Improved Tau PET SUVR Quantification in 4-RepeatTauPhenotypes with $[^{18}F]$PI-2620

Gérard N. Bischof1,2, Matthias Brendel1–5, Henrik Barthel6, Hendrik Theis1,7, Michael Barbe7, Peter Bartenstein4,5, Joseph Claasen6, Adrian Danek8, Günter Höglinger3,4,8, Johannes Levin3,4,8, Ken Marek9,10, Bernd Neumaier11,12, Carla Palleis3,4,5, Marianne Patt9, Michael Rullmann13, Dorothee Saur6, Matthias L. Schroeter13, John Seibyl9,10, Mengmeng Song5, Andrew Stephens14, Osama Sabri6, Alexander Drzezga1,2,15, and Thilo van Eimeren1,7

1Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany; 2Molecular Organization of the Brain, Institute for Neuroscience and Medicine, Jülich, Germany; 3German Center for Neurodegenerative Diseases, Munich, Germany; 4Munich Cluster for Systems Neurology, Munich, Germany; 5Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany; 6Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig, Germany; 7Department of Neurology, University Hospital Cologne, University of Cologne, Cologne, Germany; 8Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany; 9InviCRO, LLC, Boston, Massachusetts; 10Molecular Neuroimaging, a division of inviCRO, New Haven, Connecticut; 11Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Cologne, Germany; 12Institute of Neuroscience and Medicine, Nuclear Chemistry, Research Center Jülich, Jülich, Germany; 13Clinic for Cognitive Neurology, University Hospital of Leipzig, and Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; 14Life Molecular Imaging GmbH, Berlin, Germany; and 15German Center for Neurodegenerative Diseases, Bonn/Cologne, Germany

We used a new data-driven methodology to identify a set of reference regions that enhanced the quantification of the SUV ratio of the second-generation tau tracer 2-(2-(18F)fluoropyridin-4-yl)-9H-pyrrolo[2,3-b:4,5-c']dipyridine ($[^{18}F]$PI-2620) in a group of patients clinically diagnosed with 4-repeat tauopathy, specifically progressive supranuclear palsy or cortical basal syndrome. The study found that SUV ratios calculated using the identified reference regions (i.e., fusiform gyri and crus-cerebellum) were significantly associated with symptom severity and disease duration. This establishes, for the first time to our knowledge, the suitability of $[^{18}F]$PI-2620 for tracking disease progression in this 4-repeat disease population. This is an important step toward increased clinical utility, such as patient stratification and monitoring in disease-modifying treatment trials. Additionally, the applied methodology successfully optimized reference regions for automated detection of brain imaging tracers. This approach may also hold value for other brain imaging tracers.

Key Words: molecular imaging; neurology; PET; 4R; clinical severity; tau PET

J Nucl Med 2024; 00:1–4
DOI: 10.2967/jnumed.123.265930

PET imaging with 2-(2-(18F)fluoropyridin-4-yl)-9H-pyrrolo[2,3-b:4,5-c']dipyridine ($[^{18}F]$PI-2620) has demonstrated the ability to detect tau pathology in patients diagnosed with progressive supranuclear palsy (PSP) (1) and corticobasal syndrome (2,3). This holds potential for refining diagnostic criteria for 4-repeat (4R) tau isoforms and addressing diagnostic challenges associated with overlapping symptoms in neurodegenerative diseases such as frontotemporal dementia and Parkinson disease (4). Although $[^{18}F]$PI-2620 meets certain criteria for an ideal biomarker, such as positivity in the symptomatic phase and specificity for pathology variants, its binding affinity and relationship with 4R tau pathology have shown some discrepancies (4,5).

Previous attempts to establish a correlation between $[^{18}F]$PI-2620 binding potentials and disease progression or severity have been inconclusive. A potential source of variance in SUV ratio (SUVR) sensitivity is the choice of reference region. The use of the cerebellar cortex as a reference region, common in Alzheimer disease studies, is less ideal in 4R phenotypes because of known on-target binding in the dentate nucleus (6,7). To address this issue, we used a data-driven approach akin to established count normalization procedures. This involved identifying regions in PSP patients devoid of pathology for effective count normalization (8). Criteria for region suitability included absence of on-target binding, plausibility (e.g., bilateral), lack of on-target binding in early disease histopathologic studies, and correlation of SUVRs with disease severity or duration. This approach aims to enhance the sensitivity of SUVR measurements by selecting reference regions that better represent areas free of pathology in PSP patients. By refining the reference region choice, we anticipate improved accuracy in assessing the relationship between $[^{18}F]$PI-2620 binding potentials and disease measures. This strategy contributes to the ongoing efforts to establish reliable biomarkers for neurodegenerative diseases, particularly those involving 4R tau isoforms.

MATERIALS AND METHODS

In this study, 43 patients with suspected 4R tauopathies (PSP or corticobasal syndrome) and 14 healthy controls were enrolled from 4 nuclear medicine clinics in Germany and the United States. Diagnosis...
for PSP and corticobasal syndrome followed established criteria (9,10). All participants underwent a T1-weighted 3-dimensional MRI sequence (1 × 1 × 1 mm; 256 slices) and dynamic PET imaging (0–60 min) of [18F]PI-2620 were realigned, the 30- to 60-min frames were averaged, and the resulting SUV images were coregistered to the individual MR images. PET images were normalized and partial-volume–corrected using the geometric transfer method (11). Partial-volume–corrected PET images were submitted to the statistical nonparametric mapping toolbox (SnPM (12)) implemented in SPM to identify regions in the patient population clearly void of pathology and therefore most effective for count normalization. SnPM was chosen because of the relatively lower degrees of freedom in the healthy control cohort and to capitalize on the individual patient data and the strong data-driven nature of our approach. Nonparametric permutation was set to 5,000 iterations, with a variance smoothing of 6 mm3. Age served as a covariable, and a whole-brain inclusion mask was applied. The false-discovery rate was set at a P value of 0.01 (Fig. 1), and resulting clusters were regionally labeled on the basis of the automated anatomic atlas. In the patient cohort, automated anatomic atlas regions were used as reference regions, and SUVRs were extracted from target regions shown to accumulate tau pathology in 4R phenotypes (1,3). To evaluate the sensitivity of the data-driven reference regions, we performed partial correlation analyses of SUVRs in target regions, with the PSP rating scale and disease duration corrected for age (R_{age}).

RESULTS

Demographic characteristics of the 43 patients and 14 healthy controls are summarized in Table 1. The statistical nonparametric mapping approach revealed differences, with elevated nonspecific binding bilaterally in the fusiform gyrus and crus-cerebellum, when comparing healthy controls versus 4R patients (Fig. 1). These regions were used as reference regions (separately and in combination), and SUVRs were computed. The partial correlation analysis (Figs. 2 and 3) using SUVRs based on the fusiform gyrus reference region revealed a significant association between disease severity and accumulating tau pathology in the globus pallidus externus (R_{age} = 0.34, P = 0.02) and internus (R_{age} = 0.36, P = 0.02). Disease duration was significantly associated with tau pathology in the frontal cortex (R_{age} = 0.39, P = 0.01). For the

TABLE 1

<table>
<thead>
<tr>
<th>Demographic Control</th>
<th>4R</th>
<th>PSP</th>
<th>Corticobasal syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>14</td>
<td>43</td>
<td>31</td>
</tr>
<tr>
<td>Age (y)</td>
<td>64.38 (10.36)</td>
<td>70.6 (7.9)</td>
<td>70.8 (7.7)</td>
</tr>
<tr>
<td>Mini–Mental State Examination</td>
<td>29.07 (1.14)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Montreal cognitive assessment</td>
<td>NA</td>
<td>22.3 (5.0)</td>
<td>22.9 (4.4)</td>
</tr>
<tr>
<td>PSP rating scale</td>
<td>NA</td>
<td>26.03 (10.0)</td>
<td>27.1 (10.5)</td>
</tr>
<tr>
<td>Disease duration (mo)</td>
<td>NA</td>
<td>36.48 (29.2)</td>
<td>37.1 (32.1)</td>
</tr>
</tbody>
</table>

NA = not applicable.

Data are mean followed by SD in parentheses.
crus-cerebellum, SUVR estimates in the globus pallidus internus ($R_{\text{age}} = 0.38, \ p = 0.01$) and averaged across all target regions ($R_{\text{age}} = 0.35, \ p = 0.02$) showed significant associations with disease severity, whereas no significant correlations with disease duration were observed. The combination of both reference regions (Fig. 3) revealed several significant correlation coefficients with both disease severity (R_{age}) for all target ROIs = 0.44, $p = 0.01$; R_{age} for frontal cortex = 0.40, $p = 0.01$; R_{age} for globus pallidus externus = 0.35, $p = 0.03$; R_{age} for globus pallidus internus = 0.37, $p = 0.02$; R_{age} for globus pallidus = 0.36, $p = 0.03$ and disease duration (R_{age}) for all target ROIs = 0.37, $p = 0.02$; R_{age} for frontal cortex = 0.40, $p = 0.01$).

Our reference regions, as cortical involvement of 4R tauopathy is known to be an indication of advanced disease stage (6). We therefore propose the fusiform gyrus and the crus-cerebellum as 2 potential candidates for further exploration as potential reference regions for $[^{18}\text{F}]$PI-2620 in a larger independent sample of 4R patients and in individuals for whom arterial blood sampling is available to further evaluate the suitability of our reference regions in 4R tauopathies.

We provide evidence that the previously established normalization count method (8) within the statistical nonparametric mapping context may be a sensitive automated approach to probe potential candidates for reference regions, particularly if the sample size of the target population is limited and the distribution of the tracer retention is relatively heterogeneous. Our results are important in the context of clinical trials of potential disease-modifying therapies in 4R tauopathies (J3), as treatment effects could be quantified both on the pathophysiologic scale using $[^{18}\text{F}]$PI-2620 and according to disease severity. Our use of partial-volume-corrected data in our analysis may be a limitation because of the accessibility of high-resolution magnetization-prepared, rapid gradient-echo imaging in the clinical context.

CONCLUSION

Whereas recent studies have shown that the regional uptake pattern of $[^{18}\text{F}]$PI-2620 can assist in the differential diagnosis of primary versus secondary tauopathies, here we extend the utility of $[^{18}\text{F}]$PI-2620. Specifically, we show that different reference regions (i.e., fusiform gyrus, crus-cerebellum, and the combination) may improve SUVR quantification, as our newly computed SUVRs in target regions of 4R tauopathies relate to both disease severity and disease progression.
duration. We recognize that in the absence of specific criteria for appropriate reference regions, the criteria we have chosen may not be exhaustive for determining an appropriate reference region, but they may provide some initial guidance.

KEY POINTS

QUESTION: Can we improve SUVR sensitivity in 4R phenotypes using data-driven reference regions?

PERTINENT FINDINGS: We found suitable reference regions (i.e., crus-cerebellum and fusiform gyrus) in 4R phenotypes that led to SUVR estimates in target regions of 4R tauopathy that tracked with disease severity and duration.

IMPLICATIONS FOR PATIENT CARE: Our results improve the utility of 18F-PI-2620 to quantify tau burden, which will improve the clinical application of 18F-PI-2620 in the differential diagnosis of tauopathies.

DISCLOSURE

Gérard Bischof, Thilo van Eimeren, Hendrik Theis, and Alexander Drzezga are funded by the Deutsche Forschungsgemeinschaft (DFG), project ID 431549029-SFB 1451, and partially by DFG, DR 445/9-1. Carla Palleis was supported by DFG and under Germany’s Excellence Strategy, the Munich Cluster for Systems Neurology (EXC 2145 SyNergy, ID 390857198), Lüneburg Heritage, and Friedrich-Baur-Stiftung. Matthias Brendel is partially funded by Germany’s Excellence Strategy, the Munich Cluster for Systems Neurology (EXC 2145 SyNergy, ID 390857198). Hendrik Theis is funded by the Cologne Clinician Scientist Program, University of Cologne. Johannes Levin reports speaker fees from Bayer Vital, Biogen, Eisai, Teva, Zambon, and Roche; consulting fees from Axon Neuroscience, Eisai, and Biogen; and author fees from Thieme Medical Publishers and W. Kohlhammer GmbH Medical Publishers and is inventor in a patent, “Oral Phenylbutyrate for Treatment of Human 4-Repeat Tauopathies” (EP 23 156 122.6) filed by Ludwig Maximilians University, Munich. Johannes Levin reports compensation as chief medical officer for MODAG GmbH, is beneficiary of the phantom share program of MODAG GmbH, and is inventor in a patent, “Pharmaceutical Composition and Methods of Use” (EP 22 159 408.8) filed by MODAG GmbH (all activities outside the submitted work). Andrew Stephens is a full-time employee of Life Molecular Imaging, GmbH. Thilo van Eimeren reports consultant fees from Eli Lilly, Shire, H. Lundbeck A/S, and Orion Corp. and author fees from Thieme medical publishers. No other potential conflict of interest relevant to this article was reported.

REFERENCES