made use of the target

angle to coordinate the eye and head movements during gaze shifts, we propose

that the planned duration of gaze also plays a role in determining the head and

eye movements. If an agent knows that the gaze is planned to be directed at a

specific location for a longer period of time, then it can move both the eyes and

the head towards that target immediately. On the other hand, if the planned gaze

duration is very short, the gaze shift should be done using only the eyes (or with

little head rotation). Otherwise, rapidly shifting gaze targets could result in jerky

head movements. We can mitigate this problem thanks to the planning approach

of our GCS. Additionally, this allows the GCS to take the robot’s intention into

account when planning the gaze behavior. To the best of our knowledge, this

has not been addressed in any previous GCS.

In our GCS, we introduce a control variable named slack which is the angle

by which the head direction is allowed to deviate from the eye gaze direction. As

seen in Algorithm 1, at every time step (200ms), the Gaze Controller calculates

the final gaze targets (T f ) for 2 seconds into the future and summarises them

in a list GPc. The current gaze target (Tc) is the first element in the GPc. slack

calculation uses the frequency of the same gaze target in the final gaze plan as

per equation:

slack = max(48− (sameTar getF req ∗ 6), 0) (2.2)

sameTar getF req is the duration of time the gaze is to be directed at a specific

target. It is calculated as the frequency of having the same target as the T f within

a future window of 2s. This determines whether the gaze should be directed

using just the eyes or using both the eyes and the head. For example, as in

Fig. 2.3A, it can be seen that at t0, the final target is planned to be User for a

long duration. Thus, the slack value is set to 0, and the head direction is fully

aligned with the eyes. In Fig. 2.3B, at t1, the gaze duration planned at the Zebra

card is very short so the slack value is set to 48. This means that only eye gaze is
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directed at the Zebra card for a quick glance. The value 48 has been iteratively

obtained.

Figure 2.4: An example showing the differences in eye and head movements
when looking at a target depending on the slack values.

Fig. 2.4 shows an example of how slack is used in coordinating the eye and

head movements towards the gaze target. Since the neck movement takes some

time, and the eye movement is instantaneous, the Gaze Controller first moves

the eyes towards the gaze target and then the neck, while centering the eyes.

Sometimes, several gaze targets may have an equally highP value. For exam-

ple, in multi-party interactions, two users might be addressees and would have

an equally high P while the robot is speaking. In such cases, it is natural for

the speaker’s head to be directed somewhere in the middle of the gaze targets,

while the eye gaze shifts rapidly between each of them (Stahl, 1999; Uemura et

al., 1980). We model this behavior in our GCS by checking for any rapid shifts

between two or more targets for a future time window. If so, then at every time

step, the mid point between the Tc and the next T f is calculated and head is

directed at that point.

2.5 Experimental Evaluation

In order to evaluate if a GCS that takes the robot’s intention (future gaze behav-

ior) into account is perceived as better, we performed a user study to compare

our GCS’s performance to a purely reactive GCS.
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2.5.1 Experimental Setup & Procedure

We used the Card Game scenario described in section 2.3 for the experiments. A

camera was placed behind the participants so that it only captured Furhat’s face

and the touch screen.

There were two scenarios under which the participants played the Card Game:

• Planned : Our GCS with planning.

• Reactive : A purely reactive heuristic GCS similar to (Pereira et al., 2019)

was implemented and used as a baseline for the comparative study. The

gaze targets were chosen in response to the events taking place in the Card

Game (e.g., when the cards were moved, when someone was speaking,

etc.). The gaze of the robot was fixed on one target for a duration of 1-5

seconds (same as the original work) before moving to the next target.

Each session lasted approximately 30 minutes, during which 2 participants

played 2 games (1 from each scenario) together with Furhat. The experiments

followed a within-subjects design and the order of scenarios were alternated

between sessions. The participants were first guided to their seats in front of the

touchscreen and provided with a consent form. Then the researcher briefed the

participants about the goal of the study and the way the experiment was going

to be conducted. They were told that they would play two games with different

versions of the system, but the nature of these two versions was not explained

to them, and they were only referred to as scenario 1 and 2. Participants were

encouraged to go through the questionnaire to have a better grasp of what to

look out for before starting the first game. After each game, the participants

filled out one part of the questionnaire. The questionnaire had two 9-point likert

scales placed under each question; one for each scenario. The participants were

asked to score the questions based on how they perceived the interaction in

terms of the question being asked. They were asked to look for differences in

the scenarios and make different judgements where applicable. The participants

were instructed not to discuss the scenarios with each other before filling out

the questionnaire. At the end of the session, the participants were also asked to

choose which of the two interactions they preferred.

2.5.2 Data Collection and Evaluation

We recruited 28 participants to take part in the user study (14 males and 14

females) with ages ranging between 18 and 51 (mean = 32.92, SD = 8.22), and
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participants were paired up. The responses from 2 participants were removed

from the analysis, as they violated the instructions and discussed the scenarios

with each other prior to filling out the questionnaire. No prior interaction with

social robots was needed before participating in the experiment. The experi-

ments were conducted in English.

The questionnaire had 10 9-point Likert scale questions which were grouped

into 5 dimensions, as can be seen in Table 2.2. As the goal of our study was to to

compare two GCSs, we selected the dimensions and questions based on aspects

that should be important for a good GCS. For each dimension, the mean score of

the responses to the individual questions in that dimension was calculated. We

refer to this as the dimension score. For a better GCS, we expected the dimension

scores to be high for all dimensions, except for the Intimacy dimension, which

should be lower, given how the questions were formulated. We used the state-

ment “Furhat kept staring at me too much” as a sign of bad Intimacy regulation,

since periodic GA while listening leads to making speakers more comfortable and

reduces negative perceptions (Abele, 1986). While we use the term Intimacy as

a short label for this dimension, this question does not of course capture all as-

pects of intimacy, but it was designed to be easy to interpret for the participants.

At the end of the experiment, the participants were also asked (verbally) which

scenario they preferred, taking all factors into account.

2.6 Results

Fig. 2.5 shows the dimension scores of each dimension for both GCS versions,

based on the responses from the 26 participants. As our hypothesis was that

they would prefer the Planned version, we performed a one-tailed Wilcoxon

signed-rank test. Since we compared five dimensions, we set α = 0.01, after

Bonferroni correction. Significant results were obtained for Interpretation (p =
0.007) and Intimacy (p = 0.0013). While the mean values for Awareness and

Human-Likeness were higher for the Planned version, the differences were not

statistically significant.

For the final preference question, 19 participants preferred the Planned ver-

sion, whereas 4 preferred the Reactive version, and 4 could not decide. We found

the results to be significat with p = 0.0002 and χ2 = 16.66.
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Table 2.2: Questionnaire used for evaluation
Dimension Question

Furhat looked at the cards at the
right time.

Awareness Furhat was aware of what was hap-
pening in the game.
I could interpret Furhat’s intention
from its gaze.

Interpretation Furhat’s gaze helped me understand
its instructions better.
I was able to understand when
Furhat wanted me to speak.

Turn-taking I was able to understand when
Furhat wanted to keep speaking.
I was able to understand when
Furhat was talking to me.
Furhat’s gaze was human-like.

Human-likeness The coordination between eye and
head movements seemed natural.

Intimacy Furhat kept staring at me too much.

Figure 2.5: The comparison between the responses obtained for the reactive sys-
tem and the proposed GCS. The grey bar in the box plot indicates
the median, the × denotes the mean, the boxes show the upper and
lower quartiles of the data. The bars on both ends of the vertical lines
denote the maximum and minimum values in the data. ** (p < 0.01)
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2.7 Discussion

The goal of our evaluation was to do a comparison between a purely reactive

GCS and the planning-based GCS proposed in this paper. We hypothesised that

using a GCS with planning can lead to improved perception of the robot’s gaze

behavior during the interaction. The results from the evaluation indicate that

our GCS was significantly more interpretable, had better intimacy regulation,

and was generally preferred over the reactive version.

When it comes to the dimensions of Awareness, Turn-taking and Human-

likeness, we did not find any significant differences. One possible explanation

could be that it might have been difficult for the participants to observe subtle

gaze behaviors while being engaged in playing a new game. Previous studies on

turn-taking models for conversational systems have shown that it is very hard for

the participants to judge subtle things like turn-taking while interacting them-

selves (Meena, Skantze, & Gustafson, 2014). This is also in line with the Load

Theory (Lavie, Hirst, De Fockert, & Viding, 2004), which says that when there

is a higher cognitive load, the selective attention performance becomes poor.

Another problem that was noticed during the experiments was that the sound

source localization on the robot was not always working very well. This means

that Furhat sometimes turned to the wrong participant, which clearly could have

affected the perception of the Turn-taking dimension.

Another issue could be the novelty effect; most of the participants were inter-

acting with a social robot for the first time. Attention might have been split in

familiarizing themselves with the robot and its capabilities during the first sce-

nario, which could have impacted the ratings. A potential way of mitigating this

problem in future studies could be to let the participants first do a test round

where they familiarize themselves with the robot. A potential follow-up study

could be to show the recordings of the experiments to third-party observers and

let them compare the two versions. In doing so, the participants would be able

to solely focus on rating the robot’s gaze during the interactions. Meena et al.

(2014) reported that third-party observers could easily perceive differences be-

tween different turn-taking models, unlike the participants who were engaged

in the interaction.

It should also be noted that many of the parameters chosen for the model

could of course be further tuned. We can also envision a hybrid model, where

certain priority scores are being data-driven, and others are rule-driven.
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2.8 Conclusion

In this paper, we proposed and implemented a novel planning-based comprehen-

sive GCS to automate the gaze behavior of social robots. The system is capable

of planning the gaze behavior for a future rolling time window of fixed length,

and use this plan to coordinate the eye and head movements of the robot taking

the robot’s intention into account. We conducted a user study to evaluate our

GCS and compared it with a purely reactive GCS. The results suggest that a GCS

with such type of planning is perceived to be significantly more interpretable

and has better intimacy regulation. It was also found that overall, our GCS was

preferred over the reactive system when users were asked to choose one. This

shows that planning is an important aspect of gaze control, which has not been

considered in previous works.
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3 | Does a Robot’s Gaze Aversion Affect Human

Gaze Aversion?1

Abstract

Gaze cues serve an important role in facilitating human conversations and are
generally considered to be one of the most important non-verbal cues. Gaze
cues are used to manage turn-taking, coordinate joint attention, regulate inti-
macy, and signal cognitive effort. In particular, it is well established that gaze
aversion is used in conversations to avoid prolonged periods of mutual gaze.
Given the numerous functions of gaze cues, there has been extensive work on
modelling these cues in social robots. Researchers have also tried to identify the
impact of robot gaze on human participants. However, the influence of robot
gaze behavior on human gaze behavior has been less explored. We conducted
a within-subjects user study (N=33) to verify if a robot’s gaze aversion influ-
enced human gaze aversion behavior. Our results show that participants tend
to avert their gaze more when the robot keeps staring at them as compared to
when the robot exhibits well-timed gaze aversions. We interpret our findings in
terms of intimacy regulation: humans try to compensate for the robot’s lack of
gaze aversion.

1Adapted from Mishra C, Offrede T, Fuchs S, Mooshammer C and Skantze G (2023) Does
a robot’s gaze aversion affect human gaze aversion?. Front. Robot. AI 10:1127626. doi:
10.3389/frobt.2023.1127626
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3.1 Introduction

It is well established that gaze cues are one of the most important non-verbal

cues used in Human-Human Interactions (HHI) (Kendon, 1967). Several studies

have shown the many roles gaze cues play in facilitating human interactions.

When interacting with each other, people use gaze to coordinate joint attention,

communicating their focus of attention and perceiving their partner’s focus to

follow (Tomasello et al., 1995). Ho et al. (2015) also showed how people use

gaze to manage turn-taking: for instance, gaze directed at or averted from one’s

interlocutor can indicate whether a speaker is intending to yield or hold the turn

(for example when making a pause), or when the listener is intending to take

the turn.

Given the importance of gaze behavior in HHI, researchers in Human-Robot

Interaction (HRI) have tried to emulate human-like gaze behaviors in robots.

The main motivation behind such Gaze Control Systems (GCS), or models of

gaze behavior, has been to exploit the many functionalities of gaze cues in HHI

and realize them in HRI. Moreover, thanks to the sophisticated anthropomor-

phic design of many of today’s social robots (e.g., Furhat robot (Moubayed et

al., 2013) or iCub robot (Metta et al., 2010)), it is possible to model nuanced

gaze behaviors with independent eye and head movements. It has been estab-

lished that robots’ gaze behaviors are recognized and perceived to be intentional

by humans (Andrist et al., 2014). Robots’ gaze behaviors have also been found

to play an equally important role in HRI as human gaze in HHI (Imai et al.,

2002; Yamazaki et al., 2008). Thus, researchers have measured the impact of

robots’ gaze behavior on human behavior during HRI. In Schellen et al. (2021)

participants were found to become more honest in subsequent trials if the robot

looked at them when they were being deceptive. Skantze (2017) and Gillet et

al. (2021) observed that robots’ gaze behavior could lead to more participation

during group activities. Most of these works have concentrated on human behav-

ior in general, but not the gaze-to-gaze interaction between robots and humans.

This then leads to our research question:

• Does a robot’s gaze behavior have any influence on human gaze behavior in

a HRI?

Answering this question is important because it can help in designing better

GCS and interactions in HRI. Even though previous works have shown various

ways in which humans perceive and respond to robot gaze behavior, whether

there are changes in human gaze behavior as a direct influence of robots’ gaze
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behavior has remained less explored. Moreover, most of these studies have used

head movements instead of eye gaze to model robot gaze behavior, due to phys-

ical constraints of the robots used (Andrist et al., 2014; Mehlmann et al., 2014;

Nakano et al., 2015). While head orientation is a good approximation of gaze

behavior in general, it lacks the rich information ingrained in eye gaze. Addi-

tionally, from a motor control perspective, eye gaze is much quicker than head

motion and is therefore also more adaptable than moving the head. Thus, we

were interested in verifying if subtle gaze cues performed by a robot are per-

ceived by humans and if it had any influence on their own gaze behavior.

In order to verify the impact of robot gaze behavior, we narrowed our focus

to gaze aversions for this study. This was mainly motivated by two considera-

tions. First, gaze aversion has been shown to play an important role in human

conversations: coordinating turn-taking (Ho et al., 2015), regulating intimacy

(Abele, 1986) and signalling cognitive load (Doherty-Sneddon & Phelps, 2005).

Secondly, it is an important gaze cue which is relatively easy to perceive and

generate during HRI.

In this work, we designed a within-subjects user study to measure if gaze

aversion exhibited by a robot has any influence on the gaze aversion behav-

ior of participants. We automated the robot’s gaze using the GCS proposed in

Mishra and Skantze (2022) (more details in Section 3.3) to exhibit time- and

context-appropriate gaze aversions. Participants’ gaze was tracked using eye-

tracking glasses throughout the interactions. Subjective responses were also

collected from the participants after the experiment, using a questionnaire that

asked about their impression of the interaction. Our results show that partici-

pants avert their gaze more when the robot doesn’t avert its gaze as compared

to when it does.

The main contributions of this paper are:

• The first study (to the best of our knowledge) that verified the existence of

a direct relationship between robot gaze aversion and human gaze aver-

sion.

• A study design to measure the influence of a robot’s gaze behavior on hu-

man gaze behavior.

• An exploratory analysis of the eye gaze data, which pointed towards a

potential positive correlation between gaze aversion and topic intimacy of

the questions.
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3.2 Background

Gaze aversion is the act of shifting the gaze away from one’s interaction partner

during a conversation. Speakers tend to look away from the listener more often

than the other way around during a conversation. This has been thought to help

plan the upcoming utterance and avoid distractions (Argyle & Cook, 1976). It

has been found that holding mutual gaze significantly increases hesitations and

false starts (Beattie, 1981). Speakers process visual information from their in-

terlocutors, produce speech and plan the upcoming speech, all at the same time.

Prior studies in HHI have shown that people use gaze aversions to manage cog-

nitive load (Doherty-Sneddon & Phelps, 2005) because averting gaze reduces

the load of processing the visual information. Ho et al. (2015) found that speak-

ers signal their desire to retain the current turn, i.e., turn-holding, by averting

their gaze and that they begin their turns with averted gaze. Additionally, gaze

aversion has been found to have a significant contribution in regulating the in-

timacy level during a conversation (Abele, 1986). Binetti et al. (2016) found

that the amount of time people can look at each other before starting to feel

uncomfortable was 3-5 sec.

Several studies have modelled gaze aversion behavior in social robots and

evaluated their impact. Andrist et al. (2014) collected gaze data from HHI and

used that to model human-like gaze aversions on a NAO robot. They found

that well-timed gaze aversions led to better management of the conversational

floor and the robot being perceived as more thoughtful. Zhong et al. (2019)

controlled the robot’s gaze using a set of heuristics and found that users rated

the robot to be more responsive. Subjective evaluation of the gaze system in

Lala et al. (2019) showed that gaze aversions with fillers were preferred when

taking turns. On the other hand, there have been a few studies that included

gaze aversions as a sub-component of their GCS, but they did not measure any

effects of gaze aversion (Mehlmann et al., 2014; Mutlu et al., 2012; Pereira et al.,

2019; Y. Zhang et al., 2017). For example, Mehlmann et al. (2014) looked at the

role of turn-taking gaze behaviors as a whole to evaluate their GCS. However, it

is important to note that both Mehlmann et al. (2014) and Y. Zhang et al. (2017)

used the gaze behavior of participants as feedback to manage the robot’s gaze

behaviors. Mehlmann et al. (2014) grounded their architecture on the findings

from HHI, whereas Y. Zhang et al. (2017) relied on findings from human-virtual

agent interactions.

Although it has been established that humans perceive robot gaze as similar

to human gaze in many cases (Staudte & Crocker, 2009; Yoshikawa, Shinozawa,
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Ishiguro, Hagita, & Miyamoto, 2006), it is still important to verify if it holds for

different gaze cues and situations in an HRI setting as findings from Admoni,

Bank, Tan, Toneva, and Scassellati (2011) suggest that robot gaze cues are not

reflexively perceived in the same way as human gaze cues. Thus, it is crucial

to investigate whether a relationship exists between robot gaze behavior and

human gaze behavior, how they are related, and what are the implications of

such a relationship. For example, if it is known that lack of gaze aversion by

a robot makes people uncomfortable, then we might want to include appropri-

ate gaze aversions when designing a robot for therapeutic intervention. On the

other hand, we would probably do less gaze aversions when designing an inter-

action where a robot is training employees to face rude customers. To the best

of our knowledge, this is the first work that tries to establish a direct relationship

between robot gaze aversion and human gaze aversion behavior.

3.3 Automatic Gaze Aversion using GCS

To automate the robot’s gaze behavior in this study, we used the GCS proposed

in Mishra and Skantze (2022). It is a comprehensive GCS that takes into account

a wide array of gaze-regulating factors, such as turn-taking, intimacy, and joint

attention. The gaze behavior of the robot is planned for a future rolling time

window, by giving priorities to different gaze targets (e.g., users, objects, envi-

ronment), based on various system events related to speaking/listening states

and objects being mentioned or moved. At every time step, the GCS makes use

of this plan to decide where the robot should be looking and to better coordinate

eye-head movements.

To model gaze aversion, the model processes the gaze plan at every time step

to check if the gaze of the robot is planned to be directed at the user for a duration

longer than 3-5 seconds (the preferred mutual gaze duration from HHI Binetti

et al. (2016)). If that is the case, the model inserts intimacy-regulating gaze

aversions into the gaze plan. This results in a quick glance away from the user

for about 400ms using the eye gaze only. Additionally, when the robot’s intention

is to hold the floor at the beginning of an utterance or at pauses, the GCS also

inserts gaze aversions at the appropriate time to model turn-taking and cognitive

gaze aversions.

The parameters of the model are either taken from the literature or tuned

empirically. This, combined with the novel eye-head coordination, results in a

human-like gaze aversion behavior by the robot. In a subjective evaluation of
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the GCS through a user study, it was found to be preferred over a purely reactive

model, and the participants especially found the gaze aversion behavior to be

better (Mishra & Skantze, 2022).

3.4 Hypotheses

Abele (1986) found that too much eye gaze directed at an interlocutor would

induce discomfort for the speaker and that periodic aversion of gaze would re-

sult in a more comfortable interaction. The Equilibrium Theory (Argyle & Dean,

1965) also suggests an inverse relationship between gaze directed at and gaze

averted, arguing that increased gaze at an interlocutor would be compensated

with more gaze aversions by them. While the theory also discusses other factors

such as proxemics, we were interested only in the gaze aspect and in verifying if

there is an effect of robot gaze on human gaze behavior. Additionally, it is known

that while listening, individuals tend to look more at their speaking interlocu-

tors whereas while speaking, they tend to exhibit more gaze aversions (Argyle

& Cook, 1976; Cook, 1977; Ho et al., 2015). Thus, if the robot is not averting

its gaze during the interaction, we can expect the participant to produce more

gaze aversion while speaking, but not necessarily while listening. Based on this,

we formulate the following hypotheses:

• H1 Lack of gaze aversions by a robot will lead to an increase in gaze aversions

by the participants when they are speaking.

– H1a: Participants will avert their gaze away from the robot longer in

the condition when the robot does not avert its gaze away from the

participants. (see Section 3.5)

– H1b: Participants will look away from the robot more often when the

robot exhibits fixed gaze behavior (does not avert its gaze).

3.5 Study Design

To investigate the effect of a robot’s gaze aversion on human gaze aversion,

we designed a within-subjects user study with two conditions. In the control

condition, the robot constantly directs its gaze towards the participant, with-

out averting it; we call this the Fixed Gaze (FG) condition. In the experimental

condition (which we call the Gaze Aversion (GA) condition), the robot’s gaze is
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automated using the GCS described in Subsection 3.3 which is found to be bet-

ter at exhibiting gaze aversion behavior in a subjective analysis. While the GCS

is capable of coordinating individual eye and head movements, the interaction

is designed in such a way that it does not require any head movements by the

robot when directing its gaze. This is because the interaction involved mainly

intimacy-regulating gaze aversions, which necessitate only a quick glance away

from the interlocutor (see Subsection 3.3). Hence, the robot’s head movements

are not a factor in the study, which is in line with our aim to verify the effect of

robot’s eye gaze behavior on human gaze behavior.

3.5.1 Interaction Setting

We designed an interview scenario similar to that in Andrist et al. (2014), where

the robot asked the participant six questions with increasing levels of intimacy

(more details in Subsection 3.5.2). While Andrist et al. (2014) investigated

whether appropriate gaze aversions by the robot would elicit more disclosure,

we wanted to verify if gaze aversions by a robot would directly elicit lower gaze

aversions by humans, signaling more comfort even with highly intimate ques-

tions (which are known to induce discomfort). To make the interaction more

conversational and less one-sided, the robot also gave an answer to each ques-

tion after the participant had answered it. Questions with different levels of

intimacy were used in order to vary the level to which the participant might feel

the need to avert their gaze.

The robot’s turns were controlled by the researcher using the Wizard-of-Oz

(WoZ) approach. The researcher listened to the participant’s responses through

a wireless microphone and controlled the robot’s response by selecting one of

three options, which resulted in varying flows of the conversation script. On

selecting “Robot answer", the robot would answer the question that was asked

to the participant before moving on to ask the next question. The option “User

declined to answer" would prompt the robot to acknowledge the user’s choice

before moving on to the answer, and then ask the next question. The “User

asked to repeat question" option was used to repeat the question. Having a WoZ

paradigm enabled the researcher to control the timing of the robot’s turn-taking,

resulting in a smooth conversational dynamics. Additionally, it made it possible

for the researcher to manage the interaction from a separate room, reducing

the influence that the presence of a third-person observer might have on the

participants. The robot’s responses were handcrafted to be generic enough to

account for most of the answers that participants might provide. They always
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started with an acknowledgement of the participant’s answer (e.g, "I appreciate

what you say about the weather"). Then a response was chosen at random from

previously created pool of handcrafted answers to the question and appended

to the acknowledgement. In cases where the participant did not answer the

question, the robot always acknowledged that by using phrases like "That’s okay"

and then appended a random response from the pool of of answers.

An example dialog where the participant answered the question has been pro-

vided below (R denotes the robot, P denotes a participant):

R: What do you think about the weather today?

P: I think it is perfect. It is neither freezing nor too hot. Just the perfect balance

of sunny and cool. I really don’t like if it is too hot or too cold.

R: I appreciate what you say about the weather, but honestly, I can’t relate. I

never get to go outside. Maybe you didn’t notice, but I don’t have legs. So I

never have any idea what the weather is like out in the real world. My dream

is to one day see the sky. Perhaps my creators will allow me some day.

R: What are your views on pop music?

We used a Furhat robot for the study, which is a humanoid robot head that

projects an animated face onto a translucent mask using back-projection and

has a mechanical 3-DoF neck. This makes it possible to generate nuanced gaze

behavior using both eye and head movements, as well as facial expressions and

accurate lip movements (Moubayed et al., 2013). For the experimental condition

(Gaze Aversion; GA) the robot was named Robert and for the control condition

the robot was named Marty. We wanted to give the impression that the partic-

ipants were interacting with two distinct robots for each condition, but at the

same time, we did not want the robots themselves to have an influence on the

interaction. This led to the selection of two faces that were similar to each other

from the list of characters already available in the robot. Two male voices were

selected from the list of available voices based on how natural they sounded

when saying the utterances for the tasks. The participants were not informed

about the different gaze behaviors of the two robots.

The experiment was conducted in a closed room while restricting any outside

distractions. The participants were alone with the robot during the interactions.

Participants were asked to sit in a chair that was placed approximately 60-90

cm in front of the robot. The robot was carefully positioned such that it was

almost at eye level and at a comfortable distance for the participants. A Tobii
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Figure 3.1: Experimental setup for the interview task

Pro Glasses 2 eye-tracker was used to record the participants’ eye gaze during

each interaction. We also recorded the speech of the participants using a Zoom

H5 multi-track microphone. A pair of Rode Wireless Go microphone systems

was also used to stream the audio from the user to the Wizard. Fig. 3.1 shows

an overview of the experimental setup.

3.5.2 Intimacy Rating of Questions

The questions for the task were selected from Hart, VanEpps, and Schweitzer

(2021) and Kardas, Kumar, and Epley (2021), who asked their participants to

rate them in terms of sensitivity and intimacy, respectively. In order to account

for any influence culture and demography might have on the perceived topic inti-

macy levels of the questions, an online survey was conducted where residents of

Stockholm rated these questions based on their perceived topic intimacy. Partic-

ipants were recruited using social media forums for Stockholm residents (e.g.,

Facebook groups, Stockholm SubReddit). Another consideration was to avoid

complex questions that would involve a lot of recalling or problem-solving (e.g.,

"What are your views about gun control?"). The motivation for this is that people
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are known to avert their gaze when performing a cognitively challenging task

(Doherty-Sneddon & Phelps, 2005). We wanted to keep the questions as simple

as possible so as to restrict the influence on gaze aversions to just the robot’s

gaze behavior and the question’s intimacy level.

A total of 28 questions were selected from the questions in Hart et al. (2021)

and Kardas et al. (2021). The participants were asked to rate the questions on

how intimate they felt on a 9-point Likert scale ranging from "1: Not intimate at

all" to "9: Extremely intimate" (question asked: Please indicate how intimate you

find the following questions (1: not intimate at all; 9: extremely intimate). Please

don’t think too much about each one; just follow your intuition about what you

consider personal/ intimate). The responses from 148 participants (68 females,

76 males, one non-binary & two undisclosed), aged between 18 and 50 (mean

= 29.35, SD = 6.89), were then used to order the questions based on their

intimacy values. Using linear mixed models, it was verified that gender, age,

nationality and L1 did not influence the intimacy ratings. We selected a total of

12 questions out of them and divided them into two sets with similar intimacy

distribution which were used evenly across both the conditions (FG and GA). We

tried to select simple questions that would not induce a heavy cognitive load.

Table 3.1 lists the questions and their rated intimacy values from the survey (Q

Set stands for Question Set).

3.5.3 Participants

We recorded eye gaze and acoustic data of 33 male participants (sex assigned

at birth). The choice for male participants was methodologically and logistically

motivated. Firstly, topic intimacy has been found to be perceived differently by

people of different genders (Sprague, 1999). Thus, intimacy during the inter-

action might be affected by the participants’ and robot’s gender. To reduce the

influence of this variable (given that it is not a variable of interest in this study),

we controlled it by recruiting participants of only one gender.

In addition to the participants’ gaze behavior, in future works we will use

the recorded data to analyze their speech acoustics in relation to that of the

robot. Since sex and gender are known to impact acoustic features of speech

(Pépiot, 2014), all processing and analysis of data need to be carried out sep-

arately for males and females. This would reduce the statistical power of the

acoustic analysis, leading us to choose participants from only one sex. Given the

choice between female or male participants, males were chosen since they are

more numerous in the institute where we collected data.
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Table 3.1: Mean intimacy ratings of selected questions used in the study
Question Mean SD Q

Set
What do you think about the weather today? 1.192 0.558 1
What are your views on pop music? 1.976 1.372 1
How did you celebrate last Christmas? 3.023 1.758 1
Tell me about a conversation you had with another
person earlier today.

4.330 2.121 1

For what in your life do you feel most grateful? 5.223 1.917 1
What is one of the more embarrassing moments in
your life?

6.538 2.016 1

What did you have for breakfast this morning? 1.823 1.308 2
What season do you like the best? Why? 1.838 1.091 2
Do you have anything planned for later today? What
will you do?

3.523 1.779 2

What would constitute a perfect day for you? 4.007 1.827 2
Is there something you’ve dreamed of doing for a
long time? Why haven’t you done it?

5.430 2.064 2

Can you describe a time you cried in front of another
person?

7.023 1.918 2

The participants were recruited using social media, notice boards and the dig-

ital recruitment platform Accindi (https://www.accindi.se/). The participants

were all residents of Stockholm. The cultural background of participants was

not controlled for. Participants’ ages ranged between 21 and 56 (mean = 30.54,

SD = 8.07). They had no hearing or speech impairments, had normal/corrected

vision (did not require the use of glasses for face-to-face interactions) and spoke

English. They were compensated with a 100SEK gift card on completion of the

experiment. The study was approved by the ethics committee of Humboldt-

Universität zu Berlin.

3.5.4 Procedure

As described earlier, the study followed a within-subjects design. Each partici-

pant interacted with the robot under two conditions; the order of the conditions

was randomized. Each set of questions (cf. Table 3.1) was also counterbalanced

across the conditions. The participants were asked to give as much information

as they could when answering the questions. However, they were not forced to

answer any of the questions. In case they did not feel comfortable answering

any questions, the robot acknowledged it and moved on to the next question.

https://www.accindi.se/
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The interaction always started with the robot introducing itself before moving

on to the questions. The entire experiment took approximately 45 minutes. The

experiment’s procedure can be broken down into the following steps:

• Step 1: The participants were informed about the experiment’s procedure,

compensation, and data protection, both verbally and in writing. They

then provided their written consent to participation.

• Step 2: The participants were instructed to speak freely about a prompted

topic for about 2 minutes. This recording was used as the baseline speech

measure for participants’ speech before interacting with the robot. The

speech data is not discussed in the present work.

• Step 3: Next, the participants were asked to put on the eye-tracking glasses,

which were then calibrated. After successfully calibrating the glasses, the

researcher left the room and initiated the interview task. The robot intro-

duced itself and proceeded with the Q&A.

The researcher kept track of the participant’s responses and timed the

robot’s turns with the appropriate response using the wizard buttons. Once

the interaction came to an end, the researcher returned to the room for the

next steps.

• Step 4: The participants were then asked to remove the tracking glasses

and were provided with a questionnaire to fill in. The questionnaire had 9-

point Likert scale questions about the participant’s perception of the robot

and the flow of conversation (see Table 3.2).

• Step 5: Next, they were asked to fill out the Revised NEO Personality

Inventory (NEO-PI-R) (Costa Jr & McCrae, 2008), which measures per-

sonality traits. They were also asked to take the LexTALE test (Lemhöfer &

Broersma, 2012), which indicates their general level of English proficiency,

on an iPad. Both of these tasks served as distractor tasks, providing a break

between the two interactions and allowing the participants to focus on the

second robot with renewed attention.

• Step 6: The participants were then asked to speak freely about another

prompted topic for about 2 minutes. This served as the baseline for the

second interaction before the participant interacted with the robot (data

not discussed here).
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• Step 7: After recording the free speech, the participants were asked to

put on the eye-tracking glasses and the tracker was calibrated again. The

researcher left the room and initiated the next interaction. The robot in-

troduced itself again and proceeded with the Q&A.

• Step 8: At the end of the interaction, the researcher returned to the room

and provided the participants with the last questionnaire. Apart from the

9-point Likert scale questions about the perception of the robot and the

conversation flow, the questionnaire also asked about basic demographic

details.

3.5.5 Measurements

In order to test H1, we mainly focused on the behavioral measure of gaze be-

havior of the participants, which was captured using the eye-tracking glasses.

Our experiment had one independent variable, the gaze aversion of the robot

which was manipulated in a within-subjects design (GA & FG condition). The

order of the questions remained the same for both the GA and FG conditions,

i.e., increasing intimacy with each subsequent question.

The Tobii Pro Glasses 2 eye-tracker records a video from the point of view

of the participant, and provides the 2D gaze points (i.e., where the eyes are

directed in the 2D frame of the video). The videos were recorded at 25fps and

the eye-tracker sampled the gaze points at a 50Hz resolution. Both datasets

were synchronized to obtain timestamp vs. 2D gaze point ([ts, (x , y)]) data for

each recording, i.e, gaze location per timestamp. We used the Haar-cascade

algorithm available in the OpenCV library to detect the face of the robot in the

videos and obtain the timestamp vs. bounding box of face ([ts, (X , Y, H, W )], X

and Y - lower left corner of the bounding box, H and W - height and width of

the bounding box) data.

Gaze Aversion for each time stamp was calculated by verifying if the gaze

points (x , y) were inside the bounding box [X , Y, H, W ] or not. The parameters

for Haar-cascade were manually fine-tuned for each recording to obtain the best

fitting bounding boxes for detecting the robot’s face. An example of non-gaze

aversion detection using the algorithm can be seen in Fig. 3.2. The timing infor-

mation for the robot’s utterances can be obtained from the speech synthesizer.

We logged the robot’s responses and their time information for all interactions.

This log was used to extract the participant’s speaking and listening durations.

When the robot is speaking, the participant is the listener and vice-versa. This
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Figure 3.2: Example of Gaze Aversion detection using the algorithm. Here the
gaze point (x , y) (the red circle) lies within the face’s bounding box
[X , Y, H, W ] (blue rectangle), so it is not a Gaze Aversion

information was used to extract the gaze aversion of the participant when they

were Speaking and Listening.

For H1a, we used the % of gaze aversion as the metric of overall gaze aver-

sion. Each timestamp where it was possible to detect whether there was a gaze

aversion or not was considered as a gaze event. We counted the number of gaze

aversions (gaCount) and the total number of gaze events (geTotal) over the

duration when the participants were Speaking and Listening. The % of gaze

aversion (ga%) is then calculated as:

ga%= gaCount/geTotal (3.1)

For H1b, we identified individual gaze aversion instances, which are the num-

ber of times the participants directed their gaze away from the robot. The du-

ration from when participants looked away from the robot until the time they

returned their gaze back at the robot was counted as one gaze aversion instance.

We also collected subjective feedback from the participants for both conditions

with a questionnaire. The questionnaire included the 12 questions that were

used to measure the responses of the participants under three dimensions on a

9-point Likert scale (see Table 3.2).
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Table 3.2: Questionnaire used for subjective evaluation

Dimension Question
My conversation with the robot flowed well.
I was able to understand when the robot wanted me to
speak.

Conversation I was able to understand when robot wanted to keep
speaking.

Flow (D1) The robot responded to me at the appropriate time.
The robot’s face was very human-like.

Human- The robot’s voice was very human-like.
Likeness (D2) The robot’s behavior was very human-like.

Throughout the conversation, I was very aware that I was
talking to a robot.
I enjoyed talking with the robot.

Overall I felt positively about the robot.
Impression (D3) I felt positively about the conversation.

I felt comfortable while talking with the robot.

The analysis of speech data is beyond the scope of this work and will be ana-

lysed in conjugation with other variables in upcoming works.

3.6 Results

As mentioned in Subsection3.5.1, we used a WoZ approach to manage the robot’s

turns. While the wizard was instructed to behave in the same way for both the

conditions, we wanted to make sure that the wizard did not influence the turn

taking of the robot, which could in turn influence the gaze aversion behavior

of the participants. We calculated the turn gaps (time between when the par-

ticipant has finished speaking and the robot started to speak) from the audio

recordings of the interactions. A Mann-Whitney test indicated that there was no

significant difference in turn gaps between condition FG (N= 249, M = 1.89, SD

= 2.67) and condition GA (N = 243, M = 1.77, SD = 1.63), W = 29848, p =
0.797. This shows that the wizard managed the turns in the same way across

conditions.
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Table 3.3: Mean % of Gaze Aversion per Condition
Condition: GA Condition: FG

ga% Mean SD Mean SD
Speaking 0.399 0.195 0.456 0.199
Listening 0.112 0.084 0.137 0.155

3.6.1 Effect of Robot’s Gaze Aversion Behaviour

Of the 33 participants recorded, we excluded two participants’ data from the

analysis as the gaze data was corrupted due to some technical problems with

the eye-tracker. Additionally, gaze data from the eye-trackers were not always

available for all timestamps, due to various reasons such as calibration strength

and detection efficiency. When averting gaze, participants also moved their head

away from their partner’s face. This varied a lot from participant to participant

and led to instances where the robot’s face was out of the eye-tracker’s cam-

era frame. Additionally, there were instances where Haar-cascade could not

detect the robot’s face for some timestamps due to various reasons. These fac-

tors resulted in instances where it was not possible to determine if there was a

gaze aversion or not. We were able to capture 87.38% of gaze data (data loss

= 12.62%), which is normal for eye-trackers (Holmqvist, 2017). Overall only

1.6% of data (8170 timestamps out of 504011) was affected by the technical

constraints which led to the exclusion of data. Thus, instances of gaze aversion

by participants where Furhat was out-of-frame (due to head movement) are not

very common. Also, the amount of data lost in this way was the same across

conditions so we do not believe that the excluded data had any influence on the

results reported.

On average, participants averted their gaze more in the FG condition as com-

pared to the GA condition when they were Speaking. A two-tailed Wilcoxon

signed-rank test indicated a significant difference in gaze aversion across condi-

tions when the participants were Speaking (W = 142.0, p = 0.037), as shown

in Fig. 3.3. This supported H1a, which predicted that participants would avert

their gaze for a longer duration when there is no gaze aversion by the robot (i.e.,

the FG condition). There was no significant difference between conditions when

participants were Listening (W = 150.0, p = 0.194) which is expected (see 3.4).

The mean values of gaze aversion when participants wereSpeaking and Listening

can be found in Table 3.3.
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Figure 3.3: Total % of Gaze Aversion while Speaking

Analyzing the number of gaze aversion instances performed by the partici-

pants while Speaking showed that participants looked away from the robot more

frequently in the FG condition (Mean = 91.742, SD = 60.158) as compared to

the GA condition (Mean = 70.774, SD = 46.141). As shown in Fig. 3.4, a two-

tailed Wilcoxon signed-rank test indicated a significant difference in the number

of gaze aversion instances across the conditions (W = 496.00, p < 0.001). This

supported H1b, which predicted that participants would look away from the

robot more often when there is no gaze aversion by the robot. It can be seen

that the effect of robot’s gaze aversion on participants’ gaze behavior is stronger

and more distinct when analyzing gaze aversion instances. We argue that gaze

aversion instance is a better metric to verify the effect.

3.6.2 Gaze Aversion when participants were Speaking &

Listening

It is already known from the HHI literature (Argyle & Cook, 1976; Cook, 1977;

Ho et al., 2015) that people exhibit fewer gaze aversions while listening and

more while speaking. We were interested to see if there was a similar pattern

emerging from the data.

To verify this, we first calculated the % of gaze aversion when participants

were listening to and answering each of the robot’s questions. Since the dura-
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Figure 3.4: Number of Gaze Aversion Instances while participants were Speaking

Figure 3.5: % of Gaze Aversion while participants were Listening and Speaking,
for the two conditions.

tions of both Speaking and Listening varied from one participant to the other, we

normalized the time into 10 intervals for Speaking and 10 intervals for Listening

phase. Next, we found the aggregate % of gaze aversion for all the questions

when Speaking and Listening. The resulting plot can be seen in Fig. 3.5.

We can see a clear trend emerging from the plot with the low gaze aversion

during the Listening phase when the participants listened to the robot. However,

just before taking the floor (Speaking phase), it can be seen that the gaze aversion

starts increasing. This is in line with the findings from Ho et al. (2015), who

found that speakers usually started their turns with gaze aversion and averted

their gaze before taking the turn. We also notice that the gaze aversion peaks

at around 20-30% of the speaker’s turn, before starting to fall. Towards the

end of the turn, we see a sharp decline in gaze aversion. This is consistent
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Figure 3.6: Mean Gaze Aversion per Question while participants were Speaking

with the findings from Ho et al. (2015), which show that people end their turns

with their gaze directed at the listener. It can also be seen that even though

the gaze aversion behavior of participants followed a similar pattern for both

conditions, the amount of gaze aversion was lower for the GA condition. This

further supports hypothesis H1.

3.6.3 Results from the Questionnaire

On analyzing the responses from the questionnaire, all three dimensions were

found to have good internal reliability (Cronbach’s α = 0.8, 0.71 & 0.92 re-

spectively). The participants found the robot under the FG condition to be sig-

nificantly more Human-Like (Student’s t-test, p = 0.029). This result was un-

expected and has been further discussed in Section 3.7. We did not find any

significant differences for the other two dimensions. The mean score for the

LexTALE test was 80.515% (SD = 12.610) which showed that the participants

had good English proficiency (Lemhöfer & Broersma, 2012).

3.6.4 Exploratory Analysis: Topic Intimacy

Apart from analyzing the data for H1, we were also interested in whether any

trends emerged through an exploratory analysis of the topic intimacy of the ques-

tions and gaze aversion. By plotting the mean % of gaze aversion values of all

participants for each question during the Speaking phase, we can see that there
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Table 3.4: Fixed effect estimates of the GLMM model
Term Estimate SE t

Intercept (Question 6) 0.396 0.030 13.138
Question 1 -0.084 0.022 -3.846
Question 2 -0.046 0.021 -2.224
Question 3 -0.071 0.019 -3.731
Question 4 0.009 0.018 -0.515
Question 5 0.047 0.023 2.085

Condition:GA -0.033 0.016 -2.098

Figure 3.7: Distribution of Mean Gaze Aversion per Condition per Question Or-
der

is an increase in gaze aversion as the intimacy values increase with the question

order (cf. Fig. 3.6).

We fit a GLMM (Generalized Linear Mixed Model) with mean gaze aversion

values per question of each participant as the dependent variable. The questions’

order and the conditions were used as the fixed effects variables, and we included

random intercepts for participants and random slopes for question order and

condition per participant. The model suggested that the gaze aversions increased

as the intimacy values increased (χ2 = 41.32, df = 5, p< 0.001). It also suggested

that there was more gaze aversion in the FG condition as compared to the GA

condition (χ2 = 4.244, df = 1, p=0.039). There were no interaction effects

observed. The coefficients of the model can be found in Table 3.4.

This points in the direction of a positive correlation between topic intimacy

and gaze aversion. One interpretation of this finding is that participants tend to
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compensate for the discomfort caused by highly intimate questions by averting

their gaze. This is in line with previous findings from HHI that suggest that any

change in any of the conversational dimensions like proximity, topic intimacy or

smiling would be compensated by changing one’s behavior in other dimensions

(Argyle & Dean, 1965). Fig. 3.7 is a visualization of how gaze aversion varied

for each condition under each question. It can be seen that the gaze aversion

was higher for FG for all the questions (except Q3), and that there is an increase

of gaze aversion with the increase in question number (which in turn is the topic

intimacy value for the question).

The finding here is interesting because it could mean that the participants

compensated for topic intimacy with gaze aversion even when it is a robot that

was asking the questions. However, since we didn’t control for the order if the

questions, this could also be because of other factors such as a cognitive effort

and fatigue. Further studies should narrow down the factors that influenced

such behavior.

3.7 Discussion

The results suggest that participants averted their gaze significantly more in the

FG condition. Moreover, they had more gaze aversion instances in the FG con-

dition. This was supported by both Wilcoxon signed-rank tests (see Section 3.6)

and an exploratory GLMM (see Section 3.6.4). The results are in line with hy-

pothesis H1: people compensate for the lack of robot gaze aversion by producing

more gaze aversions themselves (Abele, 1986; Argyle & Dean, 1965).

We did not observe a significant difference across conditions in gaze aversion

when participants were Listening. This could be attributed to the fact that there

were too few gaze aversions during this phase to observe a significant difference,

which is also suggested by prior studies in HHI (Ho et al., 2015). The gaze aver-

sions varied between 11-14%, which meant that the participants directed their

gaze at the robot for about 86-89% of the time. This is higher than the numbers

reported in HHI, where listeners direct their gaze at speakers 30-80% of the time

(Kendon, 1967). Our findings coincide with the findings in Yu, Schermerhorn,

and Scheutz (2012), where they reported that humans directed their gaze more

at a robot than at another human.

Unexpectedly, participants rated the robot in the FG condition as more human-

like compared to the GA condition. A key reason for that could be the way the GA

interaction started. The GCS used would make the robot keep looking at random
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places in the environment unless the interaction is started by the researcher. This

could have resulted in an unnatural behavior where the robot directs its gaze

at random places even though the participant is already sitting in front of it.

On the other hand, in the FG condition the robot kept on looking straight and

only started to track the user when the interaction started. However, since the

participant was sitting right in front of the robot, it would be perceived as the

robot looking at the participant all the time.

While we did not find any significant differences in the other two dimensions

(Conversation Flow & Overall Impression) assessed in the self-reported ques-

tionnaire, we did see a significant difference across conditions from the objective

measures (i.e., gaze behavior). This could point to an effect that, even though it

might not be explicitly perceived by people, a robot’s gaze behavior would im-

plicitly affect human gaze behavior. This could also be an interesting direction

for further study.

A further exploratory analysis of the data reveals a positive correlation be-

tween gaze aversion and topic intimacy of the questions. Thus, more intimate

questions seem to lead to a larger avoidance of eye gaze. In our study, more

intimate questions occurred towards the end of the conversation. As the order

of the questions was fixed, the order may of course be a confounding factor.

However, we are not aware of other work showing that humans would avoid

eye gaze more and more over the conversation. We argue that eye gaze is rather

related to the topic (intimacy), but further work is needed that controls for this

potential confound.

3.8 Limitations & Future work

The participants of our study had a rather large age span and we had only male

participants. A clear limitation of this study is the lack of a balanced dataset. As

the results obtained are only for male participants, these results do not necessar-

ily generalize to other genders. The choice for male participants was method-

ologically and logistically motivated. Firstly, topic intimacy has been found to

be perceived differently by people of different genders (Sprague, 1999). Thus,

intimacy during the interaction might be affected by the participants’ and robot’s

gender. To reduce the influence of this variable (given that it is not a variable

of interest in this study), we controlled it by recruiting participants of only one

gender.
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In addition to the participants’ gaze behavior, in future works we will use

the recorded data to analyze their speech acoustics in relation to that of the

robot. Since sex and gender are known to impact acoustic features of speech

(Pépiot, 2014), all processing and analysis of data need to be carried out sep-

arately for males and females. This would reduce the statistical power of the

acoustic analysis, leading us to choose participants from only one sex. Given the

choice between female or male participants, males were chosen since they are

more numerous in the institute where we collected data.

Further studies with a more diverse participant pool and female-presenting

robots would be needed to verify this effect in general. However, it is interesting

to note that a recent study (Acarturk et al., 2021) found no difference in gaze

aversion behavior due to gender. The authors concluded that GA behavior was

independent of gender and suggested “that it arises from the social context of

the interaction.”

It is known that culture also influences our gaze behavior on many levels such

as how we look at faces (Blais, Jack, Scheepers, Fiset, & Caldara, 2008) or in-

terpretation of mutual gaze and gaze aversions (Argyle & Cook, 1976; Collett,

1971). McCarthy, Lee, Itakura, and Muir (2006) observed that people mutual

gaze and gaze aversion behaviors during thinking differed based on the culture

of the individuals. However, recent studies have challenged some of aspects of

cultural influences that have been reported previously (Haensel, Smith, & Senju,

2022). Nonetheless, investigating any effect culture of participants may play on

their gaze behavior when interacting with a robot could also be an interesting

area to look into in the future.

3.9 Conclusion

In this paper, we investigated whether a robot’s gaze behavior can affect hu-

man gaze behavior during HRI. We conducted a within-subjects user study and

recorded participants’ gaze data along with participants’ responses. The analysis

of participants’ eye gaze in both conditions suggests that they tend to avert their

gaze more in the absence of gaze aversions by a robot. An exploratory analy-

sis of the data also indicated that more intimate questions may lead to a larger

avoidance of mutual gaze. The existence of a direct relationship between robot’s

gaze behavior and human gaze behavior is an original finding.

The study also shows the importance of modelling gaze aversions in HRI. In

the absence of robot gaze aversions, the interaction may become more effortful
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for the user while trying to avoid frequent mutual gaze with the robot. These

findings go hand in hand with the Equilibrium Theory suggesting a trade-off

relation between the robot’s and user’s interactive gaze behavior. Our findings

are helpful for designing systems more capable of adapting to the context and

situation by taking human gaze behavior into account.
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4 | Real-time Emotion Generation in

Human-Robot Dialogue Using Large Language

Models 1

Abstract

Affective behaviors enable social robots to not only establish better connections
with humans, but they also serve as a tool for the robots to express their internal
states. It has been well established that emotions are important to signal un-
derstanding in Human-Robot Interaction (HRI). This work aims to harness the
power of Large Language Models (LLM) and proposes an approach to control the
affective behavior of robots. By interpreting emotion appraisal as an Emotion
Recognition in Conversation (ERC) task, we used GPT-3.5 to predict the emotion
of a robot’s turn in real-time, using the dialogue history of the ongoing conver-
sation. The robot signalled the predicted emotion using facial expressions. The
model was evaluated in a within-subjects user study (N = 47) where the model-
driven emotion generation was compared against conditions where the robot
did not display any emotions and where it displayed incongruent emotions. The
participants interacted with the robot by playing a card sorting game that was
specifically designed to evoke emotions. Results indicate that the emotions were
generated in a reliable way by the LLM and the participants were able to per-
ceive the robot’s emotions. It was found that the robot expressing congruent
model-driven facial emotion expressions was perceived to be significantly more
human-like, emotionally appropriate, and elicit a more positive impression. Par-
ticipants also scored significantly better in the card sorting game when the robot
displayed congruent facial expressions. From a technical perspective, the study
shows that LLMs can be used to control a robot’s affective behavior reliably in
real-time. Additionally, our results could be used in devising novel human-robot
interactions, making robots more effective in roles where emotional interaction
is important, such as therapy, companionship, or customer service.

1Adapted from Mishra C, Verdonschot R, Hagoort P and Skantze G (2023) Real-time Emo-
tion Generation in Human-Robot Dialogue Using Large Language Models. Front. Robot. AI
10:1271610. doi: 10.3389/frobt.2023.1271610
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4.1 Introduction

Affective behavior, the ability to perceive and express emotions, is a fundamen-

tal component in human communication. It is instrumental in building human

relationships (Lazarus, 2006) and decision making (So et al., 2015). Humans

use facial expressions to convey various meanings during interactions (Elliott

& Jacobs, 2013). Consequently, with social robots poised to have a greater in-

tegration in society, it is prudent for these robots to be able to exhibit affective

behavior. For robots to interact with humans socially, they need to be able to per-

ceive human behaviors and the intent behind them while also expressing their

understanding and intention. Facial expressions can be used by robots to signal

their intentions and internal state. Research has shown that robots exhibiting

emotions are more likely to be perceived as likeable (Rhim et al., 2019), intel-

ligent (Gonsior et al., 2011), and trustworthy (Cominelli et al., 2021) by users.

Emotionally responsive robots can adapt their behavior and responses based on

the user’s emotional states, leading to more natural and seamless interactions

between humans and robots. Emotionally intelligent robots have the potential

to enhance user experience, facilitate effective communication, and establish

stronger rapport with humans.

However, effectively modelling emotions in robots is a challenging and active

area of research. Emotions are complex, multi-dimensional phenomena that in-

volve a combination of physiological, cognitive, and expressive components. Re-

searchers have explored both dimensional (Mehrabian, 1995; Russell, 1980) and

categorical (Ekman, 1999; Tomkins & McCarter, 1964) theories of emotions to

develop models for robot emotion generation, leading to complex architectures

that interpret various stimuli to generate appropriate emotional responses (Cav-

allo et al., 2018). While these models have shown promising results, they often

require hand-crafted rules and intricate feature engineering, making them labor

intensive.

The emergence of Large Language Models (LLMs), such as GPT-3 (Brown et

al., 2020), has significantly transformed the landscape of natural language un-

derstanding and generation. LLMs can serve as general models for solving a

multitude of tasks. For example, Lammerse et al. (2022) used GPT-3 to detect

the emotions of utterances in an Emotion Recognition in Conversation (ERC)

task. We aimed to harness these capabilities of LLMs to model robot emotions,

specifically to generate real-time robot emotions during HRI (Human Robot In-

teractions). In this paper we investigate two research questions:
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• Can we use LLMs for robot emotion generation in real-time?

• Do people perceive the context appropriateness of a robot’s emotions and what

is its effect on the user?

In this study, we implemented a model to use GPT-3.5, a state-of-the-art LLM,

to control the affective behavior of a robot. We interpreted emotion appraisal

as a real-time ERC task. We used GPT-3.5 to predict the emotion that the robot

is likely to during real-time interactions, based on the ongoing conversation’s

dialogue history. The predicted emotions were then translated into facial ex-

pressions which were displayed by the robot.

To evaluate the effectiveness of our implemented model, we conducted a

within-subjects user study involving 47 participants. The participants engaged

in an affective image sorting game, with a robot acting as a collaborative part-

ner. The game was designed to evoke emotional responses from the participants.

The results of the study demonstrated the effectiveness of using GPT-3.5 in gen-

erating emotions in real-time.

To summarize, the main contributions of this work are:

• The first study (to the best of our knowledge) that showcases the use LLMs

for emotion generation in HRI

• A novel study design to evaluate the influence of a robot’s emotional ex-

pressions on human users in a collaborative setting.

4.2 Background

Emotions can be defined as “an instantaneous affective response to an experienced

event” (Cavallo et al., 2018). Appraisal theories aim to propose a theoretical

framework to understand the cognitive evaluations or appraisal of various stim-

uli that result in eliciting specific emotions (Ellsworth & Scherer, 2003). On the

other hand, theories of emotions try to describe various emotions and discuss

the similarities and differences between them. Categorical theories of emotions

propose a set of specific emotion categories (e.g., Happy, Sadness, Anger, Fear,

Surprise, Disgust) that are elicited due to various stimuli (Ekman, 1999; Izard,

2013; Tomkins & McCarter, 1964). Dimensional theories, on the other hand,

model emotions based on certain underlying dimensions (such as arousal and

valence) (Mehrabian, 1995; Plutchik, 1982; Russell, 1980).
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For a robot to provide an appropriate affective response during an interac-

tion with a human user, it needs to be able to sense and model emotions. This

involves perceiving various communicative signals (body posture, facial expres-

sion, gaze, speech, etc.) from the human user and interpreting them. Many re-

searchers have used various emotion models (Mehrabian, 1995; Russell, 1980)

to interpret human emotions (Cavallo et al., 2018; Kirby et al., 2010; Paplu et al.,

2022). For example, Kirby et al. (2010) developed an affective robot reception-

ist that mimicked human-like behavior by interpreting its interaction in terms

of its emotions, mood and attitude. Paplu et al. (2022) used the circumplex

model (Russell, 1980) to generate context appropriate emotions on a robot by

appraising various communicative signals from the human interlocutor such as

proximity, body postures, facial expressions and gestures. A recent study (Tang

et al., 2023), explored the MAP-Elites (Cully et al., 2015) framework to gener-

ate emotional expressions automatically for a robotics platform they developed.

While these models have shown good results in generating robot emotions, they

involve building complex architectures (in some cases even hardware) that are

effort and time intensive. Additionally, the models need to be fast enough to op-

erate in real-time which is challenging in HRI. In this work, we limit the robot’s

emotions to a subset of the basic emotions (Ekman, 1999) (see Section 4.5.1).

Out of the many modalities of information that can be sensed and processed

by a robot to generate emotions, dialogue plays a key role in providing the nec-

essary context. The textual representation of a conversation can be analyzed

using emotion classification algorithms to detect the emotions of various utter-

ances. Emotion Recognition in Conversation (ERC) is a text classification task

that aims to predict the emotions of the speakers during a conversation from the

utterances. Static ERC refers to a task where a conversation has already taken

place and utterance emotions are detected using both the historical and future

contexts (Ghosal, Majumder, Poria, Chhaya, & Gelbukh, 2019; Lian, Liu, & Tao,

2021). On the other hand, real-time ERC refers to detecting utterance emotions

relying only on the historical context (Jiao, Lyu, & King, 2020; Ma et al., 2022).

Real-time ERC is very relevant in the context of HRI and can be used on-the-fly

to appraise emotion of a conversation between a robot and a human. Various

works have proposed to utilize ERC models for emotion recognition in HRI (Fu,

Liu, Ishi, & Ishiguro, 2020; Rasendrasoa, Pauchet, Saunier, & Adam, 2022), how-

ever evaluations involving genuine interactions with robots have been notably

scarce. We propose to appraise emotions as a real-time ERC task to generate

emotions on a robot on-the-fly.
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LLMs like GPT-3 (Brown et al., 2020), PaLM (Chowdhery et al., 2022) and

OPT (S. Zhang et al., 2022) have been trained on very large scale general text

datasets (both dialogue and publicly available web documents). They have

shown impressive capabilities in solving a variety of different tasks such as gen-

erating code (Chen et al., 2021), translation, and question-answering (Brown

et al., 2020) by repurposing their learned knowledge. For example, Lammerse

et al. (2022) applied GPT-3 to solve an ERC task that involved extracting emo-

tions from interviews with children. LLMs have a great potential for applica-

tion specifically in the field of HRI. The ’zero-shot’ chatting capabilities of LLMs,

such as GPT-3 Brown et al. (2020), have made designing interactions with robot

very easy. Consequently, many works have tried to integrate LLMs to solve var-

ious HRI tasks (Axelsson & Skantze, 2023; Billing, Rosén, & Lamb, 2023; Irfan,

Kuoppamäki, & Skantze, 2023). Billing et al. (2023) integrated GPT-3 as a ver-

bal proxy on NAO and Pepper robots to model open-dialog interactions. In a

recent work, Irfan et al. (2023) proposed guidelines for using LLMs to develop

companion robots for older adults. Others have tried to repurpose LLMs to solve

diverse HRI tasks. For example, Axelsson and Skantze (2023) developed an ar-

chitecture for presenter robots (e.g., a museum guide) by using GPT-3 to access

information from knowledge graphs. In this work, we use GPT-3.5 to generate

robot emotions, moving beyond the domain of generating robot speech.

4.3 Emotion Generation Using LLMs

Emotion appraisal is a continuous process where humans continuously process

the stimuli around them against a motivation system (Ellsworth & Scherer, 2003).

Stimuli spanning across various modalities including verbal and non-verbal be-

haviors are processed during the appraisal process. In order to generate appro-

priate emotional responses for the robot in real-time, it is imperative that the

computation time of the emotion appraisal process is minimized. Thus, we lim-

ited the scope of model input for this study to only the textual representation of

the conversational context.

GPT-3 has been shown to perform strongly on various NLP tasks in a zero-shot

fashion that need reasoning or adaptation on-the-fly (Brown et al., 2020). We

wanted to harness these capabilities and generate ad-lib robot emotions. We

first interpreted robot emotion appraisal as an ERC task. ERC takes the context

of the conversation into account when detecting the emotions of utterances. As

discussed in Section 4.2, LLMs have been shown to be effective in ERC tasks.
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Hence, we propose to use GPT-3 for real-time ERC, that takes the dialogue con-

text to account when detecting emotions. We selected GPT-3.5 (an updated GPT-

3 LLM (Brown et al., 2020)) with the model ’text-davinci-003’ for our study. This

was the best performing model from OpenAI when the study was conducted.

While ChatGPT was faster and had been trained on more recent data, we found

that the behavior was not as consistent as the davinci models for our tasks. GPT-

4 (OpenAI, 2023) was announced later and the API was not available yet during

the data collection.

We wanted to adapt real-time ERC as a prediction task that predicted the emo-

tion for the robot by taking the immediate history of the conversation into ac-

count. For example, consider the following dialogue (R denotes the robot, P

denotes the participant, Ux denotes the utterance number):

P: What do you think about picture 1? I think it looks really cool! (U1)

R: The picture looks like a really beautiful painting to me. Such an amazing

sight. (U2)

A real-time ERC model could for example detect the emotion following U2 as

’Happy’. In our task, we wanted to do the same using GPT-3.5, i.e., to predict

what could be an appropriate emotion for U2 based on the conversation history

(U1 and U2 taken together). For this study, we restricted the emotions to a subset

of the six basic emotions Ekman (1999) (see Section 4.5.1 for more details).

We also introduced an emotion category ’Neutral’ that the model could pre-

dict. This represents instances during the conversation where there is no need

to express any emotions. We expected GPT-3.5 to be able to detect them and

predict the emotion category as ’Neutral’ when there was no emotion expressed

in the dialogue, even though an affective artifact (such as an affective image dis-

cussed in Section 4.5.1) was being discussed as the subject of the conversation.

For example, in the following conversation, let’s assume that the discussion is

about the positioning of an affective image in an image sorting task. The robot’s

emotion was predicted to be ’Neutral’ by GPT-3.5 even though the subject of the

conversation was an affective image (R denotes the robot, P denotes the partic-

ipant):

R: What do you think?

P: I think you are correct in that assessment. I will put it here.〈robot’s emotion〉

We inserted a delay of about 1 sec, before the robot said the next utterance

(after U2 in the example). Doing so made it so that the facial expression was
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Table 4.1: Hyperparameter values set in the API call to GPT-3.5 for this study.

Hyperparameter Set Value
Maximum Length 1

Temperature 0.0
Top P 1.0

Frequency Penalty 0.0
Presence Penalty 0.0
Stop Sequence )

displayed between the two utterances (U2 and the upcoming utterance) and

the expression felt like a continuation of what had been discussed so far while

moving to the next utterance. Additionally, introducing the delay also gave the

robot sufficient time to send the API call and receive the predicted emotions. We

acknowledge that a delay between two sentences where the robot just displays

a facial expression is perhaps unnatural. However, this helped in exaggerating

the emotions the robot wanted to express (see Section 4.5.4). As the generation

time by GPT-3.5 gets faster in the future, thereby reducing the latency between

API calls and responses, we can adapt the model to get the emotion while the

robot says an utterance removing the need of any delays.

GPT-3.5 was instructed to perform the emotion prediction for the robot as a

completion task with the help of a prompt. We used zero-shot prompting (Brown

et al., 2020) for the task. The prompt was divided into two sections. The first

section comprised of the task description. It was asserted that the conversation

was between a robot and a human. As GPT is auto-regressive, i.e., the time

taken to generate response is linearly correlated to number of tokens it has to

generate, we restricted the output tokens to 1. Each emotion class was assigned

a number, and GPT-3.5 was asked to output only the emotion class number at

the end. The first half of the prompt looked like the following:

Prompt (Part 1)

“This an emotion classifier. The following is a conversation between a human and

a robot.The robot’s emotion is written within the brackets ().

The emotion can be either

’Happy (1)’, ’Sad (2)’, ’Fear (3)’, ’Anger (4)’, ’Surprise (5)’ or ’Neutral (6)’.

Only give the emotion class number between 1 - 6”

The second section comprised of the actual conversational data that was to be

used as the historical context for the prediction. Furhat can store the utterances
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during an interaction (both the user’s and its own) in the DialogueHistor y

object. Furhat’s and the user’s utterances were extracted to construct the turn

wise dialogue in the prompt. Lammerse et al. (2022) proposed a windowing

approach to control the exact number of past dialogue exchanges to be used as

context in ERC task and found that a window size of 3 resulted in the best ac-

curacy for GPT-3. We introduced a variable named contex tWindowSize which

specified the number of turns to be included as context in the prompt. For the

user study (see Section 4.5), the optimal contex tWindowSize was found by

conducting mock sessions while iterating through various window sizes. It was

found that sontex tWindowSize of 2 resulted in the most appropriate responses

from GPT-3.5. After including the turn wise dialogue history, the final element

in the prompt was the emotion prediction part for the robot’s emotion. This

was done by including the text “Robot: (” as the last line of the prompt. This

instructed GPT-3.5 to predict the class number. The second part of the prompt

looked like the following:

Prompt (Part 2)

“Human: 〈 utterance text from DialogueHistor y 〉
Robot: 〈 utterance text from DialogueHistor y 〉

Robot: (”

An example of a complete prompt with contex tWindowSize = 2 (two turns)

would look like the following:

“This an emotion classifier. The following is a conversation between a human and

a robot.The robot’s emotion is written within the brackets ().

The emotion can be either

’Happy (1)’, ’Sad (2)’, ’Fear (3)’, ’Anger (4)’, ’Surprise (5)’ or ’Neutral (6)’.

Only give the emotion class number between 1 - 6”

“Human: What do you think about picture 1? I think it looks really cool!

Robot: The picture looks like a really beautiful painting to me. Such an amazing

sight.

Robot: (”

OpenAI API provides a list of hyperparameters that can be used to control the

behavior of the model during an API call. As mentioned before, since we wanted

to obtain faster output from the model, we set the ’Maximum Length’ to 1. ’Tem-

perature’ was set to 0, to obtained consistent answers and eliminate any random-

ness. We also used the “)” as the ’Stop Sequence’ which further fine tuned the

output to only generate the emotion class number as the output token. Table 4.1
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lists the hyperparameter values used for this study. Another aspect to consider

when using GPT-3.5 for emotion generation is to determine the instance when

emotions need to be predicted during a conversation. This can differ depending

on the use case/ scenario. For our user study (see Section 4.5), we sent an API

call every time the human participant asked the robot to share its opinions about

the affective images in the game or when the robot asked the participant to share

their opinions. Figure 4.3 shows the outline of the model used to generate robot

emotions in the user study. It should be noted that contex tWindowSize and

the model hyperparameters (see Table 4.1) might need to be optimized to find

the ones that fit the best for other use cases/ scenarios.

4.4 Hypothesis

Similar to Lammerse et al. (2022), we applied GPT-3.5 to detect the emotions

in conversation. However, a key difference was that we predicted the emotion

for the robot based on the immediate conversational history as context. In order

to successfully generate contextually appropriate emotional expressions for the

robot, the system has to accurately predict the appropriate emotion, as well as

generating and displaying the corresponding facial expressions on the robot’s

face. We verify the appropriateness of the robot’s expressions by evaluating

whether participants are able to recognize and interpret the expressions on the

robot’s face in such a way that they contribute to a more positive experience of

the robot. This is done by contrasting a condition where the robot’s emotions

are generated by our model against two other conditions, where the emotions

are either incongruent with the model’s predictions, or where the robot does not

display any emotions at all. We hypothesise:

• H1: Participants will have a more positive experience of a robot displaying

context appropriate facial expressions, compared to the ones that do not.

Affective behavior of the robot is known to have an influence on the behavior

of human participants(Gockley, Forlizzi, & Simmons, 2006; Kaushik & Simmons,

2022; Xu, Broekens, Hindriks, & Neerincx, 2014). Kaushik and Simmons (2022)

used a sorting game where task was to learn the sorting rule based on the feed-

back provided by a robot. It was reported that affective robot behavior improved

the sorting accuracy and lowered the perceived difficulty of the task. Based on

this we hypothesise that:
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• H2: Contextually appropriate emotion expressions by the robot will in-

crease task performance.

4.5 Study: Affective Image Sorting Game

To evaluate if emotion appraisal using GPT-3.5 was effective and if the emotions

expressed by the robot could be perceived correctly by users, we designed a

within-subjects user study with three conditions. In the control condition (which

we call the Neutral (N) condition), the robot did not express any facial expres-

sions at all. Two experimental conditions were created: Congruent (C) and

Incongruent (I). As the name suggests, in the Congruent condition, the robot

displayed facial expressions that corresponded to the emotion GPT-3.5 had pre-

dicted (for example, if GPT-3.5 predicted “Happy” then the robot displayed a

happy facial expression). In the Incongruent condition, the robot displayed fa-

cial expressions opposite of the emotions predicted by GPT-3.5. If the predicted

emotion was negative (Sadness, Fear, Anger, Disgust), then the robot displayed

a positive emotion (Happy). Similarly, the robot displayed a negative emotion

(Sadness) when the predicted emotion was positive (Happy, Surprise). Only the

robot’s facial expressions were varied depending on the experimental condition,

its face, voice and other non-verbal behaviors remained the same across condi-

tions.

The following requirements were taken in to consideration while designing

the study:

• The setup should be able to invoke emotional responses from the partici-

pants.

• The setup should not be too immersive or challenging for the participants.

• The setup should allow for free form conversation.

• The robot’s expressions should be easy for the participants to notice

Based on these requirements, we decided to adapt the Card Game multi-party

interaction setup (Skantze et al., 2015). The Card Game setup is a test-bed

designed for studying single and multi-party interactions between a robot and

human participants. It is a collaborative game where a touchscreen is placed

between the robot and the human participants, on which a set of cards are dis-

played. The objective of the game is for the participants to rearrange the dis-

played cards in a specific order, while having a free form conversation about
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Figure 4.1: Outline of the model used in this study to generate emotions using
GPT-3.5

the order and the cards both with the robot and among each other (in case of a

multi-party setup).

We used a Furhat robot (Moubayed et al., 2013) for this study. It is a humanoid

robot head with a back-projected face that allows it to display various facial ex-

pressions, brow movements, eye movements (e.g., , eye blinks, gaze), and head

gestures (e,g., nodding, shaking). This enables the robot to convey emotions and

engage in natural, human-like communication, providing a more immersive and

realistic interaction experience for participants. Furhat provides a wide choice

of realistic character faces and voices to choose from. For this study, we used

the “default” character face (which is more cartoonish than photo-realistic) and

Matthew neural TTS voice from Amazon Polly2. The character and voice were

kept the same across experimental conditions.

A dyadic interaction setup was used where a Furhat robot and a human par-

ticipant were seated face to face. A touchscreen was placed in between the robot

and the participant such that the participant could move the images using their

fingers and the robot could follow the images using head gestures and gaze (as

shown in Figure 4.2). The interactions took place in a closed room where the

participants were alone with the robot. The experimenter was present in an

adjourning room where they could monitor the experiment.

In order to invoke emotional responses from the participants, a total of 45

affective images were used in the game (see Section4.5.1). The participants

were tasked with sorting the images from the least positive image to the most

2Amazon Poly Voices
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Figure 4.2: Experimental setup for the study

positive image based on the emotions they perceived from them. Each game

comprised of 3 decks, with each deck having 5 affective images. The participants

were instructed to play all the three decks for each game (irrespective of the

order of the decks). Doing so provided more opportunities for the participants

to observe the robot’s behavior and counter the novelty effect of playing a game

with a robot for the first time. Participants played a total of 3 games, 1 game for

each experimental condition.

4.5.1 Affective Image Selection

Prior works in Psychology such as Lang, Bradley, Cuthbert, et al. (1999) have

shown that emotions can be invoked in humans with the help of visual stimuli

such as images. Consequently, there have been many works such as IAPS Sub-

set (Mikels et al., 2005) and DeepEmotion (You, Luo, Jin, & Yang, 2016) that

have developed datasets of images that are mapped to various emotions. As dis-

cussed briefly in the previous section, each deck in the game had 5 images in it

and each condition had 3 decks, which means that we needed 45 images from

the datasets belonging to 5 emotion categories. A key constraint was to avoid

showing very disturbing images to the participants. Additionally, we wanted to

have a good balance between positive and negative emotion categories in the

game, so that it is easier for the participants to arrange them from least positive
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to the most positive images. Thus, we decided to use the emotion categories

Happy/ Amusement, Anger, Sadness, Fear, and Awe/ Surprise.

However, during the selection process, we could not find the required number

of images for each category from any one dataset, either because there were not

enough images for each category (for example, IAPS Subset had only 8 images

for Anger) or because there were disturbing images that we could not use for our

study (mainly for negative emotion categories like Fear). This led us to combine

images from the IAPS Subset (Mikels et al., 2005) and DeepEmotion (You et al.,

2016) datasets for each of the categories. We also added a few images from the

internet that were suitable to be used in the experiment and were deemed to

fit well for the emotion categories. From this pool of images for the 5 emotion

categories, 45 images were handpicked to be used for the experiment.

4.5.2 Emotion Tagging Survey

The final pool of 45 images were a combination of images selected from the

two datasets and images available online. While the images selected from the

datasets for each emotion category had labels, the images from the internet were

selected based on the authors perception. It is well known that the perceived

emotion from visual stimuli is highly subjective in nature and varies from person

to person (Machajdik & Hanbury, 2010). In order to ensure that the mapping be-

tween the emotion categories and images remained consistent, we conducted an

online pilot study to map each of the selected images into an emotion category.

Qualtrics survey software was used to design the online survey. The partici-

pants were shown an image on the screen and asked to select the emotion cate-

gory that matched the best with the image (exact question asked: “Which emo-

tion do you think the image depicts the most?”). The 5 emotion categories were

displayed as radio buttons. The order in which the images were shown to the

participants were randomised to account for any order effect. Participants were

recruited using notice boards and social media posts and did not take part in the

later experiment with the robot.

We recorded the data from 21 participants (9 male, 11 female, 1 non-binary)

with ages ranging between 19 and 48 (M = 29.57, SD = ±7.55). No compensa-

tion was offered for this survey. An image was assigned to an emotion category

if the majority of the participants had selected that emotion for the image in

the survey. There were cases where no clear selection emerged from the re-

sponses. In such cases, the images were tagged to be multi-class, i.e., belonging

to multiple categories. However, for the image ordering game, it was necessary
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to assign one emotion category per image. To do so, we decided the emotion

category based on the original class the image belonged to as per the dataset

it was taken from and the responses from the survey. For example, if image1

had “Happy” as its assigned emotion in the dataset, and the response from the

survey was something like (0 participants selected Sadness, 1 Fear, 6 Anger, 7

Happy and 7 selected Surprise), then the final emotion category for image1 was

selected to be “Happy”.

4.5.3 Image Sorting Survey

After obtaining the emotion categories for all the 45 images, the images were

divided into 9 groups which were to be used as decks for the sorting game.

Each deck had one image from each of the emotion categories. Since the game

assumes that there is a correct sorting order (i.e., least positive image to the most

positive image), and this order is by nature very subjective, the emotion tagging

survey was extended to also include an image sorting task. The outcome of this

survey was used as the correct sorting order for the game.

Qualtrics survey software was used to design the sorting task. Participants

were shown 5 images in the screen (1 deck) and asked to sort them from the least

positive to the most positive image. The exact question asked to the participants

was: “Order the following images from Least Positive to Most Positive based on the

emotion that you think is depicted in the image. You can drag & drop the images in

the desired positions (1 to 5).”. Each image position had a number displayed by

the image and participants had to drag and drop the images to the right positions

according to their judgement. The questions were always displayed with the 5

images placed in these positions in a random order.

The same participants who took part in the emotion tagging survey (see Sec-

tion 4.5.2) were then asked to take part and complete the ordering survey. The

final correct order of images in each deck was decided based on the order which

most of the participants selected. These sorting orders were then used for the

final scoring in the actual card sorting game that another group of participants

played with the robot. The total score for the game was calculated based on the

number of images that were placed in the right positions. The perfect score was

5 points where all the 5 images were placed correctly as per the results from the

survey, and the lowest score was 0 (none of the images were placed in the right

position).
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Figure 4.3: Facial expressions displayed by the robot in this study. The emotions
depicted in each of the sub-figures are: (A) - Sadness, (B) - Fear, (C)
- Happy, (D) - Anger, (E) - Surprise and (F) - Neutral.

4.5.4 Robot’s Facial Expressions

An important consideration when designing the study was that the participants

should be able to notice the robot’s facial expressions easily during the game.

In order to do so, two things were implemented. First, whenever the robot dis-

cussed the images or responded to what the participant had shared about the

images, the cards on the display were turned translucent to make it difficult for

the participants to see the images clearly. This was done to ensure that the par-

ticipants’ attention was not solely focused on the touchscreen during the game

and that they looked at the robot’s face. Second, it was decided to exagger-

ate the robot’s facial expressions somewhat for each of the emotions. This was

done to make a clear association between the facial expression displayed by the

robot and the corresponding emotion category. Mäkäräinen, Kätsyri, and Takala

(2014) concluded in their study that in order for humans to perceive a robot’s

emotion with a similar intensity as that of a human, the facial expressions should

be exaggerated.

For each of the 5 emotion categories (see Section 4.5.1, the facial expres-

sions of the robot ware implemented using the FACS (Facial Action Coding sys-
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Table 4.2: Mapping of FACS Action Units (AU) to emotion categories used in the
study

Emotion Action Units (AU)
Amusement/ Happy 6 + 12

Sadness 1 + 4 + 15
Anger 4 + 5 + 7 + 24

Awe/ Surprise 1 + 2 + 5 + 26
Fear 1 + 2 + 4 + 5

tem) (Ekman & Friesen, 1978). FACS is a system developed to assign a common

nomenclature to the the individual or group of muscles in the face that are funda-

mentally responsible for various facial expressions. These muscles were named

Action Units (AUs) which are identified by a number in FACS. Ekman and Friesen

(1978) provided a list of AUs mapped their corresponding muscle/muscle group

in the face. EMFACS (Emotional FACS) (Friesen, Ekman, et al., 1983) proposed a

mapping between AUs and the six basic emotions (Ekman, Sorenson, & Friesen,

1969). There have been many works in HRI that have used FACS to interpret and

generate communicative non-verbal behaviors such as facial expressions related

to emotions (Auflem, Kohtala, Jung, & Steinert, 2022; Rossi, John, Taglialatela,

& Rossi, 2022; Wu, Butko, Ruvulo, Bartlett, & Movellan, 2009). Furhat uses Ap-

ple’s ARKit for its face model, so the corresponding ARKit parameters to FACS

AUs were modified to generate the emotional facial expressions on the robot.

Table 4.2 lists the mapping of AUs to emotions used for this study (adopted from

E. A. Clark et al. (2020)). All the parameters were set to the maximum (i.e., 1)

in order to exaggerate the expressions. Figure 4.3 shows the facial expressions

for each emotion category used in this study.

4.5.5 Participants

We collected data from a total of 47 participants (22 males and 25 females).

The responses from 4 participants were excluded from the analysis. One par-

ticipant was 65 years old, which was beyond the predetermined age range of

our experiment (18 - 60). The age of the participant was not known until af-

ter the experiment. The other three participants did not follow the instructions

and focused only on the touchscreen throughout the experiment. The decision

to exclude their responses was taken after observing their behavior during the

experiment (from a separate room) and post experiment questions. The post ex-
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Figure 4.4: An example of a deck of affective images shown to the participants
during the game

periment questions revealed that they had not been able to observe any behav-

iors on the robot’s face in any of the conditions. The final pool of 43 participants

(24 females, 19 males), whose responses were included in the analysis, had ages

ranging from 20 to 59 (M = 31.83, SD = ±9.91).

Data collection took place in the labs at two places: Max Planck Institution

for Psycholinguistics, Nijmegen (MPI) and KTH Royal Institute of Technology,

Stockholm. For the data collection at MPI, the participants were recruited us-

ing the Max Planck institute’s participant database3. A total of 22 participants

(17 females and 5 males) were recruited at MPI. They were compensated =C15

on completion. The recruitment at Stockholm was done using the participants

recruitment website Accindi4 and university notice boards. 21 participants (7

females and 14 males) participated in the study at Stockholm and were com-

pensated with 100 SEK gift vouchers for their participation. All the participants

spoke English. The study has received the approval by the ethics committee of

the Faculty of Science, Radboud University, Nijmegen (reference no. ECSW-LT-

2023-3-13-98066).

4.5.6 Process

As discussed earlier, the study followed a within-subjects paradigm. Each partici-

pant played 3 games with the robot, each game corresponding to one of the three

experimental conditions (see Section 4.5). Each game comprised of 3 decks of

3MPI NL Participant Database
4Accindi
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affective images. Participants were asked to play all the three decks (the order

of decks was left for the participant to decide). Each affective image had a pic-

ture name displayed under it as shown in Figure 4.4. The participants could

move the images by dragging them on the touchscreen. The order of games (ex-

perimental conditions) were balanced across participants. At the beginning of

the experiment, while describing the experiment to the participants, the exper-

imenter informed them about the technical limitations of the interaction, a few

of which have been listed below:

• The robot could not hear the participants while it was speaking. The par-

ticipants had to wait for the robot to finish speaking before they could

speak.

• The participants had to use the exact names indicated below the images

for the robot to understand which image they were referring to.

The experiment took approximately 45 minutes to finish. The experiment fol-

lowed the steps given below:

1. The participants were given a description of the experiment, data man-

agement and compensation by the experimenter. They were also provided

with an information sheet containing the same information. They were

informed that the robot would provide them with the instructions on how

to play the game and that the robot was a collaborator. The participants

were instructed to have a discussion with the robot about their opinions re-

garding the positioning of the affective images. The robot’s opinions may

or may not be correct and that they were welcome to disagree with the

robot

A few examples were provided to give the participants an impression about

the capabilities of the robot. For example, they were informed that they

could ask the robot to comment on a specific image or compare two im-

ages. Additionally, they were informed that the robot could only discuss

the images shown in the touchscreen.

2. The participants were informed that their task was to observe the behavior

of the robot when it was discussing with them. They were asked to focus

more on the robot during the interaction and not pay too much attention

to the images on the touchscreen. Once they felt that the images had been

arranged to their satisfaction, they could ask the robot to show the scores.
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It was clarified that the scores were subjective and that they should not

worry about the scores. This was done to ensure that the participants did

not feel pressured to score better, as that could take their focus away from

observing the robot’s behavior during the game. The participants then

provided their informed consent to participate in the experiment and data

collection.

3. The experimenter left the room and initiated the game. The experimenter

observed the participant through the robot’s camera feed.

4. After the participant had finished playing all the three decks (1 game), the

experimenter returned to the room and provided the participant with the

questionnaire on an iPad. The questionnaire asked about the participant’s

impression of the interaction and the behavior of the robot. It comprised

of 12 9-point Likert scale questions (see table 4.3). The order of questions

presented to each participant was randomized to account for any order

effect.

5. Once they had filled out the questionnaire, the experimenter collected the

iPad and initiated the 2nd game, repeating step 3 and 4.

6. The same process was followed for the 3rd game as well. In addition to

the 12 9-point Likert scale questions, the questionnaire also asked about

basic demographic details such as age, gender and native language.

7. Finally, the participants were asked verbally to choose which game they

thought was the best among the three games, and to provide a motivation

for their choice. The exact question asked was “Which game did you like

the most out of the 3? Why did you like it?”

4.5.7 Measurements

H1 pertained to the perception of robot’s emotions through its facial expres-

sions by the participants. To evaluate this, we collected subjective questionnaire

data (Table 4.3) from the participants that asked them about their impression

of the interaction with robot and the robot’s behavior. The questionnaire had

12 9-point Likert scale questions that were further grouped into 3 dimensions

(4 questions per dimension). Positive Impression D1 comprised of questions that

asked the participants about how positively they felt about their conversation

with the robot. The questions under the Emotion Perception D2 dimension tried
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Table 4.3: Questionnaire used for subjective evaluation

Dimension Question
I enjoyed talking with the robot.

Positive My conversation with the robot flowed well.
Impression (D1) I felt positively about my interaction with the robot.

I felt comfortable while talking to the robot.
The robot understood what I was talking about.

Emotion The robot understood what it was talking about.
Perception (D2) The robot was able to understand and share my feel-

ings.
The robot felt emotions.
The robot’s face was human-like.

Human-likeness (D3) The robot’s behavior was human-like.
Throughout the conversation, I felt like I could have
been talking to a human.
Throughout the conversation, robot’s expressions
were human-like.

to measure the perception of robot’s emotion expressions by the participants.

Finally, the Human-likeness D3 dimension asked questions pertaining to how

human-like the robot’s behavior was. The responses were analyzed for each of

the dimensions to see if one experimental condition was preferred over the oth-

ers. The verbal responses of the participants for their preferred game was also

included in the analysis.

To test H2, which predicted that congruent emotions would positively affect

the task performance of the participants, we used the final score for each deck in

the sorting game as a measure to evaluate task performance across the experi-

mental conditions. The correct order for the affective images in each of the decks

was obtained through the image ordering survey (see Section 4.5.3). During the

sorting game, after each deck was sorted by the participants, the final order was

scored between 0 to 5 and saved to a log file. A score of 5 (the perfect score)

signified that the participant had arranged the images presented in the deck in

same the exact order as the one obtained from the survey. A score of 0 signified

that not a single image position arranged by the participants coincided with the

image positions obtained from the survey.
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4.6 Results

4.6.1 Questionnaire Data analysis

The responses to the 12 questions were analyzed to check the internal reliability

of the questionnaire for the three dimensions. Cornbach’s alpha was calculated

to be 0.90, 0.88 and 0.93 for dimensions D1, D2 and D3 respectively, signalling

good internal consistency. The responses were then analyzed for each of the

dimensions to to see if participants rated one condition better than the others.

For dimension D1, the responses were analyzed through the use of an ANOVA

test (using JASP (JASP Team, 2023)) to compare the effect of the experimental

condition on the mean ratings. Results indicated a significant effect of experi-

mental condition on the mean ratings by the participants (F(2,513) = 11.40,

p < 0.001). Post-hoc Tukey’s test were performed to obtain pair-wise com-

parisons of scores under each condition. It was found that participants rated

the Congruent condition significantly higher than the Incongruent condition

(t = 4.67, SE = ±0.205, p < 0.001). We did not find any significant difference

between Neutral and Congruent conditions (t = 1.47, SE = ±0.205, p = 0.305).

Participants also rated the Neutral condition higher than the Incongruent condi-

tion (t = 3.20, SE = ±0.205, p = 0.004).

Dimension D2 asked questions that tried to measure the perception of the

robot’s emotions by the participants. ANOVA test results revealed a significant

effect of the experimental conditions on the mean ratings by the participants

(F(2, 513) = 17.24, p < 0.001). Pair-wise comparisons using post-hoc Tukey’s

test showed that participants rated the Congruent condition significantly higher

than both the Neutral (t = 4.26, SE = ±0.234, p < 0.001) and Incongruent (t =
5.63, SE = ±0.205, p < 0.001) conditions. This showed that participants were

able to perceive the context appropriateness of the robot’s facial expressions. We

did not find any significant difference between the mean ratings for Neutral and

the Incongruent conditions (t = 1.36, SE = ±0.234, p < 0.36).

Finally, dimension D3 asked about the human-likeness of the robot’s behav-

iors. An ANOVA test was conducted, which showed significant effect of the con-

ditions on the ratings (F(2, 513) = 13.13, p < 0.001). Using post-hoc Tukey’s

test it was found that participants perceived the robot as more human-like under

the Congruent condition as compared to the Neutral (t = 2.77, SE = ±0.216,

p = 0.016) and the Incongruent (t = 5.14, SE = ±0.216, p < 0.001) condi-

tions. Neutral condition was also rated higher than the Incongruent condition

(t = 2.37, SE = ±0.216, p = 0.048).
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Figure 4.5: Mean ratings by the participants per condition for all the three di-
mensions in the questionnaire. *** denotes p < 0.001 and * denotes
p < 0.05

A comparison of the mean ratings per condition for each of the dimensions is

shown in Figure 4.5. The results supported hypothesis H1, which predicted that

the participants would perceive a robot displaying context appropriate emotions

as better than one that does not display emotions or one that displays incongru-

ent emotions. To summarize the results from the questionnaire:

• The conversation left a more positive impression in the Congruent condi-

tion compared to the Incongruent condition.

• The emotions expressed by the robot were perceived to be significantly

better in the Congruent condition compared to the other conditions.

• The robot’s behaviors were perceived to be significantly more human-like

in the Congruent condition compared to the other conditions.

We also analyzed the verbal responses from the participants to the post experi-

ment question (see Section 4.5.7). Of the 43 participants recorded, 23 said that

they preferred the Congruent condition, 15 preferred the Neutral condition, 3

preferred the Incongruent condition and 2 could not decide.

4.6.2 Sorting Task Score Analysis

As mentioned in Section 4.4, the robot’s emotional expressions are known to

have a influence on the final task performance. To verify this, we analyzed the

scores participants obtained during the sorting game. For each participant, the

sorting scores were retrieved for each experimental condition from the log files.

An ANOVA test was performed to compare the effect of the three experimental
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Figure 4.6: Sorting scores under different experimental conditions. *** denotes
p < 0.001

conditions on the final sorting scores. Results indicated that there was a signif-

icant effect of experimental conditions on the mean sorting scores (F(2, 448) =
14.53, p < 0.001). Post-hoc Tukey’s test revealed that the mean score in the

Congruent condition was significantly higher than both the mean scores in the

Neutral condition (t = 3.67, SE = ±0.162, p < 0.001) and the Incongruent

condition (t = 5.25, SE = ±0.161, p < 0.001), as shown in Figure 4.6. We did

not find any significant differences between the mean scores under the Neutral

and Incongruent conditions (t = −1.55, SE = ±0.162, p < 0.266). This showed

that task performance was positively affected by the contextual appropriateness

of the robot’s facial expressions, supporting H2.

4.6.3 Exploratory Analysis

We also wanted to see if any trends emerged through an exploratory analysis of

the questionnaire response data. Additionally, we were interested to analyze the

GPT-3.5 predictions during the interactions.

Effect of Condition Order

To evaluate the overall perception of the participants towards the robot’s facial

expressions, a GLMM (Generalized Linear Mixed Model) was fitted. The partic-
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Figure 4.7: Participants’ mean ratings per condition depending on the order they
were presented.

ipants’ ratings for all the question were used as the dependent variable. Exper-

imental conditions and the order they were presented to each participant were

used as the fixed effects variables. The participant id:s along with the question

numbers were used as the random effects grouping factors. Inverse Gaussian

family was used as the model family.

The model showed a significant main effect of experimental condition on

the user ratings (χ2(2) = 59.94, p < 0.001). Post-hoc pairwise comparisons

using Bonferroni correction showed that participants rated the Congruent (C)

condition significantly higher than both Neutral (N) (t = 4.94, SE = ±0.128,

p < 0.001) and Incongruent (I) (t = 8.81, SE = ±0.128, p < 0.001) conditions.

Ratings for N were also significantly higher than the ratings for I (t = 3.87,

SE = ±0.128, p < 0.001). This further supported hypothesis H1 that predicted

that participants will perceive a robot with context appropriate facial expressions

better than the others.

We also observe an interaction effect between condition and order on the ques-

tion ratings (χ2(4) = 15.63, p = 0.004). This suggested that the participants’

ratings under each condition varied depending on the order in which the con-

ditions were presented to them. Figure 4.7 shows the difference in participants’

ratings per condition depending on the order. The order in which the conditions

were presented to the participants followed the following sequence:
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• Order 1 : C → N → I

• Order 2 : N → I → C

• Order 3 : I → C → N

It can be observed in Figure 4.7, that for Order 1 and Order 3, the mean ratings

were highest for Congruent condition, followed by the Neutral and Incongruent

conditions. Where as, in Order B, even though Congruent condition was rated

the highest, Neutral and Incongruent conditions did not have much difference.

This might be attributed to the fact that in Order 2, participants first interacted

under the Neutral condition where there were no facial expressions displayed by

the robot. That followed with the Incongruent condition which had mismatched

facial expressions so the ratings were still similar as compared to Neutral. Finally,

the ratings increased when the robot expressed context appropriate expressions

under the Congruent condition, which further shows that participants were able

to perceive the robot’s emotions and preferred the Congruent condition.

Impact of Location or Gender?

Since the data collection took place in two locations, Stockholm and Nijmegen

(see Section 4.5.5), we were curious to see if location had any effect on the

subjective ratings provided by the participants. A GLMM was fitted with par-

ticipants’ ratings as the dependent variable, and experimental conditions, order

and the location as the fixed effects variables. The participant id:s and the ques-

tion numbers were used as the random effects grouping factors. The inverse

Gaussian family was used as the model family.

As expected, the model showed a significant main effect of experimental con-

dition on the user ratings (χ2(2) = 60.53, p < 0.001). In addition to the inter-

action effect between condition and order, the model also showed interaction

effect between condition and location (χ2(2) = 6.91, p = 0.032). This sug-

gested that the participants’ ratings under each condition also varied depending

on the location where the experiment took place as shown in Figure 4.8. How-

ever, on further analyzing the participant distribution between the two locations,

we observed that gender distribution at both the locations was very extreme. In

Nijmegen, out of the 22 participants recorded, there were 17 females and 5

males. Where as, in Stockholm, out of the 21 participants recorded, there were

7 females and 14 males. This led us to wonder if the interaction effect that we

observed earlier was due to gender instead of location.
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Figure 4.8: Effect of condition and location on subjective responses by the par-
ticipants.

Figure 4.9: Effect of gender on the subjective ratings per condition
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To investigate this, we fitted another GLMM with the same variables as the

previous one, except that we swapped location with gender as a fixed effects

variable. The model showed significant main effect of condition on the ratings

as expected (χ2(2) = 60.39, p < 0.001), and also an interaction effect of con-

dition and order. However, we also found out an interaction effect between

condition and gender (χ2(2) = 13.56, p = 0.001). This indicates that ratings

per condition were influenced by the gender of the participants as well, as shown

in Figure 4.9. This was an interesting finding as it has been observed in prior

studies that gender has an influence on the perception of emotional intelligence

in robots (Chita-Tegmark, Lohani, & Scheutz, 2019). However, since we did not

control for either gender or location, there might have been other factors that

might have influenced this behavior. Further studies are needed to narrow down

and verify any effect of gender or location on the perception of robot emotions.

GPT-3.5 Emotion Prediction

Results indicated that participants were able to perceive the context appropri-

ateness of the robot’s model-driven facial expressions. This implied that GPT-3.5

was able to reliably predict the emotions for the robot. In addition, we wanted

to analyze the emotion predictions made by GPT-3.5 during the interactions,

compared to the ground truth label for the picture being discussed (see Sec-

tion 4.5.2). It should be stressed that this analysis is limited, given that the

emotion appraisal label was not based on the image itself, but the preceding di-

alogue. Thus, the dialogue might in many cases express a different emotion or

be neutral. Nevertheless, this analysis might give an overall idea of how often

the emotion of the picture and the emotion appraisal aligned.

A prediction confusion matrix was calculated for each emotion category using

the predicted vs. the actual image labels (ground truth), as shown in Figure 4.10.

It can be seen that GPT-3.5 predicted aligned emotion categories consistently,

with the best performance for ’Surprise’ (65%) and worst for Anger (41%). Over-

all, GPT-3.5 predicted the emotion category to be ’Neutral’ for about 17.6% of

the cases.

4.7 Discussion & Limitations

The results suggest that the GPT-3.5 model was able to accurately predict the

emotions for the robot’s utterances across all the experimental conditions. This

highlights the model’s capability in generating contextually appropriate emo-
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Figure 4.10: Normalized Confusion matrix between actual and predicted emo-
tions by GPT-3.5. H - ’Happy’, Sa - ’Sadness’, F - ’Fear’, A - ’Anger’,
’Su’ - ’Surprise’, N - ’Neutral’

tional responses, which is crucial for effective and engaging human-robot in-

teractions. Analysis of the questionnaire responses indicated that participants

favored the Congruent condition over the other experimental conditions, as ex-

pected. The exploratory analysis of the responses further corroborated these

findings. This preference for the Congruent condition suggests that emotional

congruency between the robot’s expressions and its verbal responses enhances

user experience and perceived emotional authenticity, contributing to more pos-

itive interaction outcomes, which supports H1. Furthermore, ANOVA results re-

vealed that participants achieved the highest sorting scores in the Congruent con-

dition, followed by the Neutral and Incongruent conditions. This indicates that

appropriate robot expressions positively influence task engagement and over-

all performance (H2), underscoring the significance of emotion-appropriate re-

sponses in facilitating effective human-robot collaboration.

We did not find any significant differences between the Neutral and the Incon-

gruent conditions from the questionnaire responses. The post experiment verbal

responses showed that participants occasionally attributed more complex mean-

ings to the robot’s emotions. For example, in the Incongruent condition when

the robot displayed a happy facial expression when discussing a sad picture, one

of the participants commented “I think the robot was feeling so sad that it was

covering it by smiling. I do the same”. In some cases participants also inferred
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the facial expressions beyond the basic emotions used in this study (e.g., inter-

preting happy expression in the Incongruent condition as sarcasm). On the other

hand, in the Neutral condition, due to lack of any facial expressions by the robot,

there were no conflicting stimuli for the participants, which was perceived as ap-

propriate behavior for a robot. We believe that these factors might have led to

the lack of significant differences between the Neutral and the Incongruent ex-

perimental conditions. A recent study by H. H. Clark and Fischer (2023) argued

that social robots are perceived by humans as a depiction of social agents. The

emotions that the robot displays are perceived as not being felt by the robot, but

by the character that the robot is portraying. This aspect warrants further ex-

ploration to better understand the human tendency to anthropomorphize robots

and its implications on the perception of robots’ emotions.

A technical limitation was that we occasionally observed a slight lag in the

robot’s expressions during the interaction. This was attributed to the API call

during emotion generation. While the typical response time from the GPT-3.5

service was ≤ 1sec, it could in some cases take more than 2-4 seconds to receive

a response, due to server lags, which delayed the emotion generation on the

robot’s face. In rare cases, GPT-3.5 was unable to return any response due to

server overload. As cloud services continue to improve, such delays and errors

are expected to diminish, leading to more seamless and natural interactions in

real-time.

Even though GPT-3.5 predicted the emotions for the robot reliably, fine-tuning

a model on more specific datasets may yield even better contextually relevant

emotional responses. Additionally, while we restricted the emotions in this study

to the basic emotions, participants attributed emotions beyond these basic cat-

egories to the robot’s expressions. Future studies should incorporate a broader

range of emotions to better align with human emotional complexity and facili-

tate more nuanced interactions. Another limitation is that the model could not

generate long term emotional responses due to its context window size being re-

stricted to just 2 past turns. While a larger window size could have taken more

turns (there by more information) into the context, GPT-3.5 has a limit of 4097

tokens per prompt. This makes it very difficult to keep track of the events that

have taken place during a prolonged interaction and use it to generate any long

term emotions that may arise over time.

Finally, the current model utilized only the textual representation of the con-

versational speech for emotion generation in the robot. To develop a more holis-

tic and multimodal emotion generation system, future research should consider
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integrating other modalities, such as facial expressions and body language into

the architecture. This would of course need advancement in LLMs that take

multi-modal information as input. For example, GPT-4(OpenAI, 2023) is the lat-

est model from OpenAI that is capable of taking text and images as inputs to

generate text. As LLMs advance further, their applicability in modelling multi-

modal emotion generation systems would become easier and more effective.

4.8 Conclusion

In this paper, we implemented a model to leverage LLMs for real-time robot emo-

tion generation in HRI. By framing emotion appraisal as an ERC task, we utilized

GPT-3.5 to accurately predict the emotions of a robot based on ongoing dialogue

history. We conducted a within-subject user study to evaluate the effectiveness of

the implemented model. The study was specifically designed to elicit emotional

responses from the participants which made it possible to have an affective HRI.

GPT-3.5 was found to be able to reliably predict context appropriate emotions for

the robot. Results showed that participants perceived the Congruent condition

to be significantly more human-like, emotionally appropriate and positive than

the others, indicating that alignment between the robot’s expressions and ver-

bal responses significantly enhances the perceived emotional authenticity and

overall positive interaction outcomes. Additionally, it was found that the partic-

ipants scored the highest under the Congruent condition, further supporting the

significance of emotion-appropriate responses in fostering effective human-robot

collaboration.

This research explored the possibility of using LLMs in real-time HRI tasks

beyond generating robot speech. Using cloud services and leveraging power-

ful pre-trained models to address complex HRI problems may be the next step

forward. As language models and robotics technologies continue to evolve, our

work contributes to the broader pursuit of creating more empathetic, socially-

aware, and emotionally connected robots that seamlessly integrate into human

environments, ultimately enhancing our everyday lives.
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5 | The Influence of Human-likeness and Facial

Regions on the Perception of Social Robot

Emotions 1

Abstract

The increased interest in developing next-gen social robots has raised questions
about the factors affecting the perception of robot emotions. This study inves-
tigates the impact of robot appearances (human-like, mechanical) and face re-
gions (full-face, eye-region) on human perception of robot emotions. A between-
subjects user study (N = 305) was conducted where participants were asked to
identify the emotions being displayed in videos of robots, as well as a human
baseline. The results showed a positive correlation between human-likeness and
better emotion recognition, suggesting the benefit of a human-like face for so-
cial robots. The recognition rates from eye-region were found to be comparable
to full-face. These results offer insights for effective social robot face design in
Human-Robot Interaction (HRI).

1Adapted from Mishra C, Skantze G, Hagoort P and Verdonschot R (2024) The Influence of
Human-likeness and Facial Regions on the Perception of Social Robot Emotions. 12th Interna-
tional Conference on Affective Computing and Intelligent Interaction (ACII 2024). (Under Review)



635463-L-bw-Mishra635463-L-bw-Mishra635463-L-bw-Mishra635463-L-bw-Mishra
Processed on: 6-3-2024Processed on: 6-3-2024Processed on: 6-3-2024Processed on: 6-3-2024 PDF page: 98PDF page: 98PDF page: 98PDF page: 98

98 5 Decoding Robot Emotions

5.1 Introduction

There has been a surge in the development of next-generation social robots.

Numerous commercial entities have proposed their versions of general purpose

robots, such as Optimus2, GR-13, and Ameca4. While many new robots maintain

a humanoid body design akin to NAO5 and Pepper6, the robot faces exhibit sig-

nificant diversity, ranging from a highly human-like face in Ameca to a blank face

design in Optimus. This calls for more research investigating how the design of

the face affects the perception of social robots, and consequently the interaction

humans will have with them.

Social robots, by definition, are designed to conduct human-like interactions

(Hegel, Muhl, Wrede, Hielscher-Fastabend, & Sagerer, 2009). A key component

of human communication is facial expressions which are used to convey meaning

(Elliott & Jacobs, 2013), build relationships (Lazarus, 2006), and help in deci-

sion making (So et al., 2015). Prior studies suggest that our brains perceive robot

facial expressions similarly to human expressions (Chammat et al., 2010; Craig,

Vaidyanathan, James, & Melhuish, 2010). Thus, social robots must not only rec-

ognize human emotions but also be able to convey them. Modelling appropriate

robot emotions is an active field of research. It has been found that robots ex-

pressing emotions are perceived as more intelligent (Gonsior et al., 2011) and

trustworthy (Cominelli et al., 2021). However, it is equally important to investi-

gate the factors influencing the perception of robot emotions. Identifying these

factors would help design social robots that are easier to understand and interact

with.

Researchers have investigated how robot facial expressions are perceived by

humans based on robot form and appearance. An early study on emotion recog-

nition with the Feelix robot found that adults recognize emotions in still images

of the robot similarly to human faces (Cañamero & Fredslund, 2001). Breazeal

(2003) obtained similar results, indicating that individuals were able to interpret

the robot’s facial expressions from both images and videos. Other studies have

explored emotion recognition rates across various robot form factors, ranging

from human-like (Becker-Asano & Ishiguro, 2011; Danev et al., 2017; Lazzeri

et al., 2015) to non-humanoid (Beer et al., 2010; Cohen, Looije, & Neerincx,

2011). This leads to the first research question:

2https://en.wikipedia.org/wiki/Optimus_(robot)
3https://robots.fourierintelligence.com/
4https://www.engineeredarts.co.uk/robot/ameca/
5https://www.aldebaran.com/it/nao
6https://www.aldebaran.com/en/pepper

https://en.wikipedia.org/wiki/Optimus_
https://robots.fourierintelligence.com/
https://www.engineeredarts.co.uk/robot/ameca/
https://www.aldebaran.com/it/nao
https://www.aldebaran.com/en/pepper
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R1: Does having a human-like face improve the recognition of a robot’s emo-

tions?

The answer to this question is not clear from the literature. Beer et al. (2010)

investigated this query in virtual agents, comparing recognition rates for human

faces, synthetic human faces, and a non-human-like virtual agent (iCat). Their

results indicated a higher recognition for the human face, followed by the syn-

thetic human face, and lastly, the virtual agent. Chevalier, Martin, Isableu, and

Tapus (2015) also reported that emotions in a female humanoid virtual agent

(Mary) were better recognized than in Nao and Zeno. Lazzeri et al. (2015) and

Becker-Asano and Ishiguro (2011) assessed humanoid android faces against hu-

man faces. Lazzeri et al. (2015) found robot facial expressions were on par with

human expressions, while Becker-Asano and Ishiguro (2011) noted human emo-

tions surpassed those of the Geminoid F robot. While these trends suggest that

greater human-likeness enhances emotion recognition, this remains uncertain

for human-like robot faces. Moreover, studies involving robots do not compare

recognition between human-like and mechanical-looking robot faces, hindering

clarity on human-likeness impact. Thus, we propose our first hypothesis:

H1: Human-like robot faces yield better emotion recognition compared to mechanical-

looking robot faces

Another aspect to consider is the role of specific face regions in emotion recog-

nition. This stems from the broad variation in robot face designs, resulting in

diverse implementations of facial regions. For instance, robots like Nao and

Pepper feature static faces devoid of human-like movements, while others, such

as Fuahat (Moubayed et al., 2013) and Ameca, possess full-face designs with

human-like movements across all facial regions. This leads to our second re-

search question:

R2: Is it necessary to model the entire robot face with intricate human-like move-

ments, or could we focus solely on certain regions, like the eyes?

This question not only sheds light on the significance of distinct facial regions

in emotion recognition but also offers a chance to simplify robot emotion gen-

eration by reducing complexities. Previous studies in psychology show the sig-

nificance of seeing full-face over specific facial regions in emotion recognition

Baron-Cohen et al. (1997); Sullivan et al. (2007), however they also point to the

fact that information for emotion recognition is not distributed evenly across the

entire face. For example, studies suggest that the eye region alone provides suffi-

cient information for emotion recognition (Baron-Cohen et al., 1997; Wegrzyn et

al., 2017). Baron-Cohen et al. (1997) compared the emotion recognition from
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pictures of the eye-region, mouth region and the full face. Their results indi-

cated that eye-region was as informative as the full face for complex emotions.

Real-world examples include animated characters like those in the movie WALL-

E (e.g., WALL-E, EVE, MO), which use minimalistic eye expressions to convey

emotions and meanings7.

Insights from human emotion recognition studies form the basis to investigate

modelling specific face regions (like eye-region) instead of the full face for social

robot design. However, this aspect remains less explored in the literature, possi-

bly due to limited platforms with capabilities for human-like facial and eye move-

ments. For instance, social robots like Pepper and Nao feature static eyes-only

designs, precluding comparisons of emotion recognition between eye-only and

full-face expressions. Some studies have tried to evaluate emotion recognition

from robots’ eye expressions (Barrett, Weimer, & Cosmas, 2019; Kang & Park,

2021) and find the best ways to model them (Barrett et al., 2019; Chumkamon,

Masato, & Hayashi, 2014; Greczek, Swift-Spong, & Mataric, 2011; Pollmann,

Tagalidou, & Fronemann, 2019). In a study (Danev et al., 2017) on “animated

faces” for the MASHI robot, researchers compared emotion recognition rates

between full-face and eye-region expressions, finding that while the full-face

yielded better recognition, eye-region expressions remained acceptable. How-

ever, these studies have been limited to either virtual characters or robots with

limited expressive capabilities, such as Nao or Pepper. This leads us to our second

hypothesis:

H2: Full face expressions will lead to better emotion recognition compared to

eye-region only

To explore the impact of robot appearance and facial regions on emotion

recognition, we conducted a between-subjects user study, comprising two on-

line experiments. One experiment centered on full-face emotion recognition,

while the other focused solely on the eye region. In both studies, participants

were tasked with identifying emotions conveyed in video recordings featuring a

human, a human-like robot, and a mechanical-looking robot.

7https://www.pixar.com/feature-films/walle

https://www.pixar.com/feature-films/walle
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5.2 Materials and Methods

5.2.1 Robot Platform

We used the Furhat robot (Moubayed et al., 2013) for this study, a humanoid

robot head featuring a 3D animated face projected onto a translucent mask via

back projection. This setup enables the robot to adopt diverse appearances,

spanning from realistic human-like to mechanical characters. Furthermore, Furhat

can perform nuanced facial movements, resulting in human-like expressions. For

the experiment, we chose two pre-installed characters: Hayden with a realistic

human-like appearance, and Titan with a mechanical look (see Fig. 5.1). Titan

gets its mechanical look from the square pupils, lack of eyebrows, white face

color, and lines on the face that give the impression of its face comprising of

different modular parts. Apart from these differences, Titan is able to express

emotions similarly to the human-like face Hayden, as both of them share the

same face model. This is in contrast to the mechanical faces that have been used

in prior studies which had static eyes and mouths like Nao and Pepper. Thus,

it is possible to directly compare recognition of the emotions expressed by the

human-like and mechanical looking face using the Furhat robot.

Figure 5.1: Emotional expressions displayed by the three characters. The first
row depicts the full-face expressions of Happy by the human con-
federate (A), the human-like robot character Hayden (B), and the
mechanical-looking character Titan (C). The second row depicts the
eye-region expressions for Sad by the human confederate (D), Hay-
den (E), and Titan (F)
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5.2.2 Robot Emotions

Facial Action Coding System (FACS) is a comprehensive and widely used system

for describing and categorizing facial expressions based on the movement of

individual facial muscles (Ekman & Friesen, 1978). The muscle movements,

called Action Units (AUs), are assigned numerical codes to represent different

facial expressions and emotions. FACS has been widely used in modelling robots’

expressions in HRI (Barrett et al., 2019; Beer et al., 2010; Lazzeri et al., 2015;

So et al., 2015; Stock-Homburg, 2022).

For this study, we modelled the six basic emotions (Ekman et al., 1969) on

Furhat. Since Furhat employs Apple’s ARKit parameters for its face model, we

mapped the FACS AUs to their corresponding ARKit parameters to generate fa-

cial expressions. Table 5.1 shows the AUs used to generate the basic emotions

(adopted from E. A. Clark et al. (2020)).

Table 5.1: Mapping of FACS AUs to emotion categories used in the study

Emotion Action Units (AU)

Amusement/ Happy 6 + 12
Sadness 1 + 4 + 15
Anger 4 + 5 + 7 + 24

Awe/ Surprise 1 + 2 + 5 + 26
Fear 1 + 2 + 4 + 5

5.2.3 Experiment Setup

To evaluate our hypotheses (refer to Section 5.1), we conducted a between-

subjects user study with a 3-way ANOVA design (2 face regions × 3 appearances

× 7 emotions). The two face regions studied were full-face expressions and eye-

region-only expressions. Three appearance conditions were defined: one with

expressions by a human confederate (referred to as H) serving as the control, and

the other two featuring emotions expressed by the robot characters Hayden (Ha)

and Titan (Ti). These robot characters represented varying degrees of human

likeness, allowing us to examine their impact on emotion recognition. Instead

of images, short videos were used as stimuli for the user study. This was because

still images capture only a snapshot of the emotion being expressed (Beer et al.,

2010) and contain very little information about expressive posturing (Breazeal,
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2003). We recorded videos of 6 emotions, Happy, Sad, Anger, Surprise, Disgust,

and Fear, for each of the face types (H, Ha, and Ti), with a baseline Neutral

expression (42 videos).

For H1, which pertained to the influence of the human-likeness of the robot’s

face on emotion recognition, we compared the recognition of emotions expressed

by a human confederate, the human-like-looking robot character Hayden, and

the mechanical-looking robot character Titan. The expressions of the confeder-

ate and robots were recorded in high resolution using the Canon HF-G30 video

camera at the Max Planck Institute for Psycholinguistics, Nijmegen. The confed-

erate was shown examples of images and videos of facial expressions using FACS

before the recording. A total of 21 videos were recorded for all the emotions and

appearance conditions (7 emotions × 3 appearance types).

H2 aimed to compare the recognition rates between the full-face and eye-

region-only expressions. The video recordings of the full-face expressions for all

three appearance types; human, Hayden, and Titan were cropped to the eye-

region only. The cropped region and the proportion of the visible eye-region

were kept consistent for all the videos. A total of 21 eye-region videos were

extracted from the original full-face recordings.

Two online experiments were designed using the survey software Qualtrics. In

the first experiment (full face condition), participants were shown short videos

of the robots and the confederate on the screen and asked to select the match-

ing emotion from the options provided on the screen. The experiment adopted

a forced-choice paradigm, requiring participants to choose one of the 7 emo-

tions displayed as radio buttons below the video. The exact question asked was:

“What emotion is being expressed in the video below?”. Video presentation order

was randomized, with a constraint to ensure that consecutive videos of the same

appearance type did not occur more than twice in a row. The second experiment

(eyes-only condition) followed a similar design but used the cropped eye-region

videos as the stimuli. Each of the experiments took roughly 7-8 minutes to finish.

5.2.4 Participants and Procedure

We recruited a total of 305 participants via the online survey platform Prolific

(https://www.prolific.com/). The first experiment involved 153 partici-

pants (77 males, 74 females, 2 non-binary, and 1 undisclosed), aged 18 to 59

(M = 30.05, SD = ±8.23). The second experiment collected data from 152 par-

ticipants (76 males, 74 females, 2 non-binary) aged 19 to 54 (M = 27.70, SD =
±6.66), with no overlap between participants in both experiments. We imple-

https://www.prolific.com/
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mented two manipulation check questions; failing either resulted in automatic

discarding of the survey response. Participants received 1 GBP upon successful

experiment completion. The study has received the approval by the ethics com-

mittee of the Faculty of Science, Radboud University, Nijmegen (reference no.

ECSW-LT-2023-3-13-98066).

5.3 Results

A response was counted as correct if it matched the intended emotion expressed

in the video. JASP 0.17.3 software (JASP Team, 2023) was used for the statistical

analysis. A three-way ANOVA was conducted to assess the impact of facial re-

gions, appearances, and emotions on the correctness of participants’ responses.

Results indicated a significant main effect of the face regions (F(1,6279) =
114.28, p < 0.001), appearances (F(2, 6279) = 27.63, p < 0.001), and emo-

tions (F(6,6279) = 310.47, p < 0.001) on the responses. We also observed sig-

nificant interaction effects between face regions and appearance (F(2, 6279) =
10.41, p < 0.001), face regions and emotions (F(6,6279) = 46.87, p < 0.001),

and, appearances and emotions (F(12, 6279) = 63.50, p < 0.001) on the re-

sponses.

5.3.1 Effect of Appearances

Post-hoc Tukey’s tests were performed to obtain pair-wise comparisons of recog-

nition under each appearance type. It was found that participants recognized the

emotions significantly better in the human face compared to the mechanical-

looking Titan (t = 5.76, SE = ±0.01, p < 0.001). Emotion recognition was

significantly better in Hayden than in the Titan face (t = 6.95, SE = ±0.01,

p < 0.001). However, there were no significant differences between the recog-

nition rates in the human face vs. Hayden (t = 1.194, SE = ±0.01, p = 0.456).

Taken together, these results seem to support H1: A more human-like appear-

ance leads to better emotion recognition.

However, on further analyzing the results for the interaction between ap-

pearances and face regions, it was found that these differences only held for

the eye-region conditions. When looking specifically at this condition, there

was a significant decrease in the recognition rate from human face to Titan

(t = 6.99, SE = ±0.01, p < 0.001) and Hayden to Titan (t = 7.53, SE = ±0.01,

p < 0.001), again in line with H1. However, we did not find any significant dif-
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Figure 5.2: Emotion recognition score for each of the three appearances and the
combined results for both the face region conditions: full-face and
eye-region. *** indicates a significant difference with p < 0.001

ferences between the recognition rates for the full-face data based on the appear-

ances (see Fig. 5.2). This indicates that the significant main effect of appearance

is driven by the eye-region condition.

5.3.2 Effect of Facial Regions

Post-hoc Tukey’s test revealed that participants recognized the emotions signif-

icantly better when they were shown the full-face videos as compared to the

eye-region videos (t = 10.69, SE = ±0.01, p < 0.001). Overall, participants

were able to recognize 64.4% of the emotions correctly when shown the full

face of the robots. Recognition was 51.3% when only the eye-region videos of

the robot were shown. Additionally, the eye-region recognition was higher than

in a previous study with similar stimuli (49.1% in Barrett et al. (2019)). This

supports H2, which predicted that emotion recognition from a full face should

be better than just the eye region.

Further pair-wise comparisons between face regions and emotions were con-

ducted using Tukey’s tests. Figure 5.3 shows the confusion matrix with recog-
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Figure 5.3: Normalized confusion matrix between actual and selected emotions
by the participants under both the face region conditions. Sub-figure
(A) depicts the confusion matrix for the full-face condition and (B)
depicts the confusion matrix for the eye-region condition. Emotion
abbreviation in the figure: H - Happy, Sa - Sad, F - Fear, A - Anger,
Su - Surprise, D - Disgust, N - Neutral

nition accuracy for both face region types. It was observed that the recognition

rates for Fear, Anger, Surprise, and Disgust were similar for both full-face and

eye-region videos. Significant differences were found for Happy (t = 16.33,

SE = ±0.02, p < 0.001), Sad (t = 6.73, SE = ±0.03, p < 0.001), and Neutral

(t = 8.37, SE = ±0.03, p < 0.001), with higher recognition rates in full-face

videos.

5.4 Discussion

This study aimed to explore how robot appearances and facial regions affect

robot emotion recognition. ANOVA results highlighted the significant effects

of appearances and facial regions on emotion recognition. Post-hoc analysis

supported H1, indicating that greater human-likeness correlated with improved

emotion recognition. Notably, emotion recognition rates showed no significant

differences between the human and human-like robot faces (Hayden) in full-face

videos, which further strengthens the advantage of a human-like face design.

However, this difference only holds when the perception is limited to the eye re-

gion. This could be because, even though Titan is mechanical-looking, it still has

a very expressive mouth region. In comparison with mechanical-looking robots

like iCub, Furhat’s Titan character appears more human-like when the full face

is viewed.
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On the other hand, a significant difference was found in emotion recognition

favoring human-likeness for eye-region videos. This can be attributed to the

video cropping, which obscured human-like features and emphasized mechani-

cal aspects (see Section 5.2.1). The significant decrease in emotion recognition

between full-face and eye-region for Titan’s emotions is indicative of the same.

A comparison of Hayden and Titan’s eye-region videos sheds light on how me-

chanical appearance impacts emotion recognition. This raises questions about

the role of eyebrows or pupil shape in the difficulty in recognizing Titan’s emo-

tions and whether having a mouth mitigates these effects, as full-face emotion

recognition did not differ significantly. These questions could be investigated in

a broader study. These questions warrant further exploration in broader stud-

ies. Our findings underscore the potential of human-like robot appearance for

enhancing emotion recognition. Future research can explore diverse robot em-

bodiments to address appearance variability among robot designs. In line with

H2, the recognition rate for full-face was significantly higher than for the eye-

region videos. Post-hoc analysis also supported this hypothesis, with significantly

higher recognition for 3 emotions (Happy, Sad, Neutral) in the full-face videos.

This is in line with previous findings which reported better recognition with full-

face stimuli (Danev et al., 2017). However, it is worth noting that the difference

in recognition for four emotions between eye-region and full-face responses was

not statistically significant. This could point to the capability of the eye-region to

express emotions sufficiently. Nonetheless, omitting a full face may result in the

loss of valuable additional cues that could greatly help in emotion recognition.

For example, we observe a significant decrease in the recognition of Happy when

moving from full-face to eye-region. This could be attributed to the fact that the

major cues for happiness lie in the mouth region (Wegrzyn et al., 2017). This

needs to be kept in mind when deciding whether or not to model the full face

when designing a social robot’s face.

It was found that participants struggled to recognize Fear and Disgust for both

facial region types (see Fig. 5.2), consistent with findings from a study using a

virtual eye region model (Barrett et al., 2019). Additionally, participants often

confused Fear with Surprise and Disgust with Anger. This could be explained

by the Perceptual-Attentional Limitation Hypothesis which posits that the con-

fusion between these emotions arises due to their shared muscle movements

and visual similarities (Hendel, Gallant, Mazerolle, Cyr, & Roy-Charland, 2023;

Roy-Charland, Perron, Young, Boulard, & Chamberland, 2015).
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5.5 Conclusion

In this study, we investigate the influence of appearance and facial region on

robot emotion recognition, with specific attention to the human-likeness of their

appearance and the role of the eye-region. A comprehensive between-subjects

user study was conducted with 305 participants. Results indicated that human-

likeness improved participants’ ability to recognize emotions in robots. Addi-

tionally, recognition rates from the eye-region, while not as effective as full-face,

were found to be within a comparable range. However, it is essential to acknowl-

edge that foregoing the modeling of the full face may result in the loss of crucial

cues for certain emotions, as exemplified by the significance of mouth cues in

recognizing happiness. Our study provides insights into the design principles of

social robots and underscores the importance of considering human-like features

for effective emotion communication.
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This dissertation aims to model both the gaze and affective behaviors of social

robots while examining how humans perceive them. This concluding chapter

provides a concise overview of the results from the studies presented in the dis-

sertation, discusses their limitations, and reflects on their significance. Addition-

ally, it also outlines potential future directions and offers overall conclusion.

6.1 Summary of Results and Discussions

Chapter 2 primarily focused on modeling a comprehensive Gaze Control System

(GCS) for social robots, addressing RQ1 (see Section 1.2). A Planning-based

GCS was proposed which planned the gaze behavior of the robot into the fu-

ture, effectively coordinating its eye-head movements during gaze shifts. The

gaze plan evolved as the conversation progressed as opposed to having a fixed

plan decided at the beginning of an utterance. This resulted in dynamic gaze

behavior contingent on the ongoing conversation. The proposed architecture

was evaluated by comparing it to a reactive GCS in a user study. The study in-

volved a multi-party card sorting game where two participants collaborated with

the robot in a sorting activity. This setup encouraged spontaneous interaction

between the participants and the robot. The results indicated that participants

found the planning-based GCS significantly more interpretable, better at intimacy

regulation, and preferred over the reactive GCS. These findings underscored the

advantages of planning a robot’s gaze behavior and dynamically determining

the duration of the robot’s gaze at specific targets, aspects that had not been

previously addressed in GCS. Additionally, a recent study by (Haefflinger et al.,

2023) corroborated our findings on the benefit of independently controlling the

eye and head movements of the robot during an interaction.

However, no significant differences were observed in dimensions related to

awareness, turn-taking, and human-likeness. This may be attributed to three in-

fluencing factors: the impact of cognitive load, limited sound source localization

capabilities on the robot, and the novelty effect. Consistent with the Load theory

(Lavie et al., 2004), participants might have encountered difficulties in perceiv-
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ing subtle gaze behaviors, especially in cognitively demanding situations. Erro-

neous sound source localization led to the robot directing its gaze towards the

wrong speaker, which would have impacted the perception of turn-taking dimen-

sion. Moreover, since many participants interacted with a robot for the first time,

it would have split their attention in acclimatizing themselves to interacting with

a robot, potentially affecting their ratings.

To gain a better understanding of the perception under these dimensions, fu-

ture studies could involve showing the video recordings of the games to third-

party observers. Alternatively, a different approach might involve designing sim-

pler interactions that specifically target individual dimensions. Such measures

would alleviate cognitive load and facilitate the perception of subtle gaze cues

during HRI. The proposed GCS followed a heuristic approach to modeling robot

gaze behavior; however, a data-driven approach might offer a more accurate

representation of human gaze, provided that suitable data is available (which

presents a challenge). An architecture that could integrate both data-driven and

heuristic approaches could, in theory, result in more finely tuned and human-like

gaze behavior for robots. A potential approach to implementing such an archi-

tecture could involve high-level decision-making through a heuristics approach

(similar to the proposed GCS) with control subsequently transitioning to a data-

driven approach (e.g., a deep learning model), governing low-level decisions

such as eye-head movements.

Chapter 3 centered on investigating RQ2, which pertained to the influence

a robot’s gaze behavior might have on human gaze behavior. A within-subjects

user study featuring two experimental conditions, namely, Fixed Gaze and Gaze

Aversion (as detailed in Section 3.5), was designed to specifically examine gaze

aversion behavior. The robot’s gaze aversion behavior was automated using the

GCS implemented in Chapter 2. Analysis of the gaze data collected from partici-

pants using an eye tracker revealed that participants averted their gaze for longer

durations and more frequently when the robot did not avert its gaze from them.

This observation aligned with the Equilibrium theory (Argyle & Dean, 1965),

which posited that an increased gaze directed towards an interlocutor would be

counterbalanced by increased gaze aversion by the interlocutor. Further analy-

sis of the data indicated that participants exhibited increased gaze aversion just

prior to speaking while showing lower levels of gaze aversion while speaking.

Both of these findings carry significance as they provide evidence that human

gaze behavior in HRI is influenced in a manner similar to HHI. It is important to

ascertain whether the various gaze cues exhibited by robots exert a comparable
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influence on humans as human gaze cues, as this understanding can inform the

design of HRI that can better adapt to human behavior. An exploratory analysis

of the data indicated the potential influence of topic intimacy on participants’

gaze aversion, where participants averted their gaze more as the topic intimacy

of the questions increased. This was interesting because this change in partici-

pants’ gaze behavior was in response to questions posed by a robot. However,

because the study did not control for the order of questions nor for the topic

intimacy, a future study could explore these areas further.

Subjective analysis of the questionnaire responses indicated that participants

perceived the Fixed Gaze condition as more human-like. This might be attributed

to an initial unnatural gaze behavior displayed by the robot due to a technical

limitation, where it directed its gaze randomly even when the participant was in

front. Future studies could be designed to mitigate this issue effectively. Another

limitation of the study pertained to the lack of gender balance in the dataset; all

participants were male. Additionally, the robot characters used in the study were

also male. While a recent study suggested that gaze aversion behavior might be

gender independent (Acarturk et al., 2021), further investigations with a more

diverse participant pool and a variety of robot characters would be essential to

validate this effect in general. Another avenue for exploration is the potential

influence of culture on gaze aversion during HRI. Does a robot’s ethnic appear-

ance influence the interpretation of perceived gaze behavior by humans? Do

individuals from different cultures respond differently to a robot’s gaze? These

aspects could serve as potential subjects for future studies.

Chapter 2 and Chapter 3 focused on the gaze behavior of social robots from

both the modeling and the perceptual aspects respectively. The proposed GCS

planned the robot’s gaze behavior using various inputs from the conversational

context. A future study could extend the capabilities of the GCS by incorporating

human interlocutors’ gaze aversion behavior as one of the inputs for planning

robot gaze behavior. This would result in the generation of a more adaptive and

context-appropriate gaze behavior that not only capitalizes on explicit cues like

user speech, pointing gestures, and the movement of objects of interest, but also

takes into account involuntary behaviors such as gaze aversion.

Chapter 4 explored two aspects of affective behavior in robots. The first objec-

tive was to examine the feasibility of harnessing Large Language Models (LLMs)

in reliably modeling a robot’s affective behavior, addressing RQ3. This entailed

utilizing GPT-3.5 to assess emotions based on ongoing dialogue history and sub-

sequently generating corresponding robot emotions. The second objective was
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to verify if humans are able to discern the context-appropriateness of expressions

exhibited by robots. To do this, a within-subjects user study was designed to in-

vestigate the reliability and context-appropriateness of emotions generated by

GPT-3.5. The study involved participants engaging in an affective-image sorting

game with the robot, comprising of three experimental conditions. In the Neu-

tral condition, which served as the control condition, the robot did not exhibit

any facial expressions. The robot displayed the emotions predicted by GPT-3.5

in the Congruent condition while the opposite emotions were displayed in the

Incongruent condition. The game was specifically designed to evoke emotional

responses from the participants. The analysis of subjective questionnaire re-

sponses indicated that participants found the emotions expressed by the robot

to be significantly better in the Congruent condition. Participants also found the

conversation to be significantly more human-like and leave a positive impres-

sion in the Congruent condition. These findings imply participants’ capability to

perceive context-appropriate robot expressions and the reliability of GPT-3.5 in

predicting them. Moreover, participants achieved the highest scores in the Con-

gruent condition, showing the positive influence of context-appropriate robot

emotions on the effectiveness of collaborative tasks in HRI.

An interesting finding from the user study was the absence of significant dif-

ferences in ratings between the Neutral and Incongruent conditions. This may

have been because, at times, the participants attributed more complex meanings

to the robot’s emotions. For example, a smile displayed during a sad topic (in-

congruent) was interpreted as a masking smile intended to conceal the robot’s

underlying sadness. This underscored the constraints of using only the basic

emotions Ekman (1999) in the user study, as human interactions involve many

complex emotions. A key limitation of the implemented model was its sole re-

liance on textual representations of conversational speech for robot emotion

generation. The emotion appraisal process in human communication entails

the assessment of multi-dimensional inputs during a conversation. Future stud-

ies could explore the utilization of multi-dimensional LLMs, such as GPT-4, for

robot emotion generation. For example, the current study could be extended

by using the affective image being discussed as an input to GPT-4 along with

the conversation text. Additionally, participants’ facial expressions could also

be integrated as an input parameter. Another aspect to consider could be the

prospect of generating the robot’s responses using LLMs, rather than crafting

them manually.
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While, using LLMs such as GPT-3.5 or GPT-4 offers a suitable alternative to

real-time emotion appraisal using their cloud services, it is essential to bear in

mind that these models operate as black boxes, lacking the guarantee of con-

sistently producing the same outcomes. Implementing LLMs for Natural Lan-

guage Generation tasks, such as engaging in direct conversations with users in

an HRI context, subjects the system to the same limitations inherent to LLMs

in text-based chats (e.g., hallucinations and bias due to training data). Until

the inconsistencies and limitations intrinsic to LLMs are adequately addressed,

the integration of LLMs in HRI systems should be a decision made after careful

consideration of the advantages and drawbacks.

Building upon the insights from Chapter 4, Chapter 5 addresses RQ4 and

delves deeper into human perception of robot expressions by investigating the

factors influencing the recognition of robot expressions. Specifically, the influ-

ence of a robot’s appearance and distinct facial regions on how humans recognize

the emotions conveyed by the robot was studied with the help of a between-

subjects online user study. The study involved the presentation of short videos

to the participants featuring two robot characters displaying basic emotions: one

characterized by a realistic, human-like face, and the other with a more mechan-

ical and artificial appearance. These videos were recorded to ascertain whether

the human-likeness of a robot’s appearance positively affected the recognition

of the robot’s facial expressions. As a baseline for comparing emotion recogni-

tion rates, video recordings of a human confederate displaying the same emo-

tions were used. To verify the impact of facial regions on emotion recognition,

the videos were cropped to solely highlight the eye-regions. The results indi-

cated a significant effect of both the robot’s appearance and facial region on

the recognition of emotions. It was found that the emotions of the human-like

robot character were better recognized than that of the mechanical-looking robot

character. Moreover, no significant differences were found in the recognition

rates between the expressions by a human-like robot character and the human

confederate. These observations point out the positive correlation between the

human-likeness of a robot’s appearance on the recognition of its expressed emo-

tions. Moreover, it was found that full-face videos resulted in better emotion

recognition rates as compared to the videos showing only the eye-region.

A more in-depth examination of the data unveiled that the significant differ-

ence in emotion recognition linked to human-likeness primarily stemmed from

the data associated with the eye-region. The emotions conveyed through the eye-

region videos of the human-like robot character were notably better recognized
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than those of the mechanical-looking one. This observation suggests several po-

tential factors that may have influenced the outcomes. The mouth region of the

mechanical-looking robot face was equally as expressive as the human-like robot

face, which likely facilitated emotion recognition. In contrast, in the eye-region

videos, the mechanical-looking robot face displayed certain distinct features,

such as the absence of eyebrows and unnatural square-shaped pupils, which

might have contributed to reduced emotion recognition. This raises the ques-

tion of whether the reduced recognition rate resulted from the unconventional

pupil shape, the absence of eyebrows, or a combination of both factors. Fur-

thermore, it prompts consideration of whether possessing an expressive mouth

is adequate to counterbalance the adverse effects of missing eyebrows and un-

conventional pupil shapes. On a different note, although the analysis revealed

a significant increase in the recognition rates when participants viewed full-face

videos compared to eye-region videos, no significant differences were observed

in the recognition rates for the four emotions. This could indicate that design-

ing robot faces with just expressive eyes might be sufficient to convey emotions.

However, it is essential to acknowledge that numerous facial expressions rely sig-

nificantly on cues situated around the mouth region, which would be forfeited

in the absence of a full-face design. These aspects warrant further exploration

to establish robust design principles for modeling the faces of social robots.

6.2 General Conclusion

The four research studies presented in this dissertation provide insights into the

modeling and perception of gaze and affective behaviors in HRI. In response to

the research questions posed within this dissertation, these studies collectively

address various aspects of HRI, shedding light on the significance of planning

in gaze control, the relationship between robot and human gaze behavior, the

potential of LLMs for real-time emotion generation, and the influence of ap-

pearance and facial features on emotion recognition in robots. The first study

introduced a novel planning-based GCS, showcasing its significant advantages

in terms of interpretability and intimacy regulation when compared to reactive

systems. The findings underscored the importance of considering planning as a

crucial aspect of gaze control that has been previously overlooked. The second

study investigated the influence of robot gaze behavior on human gaze behav-

ior, showcasing the trade-off relationship between robot and user gaze behavior.
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This study offered an original contribution by identifying a direct relationship

between robot gaze and human gaze behavior.

The third study focused on leveraging the capabilities of LLMs and integrating

them into an appraisal system for real-time robot emotion generation. The find-

ings demonstrated that aligning the robot’s expressions and verbal responses sig-

nificantly enhanced emotion perception and overall interaction outcomes, high-

lighting the potential of LLMs to extend beyond generating robot speech in HRI

tasks. Finally, the investigation into the role of appearance and facial regions in

robot emotion recognition revealed the impact of human-likeness in improving

emotion recognition in robots. While recognizing emotions from the eye-region

proved effective, this study underscored the importance of considering a full-face

in designing social robots.

These collective findings contribute to the broader objective of creating empa-

thetic, socially aware, and emotionally connected robots capable of exhibiting

human-like gaze and affective behaviors. Robots with such human-like non-

verbal behaviors would make the interactions significantly better and richer. It

is worth noting that non-verbal behaviors, such as eye contact, facial expressions,

and gestures, are deeply ingrained in human communication. These behaviors

allow us to convey emotions, intentions, and understanding in a nuanced and

intricate manner. When robots are equipped with the ability to perceive and re-

ciprocate these non-verbal cues, they bridge the gap between human and robot

interaction, facilitating a more natural and seamless integration of robots into

human environments. To summarize, the four main contributions of this disser-

tation are:

• A novel GCS to plan the robot’s gaze into the future and coordinate its

eye-head movements.

• The first to verify a direct influence of a robot’s gaze behavior on human

gaze behavior.

• The first implementation to leverage LLMs in generating a robot’s affective

behavior.

• One of the first studies to investigate the influence of a robot’s appearance

and facial regions on the recognition of its emotions.
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Research Data Management

This section gives a brief overview of the collection and management of the data

used in this dissertation.

Data Collection

The user studies across all four chapters gathered questionnaire responses. Ta-

ble 7.1 provides an overview of the number of questionnaires per chapter, the

participant counts, and the data collection methods.

Chapter No. of No. of Mode of
Questionnaires Participants Data Collection

2 1 28 In-person
3 2 181 In-person

& Online
4 3 68 in-person

& Online
5 2 305 Online

Table 7.1: Details about the collected questionnaire responses per chapter.

In Chapter 3, responses were initially obtained from 148 participants via

an online survey to assess topic intimacy ratings for selected questions. Sub-

sequently, responses to post-interaction questionnaires were collected from 33

participants who participated in the in-person sessions with the robot. Chapter 3

also involved the collection of gaze and audio data. The gaze dataset comprised

gaze information from 66 sessions (33 sessions for each experimental condi-

tion), with transcripts of the robot’s utterances, including timing data, stored in

.json files. The audio dataset consisted of 132 .wav format audio recordings (33

sessions X by 2 conditions X by 2 baselines, with each session commencing with

a baseline voice recording followed by the interaction).

In Chapter 4, two instances of data collection occurred. The first involved two

online surveys with 21 participants (the pilot) to determine emotion tags and

deck orders for affective images. The second instance comprised questionnaire

responses collected during in-person interactions with the robot, constituting the

primary user study with 47 participants.
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The user study in Chapter 3 was approved by the ethics committee of the Faculty

of Language, Literature and Humanities at the Humboldt-Universität zu Berlin.

The user studies in Chapter 4 and Chapter 5 received approval from the ethics

committee of the Faculty of Science, Radboud University, Nijmegen (reference

no. ECSW-LT-2023-3-13-98066).

Informed Consent

For each of the user studies conducted, participants completed informed con-

sent forms as a prerequisite for their participation. These consent forms were

in compliance with GDPR regulations and met the specific requirements of the

institutions that granted ethical approvals for the research. The signed consent

forms were securely stored at Furhat Robotics AB, Stockholm and the Max Planck

Institute for Psycholinguistics, Nijmegen.

Data Privacy

No personally identifiable information was gathered from the participants in

any of the experiments. To ensure anonymity, each participant was assigned a

unique alphanumeric code, with no records linking their names to these partic-

ipant codes.

Data Storage and Sharing

Questionnaire responses from the user studies in Chapter 2, Chapter 3, and

Chapter 5 were securely stored at Furhat Robotics AB, Stockholm. Gaze, audio,

and questionnaire response data from the study in Chapter 3 were archived in

the GDPR-compliant online repository, HU-Box, which is managed by Humboldt-

Universität zu Berlin. Given that the data collection for the user study in Chap-

ter 4 occurred in Stockholm and Nijmegen, the corresponding questionnaire re-

sponses were stored at Furhat Robotics AB, Stockholm and Max Planck Institute

for Psycholinguistics, Nijmegen.

Participants in all these studies provided their consent for sharing their data

for research purposes. The data is accessible to the researchers involved in the

project and members of the COBRA consortium. Any requests from other re-

searchers for data access will be accommodated in accordance with the guide-

lines established by the respective institutions where the data is stored.
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English Summary

In our day-to-day interactions, we utilize verbal and non-verbal cues (like ges-

tures, body language, facial expressions, eye contact, tone of voice, and spatial

proximity) to express our thoughts and emotions. Sometimes, we don’t even

have to use verbal language to communicate with others and rely solely on non-

verbal cues. For example, when meeting a friend a simple hand wave can convey

a greeting without the necessity of saying “hello”. Similarly, a head nod can in-

dicate agreement or understanding without needing to verbally signal the same.

The human face holds particular importance in non-verbal communication, of-

fering a plethora of visual cues such as facial expressions and eye contact. Early

research suggested that a significant portion of communication is non-verbal,

though the exact percentage is debated. Despite the debates, the fundamental

message remains: non-verbal behavior is vital for effective communication.

With the rapid advancements in artificial intelligence and robotics technolo-

gies, social robots are poised to have greater social integration. These robots are

designed specifically to conduct human-like interactions. So, understanding and

replicating essential non-verbal cues, such as facial expressions and gaze, are es-

sential for enhancing these robotic systems’ effectiveness, human-likeness, and

acceptance. Social robots are already being employed in a variety of domains, in-

cluding healthcare, education, and assistive roles, where their capacity to convey

and interpret human emotions and intentions can significantly impact the qual-

ity of interactions. Modeling non-verbal behaviors on these robots would make

them more capable of providing a richer user experience. For example, imagine

a social robot designed for companionship. When engaging with a person, the

robot’s facial expressions can reflect warmth and compassion, while maintain-

ing appropriate eye contact can convey active listening and emotional support.

These non-verbal cues can help alleviate feelings of loneliness and promote a

sense of connection between the patient and the robot.

This research investigates methods for making human-robot interactions (HRI)

more seamless and human-like by modeling non-verbal behaviors on social robots

and is centered on two key areas:
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• Developing architectures to model the eye gaze and emotional behaviors

of social robots.

• Evaluating the human perception and influence of these behaviors during

HRI

In Chapter 1, I introduce the topic and the underlying background that is

needed to understand the research better. I first discuss the significance of gaze

and affective behaviors in human communication before moving on to Human-

Robot Interactions (HRI). Next, I examine the existing models to automate the

gaze and affective behaviors of robots and their limitations, which lead to the

research questions addressed in this dissertation.

Chapter 2 and Chapter 3 focused on the gaze behavior of social robots. A

comprehensive Gaze Control System (GCS) was proposed and implemented in

Chapter 2 which was used to automate the gaze behavior of a social robot when

it is interacting with others. The GCS tried to automate the gaze behavior by

considering questions like “Where should a robot look at during a conversation

and why/ how/ when?”. Findings from various fields such as Psychology, Cogni-

tive Sciences, and HRI were studied and used to design the GCS. A user study

was carried out to evaluate the GCS which revealed that participants perceived

the robot to be more interpretable and preferred when it exhibited human-like

gaze behavior. Chapter 3 investigated the perception of the human-like behavior

exhibited by the robot based on the GCS by human participants, more specifi-

cally the question “Does a robot’s gaze behavior have any influence on human gaze

behavior?”. A user study was conducted to observe the gaze behavior of the

participants when they interacted with a robot that kept staring at them vs. a

robot that averted its gaze in a human-like manner using the GCS developed in

Chapter 2. Results from the study showed a direct influence of the robot’s gaze

aversion behavior on the gaze behavior of the participants. It was observed that

participants averted their gaze more when the robot did not avert its gaze at all,

as compared to when it averted the gaze in a human-like manner. This showed

that in the absence of gaze aversions by a robot, the interaction may become

more effortful for the user while trying to avoid frequent mutual gaze with the

robot.

I focused on the affective behavior of social robots in Chapter 4 and Chapter

5. Chapter 4 investigated the possibility of leveraging Large-Language Models

(LLM) such as GPT-3 from OpenAI to automate the emotional expressions on

a social robot. Recently, LLMs have gained a lot of attention and shown sig-

nificant capabilities to solve a multitude of problems. I aimed to harness these
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capabilities to generate real-time emotional expressions on a robot’s face when

it is interacting with a human. I implemented a model to use GPT-3.5 (the pre-

decessor of ChatGPT) to predict the emotion that the robot is likely to have

during an interaction, based on the ongoing conversation’s dialogue history as

the context. A user study with an interactive image-sorting task was conducted

to evaluate the model and see if the participants could perceive the robot’s emo-

tions. Results from the study showed that the participants found the robot to be

significantly more human-like, emotionally appropriate, and positive when it ex-

hibited context-appropriate emotional expressions using GPT-3.5. Additionally,

it was also found that the participants scored highest in the task when the robot

exhibited context-appropriate emotions, showcasing the significance of emotion-

appropriate responses in fostering effective human-robot collaboration.

In Chapter 5 I investigated the questions on how the face should be modeled

on a robot for us to better recognize its facial expressions: “Do we need to model

the entire face on a robot or is having just the eyes enough?” and “Does the face

have to look like a human or would mechanical looking face also be okay?”. These

questions are important because they not only shed light on the significance of

different facial regions in emotion recognition but also an opportunity to reduce

the complexity of generating robot emotions. Results from an online user study

indicated that people were able to recognize the emotions exhibited by a robot

better when it looked more human-like as compared to a more mechanical look.

Additionally, people recognized the expressions of a robot within an acceptable

accuracy range when only the eyes were visible as opposed to the full face.

Lastly, in Chapter 6, I summarize the overall findings from Chapters 2 to 5

and discuss them as a whole. The combined findings align with the broader

goal of developing robots that are empathetic, socially aware, and capable of

establishing emotional connections by displaying human-like gaze and affective

behaviors. Robots exhibiting such non-verbal behaviors similar to humans have

the potential to greatly enhance the quality and depth of interactions. It is crucial

to recognize that non-verbal behaviors, encompassing elements like eye contact,

facial expressions, and gestures, are deeply ingrained in human communication.

These behaviors enable us to convey emotions, intentions, and understanding

with subtlety and complexity. By enabling robots to recognize and reciprocate

these non-verbal cues, a bridge is formed between human and robot interac-

tion, fostering a more natural and seamless integration of robots into human

environments.
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Nederlandse samenvatting

In onze dagelijkse interacties gebruiken we verbale en non-verbale signalen (zo-

als gebaren, lichaamstaal, gezichtsuitdrukkingen, oogcontact, toon van de stem

en ruimtelijke nabijheid) om onze gedachten en emoties uit te drukken. Soms

hoeven we niet eens verbale taal te gebruiken om met anderen te communice-

ren en vertrouwen we alleen op non-verbale signalen. Wanneer we bijvoorbeeld

een vriend ontmoeten, kan een eenvoudige handbeweging een begroeting over-

brengen zonder dat we “hallo” hoeven te zeggen. Op dezelfde manier kan een

knikje met het hoofd wijzen op instemming of begrip zonder dat dit verbaal

hoeft te worden gesignaleerd. Het menselijk gezicht is bijzonder belangrijk in

non-verbale communicatie en biedt een overvloed aan visuele signalen zoals ge-

zichtsuitdrukkingen en oogcontact. Eerder onderzoek suggereerde dat een aan-

zienlijk deel van de communicatie non-verbaal is, hoewel het exacte percentage

wordt betwist. Ondanks de discussies blijft de fundamentele boodschap over-

eind: non-verbaal gedrag is van vitaal belang voor effectieve communicatie.

Met de snelle vooruitgang in kunstmatige intelligentie en robotica zijn sociale

robots klaar voor een grotere sociale integratie. Deze robots zijn speciaal ont-

worpen om mensachtige interacties uit te voeren. Het begrijpen en nabootsen

van essentiële non-verbale signalen, zoals gezichtsuitdrukkingen en kijkgedrag,

is dus essentieel om de effectiviteit, menselijkheid en acceptatie van deze ro-

botsystemen te verbeteren. Sociale robots worden al ingezet in verschillende

domeinen, waaronder gezondheidszorg, onderwijs en ondersteunende rollen,

waar hun vermogen om menselijke emoties en bedoelingen over te brengen en

te interpreteren de kwaliteit van interacties aanzienlijk kan beïnvloeden. Het

modelleren van non-verbaal gedrag op deze robots zou ze beter in staat stel-

len om een rijkere gebruikerservaring te bieden. Stel je bijvoorbeeld een sociale

robot voor die ontworpen is om iemand gezelschap te houden. Wanneer de ro-

bot met een persoon omgaat, kan zijn gezichtsuitdrukking warmte en medeleven

uitstralen, terwijl het onderhouden van passend oogcontact een actief luisterend

oor en emotionele steun kan uitstralen. Deze non-verbale signalen kunnen ge-

voelens van eenzaamheid helpen verlichten en een gevoel van verbondenheid

tussen de patiënt en de robot bevorderen.
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In het onderzoek van dit proefschrift worden methoden onderzocht om mens-

robot interacties (HRI) naadlozer en menselijker te maken door het modelleren

van non-verbaal gedrag op sociale robots:

• Ontwikkeling van architecturen om de oogopslag en het emotionele ge-

drag van sociale robots te modelleren.

• Evalueren van de menselijke perceptie en invloed van deze gedragingen

tijdens HRI.

In Hoofdstuk 1 introduceer ik het onderwerp en de onderliggende achter-

grond die nodig is om het onderzoek beter te begrijpen. Ik bespreek eerst het be-

lang van kijk- en affectief gedrag in menselijke communicatie voordat ik overga

op Mens-Robot Interacties (HRI). Vervolgens onderzoek ik de bestaande model-

len om het kijk- en affectieve gedrag van robots te automatiseren en hun be-

perkingen, wat leidt tot de onderzoeksvragen die in dit proefschrift aan de orde

komen.

Hoofdstuk 2 en Hoofdstuk 3 richtten zich op het kijkgedrag van sociale ro-

bots. In Hoofdstuk 2 werd een uitgebreid Gaze Control System (GCS) voorge-

steld en geïmplementeerd dat werd gebruikt om het kijkgedrag van een sociale

robot te automatiseren tijdens interactie met anderen. Het GCS probeerde het

blikgedrag te automatiseren door vragen te overwegen als "Waar/Wanneer moet

een robot naar kijken tijdens een gesprek en Waarom/Hoe?". Bevindingen uit

verschillende vakgebieden zoals psychologie, cognitieve wetenschappen en HRI

werden bestudeerd en gebruikt om het GCS te ontwerpen. Er werd een gebrui-

kersonderzoek uitgevoerd om het GCS te evalueren, waaruit bleek dat deelne-

mers de robot als beter interpreteerbaar beschouwden en de voorkeur gaven

aan het vertonen van mensachtig kijkgedrag. Hoofdstuk 3 onderzocht de per-

ceptie van het mensachtige gedrag dat de robot vertoont op basis van de GCS

door menselijke deelnemers, meer specifiek de vraag "Heeft het kijkgedrag van

een robot enige invloed op het menselijke kijkgedrag?". Er werd een gebrui-

kersonderzoek uitgevoerd om het kijkgedrag van de deelnemers te observeren

wanneer ze interageerden met een robot die hen bleef aanstaren versus een ro-

bot die zijn blik op een mensachtige manier afwendde met behulp van de GCS

die in Hoofdstuk 2 werd ontwikkeld. De resultaten van het onderzoek toonden

een directe invloed van het afkerige kijkgedrag van de robot op het kijkgedrag

van de deelnemers. Er werd waargenomen dat deelnemers hun blik meer af-

wendden wanneer de robot zijn blik helemaal niet afwendde, vergeleken met

wanneer de robot de blik op een mensachtige manier afwendde. Dit toonde aan
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dat bij afwezigheid van afkerende blikken door een robot, de interactie voor de

gebruiker moeizamer kan verlopen wanneer hij veelvuldige wederzijdse blikken

met de robot probeert te vermijden.

In Hoofdstuk 4 en Hoofdstuk 5 heb ik me gericht op het affectieve gedrag van

sociale robots. Hoofdstuk 4 onderzocht de mogelijkheid om gebruik te maken

van Large-Language Models (LLM) zoals GPT-3 van OpenAI om de emotionele

uitdrukkingen op een sociale robot te automatiseren. LLM’s hebben de laatste

tijd veel aandacht gekregen en hebben laten zien dat ze een groot aantal proble-

men kunnen oplossen. Ik wilde deze mogelijkheden benutten om real-time emo-

tionele uitdrukkingen op het gezicht van een robot te genereren wanneer deze

interactie heeft met een mens. Ik heb een model geïmplementeerd om GPT-3.5

(de voorganger van ChatGPT) te gebruiken om de emotie te voorspellen die de

robot waarschijnlijk zal hebben tijdens een interactie, op basis van de dialoogge-

schiedenis van het lopende gesprek als context. Er werd een gebruikersonder-

zoek met een interactieve taak voor het sorteren van afbeeldingen uitgevoerd

om het model te evalueren en om te zien of de deelnemers de emoties van de

robot konden waarnemen. De resultaten van het onderzoek toonden aan dat de

deelnemers de robot significant menselijker, emotioneel gepaster en positiever

vonden wanneer deze context-geschikte emotionele uitdrukkingen vertoonde

met behulp van GPT-3.5. Daarnaast werd ook vastgesteld dat de deelnemers de

robot als meer humaan, emotioneel gepast en positief beschouwden wanneer

deze context-geschikte emotionele uitdrukkingen vertoonde. Daarnaast werd

ook vastgesteld dat de deelnemers het hoogst scoorden in de taak wanneer de

robot context-adequate emoties vertoonde, wat het belang aantoont van op emo-

ties afgestemde reacties bij het bevorderen van effectieve samenwerking tussen

mens en robot.

In Hoofdstuk 5 onderzocht ik de vragen hoe het gezicht gemodelleerd moet

worden op een robot zodat we zijn gezichtsuitdrukkingen beter kunnen herken-

nen: “Moeten we het hele gezicht modelleren op een robot of zijn alleen de ogen ge-

noeg?” en “Moet het gezicht eruit zien als een mens of zou een mechanisch uitziend

gezicht ook goed zijn?”. Deze vragen zijn belangrijk omdat ze niet alleen licht

werpen op het belang van verschillende gezichtsregio’s in emotieherkenning,

maar ook een mogelijkheid bieden om de complexiteit van het genereren van

robotemoties te verminderen. Resultaten van een online gebruikersonderzoek

gaven aan dat mensen de emoties van een robot beter herkenden wanneer deze

er meer menselijk uitzag dan wanneer deze er meer mechanisch uitzag. Boven-

dien herkenden mensen de uitdrukkingen van een robot binnen een acceptabel
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nauwkeurigheidsbereik wanneer alleen de ogen zichtbaar waren in plaats van

het volledige gezicht.

Tot slot vat ik in Hoofdstuk 6 de algemene bevindingen uit de hoofdstukken

2 tot en met 5 samen en bespreek ze als geheel. De gecombineerde bevindin-

gen komen overeen met het overkoepelende doel om robots te ontwikkelen die

empathisch en sociaal bewust zijn en in staat om emotionele verbanden te leg-

gen door het vertonen van mensachtige blikken en affectief gedrag. Robots die

dergelijk non-verbaal gedrag vertonen, vergelijkbaar met mensen, hebben het

potentieel om de kwaliteit en diepgang van interacties sterk te verbeteren. Het

is cruciaal om te erkennen dat non-verbaal gedrag, waaronder elementen als

oogcontact, gezichtsuitdrukkingen en gebaren, diep geworteld zijn in menselijke

communicatie. Deze gedragingen stellen ons in staat om emoties, bedoelingen

en begrip, subtiel en complex over te brengen. Door robots in staat te stellen

deze non-verbale signalen te herkennen en te beantwoorden, wordt een brug

gevormd tussen de interactie tussen mens en robot en wordt een meer natuur-

lijke en naadloze integratie van robots in menselijke omgevingen bevorderd.
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