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12 1 General introduction

1.1 Recognizing a word

Imagine yourself entering a supermarket, busy recollecting all the items on your
grocery list. Suddenly, your attention is caught by a sound. You hear a fragment
of a sentence from the store’s speakers. You hear the word HIMALAYA.
Before you understand it is about a trendy type of table salt, you can’t help but
think of a faraway mountain peak covered with snow.
How is it possible that a word and its meaning can be retrieved from a brief se-
quence of sounds? The present manuscript investigates the neural mechanisms
that make possible the association of sequences of sounds to words, in a biolog-
ically constrained, computational model of the human brain.

A

B

Figure 1.1: Acoustic signals and semantic content of the word HIMALAYA
(A) Waveform graphs of different pronunciations of the word HIMALAYA, from
three English speakers. The horizontal axis represents time, and the vertical axis
represents the amplitude of the air pressure. (B) One of the many pictures of
the Himalayan mountain chain.

When a word is uttered, the sound generated by the vocal apparatus of the
speaker reaches the ears of the listeners. There, the cochlea transforms the
acoustic signal into an electrochemical one. Following the projections of the
auditory neurons in the brain stem, it traverses the central nervous system and
reaches the temporal lobe, where the primary auditory cortex is located. Once
in the forebrain, this piece of information generates a cascade of neuronal activ-
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ity that ultimately produces, to the attentive listener, the recollection of a word.
This entire process occurs in a few hundreds of milliseconds.

An example of a speech fragment is offered in Fig.1.1A. The waveforms por-
trayed show three different acoustic realizations of the English word HIMALAYA
– the reader should intend the graphs as the sounds they represent, acoustic sig-
nals rather than visual ones. The speech fragments show two properties. First,
even though they present peaks and valleys, they have no iconic relationship
with the mountain chain located north of the Indian subcontinent (Fig.1.1B),
and second, they differ from each other. Remarkably, in the face of arbitrary
sound-meaning relationships and intrinsic variability across speakers, any per-
son who previously encountered the English word HIMALAYA will, likely, recog-
nize each of the three acoustic signals presented.

Indeed, the sound waves in Fig.1.1A conceal a third property, which is some-
how obvious to the attentive listener. The three speech signals are composed
of a sequence of sounds that most English listeners will recognize in the same
discrete set of phonemes, /hIm@laI@/1. Independently of its specific acoustic real-
ization, the word HIMALAYA is recognized whenever the listener perceives that
sequence of phonemes. Or, in more general terms, words are retrieved when
there is a sufficient match between the phonological information in the acoustic
signal and the word’s phonological form in the mental lexicon of the listener.

Spoken word recognition depends on the human capacity of mapping an unin-
terrupted stream of phonemes onto a series of word forms stored in memory (Mag-
nuson & Crinnion, 2022, p. 462). Humans rely on this faculty for comprehend-
ing speech and communicating. When it is impaired, it carries dire consequences
for the speaker (Mirman & Britt, 2014). Even though spoken word recognition
(SWR) is central in human language, and much work has been done to charac-
terize it (Magnuson & Crinnion, 2022; McQueen, 2007; Vitevitch, Siew, & Cas-
tro, 2018), it is not yet clear which are its neuronal underpinnings. It is not
understood how lexical retrieval is implemented in the human brain.

The present work attempts to address this open issue and to contribute with
theoretical insights toward a neurobiological explanation of SWR capacity. The
study is carried out by simulating a network of biophysical neuron models. The
network aims to reproduce the activation of neuronal populations represent-
ing word-form memories and phoneme-like units. By mapping a set of abstract
linguistic representations to the dynamics of the modeled neurons, I propose

1The International Phonetic Alphabet (IPA) transcription was obtained from http://tom
.brondsted.dk/text2phoneme/

http://tom.brondsted.dk/text2phoneme/
http://tom.brondsted.dk/text2phoneme/
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a linking hypothesis, a bridge, between the computational primitives of word
recognition and the neurobiological principles that govern brain processes.

The Introduction chapter addresses some necessary preliminaries to the inves-
tigation carried out in the experimental chapters.
Section 1.2 sets the boundary conditions for a mechanistic explanation of SWR
and frames it as a computational problem. On this base, I present the require-
ments that a model of word recognition must satisfy to be considered biologically
explanatory. The section outlines the dynamical system framework as a work-
ing hypothesis for a model that describes linguistic capacities based on neural
mechanisms. Section 1.3 summarizes linguistic and neurobiological evidence
on SWR. The section describes the fundamental psycholinguistic explananda that
the model must address. Finally, Section 1.4 offers a summary of the neuroscien-
tific evidence that must be included in the model to constrain its implementation.
The biological processes described in this section are the explanans of the word
recognition capacity.

1.2 Computational models of spoken word

recognition

1.2.1 Language and the computational brain

Word recognition is a linguistic capacity that is at play within the human meaning-
making cognitive system (Hagoort, 2020). This capacity is acquired during de-
velopment and is mastered only if the individual has sufficient cognitive abilities
and is part of a language community. Although spoken communication relies
on other organs, such as the vocal system and the ears, clinical evidence in sub-
jects with full body paralysis indicates that a functioning brain is a necessary and
sufficient condition to recognize spoken words (Fedorenko & Thompson-Schill,
2014; Hagoort, 2014; Metzger et al., 2023; Rowley, Rogish, Alexander, & Riggs,
2017). Thus, the core operations supporting the recollection of a word memory
occur according to the principles that govern the brain’s neurobiology (Kandel,
Schwartz, Jessell, Siegelbaum, & Hudspeth, 2012; Luo, 2015; Sterling & Laugh-
lin, 2015) A neurobiological explanation of the word recognition capacity must
account how this capacity is realized in the physiology of the human brain. This
is not an easy task because it requires understanding two extremely complex
phenomena: the human language and the brain.
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Traditionally, cognitive sciences look at these two phenomena together through
the lens of computation2(CCTM Rescorla, 2020). Word recognition can be de-
scribed as a linguistic computational operation, and the brain is the machine
that operates this transformation. However, as we show in the following, not all
computational descriptions of language capacities are equivalent. The introduc-
tion of computing machines in the early half of the last century fostered the idea
that computers can be used as metaphors for the human brain (Von Neumann,
1958). In accordance, psychologists and linguists dedicated a great deal of effort
to deriving computational explanations of the language function. Word recog-
nition has been one of the first to be addressed with a computational model.
The Logogen model by Morton (1969) could compute quantitative predictions
of lexical decisions of human subjects during single-word recognition. Remark-
ably, the model was based on a threshold mechanism that vaguely resembled the
logical calculus of nervous activity described thirty years earlier by McCulloch
and Pitts (1943).

Over the following fifty years, several computational models were devised to
reproduce the input-output relationship observed in experimental data. New
models were often introduced to explain aspects of human behavior that were
not matched by the earlier models or to propose simpler algorithmic solutions
(Magnuson & Crinnion, 2022; Weber & Scharenborg, 2012). The underlying
hypothesis of this research agenda is that an increased match between the model
output and human behavior (among which neural markers) indicates that the
brain computations are similar to those achieved in the model (Caucheteux &
King, 2022). In this sense, they model the functions, and algorithms, of the
human brain.

Notably, the pursuit of computational models was successful. In a computa-
tional sense, the problem of word form recognition is reasonably solved. For
example, Bayesian models of cognition account for human behavior in extract-
ing linguistic categories from variable speech sounds and retrieving the correct
word (Kleinschmidt & Jaeger, 2015; Norris & McQueen, 2008). However, these
computational models do not explain how the word recognition capacity relates
to the human wetware, the brain circuitry (Poeppel & Idsardi, 2022). Indeed,
the multiplicity of algorithmic solutions in psycholinguistics spoken word recog-
nition models reveals that cognitive computational models are unconstrained.
There are many, perhaps infinite, ways to achieve word recognition. This wealth

2Computation is the action of a physical system transforming inputs into outputs, following
a set of rules.
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of solutions becomes a problem if one aims to explain the one which is imple-
mented in the human brain.

1.2.2 Cognitive models are not causal models of the brain...

The explanatory limits of cognitive-computational models become evident if we
observe the brain as a complex information-processing system. In his influential
work (Marr, 2010, I edition 1982), David Marr postulates that the processing
of information in the brain can be analyzed at three levels: computational, al-
gorithmic, and implementation. The first concerns the computational problem
the system is solving (i.e., retrieving the word form that is associated with the
acoustic input). The second level relates to the algorithm that the system uses
to solve that problem (e.g., searching in a vocabulary? or creating a shortlist
of matching items?); and the third to how that algorithm is implemented in the
brain’s wetware.

Cognitive computational models of word recognition address the first two lev-
els. They carry out the expected linguistic computation with a fine-grained de-
scription of the expected input-output relationships (e.g., frequency effects in
SWR, Brysbaert, Mandera, & Keuleers, 2018), and they propose algorithms to
achieve them. However, these models compute on symbolic abstractions, whose
relationship to the implementational substrate of the brain is opaque (Fitz, Ha-
goort, & Petersson, 2024). In cognitive models, it is difficult to establish a link
between the model representations and the neurobiological parts and processes
that govern brain activity. This has important consequences for the explanatory
status of these models. According to Kaplan and Craver (2011)

[...] the line that demarcates explanations from merely empirically
adequate models seems to correspond to whether the model de-
scribes the relevant causal structures that produce, underlie, or main-
tain the explanandum phenomenon.

And further, for models to be explanatory

(a) the variables in the model correspond to components, activities,
properties, and organizational features of the target mechanism that
produces, maintains, or underlies the phenomenon, and (b) the (per-
haps mathematical) dependencies posited among these variables in
the model correspond to the (perhaps quantifiable) causal relations
among the components of the target mechanism.
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The authors refer to these principles as the model-to-mechanism-mapping
(3M) requirements. The concept of mapping is pivotal here and explicitly refers
to the implementational level of description. If a cognitive model does not spec-
ify the neurobiological variables that correspond to its algorithmic components,
it is non-explanatory with respect to the causal generators of behavior (Fitz et al.,
2024). Similarly, Poeppel and Embick (2005) argue that existing neurolinguistic
approaches fail to establish explicit links between linguistic categories and brain
biology because of two intrinsic problems of the neuro-linguistics research pro-
gram, the ontological incommensurability and granularity mismatch problems;
together the Mapping Problem (MP). The first refers to the fact that linguistics
and neurobiological ontologies rely on different foundational entities; the latter
is that these ontologies have spatial and temporal scales that are not matched
(Fig.1.2).

Figure 1.2: Fundamental ontological units of linguistics and neuroscience
The lists provide a canonical inventory of neurobiological and linguistic phenom-
ena. Each domain is governed by principled relationships between the items, de-
noted as vertical connections. Contrarily, the interconnections across disciplines
are arbitrary (horizontal connections). Figure from Poeppel and Embick (2005).

Cognitive computational models of human and sWR the speech units and
words are represented as abstract categories with a transition probability, or
in some cases, as nodes of a network (Grossberg, 2003; Hannagan, Magnuson,
& Grainger, 2013; Marslen-Wilson, 1987; McClelland & Elman, 1986; Norris &
McQueen, 2008). The nodes and the probabilities are underspecified biological
entities. Thus it is not possible to trace these units in the brain activity (MP), nor
it is not possible to derive any causal dynamics to govern their interaction (3M).
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1.2.3 ... but dynamical systems models are

An alternative strategy to establish a mapping between linguistic and neurosci-
entific categories is to address Marr’s computational level starting from a biologi-
cally constrained level of implementation. This can be achieved if the neural and
linguistic processes are described in a dynamical systems framework. Dynamical
systems express the evolution of a set of variables through differential equations
and are extensively used in neuroscience (Gerstner, Kistler, Naud, & Paninski,
2014). For example, the dynamical systems are used to model the membrane
potential of neurons, which evolve in physical time and have physical units of
measurement. Thus, if the entities of linguistics could be reformulated in the
dynamical systems framework, one could aim to map language to the ontology
of brain parts with causal explanatory power.

Figure 1.3: Schematic of an adaptive information processing system for lan-
guage
The processing dynamics P, driven by input (⌃), state (⌦), and model param-
eters (M), produces its own internal state and possibly a language output (�).
The processing is coupled with learning dynamics L, it enables information en-
coding and retrieval across timescales. On short timescales, L acts as an active
processing memory. Figure from Fitz et al. (2024).

One crucial step is to formulate a theory of linguistic processing that happens
in physical time, as the temporal evolution of linguistic variables. This approach
is called causal modeling of language, and it has recently been proposed by
(Fitz et al., 2024) and investigated in a biological model of sentence processing
by Uhlmann (2020). Language processing is expressed as an adaptive dynam-
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ical system S, which couples a neural information processing device P and an
adaptive mechanism for storage and learning L (Fig.1.3). The operations in P
are driven by linguistic inputs (it 2 ⌃), the internal state of the system (st 2 ⌦),
and the linguistic knowledge both acquired with previous experience and en-
coded in the human genome (mt 2 M). These three elements can be combined
in a differential equation P : ds = P(s, i, m)d t that yields a new internal state
(s0 2 ⌦) and, optionally, an output (�). The adaptive mechanism L follows takes
a similar shape but operates on longer timescales. Its arguments are the internal
states (st), the linguistic knowledge (mt), and the developmental trajectory of
the individual over time (Tt). The adaptive mechanism updates the speaker’s
linguistic knowledge which is used recursively to parse new stimuli.

In addition, the states and dynamics of a dynamical system can also be inter-
preted as the stages of a computation. The equations L and P are the infinitesi-
mal version of the transition table of a Turing machine (Fitz et al., 2024). They
describe the input-output transformations, the state updates occurring during
the computation, and its memory structure. In an abstract sense, memory is an
adaptive change in the system’s state that encodes information about past events
(Chaudhuri & Fiete, 2016). Computing devices often distinguish between a fast
and volatile short-term memory (STM), and a more persistent long-term mem-
ory (LTM). In computing machines, memories are organized in data structures,
which are necessary to store and re-access the memory; the data structures in
which LTM and STM are organized in neurobiology are not expected to be the
same. In dynamical systems, the organization in data structures is reflected in
the hierarchy of dependencies and timescales among the coupled variables in
the formalism. All the variables in the system evolve according to one or mul-
tiple timescales on the basis of which long and short-term memory can be dis-
tinguished. In word recognition, acoustic inputs (it) force the internal states
along a trajectory P that is governed by processing memory of the phonologi-
cal evidence that has accumulated (st), and the long-term memory of abstract
linguistic categories previously acquired (mt).

1.2.4 A biologically constrained model of word recognition

The dynamical system view ties together brain operations, linguistic processing,
and computing machines. In theory, it provides a solution to the ontological
incommensurability problem. However, the problem of granularity mismatch
remains open. Because of their different scales and dynamics of interaction, it
is not trivial to determine which linguistic and neuroscientific elements can be
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mapped (Fig.1.4). Moreover, it is not clear how to evaluate the adequacy of this
mapping. To solve this conundrum, I adopt three design choices common in the
physical sciences, which determine the model’s structure and scope and will help
define the biophysical model.

• First, the model aims to elucidate the computations supporting the capacity
of word recognition. It should only include those biological and linguistic
elements that are necessary to it.

• Second, the model’s scope is limited to a range of timescales. Only neuro-
biological and linguistic entities that evolve within the timescales of word
recognition enter the model.

• Third, the model is a computational simulation. The simulation integrates
biophysical equations whose descriptive accuracy has to be independently
verified. Their evolution through time defines an input-output transfor-
mation, the linguistic computation.

The remainder of this introduction attempts to flesh out these design require-
ments, drawing on experimental work in psycholinguistics and neuroscience.

1.3 Representations and computations in spoken

word recognition

1.3.1 From sounds to abstract representations

At the computational level of analysis, word recognition is often divided into
two stages of processing, pre-lexical and lexical (McQueen, 2007; Scharenborg,
Norris, Bosch, & McQueen, 2005; Vitevitch et al., 2018). The pre-lexical stage
categorizes the input and transforms the sensory experience of the acoustic sig-
nal into a discrete perceptual experience of the linguistic sign (Liberman, Harris,
Hoffman, & Griffith, 1957; Warren, 1970). The second computational stage con-
cerns word retrieval from the mental lexicon. At this stage, word forms are ac-
cessed based on the pre-lexical and contextual evidence, if available (McQueen,
2005). The word form memory that optimally fits the phonological and contex-
tual constraints is selected, and the corresponding lexical item is retrieved. (Ha-
goort, 2019; McQueen, 2005; Scharenborg et al., 2005; Vitevitch et al., 2018)
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The pre-lexical stage infers abstract representations, such as phonemes, de-
spite the idiosyncrasies of speakers and variable acoustic contexts. This chal-
lenge is known as the ‘lack of invariance’ problem (Liberman, Cooper, Shankweiler,
& Studdert-Kennedy, 1967). A shared view in the psychology of language is
that speakers solve the problem through an active process of speech normal-
ization. They infer phonological categories from the contingent sound, access
word memories based on these experience-independent categories (Eisner & Mc-
Queen, 2018; Nusbaum & Magnuson, 1997), and parse the speech sounds into
a hierarchy of linguistic representations (Jackendoff, 2007; McQueen, Cutler,
& Norris, 2006). However, the form of these abstractions is still debated, and it
is not yet clear whether the categorical representations that linguists postulate
have one-to-one correlates in the neural processes that support speech compre-
hension.

Because of the uncertain nature of pre-lexical forms, a more coarse-grained
classification divides them into segmental and supra-segmental categories. The
segmental features are phoneme-sized and the suprasegmental include syllables,
prosodic words, lexical stress patterns, and intonational phrases, which are nec-
essary to distinguish among words in certain languages (McQueen, 2005). Their
neural correlates are organized in an ascending hierarchy of spectro-temporal
complexity, in which both linguistic and non-linguistic categories can be traced
(e.g., temporal landmarks and speaker identity, Berezutskaya, Freudenburg,
Güçlü, van Gerven, & Ramsey, 2017; Evans & Davis, 2015; Formisano, De Mar-
tino, Bonte, & Goebel, 2008; Hullett, Hamilton, Mesgarani, Schreiner, & Chang,
2016). Although the neurobiological evidence is inconclusive on which are
the right pre-lexical representations that a word recognition model should con-
sider, the spatial and temporal scales at which segmental and suprasegmental
processes take place are clearer (Formisano, 2019; Sjerps & Chang, 2019; Yi,
Leonard, & Chang, 2019).

Both speech and other sounds activate the primary auditory cortex (PAC, lo-
cated on Herschl’s Gyrus in humans), but only sounds whose spectro-temporal
structure is sufficiently complex (such as phonetic features) induce activation of
the Superior Temporal Gyrus (STG). The HG and the STG are anatomically ad-
jacent, and the neural signals propagate within 50 ms from the PAC to the STG.
When the speech chunks are sufficiently long (on the order of 1 s, thus con-
taining suprasegmental information) speech-selective brain activity also invades
the Superior Temporal Sulcus in a spatiotemporal pattern that moves ventro-
medial from the posterior STG (120 ms) to reach the mid-STS within 250 ms.
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In this time period, the ventromedial gradient of activity moves towards the
anterior STG and Middle-Temporal Gyrus (MTG), where the neural correlates
of word form memories activate (Armeni, Willems, van den Bosch, & Schoffe-
len, 2019; Cibelli, Leonard, Johnson, & Chang, 2015; Ojemann, 2013; Ojemann,
Schoenfield-McNeill, & Corina, 2009).

1.3.2 Unification of phoneme sequences into words

The retrieval of word forms from abstract representations is achieved in the lex-
ical stage of word recognition. While the pre-lexical stage comprises a complex
taxonomy of representations, the lexical stage is dominated by a single one, i.e.,
word form (McQueen, 2007). The lexical stage is divided into three phases that
unfold in a cascaded, incremental stream. Words are pre-activated in parallel
(lexical access), and when sufficient evidence is available one of the lexical can-
didates is selected and integrated into the sentence meaning (lexical selection,
Marslen-Wilson & Zwitserlood, 1989; McQueen, 2007). Unless contextual infor-
mation already excludes some of the candidates, lexical selection usually occurs
at the word’s uniqueness point, that is, the first speech unit that allows one to
distinguish between the given word and other competitors in the lexicon.. Even-
tually, the lexical item is integrated into the sentence context (Hagoort, Hald,
Bastiaansen, & Petersson, 2004).

Word form memories are accessed based on the correspondence between the
pre-lexical evidence and the phonological prototype of the word form in the lex-
icon. In most modern languages, the ratio between the items contained in the
lexicon and the number of segmental and suprasegmental speech units in the
language is strikingly high. One immediate consequence of the wealth of word
forms is that multiple words share the same pre-lexical features and can be dis-
tinguished only based on their sequential order. Some words are even contained
in other words. For example, the lexicon of an average English speaker contains
on the order of 50 thousand words, composed of less than 50 speech sounds,
among which PEST (pEst) and PETS (pEts), and BONE (b@Un) and TROMBONE
(tromb@Un). Thus, activation of word form representations requires the compo-
sition of pre-lexical features which must be sensitive to serial order3, and inte-
grates information at multiple timescales (e.g., segmental and suprasegmental).

3The composition of pre-lexical elementary linguistic units can also be viewed as a form of
Unification over the pre-lexical memories activated by the speech input (Memory, Unification,
Control model, Hagoort, 2013)
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Crucially, composition is achieved on short-lived, transient information that re-
quires a processing memory.

The fact that the same phonemes presented in different order must be mapped
to different words is sometimes referred to as the Temporal Order Problem (TOP)
(Magnuson, Mirman, & Myers, 2013). Computational models of word recogni-
tion must be able to solve it and retrieve words with full phonological overlap.
The most common algorithmic solution consists of adding an extra feature to
the pre-lexical unit that specifies the position in the word, for the onset time
of the phoneme. We refer to these units as time-coded or position-dependent
pre-lexical representations. In connectionist models (e.g., (TRACE McClelland
& Elman, 1986) and (TISK Hannagan et al., 2013)), these units, be they acous-
tic phones, allophones, or phonemes, activate supra-segmental nodes that use
the temporal features of the pre-lexical representation to select the correct word
form.

Crucially, the assumption of position-dependent representation does not re-
flect experimental evidence on the neural correlates of speech integration. For
example, Gwilliams, King, Marantz, and Poeppel (2022) shows that phonetic
content is encoded similarly at different serial positions within a word, indi-
cating that position-specific (or context-dependent) features may not be part of
the neurocomputational machinery for word recognition. A possible way out
from the impasse is proposed by Yi et al. (2019). The authors suggest that the
acoustic and temporal landmark features resolved in the STG are combined by a
specialized temporal circuit, which time-stamps the phonemic features and makes
them position-dependent units. However, the model is only a sketch and it is not
demonstrated that this computation can be carried out in neurobiology. In any
case, the synthesis of position-dependent features by itself does not explain how
these features are maintained in processing memory, nor how their composition
is achieved. Fig.1.4B, borrowed from Gwilliams, Linzen, Poeppel, and Marantz
(2018), highlights that these are missing pieces of the puzzle in our understand-
ing of human word recognition.

1.3.3 What must be explained?

I conclude this section with a brief recapitulation of the linguistic elements and
processes that must be included in the model to be explanatory of the word
recognition capacity.
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Figure 1.4: Algorithms for combining phonological information into word
forms
The top panel shows the integration of a hierarchy of acoustic and linguistic
features in a word recognition model by Gwilliams et al. (2018). The acoustic
input is parsed into linguistic units of increasing granularity, up to the phoneme
level. Phonemes are then composed into sequences in iv. It is not known in
which cortical region this operation occurs (bottom panels), nor which neural
mechanisms support it.

• Linguistic units activate representations distributed across the entire STG,
suggesting that multiple and overlapping neural populations are co-activated
for each linguistic unit (Mesgarani, David, Fritz, & Shamma, 2014; Yi et
al., 2019).

• The timescales of these representations are on the order of 20 ms to 150 ms
for the pre-lexical units (Gwilliams et al., 2018) and 200 ms to 500 ms for
lexical units (Tucker et al., 2019).

• The computation that supports the retrieval of word memories from pre-
lexical features, e.g., phonemes, is a many-to-many mapping with parallel
and fast access to several word forms (Allopenna, Magnuson, & Tanen-
haus, 1998; Marslen-Wilson & Welsh, 1978).

• The selection of word forms is mediated by competition between lexical
neighbors (Luce & Pisoni, 1998; McQueen, Norris, & Cutler, 1994).
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• Access and selection rely on fleeting sensory information that is maintained
in processing memory. Because of phonological overlap, this memory must
also encode the order in which the pre-lexical representations were acti-
vated (Magnuson et al., 2013; Yi et al., 2019).

1.4 Brain anatomical elements and computations

The brain’s anatomy and physiology are the second term of the mapping hy-
pothesis I intend to formulate. In accordance with the Neuron doctrine (Cajal,
1954), neurons are the fundamental computational units of the brain, and neu-
ral networks are the engine of information processing. Following this assump-
tion, I will introduce the elements of processing in neuronal systems and brain
anatomy. The interested reader can find an exhaustive description in Kandel et
al. (2012), Gerstner et al. (2014), and Braitenberg and Schüz (2013).

1.4.1 Elements of neuronal systems

Neurons are large cells with a central body, the soma, and hundreds of ex-
tensions that branch from the soma to connect with other cells. One of these
branches is the axon, which transmits electrical signals integrated within the
soma to the neighboring cells. The other branches are called dendrites and,
normally, receive inputs from the axons of other cells. The connections between
axon-terminals and dendrites are called synapse. The synapse is the site where
the pre-synaptic neuron makes contact with the post-synaptic cell.

When a cell is sufficiently stimulated, it emits an action potential and its
axon terminals release a bulk of neurotransmitters on the post-synaptic cells.
The neurotransmitters bind to a group of proteins sitting on the post-synaptic
cell, the synaptic receptors, and favor the influx of ions in the membrane. The
amount of neurotransmitters and receptors available in the synapse determines
the strength of the pre-post synaptic interaction. This is commonly referred to
as synaptic strength. Depending on their electric charge, the ions will increase or
decrease the membrane potential. When the membrane potential of the soma
reaches a certain threshold, it will lead to an action potential so that the process
starts again.

Because the action potentials are all-or-none events, they carry binary infor-
mation about the state of the neuron. However, post-synaptic cells also have
access to the firing rate at which spikes are emitted. The firing rate is one of the
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main indicators of the state of a cell or a population of cells in the brain network.
Beyond offering a read-out of the neuronal states, the firing rate plays a role
in synaptic plasticity, that is the process governing the increase and decrease
in synaptic strength between two cells. The main form of plasticity described
in neural networks is associative, or Hebbian (Hebb, 1949). Cells that are co-
activated, have a large firing rate, tend to strengthen their reciprocal synapses
and form engrams. The group of cells that is tightly connected after associative
plasticity is named a cell assembly.

Brain networks contain several types of neurons, that divide by their electro-
physiological properties and the types of connections they make with other cells.
The main distinguo is between excitatory and inhibitory neurons. The former
creates synapses that, upon the arrival of an action potential, depolarize the
post-synaptic cell. Excitatory transmission is mediated by glutamate, and thus
the excitatory cells are also called glutamatergic. In contrast, inhibitory cells
release the GABA neurotransmitters, which bind to receptors that favor the influx
of negative ions. They hyper-polarize the cell and prevent it from firing an
action potential.

The processes hitherto described are relatively generic, and they apply to the
nervous system of most of the animal kingdom. On the other hand, language,
and spoken word recognition, is an exquisitely human capacity. To understand
the differences between humans and non-human animals we have to take a step
backward and look at the brain anatomy.

1.4.2 Neurobiological underpinnings of word recognition

The human brain comprises a network of 90 billion neurons tied together by a
hundred trillion synapses. (Braitenberg & Schüz, 1998a). The brain structure
that the most distinguishes humans from non-human animals is the neocortex
(Molnár & Pollen, 2014). The neocortex is also considered the substrate of lin-
guistic memories (Formisano et al., 2008; Sjerps & Chang, 2019; Yi et al., 2019).
Here, cells are ontogenetically organized in micro-columns of hundreds of cells
(Mountcastle, 1957, 1997), which emerge during the formation of the cortical
sheet, a thin layer of 2 mm to 4 mm which contains most of the cortical cell
bodies (Adesnik & Naka, 2018; Leuze et al., 2014; Senzai, Fernandez-Ruiz, &
Buzsáki, 2019). Within the cortical sheet, neurons are divided into three main
layers: granular, infragranular, and supragranular. Layer structure varies across
the entire cortex, and the forebrain regions can be characterized by the type of
cell body and connective tissue they contain, i.e., cyto- and myelo-architecture,
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and the receptor types these cells express (Palomero-Gallagher & Zilles, 2017;
Zilles & Amunts, 2009).

A valuable approach to determine which of these components should be con-
sidered for a biological model of word recognition is to look at the spatial and
temporal scale of the cognitive problem and then parcellate the anatomical hier-
archy into its characteristic scales ( Fig.1.5). Brain timescales range from tens of
microseconds, at which molecular signaling occurs, to tens of seconds, at which
the brain acts as a single complex system, to the lifetime of linguistic, episodic,
and semantic memories. Notice that processes that live on long timescales also
exist at shorter ones and the reverse; however, with certain precautions, the evo-
lutions of dynamical systems at different timescales can be considered disentan-
gled. In mathematical terms, this is achieved by separating equations and pre-
senting slower or faster processes as effective parameters rather than variables
(Sec. 4.6, Gerstner et al., 2014). The result is that the systems are simplified
and can be considered, to an extent, in isolation.

The schematic in Fig.1.5 highlights six anatomical units that live on the hun-
dreds of millisecond timescales; synapses, dendrites, neurons, cortical layers,
cortical columns, and local circuits. All these elements are contained within a
brain region, such as the temporal lobe or perisylvian region, and span a spatial
scale of a few centimeters. In addition, we have to consider the two other physio-
logical processes that enable neurons to communicate with each other and learn
from experience, action potentials and synaptic plasticity.

1.4.3 Models of neuronal networks

The separation of the brain’s spatial and temporal scales indicates that a neuro-
biological model of word recognition must account for the activity of neurons
in the Superior and Middle Temporal Gyri. However, we do not have sufficient
specifications of the cell types and connectivity patterns in this area of the hu-
man brain to constrain our network model. Similarly, it is beyond our capacity to
simulate a replica of the actual system. Instead, I implement a generic network
model which aims to account for the fundamental capacity of word recognition
listed in Section 1.3.3. As I will demonstrate throughout the thesis, such a simpli-
fied model already provides precious insights into which physiological processes
may support lexical access and selection.

The core of the network is the neuron model. Neuron models account for the
dynamics of the membrane potential(Fig.1.6A, Hodgkin & Huxley, 1952; Koch,
1998). A realistic neuron model typically has several variables that describe the
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Figure 1.5: Elements of brain neurobiology The organization of the nervous
system exhibits temporal and spatial scales. There is a significant overlap in
scales, as dendrites, cells, and columns operate on similar temporal and spa-
tial levels. Because word recognition occurs within 10 ms to 500 ms from the
acoustic stimulus, we select only those elements that live in this temporal range.
The elements in red shade, with boldfaced font, are the anatomical elements
included in the model described in the following chapters. Image adapted from
Lytton et al. (2017)

membrane potential in different regions of the cell. However, they are computa-
tionally hard to integrate, which puts limits on their use in network models. On
the other end of the spectrum, reduced neuron models describe a cell with only
a few differential equations that focus on the evolution of the membrane poten-
tial at the axon hillock (Brette & Gerstner, 2005). These models are called point
neurons and constitute the common implementation of single cells in biological
neural networks.

Despite their mathematical convenience, point neurons neglect the role of
dendrites in neuronal integration and only model the spike generation mecha-
nism at the soma. According to recent experimental and computational research,
this view is excessively simplistic and may lead to overlooking the computations
carried out within the cell (Fig.1.6B, Larkum, 2022). For example, it has been
shown that dendrites foster the interaction among synapses sitting on the same
branch and exhibit non-linear responses to pre-synaptic activity if their poten-
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tial is sufficiently depolarized (Fi̧sek & Häusser, 2020; Larkum, 2022; Payeur,
Béïque, & Naud, 2019; J. Schiller, Major, Koester, & Schiller, 2000; Wilmes &
Clopath, 2023).

The network model also defines the biophysical equations for the synapses that
connect the neurons. Network models of information processing implement two
types of receptors, glutamatergic and GABAergic. The former occurs when the
pre-synaptic cell is excitatory, the latter when it is inhibitory. Within each class,
there are fast (AMPA, GABAA ) and slow receptors (NMDA, GABAB ) (Fig.1.3C,
D, Roth & van Rossum, 2009) Concerning the plasticity, the models follow the
associative plasticity scheme described earlier. Synapse strengthens when both
cells are active. A more refined form of plasticity accounts for the causal role of
the pre-synaptic cell in leading the post-synaptic to fire, and include the time of
the spike. This is called spike-time-dependent plasticity (STDP, Clopath, Büsing,
Vasilaki, & Gerstner, 2010).

Eventually, one has to indicate the types and number of neurons and the den-
sity of neural connections Fig.1.3E. Because of the computational constraints
discussed, network models are normally much smaller than actual brain net-
works. However, if the network is above a certain scale (i.e., 103

�104) the model
can still account for the emergence of network dynamics observed in neuronal
circuits, for example, excitatory/inhibitory balance (Brunel, 2000; Hiratani &
Fukai, 2017; Litwin-Kumar & Doiron, 2014; Renart et al., 2010; Zajzon, Duarte,
Mahmoudian, Morrison, & Duarte, 2019).
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Figure 1.6: Models of the anatomical elements supporting word recognition
(A) Model of action potential initiation by Hodgkin and Huxley (1952). The
model describes the neuronal membrane as an electrical circuit, it introduces a
system of differential equations to describe the evolution of the ion channels’
opening. (B) Excerpt from the study by Ujfalussy et al. (2018), the panel shows
two possible reductions of a complex, realistic dendritic tree. The model on the
left is a point neuron reduction, and the model on the right is a four-compartment
reduction. The study demonstrates that few compartments are sufficient to ex-
plain most of the computations taking place in the realistic model. (C) Net-
work models implement four main receptor types. The curves in dark and light
blue represent the fast and slow excitatory receptors (AMPARs and NMDARs).
The receptors in dark and light red represent the inhibitory ones (GABAA and
GABAB ). (D) The timescales of these receptors change depending on the neu-
ron types connected by the synapse. The illustration provides the timescale of
the AMPA and GABAA receptors (same colors in C) when it applies to excitatory
(E) or inhibitory (I1, I2) cells. (E) An example of a small circuit with one type of
excitatory neuron (blue) and two inhibitory neurons (red, orange), the neurons
are connected by synapses with type-specific properties. Panels C, D, and E are
adapted from Duarte and Morrison (2019).
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1.4.4 Biologically constrained models of associative

memories

The models presented describe the dynamics of brain networks and are useful for
formulating hypotheses and computational experiments concerning the neural
substrate of cognitive operations. For example, they have been used to prove that
biological networks with Hebbian plasticity support the formation of associative
memories in the form of cell assemblies (Litwin-Kumar & Doiron, 2014; Zenke,
Agnes, & Gerstner, 2015). This result is remarkable because it bridges a long-
standing theory of animal – and human – cognition with the activity of single
cells in a brain-like network (Amit, 1995; Fuster, 1997; Ojemann & Schoenfield-
McNeill, 1998).

Importantly, cell assemblies have also been indicated as the possible substrate
of word memories (Pulvermüller, 1999). Garagnani, Wennekers, and Pulver-
müller (2009) and Tomasello, Garagnani, Wennekers, and Pulvermüller (2018)
have developed biologically constrained networks that implement lexical mem-
ories through cell assemblies. The models account for the organization of lexical
memories across brain areas and can give mechanistic insights concerning the
role of motor and sensory areas in cognition.

However, these models of lexical memories, akin to those of associative mem-
ories, do not consider the interaction of different cell assemblies: each memory
is stored independently of the others. This is a general issue in biological models
of memory, they struggle to implement any cognitive operation that goes beyond
simple associations. Gallistel (2021) presents a severe critique of the problem.
In the author’s view, biological models that express memories through the synap-
tic junction fail to explain how living beings store relational memories. In the
case of word memories, the relationship is the order of phonemes. This view
is shared in psycholinguistics, Poeppel and Idsardi (2022) argued that there are
no implementation proposals for storing word memories and, consequently, our
understanding of the neural organization of word memories [...] is somewhere
between unsatisfactory and incoherent.

The limits of present models of associative memories –namely, the lack of
mechanisms to encode relationships and solve the Temporal Order Problem–
is the starting point of the present thesis. The present study introduces dendritic
structure in a biological model of associative memories. The remainder of this
thesis will show that this is sufficient to foster the formation of network memo-
ries that are sensitive to the order of the input presented, thus encoding order
relationships.
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1.5 Overview of the thesis

The present thesis is structured into a General Introduction, four experimen-
tal chapters, and a General Discussion. Each of the experimental chapters is
intended as a journal article. One of them has been published, one has been
submitted and the remaining two are in preparation. The content of the experi-
mental chapters is the following.

Chapter 2 investigates dendritic integration in a novel reduced model of the
pyramidal cell, the Tripod neuron. The model is endowed with two segregated
dendritic compartments and NMDA and GABAB receptors on each with parame-
ters from human cortical cells. The combination of segregation and long synaptic
timescales allows the model to reproduce computations that are inaccessible to
point-neuron models, such as coincidence detection, on-path inhibition, non-
symmetric logical operations, and temporal integration. Temporal integration is
supported by the slow decay of dendritic membrane potential, which I refer to
as dendritic memory.

The first chapter individuates computational differences in the model but does
not assure that these hold when the Tripod is tested in more naturalistic condi-
tions. This analysis is achieved in Chapter 3. Here, the model was studied in re-
sponse to a balanced stream of excitatory and inhibitory inputs. The study shows
that the dendritic integration also offers the substrate for the high-conductance
state and the UpDown cortical dynamics.

The Tripod model is investigated in the context of a network of neurons in
Chapter 4. Here I study a network of Tripod neurons and inhibitory cells. The
network implements excitatory and inhibitory STDP. In the chapter, I analyze the
capacity of the network model to form hetero-associative memories and recog-
nize sequences. The memories represented pre-lexical and lexical units in the
form of distributed cell assemblies. I individuate in dendritic memory and in the
specific network structure that emerges from the plasticity protocol the mecha-
nism that supports the recollection of sequential memories.

Finally, in Chapter 5, the network model is compared to computational and
behavioral results in the psychology of language. The study indicates that the
model is accurate in predicting classical results in word recognition, such as the
incremental and cascade nature of the process, the competition among lexical
neighbors, and the robustness to variability in the inputs. In addition, the results
indicate that word recognition can be achieved in biologically plausible networks
without position-specific representations and open a novel perspective on the
computational requirement of pre-lexical representations.
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Abstract

Neuron models with explicit dendritic dynamics have shed light on mechanisms
for coincidence detection, pathway selection, and temporal filtering. However,
it is still unclear which morphological and physiological features are required to
capture these phenomena. In this work, we introduce the Tripod neuron model
and propose a minimal structural reduction of the dendritic tree that is able
to reproduce these dendritic computations. The Tripod is a three-compartment
model consisting of two segregated passive dendrites and a somatic compart-
ment modeled as an adaptive, exponential integrate-and-fire neuron. It incor-
porates dendritic geometry, membrane physiology, and receptor dynamics as
measured in human pyramidal cells. We characterize the response of the Tri-
pod to glutamatergic and GABAergic inputs and identify parameters that sup-
port supra-linear integration, coincidence-detection, and pathway-specific gat-
ing through shunting inhibition. Following NMDA spikes, the Tripod neuron
generates plateau potentials whose duration depends on the dendritic length
and the strength of synaptic input. When fitted with distal compartments, the
Tripod neuron encodes previous activity into a dendritic depolarized state. This
dendritic memory allows the neuron to perform temporal binding and we show
that the neuron solves transition and sequence detection tasks on which a single-
compartment model fails. Thus, the Tripod neuron can account for dendritic
computations previously explained only with more detailed neuron models or
neural networks. Due to its simplicity, the Tripod model can be used efficiently
in simulations of larger cortical circuits.
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2.1 Introduction

Biological neurons integrate complex afferent inputs within a dendritic struc-
ture which accounts for most of the spatial extent of a neuron. The dendritic
arborization hosts a significant part of excitatory and inhibitory synapses and
processes the input signals before the resulting signal reaches the cell body and
in particular the axon hillock. In the dynamical systems theory of neural informa-
tion processing, neurons function as non-linear, non-stationary (and stochastic)
operators, and the dendrites determine important aspects of the neurons’ trans-
fer characteristics (Gidon et al., 2020; Larkum, Wu, Duverdin, & Gidon, 2022;
Payeur, Guerguiev, Zenke, Richards, & Naud, 2021; Poirazi & Papoutsi, 2020;
Stuart & Spruston, 2015).

Neuron models that explicitly consider the dynamics of the dendritic tree
are typically referred to as multi-compartment models. These models capture
the spatio-temporal dendritic dynamics by introducing additional state variables
and differential equations that describe the dynamics of the dendritic mem-
brane potential (Koch, 1999). Depending on the implemented dendritic ar-
chitecture, membrane dynamics, and receptors/ion-channel repertoire, high-
resolution multi-compartmental models can reproduce the membrane physiol-
ogy in detail (Branco, Clark, & Häusser, 2010; Ujfalussy et al., 2018; Winnubst
& Lohmann, 2012). Simulations with neuron models including dendrites shed
light on important problems of brain functions, including unsupervised learning
(Bono & Clopath, 2017; Payeur et al., 2021), signal filtering (G. R. Yang, Mur-
ray, & Wang, 2016), temporal discrimination (Branco et al., 2010), coincidence
detection (Mel, 1992; Poirazi, Brannon, & Mel, 2003), structured sequence pro-
cessing (Ahmad & Hawkins, 2016; Haga & Fukai, 2018), and the creation and
maintenance of associative memories (Kastellakis, Silva, & Poirazi, 2016). This
body of evidence suggests that dendritic processing is fundamental to nervous
system computation. However, the computational cost of simulating detailed
multi-compartment models impedes their use in large networks. Thus, most
studies that analyze processing properties in large networks do not explicitly
consider dendritic structure but often use simpler point-neuron models instead.
These studies regard neural computation as the outcome of the particular net-
work structure used, disregarding the complexity of cell-internal processes (Bas-
tos et al., 2012; Duarte & Morrison, 2019; Haeusler, Schuch, & Maass, 2009;
Potjans & Diesmann, 2014).

The present work introduces a computationally efficient, three-compartment
model that includes relevant dendritic degrees of freedom and remains simple
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enough to be used in larger network simulations. This model, which we call
the Tripod neuron, is derived from previous theoretical and experimental work,
and three main ingredients define its dynamics. First, the Tripod has two den-
dritic compartments. This is the minimum number of dendritic compartments,
in addition to the somatic compartment, which allows a branching dendritic
tree. Several studies have shown that relatively few dendritic degrees of free-
dom are sufficient to reproduce the non-linear integration effects of apical den-
drites in pyramidal cells (Larkum, 2013; Poirazi et al., 2003). Accordingly, an
extensive comparison of the number of dendritic compartments to mimic in-
vivo dynamics indicates that two compartments are sufficient to explain most
of the observed variability in the somatic membrane potential (Ujfalussy et al.,
2018; Wybo et al., 2021-01-26, 2021), and models with more than two den-
dritic compartments show modest qualitative differences (Ahmad & Hawkins,
2016; Bono & Clopath, 2017; Kastellakis et al., 2016). Secondly, the inter-
nal dynamics of the Tripod neuron are consistent with observed neurophysi-
ology. The dendritic structure consists of two isolated compartments connected
to the somatic compartment. Each compartment integrates fast and slow exci-
tatory and inhibitory inputs locally through conductance-based synapses, and
we show that a simple circuit approximation (Koch, 1999) suggests that a sin-
gle degree of freedom, the electrotonic distance from the soma, determines an
integration time-scale of the dendrites and analytically defines two types of com-
partments, here called short and long dendrites. Finally, we investigated slow
voltage-dependent NMDA receptors that mimic an important property of den-
dritic computation. When the post-synaptic potential exceeds a certain thresh-
old, the NMDA receptors open to Ca2+ ions and boost post-synaptic membrane
depolarization, generating a so-called NMDA spike, or plateau potential (An-
tic, Zhou, Moore, Short, & Ikonomu, 2010; Mel, 1992; Tabone & Ramaswami,
2012). This non-linear phenomenon, along with self-regenerative events such as
back-propagating spikes (Rapp, Yarom, & Segev, 1996) in proximal dendrites,
enrich the computational toolkit of the dendrites and determine the most in-
teresting properties of the present model. The slow voltage decay of the den-
dritic potential provides a short-term dendritic memory which is not accounted
for by other adaptation mechanisms in single-compartment models, for example
(Brette & Gerstner, 2005; Fitz et al., 2020). This aspect of our work complements
previous studies of NMDARs in models with a small number of compartments
(Bono & Clopath, 2017; Mel, 1992; G. R. Yang et al., 2016), and provides a basis
for further explorations of the role of NMDA spikes in neuronal working mem-
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ory (Fitz et al., 2020; Wang, 1999), and temporal binding (Augusto & Gambino,
2019; Baggio & Hagoort, 2011).

2.2 Methods

2.2.1 The Tripod neuron model

The Tripod neuron is composed of three separate computational elements or
compartments. It has an axosomatic compartment, representing the soma and
perisomatic locations, and two electrotonically segregated dendritic compart-
ments coupled to the soma in a Y-shape (Fig.2.1).

Axosomatic compartment. The soma was modeled as an adaptive exponen-
tial integrate-and-fire (AdEx) neuron (Brette & Gerstner, 2005). It is a two-
dimensional neuron that models the dynamics of the somatic membrane poten-
tial V s and an adaptive current w:

Cs
m

dV s

d t
= �gs

m

ï
(V s
� Vr) +�T exp

V s
� VT

�T

ò
+

�

X

k

gk(t)(V s
� Ek)� w+ Id (2.1)

⌧w
dw
d t

= �w+ a(V s
� Vr) (2.2)

The leak conductance gs
m defines the permeability of the somatic membrane, Cs

m

its capacitance and gk the set of variable synaptic conductances (Fig.2.1B). The
synaptic conductances and reversal potentials Ek are further described in the
section Synaptic dynamics below. We use the superscript s throughout to refer to
variables and parameters of the somatic compartment, whereas the superscript
d refers to dendritic compartments. The first equation of the AdEx neuron aims
to reproduce the sub-threshold and spike-onset dynamics of pyramidal cells. For
a membrane potential V s below the rheobase threshold VT , the neuron behaves
as a leaky integrator of the currents from the dendritic compartments Id and the
somatic leakage conductances gk(V s

� Ek). For larger depolarizing events, the
membrane potential exceeds the rheobase threshold V s > VT and activates the
exponential non-linearity, mimicking a spike-generation mechanism. The slope
of the exponential growth is governed by�T . The spike events occur at times t f

when V s exceeds the spiking threshold uth. Afterward, the membrane potential
is reset to Vr and the adaptation current w is increased by a constant value b.
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The adaptation currently accounts for several physiological processes and de-
creases the excitability of the neuron after it has spiked. All parameters of the
somatic compartment were fixed and set to the values used in Brette and Gerst-
ner (2005), except for the somatic leak conductance which was set to 40 nS in
agreement with the multi-compartment model of Bono and Clopath (2017), see
Table 2.1. The reset potential of the AdEx model has been set to ur = �70.6mV
as in (Brette & Gerstner, 2005) rather than to ur = �55 mV (Bono & Clopath,
2017; Duarte & Morrison, 2019) so that the bursting behavior in the Tripod will
depended only on the dendritic dynamics.

Dendritic compartments. Dendritic compartments were approximated as con-
ductive cylinders whose voltage was governed by a passive membrane-patch
equation similar to the soma but lacking mechanisms for spike generation and
intrinsic adaptation:

Cd
m

dV d

d t
= �gd

m(V
d
� Vr)�
X

k

gk(t)(V d
� Ek)� Id (2.3)

Id = gd
ax(V

d
� V s) (2.4)

The current Id was computed as the potential difference between the dendritic
and somatic compartment, multiplied by the axial conductance gd

ax (Fig.2.1C).
Current flow was positive from the dendrites to the soma, Id > 0, except when
the somatic potential Vs exceeded the firing threshold and the neuron emitted
a spike. Consistent with Bono and Clopath (2017), we captured the backprop-
agation of somatic action-potentials by clamping Vs(t f ) to 20 mV for 1 ms. The
effect of the back-propagating action potential is illustrated in Fig.2.2D.

Dendritic geometry. The capacitance Cd
m, leak conductance gd

m, and axial con-
ductance gd

ax of the dendritic compartments depended both on the geometry and
the membrane properties. The macroscopic parameters Cd

m, gd
ax and gd

m can be
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Figure 2.1: Schematic of the Tripod neuron
(A) Dendritic compartments were modeled as cylindrical segments of a cable
with length l and diameter d. Their electrical properties were set by the mem-
brane patch equations (Eqs. 2.5, 2.6, 2.7) and membrane-specific parameters
(Table 2.2). When dendrites had a larger potential than the soma, current flowed
along the dendritic axis towards the soma. (B) Circuit diagram of a dendritic
membrane patch with time-varying conductances across the membrane. Con-
ductances were regulated by glutamatergic receptors gGluRs or GABAergic recep-
tors gGABA with reversal potentials EGluRs and EGABA, respectively (Table 2.4). The
membrane reversal potential Er coupled in series with the leak conductance gm
and the membrane acted as a capacitance Cm with respect to the extracellular
space (ground). The membrane potential Vm was determined by the currents
flowing to the dendritic compartment. (C) The dendritic potentials V1 and V2
were coupled to the somatic membrane Vs through the axial conductances g1

ax
and g2

ax . The resulting current I1 + I2 flowed dromically from the dendrites to
the soma. (D) The Tripod neuron with two dendrites and a somatic compart-
ment. Each dendrite received synaptic input mediated by four types of recep-
tors, AMPA, NMDA, GABAA and GABAB . Distal dendritic compartments were
modeled using a smaller axial conductance compared to proximal ones. The
spike-generating soma is represented as a triangle.
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computed from the relative densities cm, rax andrm via the standard cable-theory
(Koch, 1999):

Cm = ⇡cmld (2.5)

gd
m = ⇡

ld
rm

(2.6)

gd
ax =

⇡

4
d2

rax l
(2.7)

where l and d refer to the length and diameter of the dendritic cylinder (Fig.
2.1A), respectively. The microscopic parameters cm and rm reflect the trans-
membrane capacitance and resistance per unit of surface area and rax the axial
resistance per units of volume that a dendritic current experiences in the direc-
tion of the axosomatic compartment. The integration timescale ⌧d of a dendritic
compartment is given by the effective timescale of the corresponding RC circuit:

⌧d ⇠
Cd

m

gd
ax + gd

m

(2.8)

Synaptic dynamics. For synaptic transmission, we considered the principal re-
ceptors concerning excitation and inhibition, including two glutamatergic recep-
tors with fast (AMPA) and slow (NMDA) dynamics, and two GABAergic receptors
with short (GABAA ) and long (GABAB ) timescales. Each receptor was modeled
as a conductance with double-exponential kinetics (Roth & van Rossum, 2009):

gk(t) = ḡsyn
k Nk

⇣
exp
Ä
�

t�t0
⌧r

k

ä
� exp
⇣
�

t�t0

⌧d
k

⌘⌘
(2.9)

with k 2 {AMPA, NMDA, GABAA, GABAB} indicating that each receptor has specific
parameters. The equation describes the rise and decay of the receptor conduc-
tance gk. The timescale of rise and decay is given by ⌧r and ⌧d while the am-
plitude of the curve is defined by the maximal conductance parameter gs yn. To
ensure that the amplitude equals ḡsyn

k , the conductance was scaled by the fixed
normalization factorNk. This normalization factor is computed, for each recep-
tor type, as

Nk =
Ä
�e�t peak/⌧r

+ e�t peak/⌧r
d

ä�1
(2.10)

t peak
k =

⌧d⌧r

⌧d �⌧r
ln
⌧d

⌧r
(2.11)
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The ratio between the maximal conductance of the NMDA and the AMPA recep-
tor is defined as the NMDA-to-AMPA ratio (NAR). The conductance gating of
the NMDAR depends on the intra-cellular depolarization which is captured by a
multiplicative voltage-gating mechanism:

gNMDA = ḡsyn
NMDAG(v)

G(v) =
Å

1+
C

3.57µmol/L
· e��v
ã�1

(2.12)

where � regulates the steepness of the voltage-dependence. The extracellular
concentration C of magnesium ions Mg2+ was fixed at 1 µmol/L. These equa-
tions and parameters were obtained from Jahr and Stevens (1990). The rise
and decay timescales of the NMDAR, the NAR, and � assume different values
in mouse (Duarte & Morrison, 2019) and human neurophysiology (Eyal et al.,
2018). All compartments were endowed with excitatory and inhibitory synapses
but differed in relative receptor composition and the corresponding parame-
ters. Following previous experimental findings (Petralia, Yokotani, & Wenthold,
1994; Schulz, Knoflach, Hernandez, & Bischofberger, 2018) and modeling work
(Pongracz, Poolos, Kocsis, & Shepherd, 1992), NMDARs were located only on
the dendritic compartments. However, this was inconsequential in the Tripod
model because the voltage threshold for NMDAR activation was larger than the
somatic firing threshold, thus resulting in no contribution of NMDA channels
to the somatic synaptic current. During stimulation of glutamatergic receptors,
both NMDARs and AMPARs are activated. Even though the NMDAR voltage-
dependent component in Eq.2.12 is continuous, its non-linear rise allows us to
define a soft threshold at approximately �40 mV. This value is referred to as
the NMDA spike threshold throughout the manuscript. We chose �40 mV be-
cause for more hyperpolarized membrane potentials (below the threshold) the
NMDAR conductance is less than one-third of its AMPAR counterpart and does
not trigger NMDA-spikes, as shown in Fig.2.2C. To parameterize the inhibitory
responses, we fit the inhibitory post-synaptic potentials (IPSPs) obtained from
guinea-pig hippocampus (Miles, Tóth, Gulyás, Hájos, & Freund, 1996), which
characterize the dendritic versus somatic inhibition on pyramidal cells and can
be considered as an effective parametrization of the differences between peri-
somatic and dendritic inhibition. The timescales obtained from data entail that
inhibitory inputs on dendritic compartments have a slower time course, whereas
somatic inhibitory inputs have a larger amplitude and faster rise and decay, and
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suggest that somatic GABAergic transmission is mediated primarily by GABAA

receptors (Miles et al., 1996).
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Figure 2.2: Synaptic kinetics and conductance, and backpropagating action
potential
(A) The dynamics of glutamatergic (upper panel) and GABAergic (lower panel)
synapses for the parameters reported in Table2.4. (B) Fit of GABAA timescale and
maximal conductance for somatic and dendritic synapses, original data (dashed
line) from Miles et al. (1996). (C) NMDAR conductance as a function of the
compartment membrane potential. Horizontal dotted lines express the voltage-
independent conductance of AMPARs and the maximal NMDARs conductance.
(D) Back-propagating action potential in the dendrites. The backpropagation is
purely due to the high membrane potential of the somatic compartment during
the spike duration (1 ms). After reset the membrane potential of the soma is held
fixed at the reset potential (ur) for the entire duration of the refractory period
(2 ms).

Fit of inhibitory synapses. The fit was achieved by reproducing the somatic
IPSPs reported in Miles et al. (1996). The Tripod neuron was held at resting
potential and the inhibitory reversal potential was further lowered of �30 mV,
similar to the experimental procedure used to record the data. The fit was per-
formed on the minimal IPSPs, which correspond to the smallest quanta of PSP
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that a single inhibitory synapse could elicit in the soma. Considering that the
inhibitory neurons stimulated in the physiological experiment had more than
a single synaptic contact with the pyramidal cell, we compared the fit to the
stimulation of 5 simulated synapses.

2.2.2 Numerical simulation

Numerical integration used an improved forward Euler method (Heun’s method
(Ascher & Petzold, 1998)) with explicit integration and a step-size of 0.1 ms.
Dendritic currents were computed from the potential difference between two
coupled compartments. Because of the short integration step, the order of inte-
gration of dendrites and axosomatic compartments was unimportant. We com-
puted the axial currents first, then the dendritic and somatic voltage changes.
Note that the time-step of the explicit integration scheme used is less than half
of the fastest timescale in the system and that the time scales in the model are
within two orders of magnitude of each other and the explicit Table2.3; there-
fore, the integration scheme does not incur in numerical instability or stiffness
issues at double precision computation that can emerge in the integration of ca-
ble equations in fine-grained spatial discretization models (Hines & Carnevale,
2001). Simulations were performed in Julia using custom code which can be ob-
tained on ModelDBLINK and at https://github.com/aquaresima/tripod
_neuron.

2.3 Results

Physiological parameters for pyramidal cells are difficult to reconcile across datasets
because there exists significant morpho-physiological variation in the mammalian
neocortex, both across species and across regions and laminae. The functional
consequences of this variation can be difficult to assess. In this section, we show
that some of this variability—in particular in the membrane timescale and dif-
ferences in excitability between human and mouse pyramidal cells—can be ex-
plained by explicitly incorporating simple dendritic geometry and membrane
physiology. We report important differences in the neuron model behavior when
varying the dendritic morphology, the capacitive properties of the cell mem-
brane, and the dendritic NMDA-to-AMPA ratio (NAR).

https://github.com/aquaresima/tripod_neuron
https://github.com/aquaresima/tripod_neuron
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2.3.1 Geometry and physiology of dendritic compartments

Dendritic geometry determines activation boundaries

Excitatory synaptic input to the dendritic tree results in a forward, dromic flow of
depolarizing current. This current depends on the potential difference between
the perisomatic region and the location of synaptic contact, with an upper bound
set by the maximum depolarization that the dendritic compartments can reach.
Given the axial resistance and membrane leakage, the geometry of the dendritic
branch determines whether dendritic activity can elicit somatic spikes or not.
Here, we determine these activation boundaries as a function of dendritic length,
diameter, and membrane physiology in mouse versus human pyramidal cells.
Assuming that a dendrite of the Tripod is fully depolarized after a synaptic event,
its capacity to generate somatic spikes is determined by the ratio between the
axial conductance gd

ax and the membrane leakage gs
m at the soma. For integrate-

and-fire neurons, the dendrite can generate a spike when the following equation
is satisfied (the full derivation is given in Appendix A):

Er � VT

VT
=: � <

gd
ax

gs
m

(2.13)

where Er is the resting membrane potential, VT is the spike threshold, and gs
m

is the leak conductance of the soma. These parameters depend on the somatic
compartment. In our model, � is constant and the only variable in Eq.2.13 is the
axial conductance gd

ax which is determined by Eq.2.7 through the cable diameter
d, its length l, and the specific axial resistance rax defined by the membrane
physiology (Rall, 2011). Hence, Eq.2.14 defines a geometrical region where a
dendrite can generate a spike. Following similar reasoning, we identify a second
geometric region where full depolarization of a single dendrite is insufficient to
elicit a somatic spike, but the simultaneous activation of two dendrites can:

�

2
<

gd
ax

gs
m

< � (2.14)

The two regions identified by Eq.2.13 and Eq.2.14 are shown in blue in Fig.2.3A
and are referred to as spiking regions.

To test the sensitivity of the Tripod neuron to biophysical constraints, we com-
pared two sets of membrane parameters corresponding to mouse (Dasika, White,
& Colburn, 2007; Koch, 1999) and human (Eyal et al., 2016) layer 2/3 pyramidal
cells. The axial conductance was the same across datasets, but the membrane
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Figure 2.3: The functional contribution of dendrites to the somatic response
depends on dendritic geometry
(A) Phase diagram for the axial conductance gd

ax as a function of dendritic diame-
ter and length. Solid black lines show the boundaries imposed by the inequalities
of Equation 2.14. They separate configurations where dendritic depolarization
alone cannot elicit somatic spikes (grey region), only co-active dendritic com-
partments elicit somatic spikes (light blue), or depolarization of a single dendrite
can elicit somatic spikes (dark blue). The geometrical regions for spike-onset
onset are computed assuming the compartments clamped at EGluRs, as described
in AppendixA; because the specific axial conductance is similar for human and
mouse cells, there are no species-specific differences in the geometries that lead
to somatic spikes. Dotted lines mark the boundaries above which gd

ax > gd
m for

mouse and human pyramidal cells, respectively; the divergence between the two
species is due to the larger membrane resistance of human cells with respect to
mouse’s cells, cfr. Table2.2. (B) Effective membrane timescale ⌧d

m as a function
of the dendritic length when the diameter is fixed at 2 µm (thin) or 4 µm (thick).
Colors correspond to panel A and indicate the distinct functional regions of den-
dritic geometry. Thick dendrites influence somatic spiking more than thin ones,
regardless of length. Mouse membrane timescale (dotted) converges with length
while human timescales (solid) continue to increase. Throughout this work, we
will use the labels proximal and distal to refer to dendrites 150 µm and 400 µm
long.
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conductance and capacitance differed (Table2.3). To illustrate this difference,
Fig.2.3A shows the boundaries of effective dendrites in the Tripod neuron as a
function of cable geometry. These boundaries correspond to the regions below
which the membrane leakage is larger than the axial conductance, i.e., gd

ax <

gd
m. Consequently, dendritic currents fail to reach the soma in this case and the

dendrite is rendered ineffective. Within our model constraints, the dendrites of
human pyramidal cells can be substantially longer than those in mice and still
be functionally effective, an observation that is consistent with recent empirical
evidence (Fi̧sek & Häusser, 2020). The functional role of dendrites is also depen-
dent on the diameter of the dendritic compartment. Thin dendrites (2 µm) have
low axial conductance and their contribution to the somatic voltage is small, i.e.,
thin dendrites are in the no-spiking region for most of their lengths. Thick den-
drites (4 µm), on the other hand, place the neuron in the spiking regime for all
the lengths considered.

Human physiology supports longer dendrites

The effective membrane timescale characterizes the dynamics of the dendritic
compartments. When the dendrite is depolarized and the soma is at the resting
potential, the timescale ⌧d

m for the dendritic membrane to return to the resting
potential depends on the physiological parameters. It is modulated by the den-
dritic length and diameter, as defined in Eq.2.8. In the condition of effective
dendritic transmission (gd

ax > gm), the current flowing out from the dendrites
enters the somatic compartment, and the dendritic timescales together with the
somatic membrane timescale fully determine the integration timescale in the Tri-
pod model. Fig.2.3B shows the integration timescale ⌧d

m for all the considered
dendritic lengths, two diameters (thin 2 µm, thick 4 µm), and the physiological
parameters for human and mouse (solid and dashed lines, respectively). The
membrane potential in longer dendrites decays slower because the axial con-
ductance decreases and the capacitance increases with dendritic length. For a
fixed diameter, doubling the dendritic length doubles the membrane timescale.
Thin dendrites have a longer timescale because of the reduced membrane leak-
age and axial conductance.

Overall, the differences in membrane physiology and dendritic geometry con-
strain the membrane’s effective conductance and time constant and, consequently,
the temporal integration properties of the neuron, leading to functionally rele-
vant effects. Longer dendritic cables lead to sustained dendritic potentials, which
affect the kinetics of somatic depolarization. This effect is particularly noticeable
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for human physiology, suggesting that human pyramidal cells can sustain longer
functioning dendrites and that length modulates neuronal responsiveness signif-
icantly. Since the functional contribution of thin dendrites is limited, we focus
on thick dendrites with a diameter equal to 4 µm, consistent with previous stud-
ies (Bono & Clopath, 2017; Dasika et al., 2007; G. R. Yang et al., 2016). In
the remaining work, we will study dendritic lengths in the spiking region of the
phase space, and this corresponds to dendrites in the range of 100 µm to 500 µm
(blue and light blue regions in Fig.2.3). For simplicity, we selected two lengths,
150 µm and 400 µm in the two spiking regions that satisfy Eq.2.13 and Eq.2.14.
Following Antic et al. (2010) and Kamondi, Acsády, and Buzsáki (1998), we call
a dendrite of 150 µm in length proximal, because it is capable of eliciting somatic
spikes. A longer dendrite of 400 µm is referred to as distal and it can elicit so-
matic spikes only if co-activated with another dendrite. The proximal and distal
dendrites described in the following sections are considered as roughly corre-
sponding to the basal or apical oblique regions of pyramidal cells, respectively.

2.3.2 Synaptic integration with segregated dendrites

The previous section investigated how dendritic geometry and membrane phys-
iology determine temporal integration in the Tripod neuron. We now turn to
the characteristics of synaptic transmission and how the existence of segregated
dendritic compartments affects neuronal responses in the model. The synaptic
models used are biophysically motivated and account for relevant physiological
observations.

Due to their voltage-gated component, the dynamics of NMDA receptors (NM-
DRs) mediates the generation of sustained plateau potentials (Major, Polsky,
Denk, Schiller, & Tank, 2008) and supports coincidence detection (Rackham,
Tsaneva-Atanasova, Ganesh, & Mellor, 2010; Tabone & Ramaswami, 2012). It
affects the integration of excitatory input in the dendrites and the soma and
plays a key role in shaping dendritic processing, synaptic plasticity, and the global
input-output behavior of neurons (Doron, Chindemi, Muller, Markram, & Segev,
2017; Smith, Smith, Branco, & Häusser, 2013). Furthermore, NMDAR expres-
sion is denser in distal regions along the dendrites (Larkum, 2013; J. Schiller et
al., 2000) and this suggests that there is an important relationship between the
geometry and the activation of the voltage-gated receptors.

We first investigated the influence of dendritic NMDARs on somatic depolar-
ization and the magnitude of excitatory post-synaptic potentials (EPSPs). As
explained in the Methods, we included NMDAR parametrizations corresponding
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Figure 2.4: Human-like synapses induce NMDA-related supra-linearity in
EPSP peak amplitude
(A) Schematic of the experimental setup. Multiple presynaptic spikes arrive con-
currently at a segregated dendritic compartment with glutamatergic receptors
(GluRs), and the resulting excitatory post-synaptic potential (EPSP) is measured
at the soma (top). The peak amplitude of the EPSP is calculated as the differ-
ence between the membrane potential prior to stimulation and the peak mem-
brane potential after stimulation (middle). Increasing the number of coincident
presynaptic spikes results in larger peak amplitudes and causes NMDA spikes
or somatic spikes (bottom). For an unbiased comparison of NMDARs between
mouse and human parameters, the following simulations are based on human-
like membrane parameters; when tested for mouse-like membrane, the EPSP
response is weaker and sub-linear. (B) Tripod spike responses for human (left)
and mouse NMDAR timescales and voltage gating slope (right). Each data point
represents the minimal number of coincident presynaptic spikes necessary to
elicit a somatic spike (diamond) or an NMDA spike (circle) for a given dendritic
length (y-axis) and a specific ratio of NMDA-to-AMPA receptors (NAR, color gra-
dient). Note that NMDA spikes are absent for mouse synaptic physiology. Black
markers show the spike responses for the combination of dendritic timescale
and NAR described in Eyal et al. (2016) (labeled EEA) or Duarte and Morrison
(2019) (labeled DM). (C) Peak amplitude of the EPSP as a function of dendritic
length when the number of coincident presynaptic spikes is fixed at 60. Human-
like synaptic parameters result in an upswing of the peak EPSP relative to the
increasing dendritic length, which is weaker or absent for mouse parameters.
(D) Peak amplitude of the EPSP as a function of the number of coincident presy-
naptic spikes when the dendritic length is fixed at 300 µm. While somatic spikes
occur for both human and mouse NMDARs, only human-like synaptic param-
eters cause the supra-linearity in peak EPSP that is indicative of NMDA spikes
(circles).
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to mouse (Avermann, Tomm, Mateo, Gerstner, & Petersen, 2012; Duarte & Mor-
rison, 2019) and humans (Eyal et al., 2018). Compared to mouse ones, human
NMDARs have shorter decay times, a larger NAR, and a steeper voltage depen-
dence � in the gating mechanism. In contrast, timescales and synaptic strength
of AMPARs are approximately the same for the two species.

The experimental protocol used to test the effect of varying the NMDAR char-
acteristics is shown in Fig.2.4A. One of the segregated dendrites is stimulated
with simultaneous spikes from excitatory presynaptic neurons, and the result-
ing EPSP is measured at the soma. In the synaptic model we used, coincident
spikes corresponded to a single synaptic event whose efficacy was given by the
peak conductance gs yn multiplied by the number of input spikes. The peak EPSP
is identified as the difference in membrane potential between the moment of
spike arrival and the maximal potential reached after the spike. The peak EPSP
increases with the number of co-active presynaptic neurons and converges to-
wards a maximum value determined by the axial conductance of the targeted
dendritic compartment.

Segregated dendrites with NMDARs generate a supra-linear response in the so-
matic EPSP which is triggered when the dendritic membrane potential reaches
the threshold of the voltage-gated NMDARs. To track the onset of this supra-
linearity, we computed the second derivative of the EPSP peak amplitude as a
function of the coincident presynaptic spikes and determined its maximum. The
onset is shown in Fig.2.4B as a function of dendritic length and the number of
coincident spikes. We distinguish between somatic spikes (peak amplitude of
EPSP � 30mV , diamond markers) and the NMDAR-related supra-linearity (cir-
cles). Because the opening of NMDARs causes an all-or-none event similar to the
action potential, we also refer to the NMDAR supra-linearity as an NMDA spike.
When glutamatergic synapses were parameterized according to human pyrami-
dal cells (Eyal et al., 2018, Table2.4), the NMDA-related non-linearity occurred
alongside somatic spikes. When parameterized with a lower NAR, faster rise,
and slower decay, corresponding to mouse synaptic physiology (Duarte & Mor-
rison, 2019), the EPSP supra-linearity was absent, regardless of the number of
synaptic inputs (Fig.2.4B).

The onset of NMDA spikes also depended on dendritic length. Fig.2.4C shows
a vertical section of Fig.2.4B where the number of coincident spikes is fixed at
60 and dendritic length is varied between 100 µm and 500 µm. For mouse-like
NMDARs, with fast rise and slow decay timescales, the peak EPSP decreased
monotonically with the length of the dendrites. For human-like NMDARs, on the
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other hand, dendritic stimulation resulted in an increase of the peak EPSP am-
plitude for dendrites longer than 300 µm when the NAR was high. This indicates
that the slow rise and fast decay timescales of human NMDARs and their higher
voltage sensitivity were crucial in generating NMDA spikes. Fig.2.4D is a hori-
zontal section of Fig.2.4B with dendritic length fixed at 300 µm. Somatic spikes
occurred for both human and mouse NMDARs, but only human-like synaptic pa-
rameters caused the supra-linearity in peak EPSP that corresponds to an NMDA
spike.

To summarize, the results suggest that a large NAR was not sufficient to elicit
NMDA spikes in mouse-like NMDARs, regardless of dendritic length and the
number of coincident presynaptic spikes. Increasing the NAR (Fig.2.4D) raised
the slope of the somatic response, but missed the supra-linear component, which
indicates that the supra-linear integration depends on the NMDAR steepness (�)
and timescales, which also differ between humans and mice (Duarte & Morri-
son, 2019; Eyal et al., 2018). For human-like NMDARs, the occurrence of NMDA
spikes was mainly dependent on the NAR and dendritic length. The length of
the dendritic compartment is a crucial variable for the rise of NMDA spikes; for
the opening of voltage-gated ligands of NMDARs, the membrane potential has
to be sufficiently depolarized (beyond ⇠�40 mV). Such depolarization can hap-
pen only if the compartment is sufficiently electrically segregated from the soma
and the other compartments, otherwise, the membrane potential will leak to-
wards the soma through axial currents. The dependence on the dendritic length
of NMDARs’ non-linearity confirms the importance of implementing voltage-
dependent receptors in neuronal models with segregated dendrites

2.3.3 Computation with minimal dendritic structure

The above results indicate that segregated compartments are necessary for the
generation of NMDA spikes. However, models with a single dendritic compart-
ment, usually referred to as ball-and-stick models, might not be sufficient to
express important dendritic computations. For instance, several dendritic phe-
nomena depend on the interaction among synapses and therefore on their spatial
arrangement on the dendrites (London & Häusser, 2005; Payeur et al., 2019),
and a cascade of synapses activated from distal to proximal sites elicits a stronger
response than the reverse protocol (Branco & Häusser, 2010). Hence, the ques-
tion is how many compartments are needed to express these computations? We
argue that a minimal model requires two dendritic compartments because it can
express a minimal form of dendritic branching and it captures dendritic compu-
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tations where the location of synaptic input matters. In a Y-branched dendritic
tree, synaptic inputs can target the same or different dendritic branches, and
the synaptic location becomes an important spatial variable of neuronal inte-
gration. This argument is in agreement with several in-vitro and in-vivo studies
which have shown that two compartments are already sufficient to reproduce
most of the observed processing complexity (Ujfalussy et al., 2018; Wybo et al.,
2021-01-26, 2021). In the next sections, we consider the Tripod neuron in three
dendritic configurations, two symmetric (distal–distal and proximal–proximal)
and one asymmetric (distal-proximal). We show that in the Tripod neuron the
somatic response depends on the spatial location of the inputs and that two Y-
branched dendrites are sufficient to express coincidence detection (Mel, 1992),
inhibition-driven pathway selection (G. R. Yang et al., 2016) logical operations
(Cazé, Humphries, & Gutkin, 2013). In addition, we introduce the concept of
dendritic memory which is the neuron’s capacity to track previous activity in the
voltage plateaus of distal dendrites. We show that dendritic memory can be
utilized to integrate sequences of spatially distributed information and detect
variations in the input stream.

Coincidence detection

The conductance-based mechanism that transforms presynaptic events into cur-
rents and membrane depolarization determines the EPSP response to gluta-
matergic inputs that occur close in time. When two excitatory synapses fire
together on the same dendritic branch, the combined effect can differ from two
synapses firing on separate branches. For AMPA synapses, whose receptors are
not voltage-dependent, synaptic inputs across spatially segregated dendrites are
known to increase the somatic EPSP response, while clustered excitation on the
same dendritic branch results in weaker EPSPs (Dasika et al., 2007; Li et al.,
2019). The difference between clustered and spread inputs is caused by the in-
teraction of conductance-based synapses with the compartment voltage (Koch,
1999). An increase in synaptic conductance produces weaker depolarizing cur-
rents if the compartment is already depolarized than if the compartment is close
to the resting potential. A formal derivation of this interaction is provided in Ap-
pendix B. However, as demonstrated by Mel (1992), the expression of dendritic
NMDARs can yield the opposite effect. For these receptors, clustered excitation
can result in larger somatic EPSPs than spread excitation, which can be inter-
preted as a dendritic mechanism for coincidence detection.
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To test whether the Tripod neuron can reproduce these clustering effects, we
compared the EPSPs generated at the soma in two conditions, clustered and
spread synaptic input, and tested how the spatial distribution of the input af-
fected somatic EPSP responses. The Tripod model is investigated here with two
symmetric dendritic compartments, labeled A and B. We used dendritic lengths
of 150 µm and 400 µm which are representative of compartments with weak and
strong segregation from the soma. These two configurations are referred to as
proximal–proximal and distal–distal configurations.

We measured the difference�EPSP between the somatic EPSPs resulting from
excitatory input that was spread over the two compartments (EPSPAB) or clus-
tered on one compartment (EPSPAA) as shown in Fig.2.5A. Negative values for
�EPSP indicate that the global synaptic current was reduced for clustered input
relative to spread input, whereas positive values indicate that the somatic peak
depolarization was stronger for clustered input relative to spread input. �EPSP
was measured for 200 simulations, with a random number of co-active synapses
drawn uniformly from the interval [1, 50] for each branch A and B in order to
simulate different input intensities. The results are shown in Fig.2.5A where the
x-axis shows the total number of co-active synapses on the two branches. There
was no difference between proximal dendrites that expressed NMDARs or AM-
PARs only. In both cases, input spread across dendritic branches generated a
larger somatic EPSP than clustered input, and this was also the case for distal
dendrites with AMPARs only. However, for distal dendrites that also expressed
NMDARs, clustered input caused a larger EPSP when the total synaptic input
was strong, as indicated by the positive �EPSP (orange data points) in Fig.2.5A
(bottom left). Thus, the Tripod neuron reproduces the AMPA spread effect and
the NMDA clustering effect described in the literature (Dasika et al., 2007; Mel,
1992).

To disentangle the effects of physiology and geometry, we attempted to esti-
mate the non-linearity of the EPSP response based on the second-order model
proposed by Li et al. (2019). The original model introduced a di-synaptic ma-
trix ↵i j that determines the difference in synaptic current with respect to two
synapses firing independently. The values of ↵i j depend on the efficacy and
the location of the synapses that are active simultaneously. They are small for
synapses on different branches and negative for synapses on the same branch. To
demonstrate that this second-order model is not sufficient to explain the synaptic
interaction in the presence of voltage-dependent receptors in segregated den-
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Figure 2.5: NMDA receptors enhance somatic response in clustered condi-
tion
(A) Excitatory input was applied on one dendritic branch only (clustered, AA),
or on both dendritic branches (spread, AB), and the elicited EPSPs were mea-
sured at the soma. The difference between EPSPs in the two conditions is de-
noted �EPSP (top panel). The two dendritic branches had the same length
and were either distal or proximal. Synapses on the two branches expressed
NMDA and AMPA receptors (orange), or AMPARs only (blue). The bottom panel
shows the peak �EPSP as a function of the number of coincident input spikes
in the four conditions. For proximal–proximal dendrites, spread input resulted
in stronger EPSPs for both AMPARs only and combined AMPARs/NMDARs. For
distal–distal dendrites, the expression of NMDARs produced stronger responses
in the clustered condition which showed a supra-linear response when the total
synaptic input was sufficiently strong to activate the NMDARs (>60 co-active
synapses). (B) The magnitude of synaptic interaction was obtained by compar-
ing di-synaptic conditions (X X = AA, AB) to input spikes on single compartments
(X = A, B). The top panel shows the stimulation protocol used to compute EPSPA
and EPSPB. �EPSPAA and �EPSPAB summarize the interaction for the clustered
and spread conditions. The �EPSPs in conditions AA and AB are fit with linear
regression over the global synaptic inputs and the lower panels show the slope
and the mean squared residuals (MSR) of the linear fit. Di-synaptic interaction
reduced somatic depolarization (negative slope of�EPSPAA, AB) for all input con-
ditions, receptor types, and Tripod configurations except for clustered inputs AA
on distal–distal compartments with NMDARs (third column). This configuration
generated high MSRs, indicating that the interaction could not be expressed with
linear di-synaptic interactions. For all conditions, the fit was computed by draw-
ing 200 co-active synapses in the range (1,35).
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dritic compartments, we stimulated the Tripod with clustered and distributed
inputs and subtracted the EPSP of independent synaptic events on each branch.

�EPSPX X = EPSPX X � 2EPSPX (2.15)

where the X subscript refers to the branches A or B. Note that EPSPA is the same
as EPSPB because dendrites were symmetric. �EPSPAX was computed for dif-
ferent numbers of co-active synapses between 1 and 50, as before. The simu-
lation was run for 8 conditions, i.e., with and without NMDARs, with two dis-
tinct geometries, and in both the distributed AB and clustered AA configurations.
Following the original model, we asked whether a second-order function of the
synaptic input was sufficient to explain�EPSPAB. Hence, we fit�EPSPAB via the
product of the synaptic conductances g1

e · g
2
e and obtained the results in Fig.2.5B.

The two panels show the slope of the interaction corresponding to ↵i j in Eq.2.23
and the residuals of the linear fit (right).

In the absence of NMDARs, we observed a strong attenuation of somatic EP-
SPs and the residuals of the linear fit were small. This effect was larger when
synapses clustered on the same compartment compared to the distributed con-
dition and this was due to the segregation of voltages in the different compart-
ments. The EPSP attenuation effect was also stronger when dendrites were
shorter (proximal–proximal configuration, yellow bars in Fig.2.5B). It is worth
noting that the residuals of the linear fit were small for most of the configura-
tions, suggesting that the model of Li et al. (2019) was also applicable to the
Tripod neuron when only AMPA receptors were present. However, in agreement
with previous results (Mel, 1992), the expression of dendritic NMDARs yielded
different functional behavior and resulted in the amplification of somatic EPSPs
in the clustered condition AA. This effect was dependent on dendritic length.
The di-synaptic interaction still resulted in EPSP attenuation (negative) in the
proximal–proximal configuration due to the reduced NMDAR contribution for
proximal dendrites. For longer dendritic branches (distal–distal configurations
in Fig.2.5A), when excitatory inputs were clustered on the same compartment,
the interaction initially reduced somatic EPSP amplitudes. As the number of co-
active synapses increased to around 60, however, the EPSP began to increase
in a non-linear fashion. Thus, segregated dendritic compartments with voltage-
dependent NMDA receptors introduce synaptic interactions that go beyond the
second-order model of Li et al. (2019). These interactions cause larger EP-
SPs when synaptic inputs are clustered, in agreement with previous simulations
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(Mel, 1992; Ujfalussy & Makara, 2019), and the magnitude of this clustering
effect is strongly mediated by dendritic length.

On-path shunting inhibition

Depending on the location of synaptic contact, inhibitory GABAergic inputs,
whose ionotropic receptors have an equilibrium potential close to the resting po-
tential, can effectively offset excitatory drive onto neighboring synapses (Koch,
Poggio, & Torre, 1983). Inhibitory configurations that veto neuronal responses
are referred to as shunting inhibition and play an important functional role.
Shunting inhibition depends on the spatial distribution, the composition of in-
hibitory synapses, and the relative timing between excitatory and inhibitory
presynaptic events. The Tripod neuron with two dendritic and one somatic com-
partment provides the simplest structure to study this type of inhibition.
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Figure 2.6: Dendritic inhibition and shunting
(A) Location and timing of inhibitory spikes determine the somatic response.
The upper panel describes the experimental protocol. An inhibitory spike is de-
livered to the soma at an interval �t from the excitatory one. Then the F-factor
is computed. The two panels show the EPSP attenuation for three inhibitory
conditions, on-path (red), off-path (yellow), and on-soma (blue), scheme in the
lower panel. In the upper panel, the dendritic GABAA receptors are parame-
terized with long timescales, as in Miles et al. (1996). (B) Average membrane
potentials (upper panel) and axial currents (lower panel) for varying inhibitory
input rates. The orange dendrite receives 1.5 kHz Poisson distributed excitatory
input, while the neuron also receives variable inhibitory inputs at different lo-
cations (from the left: off-path, on-soma, on-path). Both dendrites are 300 µm
long. Inhibition off-path has a negligible effect on the somatic membrane (black
line) compared to on-path and on-soma inhibition.

We investigated different inhibitory configurations by stimulating one of the
dendritic compartments with a single excitatory spike followed by an inhibitory
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spike within a fixed time interval that was delivered to one of three input loca-
tions; the same dendritic compartment (on-path), the other dendritic compart-
ment (off-path), or the soma (Fig.2.6A). To measure the effectiveness of inhibi-
tion, we compared the somatic EPSP in the presence or absence of GABAergic
inputs. Attenuation caused by inhibition was measured as the ratio between the
EPSP peaks in the two protocols (excitation versus excitation plus inhibition):

F =
EPSPexc

EPSPexc+inh
(2.16)

The larger this F -factor, the more effective the inhibitory signal was.
Results in Fig.2.6A show that the impact of inhibition is determined by the

relative timing of the excitatory and inhibitory inputs and it is highly location-
specific. Suppose dendritic GABAergic transmission in the same compartment of
excitation, on path. In that case, its depressing effect on the EPSP is extended in
time, and it peaks when inhibitory spikes arrive around 10 ms before excitation
(red line). If, on the other hand, inhibition is located on the soma, hence me-
diated by fast GABAA receptors, then inhibition is maximally effective when in-
hibitory and excitatory inputs arrive simultaneously. In this condition, inhibitory
spikes that arrived more than 10 ms before excitation are ineffective. When in-
hibition is off-path its effect on the somatic EPSP is negligible. Notice that the
GABAB receptors are active only in the dendrites, and their effect is small in the
setup of Fig.2.6A because a single inhibitory spike is insufficient to engage these
receptors.

The Tripod neuron received an excitatory Poisson input at a fixed rate of 1kHz
on a single dendritic compartment and a variable rate inhibitory input on dif-
ferent compartments (off-path, on soma, on-path). In the absence of inhibitory
input, the soma was in a depolarized state (hvsoma

m i ⇡ �60mV ). Fig.2.6B shows
the mean value of the membrane potential of each compartment and the current
flowing between the compartments, both averaged over a 10 s interval. When
the off-path compartment was targeted by inhibitory inputs (leftmost panel in
Fig.2.6B), the soma reached an equilibrium between a weak hyperpolarizing
current coming from the inhibited dendrite and the depolarizing current from
the excited compartment. In this condition, the soma remained depolarized, re-
gardless of the magnitude of the inhibitory inputs. When inhibition targeted the
somatic compartment (middle panels in Fig.2.6B), the soma received a depolar-
izing current from the excited dendrite and a competing hyperpolarizing current
from the GABAergic synapses on the soma membrane. Because the synaptic cur-
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rent depended on the somatic potential, it had a balancing effect on the com-
partment potential. When the inhibitory input was sufficiently strong, the soma
approached the resting membrane potential. In this condition, inhibition had a
divisive effect on the somatic potential. In both cases, the stimulated dendrite
remained depolarized but benefitted from the NMDA boost, resulting in a large
axial current. On the other hand, when the inhibition was on-path, that is, lo-
calized to the same compartment as excitation, inhibition pulled the dendritic
potential below the NMDA threshold, and thus hyperpolarized the stimulated
dendritic compartment. In this configuration, the soma remained depolarized
as long as the dendritic balance of excitation and inhibition was maintained.
When the inhibition overcomes excitation (around 2 kHz for this setup), the neu-
ron was shut down, and all the compartments went to resting potential, with no
axial currents flowing. Hence, somatic depolarization is more dependent on the
spatial distribution of the inhibitory spikes than on the actual inhibitory input
received. Furthermore, this experiment suggests that considering the somatic
membrane potential alone may not be sufficient to characterize the state of the
cell; in Fig.2.6B the membrane potential of on soma and on path conditions is
similar, although the cell is in two different states and will respond differently
to further stimuli. For example, for a fixed inhibitory input, increased excitation
on the stimulated dendrite will only depolarize the soma if inhibition is on path,
while it will be less effective in the on soma condition

Logical operators

Logical operators define a natural class of computations. Single-compartment
neurons, which integrate inputs with a monotonic transfer function, can per-
form linearly separable computations but fail on non-separable ones. In con-
trast, theoretical and experimental work has shown that active dendrites can
solve non-separable problems (Cazé et al., 2013; Gidon et al., 2020). If we
consider the dendrites as independent input pathways and treat the Tripod as a
binary logical gate, then the previous experiments on coincidence detection have
already demonstrated that the Tripod can perform non-separable computations,
matching the theoretical results in (Cazé et al., 2013).

Another possibility is to consider the neuron’s dynamics explicitly. In this con-
figuration, the input is drawn from a set of binary stimuli, e.g., A = 0, B =
1, and mapped to the input spike rates on the respective compartment, e.g., 0
= E/I balanced inactive state, 1 = E/I balanced active state (further details in
Appendix C). The cell’s response also has to be represented over time and cal-
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culated, for example, on the output firing rate. Under this encoding, both a
single-compartment neuron and the Tripod model can reproduce the truth ta-
ble of multiplication (AND, true for inputs (1, 1)) and summation (OR, true for
inputs (0, 1), (1, 0), (1, 1)). However, there are no mechanisms that enable
single neurons to implement operators such as exclusive OR (XOR, true for (1,
0) and (0, 1) but false for (1, 1) and (0, 0)) or material implication (MI, true
for (0, 1) but false for (1, 0)). Unfortunately, the same holds for dendrites with
NMDA spikes; if one active dendrite is sufficient to trigger somatic spikes, two
active dendrites can only increase the somatic firing rate, making it impossible
to solve the XOR problem. These limitations are due to the coding scheme for
the output. To avoid this, we investigated if the neuron could make the com-
putation separable for an external linear readout. Therefore, we analyzed the
sub-threshold dynamics of the somatic membrane potential (van den Broek et
al., 2017) to evaluate the neural computations.

� �
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Figure 2.7: Asymmetric dendrites enhance the separability of logical oper-
ations
(A) Cohen’s kappa-score accuracy of linear readout classifiers on logical opera-
tors for symmetric, asymmetric and soma-only models. The dendritic configura-
tions are proximal–proximal and distal–distal (blue), proximal–distal (orange)
and soma-only (black). (B) Shade of red indicates the average predicted truth
value for each input condition (y-axis), operator (x-axis), and dendritic configu-
ration (top and left panels). The black and white table (bottom-right) indicates
the expected truth values. E.g., the AND operator for symmetric dendrites shows
dark red (true) for condition A = 1, B = 1, and white for all the remaining con-
ditions, corresponding to the target truth-values.

For this purpose, we stimulated the dendrites with a random sequence of four
possible input configurations: (A = 0, B = 0), (A = 1, B = 0), (A = 0, B = 1)
and (A = 1, B = 1). A set of seven external logistic regression readouts were
used to map the neurons’ somatic dynamics to the truth table of seven different
operators (IdA, IdB, A _ B, A ^ B, A � B, A ) B, B ) A) As mentioned above,
the symbols A and B refer to the stimulated dendritic compartment and each
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input is presented for a period of 200ms. The membrane dynamics was read-
out during the last 50 ms of the stimulus presentation; the readout had access
to 5 points for the membrane potential and 5 points for the adaptive current,
each spaced by 10 ms. After training, we injected a random sequence of inputs
(A, B, AB, or none) and tested if the trained readout could use the informa-
tion in the membrane of the soma to reproduce the correct truth table. We ex-
amined four different geometries, two symmetric one with proximal–proximal
(150 µm) or distal–distal (400 µm) dendrites, one with asymmetric structure
(400 µm-150 µm) and a single-compartment model. When a dendritic path-
way was inactive (e.g., A = 0), the respective dendrite received a 3 kHz train
of excitatory Poisson spikes, and a balanced inhibitory input. For the baseline
condition (soma-only), the spikes were injected into the somatic compartment
via two independent synapses, as above, the excitatory input rate was doubled
for the active input condition.

After testing all the models, we measured the Coheh’s kappa-score of the read-
out on each operator, see Fig.2.7A; we chose this metric to account for asymme-
tries in the classes’ statistics, e.g., A) B has three True and one False. Symmetric
configurations performed better on symmetric operators (blue bars in AND, OR
and XOR operators). Conversely, asymmetric operators (red bar in IdB, A) B)
are best recognized with asymmetric dendrites. In the distal-proximal configu-
ration, the activity in each dendrite is different, and input to the short dendrites
is easily distinguished. The soma-only configuration scores lower than each Tri-
pod configuration. To elucidate the computations performed, we analyzed the
predicted truth value for each operator and condition (Fig.2.7B). As expected,
the symmetric configuration (proximal–proximal, distal–distal, and soma-only)
makes the same prediction concerning inputs (1, 0) and (0, 1); for asymmet-
ric operators, this is also the case, because the readout cannot distinguish which
input-pathway is activated. This is not the case for the proximal–distal condition,
and the input (0, 1) is treated differently from (1, 0). In almost all conditions the
Tripod neuron performed better than the single-compartment model, indicating
that the inclusion of the dendritic structure was beneficial. These results show
that the membrane dynamics of asymmetric Tripod models depend on the input
pathway, and the neuron can act as an asymmetric logical operator.

Dendritic memory

When excitatory synaptic input is sufficiently strong to drive the postsynaptic
voltage above the NMDA gating threshold, the ionic current flowing through the
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NMDAR keeps the dendritic compartment depolarized and generates a tempo-
rally extended plateau potential (Fig.2.8A).

The time course of the plateau potential depends on the number of coinci-
dent presynaptic spikes, even though the dendritic potential reaches the NM-
DAR reversal potential (Fig.2.8A top-right panel). To quantify the duration of
the voltage plateau, we set an arbitrary threshold at�60 mV and monitored how
long the somatic membrane potential remained above this value (Fig.2.8B). In
the presence of NMDARs with human timescales, NAR, and �, long distal den-
drites reached a voltage plateau whose duration increased with the number of
coincident inputs and could last up to 100 ms. When dendritic length was short
enough to trigger somatic spikes (Eq.2.13) the duration of the plateau poten-
tial was limited by the somatic after-spike reset potential. Because of the large
conductance between proximal and somatic compartments the brief duration
(1 ms) of the hyperpolarized reset potential is sufficient to prevent the continua-
tion of the plateau-potential by pulling the dendritic potential below the NMDAR
threshold. Conversely, this is not the case for distal dendrites that can sustain
the plateau potential during somatic firing. Further details on dendritic mem-
brane dynamics during and after somatic spikes are discussed in Appendix C.
When the NAR was set to mouse synapses (0.25), the dendritic and somatic
potentials showed a weaker, sub-linear dependence on the number of presynap-
tic inputs. The depolarization caused by 50 synapses was similar in extent to
the depolarization caused by four times as many co-active synapses (Fig.2.8A,
left panel). The reason why the EPSP response saturates is because the incoming
synaptic current depends on the difference between the membrane potential and
the synaptic reversal potential. For the remainder of this article, the dendritic
parameters were set to correspond to human physiology.

We investigated whether the plateau potential generated by NMDA spikes in
distal dendrites could be used as a short-term processing memory. We tested this
by encoding a memory trace into distal dendrites through synaptic activity. The
spike rate of the encoding signal was the critical variable and corresponded to the
number of co-active synapses in the previous experiment. Then, we attempted to
retrieve this memory by injecting a 1 kHz spike train on the proximal dendrite
after an interval of time �t (illustrations in Fig.2.8C). The retrieval cue was
weak and without previous distal inputs, the soma fired the first spike on average
50 ms after the onset of the proximal input. Note that the proximal input lasted
longer than the 50 ms considered for retrieval. Thus, we considered retrieval of
an encoded memory to be successful if the first somatic spike occurred earlier
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Figure 2.8: Plateau potentials due to NMDA spikes support dendritic mem-
ory
(A) Magnitude and kinetics of spike-induced EPSPs in the dendrites (upper pan-
els) and soma (lower). Dendritic synapses are endowed with mouse (left panels)
or human (right) NMDARs; AMPARs are identical for both. Input spikes arrive
on a distal dendrite (400 µm), color codes for the number of coincident input
spikes. For mouse-like synapses, an increase in the number of inputs did not
lead to longer dendritic depolarization. Dendrites with human NMDARs show
extended depolarization when the input triggers NMDA spikes. (B) Duration of
sustained somatic depolarization (EPSP curve is above -60 mV) for simulations
with human-like NMDARs. Color codes for dendritic length. Long dendrites re-
sult in a somatic depolarization that lasts for +100 ms, referred to as plateau
potential. For long dendrites, the duration of the plateau potential increases
monotonically with the number of simultaneous synaptic inputs. When the tar-
geted dendrite is short enough to cause somatic spikes (diamond markers), the
relation between the total presynaptic input and the duration of the depolar-
ized state is interrupted because the somatic after-spike depolarization forces
the dendrite below the activation threshold of the NMDARs. Somatic spikes
do not affect the plateau potential in long dendrites because of the low axial
conductance. (C) Input configuration for memory encoding. Memories are en-
coded via excitation of the distal dendrite. After an interval �t without input,
the proximal compartment is activated and the average first-spike-time (FST) is
measured. Figure caption continues on the next page.
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Figure 2.8: (D) Mean FST for varying excitation strength and �t (upper-right).
Shorter FSTs (e.g., dark red, 10 ms) indicate successful memory retrieval. Lower
panels show FSTs for dendritic (upper) or somatic (lower) inhibition, measured
while varying the strength of excitation and inhibition during the encoding
phase. Retrieval is attempted after three intervals �t 2 {0, 25,50} ms. (E)
Comparison of memory traces in two inhibitory configurations. Colors code for
the difference between FSTs in the somatic versus dendritic inhibition condition.
For short �t, inhibition on dendrites elicits faster somatic spikes (shorter FST).
For longer �t, inhibition on dendrites is more detrimental to retrieval than in-
hibition on soma.

than 40 ms after the retrieval cue was injected. This measure of retrieval was
called the first-spike-time (FST) and averaged over 300 independent trials in
the experiment. The somatic compartment was also exposed to noisy excitatory
inputs that caused random spikes during the stimulation protocol. This was not
necessary for encoding and retrieval but was intended to test the robustness
of plateau potentials in the presence of somatic spikes. The top-right panel in
Fig.2.8D shows that memories encoded into long dendrites could be retrieved
within about a hundred milliseconds, which was approximately the duration of
the plateau potential. The lifetime of memory traces increased with the input
rate that was used to encode these memories (y-axes). However, higher input
rates during encoding did not correspond to shorter FSTs.

So far, only glutamatergic synapses have been considered. We further inves-
tigated dendritic memory in the presence of inhibition by activating GABAergic
synapses during and right after the encoding phase. Inhibition was present in
both somatic and distal compartments. We tested memory retrieval by monitor-
ing the FST at three different times, separated by 25 ms each, after the encoding
phase. Fig.2.8D shows the effect of inhibition on the distal dendrite and on the
soma. When excitatory inputs on the distal dendrite were matched by dendritic
inhibition, retrieval depended on the ratio between excitation and inhibition, as
demonstrated by the linear separation between successful and failed retrieval.
The retrieval protocol cannot distinguish between the exact amount of inhibition
received during the encoding phase when memory was successfully encoded; the
upper panels in Fig.2.8D show nearly identical success rates in memory access
for the three delay intervals. This changed when inhibitory synapses fired on
the soma; at first, memories were not retrievable but they became accessible
when inhibitory activity ceased. Within 50 ms, there was virtually no trace of
the somatic inhibition. In this condition, the magnitude of the inhibitory input
modulated the retrieval success rate in a graded manner.
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The difference between the two inhibitory input pathways is shown in Fig.2.8E.
Immediately after distal activity (�t =0 ms), inhibition on the soma prevented
spiking and memory retrieval (FST with dendritic inhibition was smaller than
FST with somatic inhibition, dark red). After 50 ms, the relation between so-
matic and dendritic inhibition reversed and memories that were encoded during
somatic inhibition were now accessible. Dendritic inhibition limited the life-span
of the encoded memories and the ratio between excitation and inhibition during
the encoding phase determined retrieval success. This shows that the minimal
dendritic tree of the Tripod model maintained short-lived memories. Retrieval
of these memories depended on the location, the input strength, and the relative
timing of their encoding.

Transition detection and sequence recognition

Dendritic memory endows the Tripod model with two segregated memory slots,
which can potentially be used to combine or discriminate incoming information
over time. Here we tested whether this memory mechanism could be used to
solve spatio-temporal tasks.

Excitatory and inhibitory Poissonian inputs were injected into the neuron at a
constant rate. The active dendrite was set in the E/I balanced active state, the
other dendrite in the inactive state (further details in Appendix C). The input
targeted dendrite A or dendrite B and it was switched from one compartment to
the other regularly, with frequencies in the range of 1 Hz to 100 Hz. A schematic
of the input protocol is shown in Fig.2.9A. We first measured dendritic and so-
matic potentials during a sequence of switches at 4 Hz. The membrane dynam-
ics of the three compartments are shown in Fig.2.9B, for models with symmetric
dendrites (distal–distal) asymmetric ones (distal–proximal). The sequence of
excitatory and inhibitory input spikes was the same for the two models. After
a switch, the potential of distal dendrites decayed slowly while the potential at
the newly stimulated dendrite started to rise. As a consequence, the depolarizing
axial currents towards the soma reached their maximum right after the switch.
To measure the effect of the increased axial currents we computed the average
somatic potential for 300 trials with similar input statistics (Fig.2.9B). The so-
matic response to a switch differed between the two dendritic configurations.
For distal–distal dendrites the response was maximal right after the switch and
it was the same for the two dendrites. For distal–proximal dendrites, the so-
matic response was stronger during stimulation of the proximal dendrite than
the distal dendrite, resulting in somatic bursts.
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To further explore the Tripod’s response to spatio-temporal sequences, we
tested four dendritic configurations, distal–distal, proximal–proximal, distal-proximal
and soma-only. For a fair comparison with the soma-only model, the switching
was achieved by implementing two independent synapses that were targeted by
one of the two input streams. This corresponds to a model with zero-length den-
drites. We repeated the previous experiment with two input signals, one with
regular switching times as above, and one where switching times were drawn
from an exponential distribution with a rate equal to the switching frequency.
We recorded somatic firing and averaged the output spikes over 300 trials with
identical statistical realizations of the input spike train. Therefore, the reported
firing rates indicate the average instantaneous somatic firing. The firing rate in
response to the two input signals is shown in the left panels of Fig.2.9C and D.
Somatic firing on single trials was not synchronized with the switch times (black
dots), but across multiple trials it was. To quantify the dependence of output fir-
ing on the input switch, we convolved the switch times with an alpha-function
(with rise and decay timescales of 10 ms) and then computed the correlation
between the average firing rate and the distribution of switch times (referred
to a signal/spikes correlation in the top right panels of Fig.2.9C and Fig.2.9D).
Overall, the Tripod responses were correlated to the spatial switches in the in-
put stream, for both regular and irregular switching times. As expected, the
distal–distal model showed the strongest correlation with the input switch, and
the peak firing rate of a Tripod with asymmetric dendrites was less synchro-
nized. For regular switch intervals, the Tripod model lost track of signals os-
cillating faster than 30 Hz, although the response to non-regular signals stayed
synchronized for higher frequencies. For both input conditions, the soma-only
model showed zero correlation with the switching times. As suggested by the
delays between the switch times and the maximal somatic response in Fig.2.9B,
we hypothesized that the correlation might be higher at different time points.
Hence, we measured the correlation backward and forward in time with delays
in the range of �200 ms to 200 ms. The correlation with the signal was max-
imal when the firing response was correlated backward in time as the somatic
response lagged behind the input signal. The optimal delay depended on the
model, and it was shorter for shorter dendrites. The bottom panels of (Fig.2.9C
and D bottom panels) show the correlation for different delays and an input sig-
nal with 6 Hz switch frequency. The delay with the highest correlation was the
same across all the switch frequencies tested (data not shown), indicating that
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the optimal delay depended only on the time span necessary to depolarize the
dendritic compartment, which in turn depended on dendritic length.
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Figure 2.9: Sensitivity to serial order
(A) Excitatory and inhibitory inputs are delivered to the neuron by switching be-
tween the two dendrites periodically after a fixed interval. (B) Distal–distal and
distal–proximal Tripod neurons receive the input described in (A). Each dendrite
depolarizes during its stimulation interval. For distal dendrites, decay to rest is
slow and the depolarized state overlaps in time with the rise in the potential
of the other compartment. This overlap of the two depolarized dendritic states
maximally depolarizes the soma, as shown in the average membrane potential
of the somatic compartment (lower panels). For asymmetric dendrites, somatic
depolarization is strong when the proximal compartment is stimulated. Input
to the two dendrites switches at 4 Hz and the average over 300 trials is shown.
Figure caption continues on the next page.
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Figure 2.9: (C) Left panel shows the average firing rate in response to a signal
switching between dendrites at (6 Hz) for three Tripod configurations (colors)
and a single-compartment model (black) that implements switching on two in-
dependent synaptic conductances. Black dots show spike times on one of the 300
trials used to compute the firing rate (solid lines). The top-right panel shows the
correlation between firing rate and switches in the input signal as a function of
switch frequency. To compute the correlation, the switch times were convolved
with an alpha function. The bottom-right panel shows the correlation when the
firing response is shifted in time (backward or forward) for inputs with 6 Hz
switch frequency. The correlation is maximal after a delay for all the models
because the soma lags behind the dendritic depolarization. Values shown in the
top panel correspond to the maximal correlation obtained across all the response
delays that were tested. Negative delays are due to the convolution function that
maps spikes to rates. Peaks at ±150 ms are due to the oscillatory nature of the
input. (D) As in (C) for a signal whose switch times are drawn from an expo-
nential distribution of rate equal to the switching frequency. (E) Two sequences
are played to the dendrites A and B of the neuron, AB✏ or BA✏, where ✏ is a
silent pause. Dendrites receive feedback inhibition proportional to somatic ac-
tivity. One of the dendrites receives µ times the feedback inhibition of the other
dendrite. (F) With µ 6= 1, the spike statistics (firing rate and CVISI) depend on
both the sequence order (blue or orange) and the neuron’s geometric proper-
ties (marker shapes). Each data point corresponds to 1 s of simulation time and
the switching frequency was 6 Hz. (G) Sequence classification accuracy based
on the somatic spike statistics in (F) as a function of inhibitory feedback ra-
tio µ and switch frequency. Neuron configurations with dendrites outperform
a soma-only model. Only the asymmetric configuration succeeded on the task
when inhibitory feedback was identical on both dendrites (µ= 1).

These results show that the Tripod neuron with symmetric dendrites was sen-
sitive to transitions in the location of synaptic input. We further investigated
whether the switching direction could be detected as well. Two input sequences
were created where input was injected into dendrite A, then dendrite B, or the
other way around, followed by an inputless pause ✏ (see Fig.2.9E), resulting
in two sequences AB✏ and BA✏. The switched intervals were regular and we
used the switching frequency to indicate the rate for rotating over the elements
of the sequence (A, B,✏). As before, the input spike trains targeting each den-
drite were statistically the same. In a preliminary analysis, we measured the
somatic potential during the presentation of the two sequences and verified that
for symmetric models it was impossible to determine which of the two was pre-
sented. When the model had asymmetric dendrites, the order of the input on
the dendrites (proximal–distal-✏ vs. distal-proximal-✏), changed the somatic re-
sponse. To break the symmetry between the two compartments in the distal–
distal and proximal–proximal configurations, we added an external inhibitory
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input on both dendritic compartments. The strength of this input was propor-
tional to the somatic activity (mimicking cortical feedback inhibition) and the
input was injected by means of a conductance-based synapse, following Bono
and Clopath (2017). The conductance was a double-exponential filter of the
Tripod output spikes, with decay timescale of 50 ms, rise timescale of 2 ms, and
peak conductance of 5 pS. The symmetry was broken by different strength feed-
back on the two dendrites. The B dendrite had a feedback peak-conductance that
was µ times the baseline value, up to µ = 20, resulting in a peak conductance
of 100 pS.

We tested whether the additional inhibitory feedback would make it possible
to determine which of the two sequences was presented to the Tripod, AB✏ or
BA✏. We also compared the three dendritic configurations of the Tripod with a
soma-only model. To distinguish the neural responses we calculated the average
firing rate and the coefficient of variation of the inter-spike intervals (CVISI) that
can be used to detect burstiness. These spike statistics were computed during a
period of 1 s, for 100 trials, in each of the four configurations. An example of
the firing rate and CVISI for a switching frequency of 6 Hz and µ= 5 is shown in
Fig.2.9F for the two sequences (orange and blue). We used logistic regression
to quantify whether the two sequences could be distinguished. The outcome of
a grid search over µ in the range 0 to 20 and switching frequencies of 1 Hz to
1000 Hz is shown in Fig.2.9G. Classification accuracy was high for all dendritic
configurations at switching frequencies below 100 Hz and at chance level for the
soma-only neuron. These findings were robust to variations in inhibitory feed-
back asymmetry ( µ) and switching frequency. For the distal–distal model, large
dendritic feedback inhibition reduced accuracy, likely because the Tripod did
not spike enough to compute reliable statistics. For both symmetric configura-
tions, accuracy was close to chance levels when feedback was the same on both
dendrites ( µ = 1). The proximal–distal model could recognize the sequences
also when feedback was symmetric. This shows that sequence classification can
be achieved reliably when neurons are equipped with dendritic compartments,
whereas a single-compartment model (in its present instantiation) fails. Consis-
tent with the previous results on switching, sequential order in the input could
be distinguished based on the somatic spike response. The experiment used a
fixed input rate and a fixed number of co-active synapses for both dendrites. It
is to be expected that variability in rates and the number of input channels will
increase the range of dendritic input patterns that can be decoded at the soma.
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In conclusion, the Tripod model shows that neurons with dendrites have com-
putational capabilities that single-compartment models lack. Cortical neurons,
which receive thousands of spikes per second, can potentially use differences in
the spatial location of the input to discriminate sequential information. Den-
dritic integration might be able to detect this variation and transfer the result of
these local computations to the soma for downstream processing.

2.4 Discussion

This paper has explored the computational implications of integrating dendritic
compartments and voltage-gated receptors (NMDARs) into biological models of
pyramidal neurons. We investigated the functional role of a simple dendritic
structure in shaping the somatic response and analyzed two classes of passive
dendritic compartments, proximal and distal. The present work makes three
main contributions. First, we have partitioned the space of dendritic morphol-
ogy, connecting the emergence and dynamics of supra-linear integration to a
small number of explainable geometric and physiological parameters. Secondly,
our reduced neuron model performs dendritic computations that are usually
reproduced only with more complex models.And third, we have outlined how
dendrites contribute to structured computation, including logic operations, fre-
quency detection, and sequence recognition. In summary, the relatively simple
Tripod neuron proposes a reduced model of dendritic structure whose function-
ality transcends single-compartment models. The Julia implementation of the
model can be readily used in large-scale spiking neural network simulations.

In the first sections, we decomposed the model in minimal terms and investi-
gated the contribution of various physiological and geometric factors in shaping
the somatic and dendritic membrane dynamics. The comparison of human and
mouse-like dendrites suggests that the former have longer integration timescales
and are more excitable than their mouse counterparts, in agreement with exper-
imental findings regarding the unique integrative properties of human dendrites
(Beaulieu-Laroche et al., 2021, 2018; Fi̧sek & Häusser, 2020). Our results con-
firm that human dendrites can be longer without losing the incoming current
through membrane leakage; hence elongated geometries (distal thick) are pos-
sible, under our model’s constraints, with human but not with mouse parame-
ters. The maximal length obtained for the mouse is in agreement with basal and
apical-oblique dendritic lengths in this species (Mohan et al., 2015). Later, we
showed that independent of species-specific physiology, there is a geometric con-
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straint that distinguishes between dendrites with a strong agency on the soma
(100 µm to 300 µm) and those with a slow and indirect action on it (300 µm to
500 µm). The theoretical distinction between distal and proximal dendrites in
terms of the maximal elicited depolarization of the soma is consistent with pre-
vious experimental and computational work (Bono & Clopath, 2017; Eyal et al.,
2018; Kamondi et al., 1998; Major et al., 2008) and it refers to the electronic
distance between the dendritic compartment from the soma. Overall, dendritic
lengths in the range of 100 µm to 500 µm correspond to dendrites in the basal
and apical-oblique region of human pyramidal cells (Spruston, 2008). Passive
dendrites and cable transmission are insufficient in modeling longer dendrites
(e.g., apical-tuft of layer 2/3 and 5), suggesting that active, self-regenerative
mechanisms such as calcium spikes (Larkum, 2013; Larkum, Waters, Sakmann,
& Helmchen, 2007) are required to transmit signals from distant dendritic input
locations to the axon hillock. We associate the Tripod model to pyramidal cells
rather than other types of cortical neurons for two main reasons. First, the phys-
iological parameters adopted for both human and mouse cells and for both the
membrane properties (Dasika et al., 2007; Eyal et al., 2016; Koch, 1999) and
the NMDAR kinetics (Duarte & Morrison, 2019; Eyal et al., 2018) are obtained
from electro-physiological studies on cortical pyramidal cells; While the inter-
actions between dendritic integration and NMDAR non-linearity reported in the
present paper could be valid for non-pyramidal cells, the different properties of
NMDARs in spiny and non-spiny cells (Augustinaite, Kuhn, Helm, & Heggelund,
2014; Booker & Wyllie, 2021; Fleidervish, Binshtok, & Gutnick, 1998) may re-
quire ad-hoc model adjustments. Second, the dendritic lengths considered in the
present work exceed those of other non-pyramidal cortical cells, such as layer
IV spiny stellate cells (Meyer, González-Hernández, & Ferres-Torres, 1989) and
aspiny cells (Maxwell, Belle, Cheunsuang, Stewart, & Morris, 2007).

We also presented a detailed analysis of the somatic excitatory post-synaptic
potentials (EPSPs) when inputs are received on distal and proximal dendrites
and investigated synaptic efficacy and timescales with parameters obtained from
human (Eyal et al., 2018) and mouse (Avermann et al., 2012; Duarte & Morri-
son, 2019) in-vitro experiments. Our results suggest that human-like voltage-
dependent receptors (NMDARs) on distal dendrites affect dendritic integration.
If dendritic compartments are sufficiently segregated electrically (distal), then
co-activation of neighboring synapses produces NMDA spikes and, consequently,
EPSPs with a supra-linear dependence on the number of synaptic inputs. These
results are in agreement with in-vitro empirical findings (Bono & Clopath, 2017;
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Branco & Häusser, 2011; Eyal et al., 2018; Kumar et al., 2018; Polsky, Mel, &
Schiller, 2004). Both electrophysiology and detailed computational models have
shown that dendritic NMDA spikes can also be triggered in proximal synapses
(Major et al., 2008; Mel, 1992). NMDA spikes in proximal dendrites result in
larger somatic depolarization than distal ones. A few proximal NMDA spikes can
drive the neuron to spike, while several distal NMDA spikes are required. Since
the Tripod has only two compartments, the axial conductance to both proximal
and distal synapses has to be larger than in multi-compartment models with
several dendritic branches to impact the somatic membrane potential. With the
present parameters, the axial conductance between the proximal and somatic
compartment is large enough to trigger somatic spikes with a single depolarized
proximal compartment. Therefore, our model accounts only for NMDA-induced
plateau in distal dendrites because the proximal compartment can never reach
the NMDA voltage-gating non-linearity without triggering a bursty response in
the soma; however, this does not result in a loss of generality for our model
because the amplitude of somatic depolarization remains graded with respect
to the dendritic length and it is weaker for longer dendrites, as measured ex-
perimentally in-vitro (Major et al., 2008). Because there are only two dendritic
branches in the Tripod model, we have to interpret the axial currents, the NMDA
spikes, and the plateaus of the dendritic Tripod’s compartments as an effective
model of simultaneous depolarization in several dendritic branches of a pyrami-
dal cell; crucially, recent evidence in-vivo has shown that the depolarization of a
single hemi-tree of a pyramidal apical tuft, in contrast to both hemi-trees, have
consequences in the behavioral scale Otor et al. (2022).

In the current literature, there is considerable variability in the parameters
used to replicate NMDA spikes, in particular in the choice of the NAR, which spec-
ifies the relative difference between the peak conductances of NMDA and AMPA
receptors. For example, the NAR was set to 0.25 in Duarte and Morrison (2019),
1 in Bono and Clopath (2017), 1.2 in Ujfalussy and Makara (2019), 2 (Jadi, Pol-
sky, Schiller, & Mel, 2012), and 9 in Mel (1992). Empirical evidence, obtained
mostly through indirect measurements, does report a similar level of variability.
For example, NAR was found to be⇡ 0.25 and constant throughout the dendritic
tree for mice hippocampal pyramidal neurons (Strube, Gackière, Saliba, Tell, &
Kessler, 2017), roughly constant across different areas of the mouse neocortex
(Myme, Sugino, Turrigiano, & Nelson, 2003), and NAR was ⇡ 1.8 for human
neocortical L2/3 pyramidal cells (Eyal et al., 2018). In this same spirit, we can
interpret the discrepancy between the absence of NMDA spikes in mouse-like
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Tripod models and the experimental evidence of NMDA-related dendritic non-
linearity in mice neurons Antic et al. (2010); Larkum et al. (2022); J. Schiller et
al. (2000). Rather than postulating qualitative differences between mouse and
human cells, we take it as an indication of minimal requirements for the emer-
gence of NMDA spikes in terms of timescales and steepness of NMDARs. In this
respect, the variability in NMDA timescales of reduced models used in previous
experiments dwarfed the difference in the NAR (50 ms (Bono & Clopath, 2017)
18.8 ms Jadi et al. (2012) 100 ms (Duarte & Morrison, 2019)). Our model iden-
tifies minimal geometric and NMDAR conditions for the occurrence of NMDA
spikes and emphasizes that merely implementing NMDA receptors is not suffi-
cient for their emergence.

Previous computational models have found that somatic EPSPs are enhanced
when inputs target different, independent dendrites (Dasika et al., 2007; Li et al.,
2019), in an apparent conflict with experimental and computational evidence on
synaptic clustering (Bono & Clopath, 2017; Kastellakis et al., 2016; Winnubst,
Cheyne, Niculescu, & Lohmann, 2015). This raises the question of whether re-
duced models with passive dendritic compartments are sufficiently expressive
to capture dendritic integration. Our results suggest that coincidence detection
can be observed under certain conditions related to the location of synaptic input
and synaptic physiology. The term coincidence-detection is used to characterize
several dendritic phenomena (Spruston, 2008), e.g., the generation of a spike,
or an activity burst, following simultaneous excitatory inputs. In particular, it is
used for both the somatic depolarization resulting from simultaneous spikes on
two segregated dendrites (Dasika et al., 2007), and for the non-linear response
resulting from co-activation of neighboring synapses (Mel, 1992; Ujfalussy &
Makara, 2019). Our model can express both forms of dendritic coincidence de-
tection in terms of a single variable, i.e., dendritic length. The fundamental role
of dendritic length has been discussed in Jadi, Behabadi, Poleg-Polsky, Schiller,
and Mel (2014) and was included in their two-layer network model of dendritic
integration. However, the model only accounted for neuronal firing rates and
did not model sub-threshold membrane dynamics. In addition, we explored
the differences between inhibitory input onto the somatic and dendritic com-
partments. We associated dendritic inhibition with the activity of somatostatin
interneurons (SST), and somatic inhibition to parvalbumin interneurons (PV)
(Huang & Paul, 2019; Tremblay, Lee, & Rudy, 2016). From our fit on guinea
pig pyramidal neurons (Miles et al., 1996), the GABAAreceptors on the dendritic
membrane had longer timescales and their maximal conductance was smaller
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than their somatic counterparts. We tested the differences between these two
types of inhibition by comparing their efficacy in attenuating the somatic EPSP
and showed that inhibition on the soma was effective in preventing spiking ac-
tivity for a short period of time. In contrast, dendritic inhibition could silence the
neuron for longer durations when applied on the same dendritic branch as ex-
citation, but its maximal effect on the soma was limited and delayed, consistent
with the current understanding of somatic and dendritic inhibition. The fast-
spiking PV interneurons acting on the soma are associated with feed-forward,
time-precise inhibition, while the slower action of SST cells regulates the den-
dritic potential via feedback inhibition (Kee, Sanda, Gupta, Stopfer, & Bazhenov,
2015; Tepper, Wilson, & Koós, 2008; Tremblay et al., 2016). In computational
terms, localized inhibition allows for external gating of the dendritic stimulus
by selecting which dendritic pathway is allowed to integrate the signal, and to
communicate with the soma. Pathway selection has been proposed as a cortical
mechanism for flexible routing of sensory stimuli (G. R. Yang et al., 2016; Zaj-
zon et al., 2019) and, more recently, it has been demonstrated that networks that
leverage dendritic gating support efficient, durable, and fast learning (Sezener
et al., 2021).

The Tripod succeeds in expressing coincidence-detection and pathway-selection
because of two fundamental properties of its reduced dendritic tree: non-linear
integration and electronic segregation of dendritic compartments. Our princi-
pled dendritic reduction aligns well with results from data-driven reductions
that have been used to distill dendritic computations in the simplest architec-
ture that could explain the data (Beniaguev, Segev, & London, 2021; Ujfalussy
et al., 2018; Wybo et al., 2021-01-26, 2021); in particular with the work by
Ujfalussy et al. (2018) which shows how two compartments with non-linear in-
tegration and different timescales are sufficient to predict with high accuracy
neural response under in-vivo stimuli conditions. However, dendritic simplifica-
tion comes at a cost, synapses have no spatial resolution in the dendritic com-
partments but are all lumped together. Conversely, real dendrites are spatially
extended and host spines, receptors, and ionic channels throughout the entirety
of the dendritic cable. The interaction between synapses is determined by their
relative distance and their spatial organization governs homeostatic mechanisms
and heterosynaptic plasticity (Kirchner & Gjorgjieva, 2021; Oh, Parajuli, & Zito,
2015; Triesch, Vo, & Hafner, 2018; Wu, Hengen, Turrigiano, & Gjorgjieva, 2020).
The continuous spatial distribution along the dendritic cable also has important
implications for signal integration: single-branch synaptic activation that fol-
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lows the dromic direction - from the tip towards the soma - results in stronger
somatic depolarization than activation in antidromic directions (Branco et al.,
2010). Such distinctions are impossible under the constraints of our model, as
we neglect spatial interactions along elongated dendrites comprising multiple
compartments. In addition, considering only two compartments limits the com-
putations available to each Tripod model to the dendritic configuration instanti-
ated in the model, e.g. symmetrical or asymmetrical. In the brain, each cell has
hundreds of dendritic branches with a broad distribution of lengths, spatial ar-
rangements and membrane physiology. Overall, the Tripod has to be considered
as a compromise between accurate modeling of dendritic processes and imple-
menting them in large-scale cortical circuits. As such, it provides a step forward
from point-neuron models.

Dendritic NMDA spikes cause a long-lasting depolarization in the somatic com-
partment of the Tripod neuron. The duration of the depolarized state depends
on dendritic length and the strength of synaptic events and it could last on the or-
der of 100 ms, in agreement with experimental results (Branco & Häusser, 2011;
Major et al., 2008; Milojkovic, Radojicic, & Antic, 2005; J. Schiller et al., 2000).
This dendritic “UP-state” is governed by a self-regenerative process triggered by
co-active synapses and has a timescale that is two to three times longer than
the membrane’s. This allows the UP-state to encode information about recent
activity and the maintenance of this information can support an activity-silent
processing memory at the neuronal level (Fitz et al., 2020; Stokes, 2015). Den-
dritic memory is similar to priming in the sense that the neuron responds faster
and more strongly to a retrieval cue when the encoding signal occurs close in
time. In contrast to short-lived synaptic memory (Mongillo, Barak, & Tsodyks,
2008), dendritic memory is more effective when the retrieval cue follows a dif-
ferent synaptic pathway than information encoding. The plateau potentials that
support dendritic memory have been considered a candidate mechanism for link-
ing neuronal to behavioral timescales (Augusto & Gambino, 2019; Bittner et al.,
2015; Bittner, Milstein, Grienberger, Romani, & Magee, 2017). Dendritic mem-
ory can bind information over time, and our results suggest that it can play a
role in temporal processing that is beyond single-compartment models.

Since the introduction of the NEURON simulator in 1989 (Hines, 1989), the
tools for modeling dendrites have come a long way (Poirazi & Papoutsi, 2020)
and the introduction of dendritic integration in cortical circuits is becoming in-
creasingly accessible to computational research. Examples of these advances
are Dendrify (Pagkalos, Chavlis, & Poirazi, 2022) and NESTML Plotnikov et al.
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(2016), which allow for simulating neurons with dendrites in cortical circuits
in Brian2 and NEST. The Tripod model can be easily replicated within these
frameworks. In addition, recent technical advances in neuromorphic comput-
ing have successfully implemented passive dendritic compartmentalization in
hardware (Kaiser et al., 2022; S. Yang et al., 2021), boosting the applicability
of dendritic computation in machine-learning contexts (Guerguiev, Lillicrap, &
Richards, 2017; Sezener et al., 2021). The work presented here can guide this
line of implementational research as it provides a simple, scalable model that
captures important computational primitives at the single neuron level beyond
the point neuron.

Tables

Table 2.1: Parameters for the axosomatic compartment of the Tripod neuron.
Values corresponds to those proposed in Brette and Gerstner (2005), except for
the somatic leak conductance which is set to 40 nS, as in Bono and Clopath
(2017).

Symbol Description Value Unit
gL Membrane leak conductance 40 nS
Cm Membrane capacitance 281 pF
Vr Resting membrane potential -70.6 mV
VT Threshold potential -50.4 mV
uth Spike onset threshold 0 mV
ur Reset potential -70.6 mV
�T Slope factor 2 mV
⌧w Spike-triggered adaptation time scale 144 ms
a Subthreshold adaptation conductance 4 nS
b Spike-triggered adaptation increment 80.5 pA

tup Spike width (soma clamped at 20 mV) 1 ms
tre f Refractory period 2 ms

Table 2.2: Dendritic physiology parameterized for human and mouse, following
Koch (1999) and Eyal et al. (2016).

Symbol Description Human Mouse Unit
rm Membrane resistance 39 1.7 k⌦ cm2

rax Intracellular resistance 200 200 ⌦ cm
cm Membrane capacitance 0.5 1 µF/cm2

Vr Resting potential -70.6 -70.6 mV
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Table 2.3: Parameters for dendritic compartments computed from the physio-
logical specifics in Table2.2.

Symbol Description Human Mouse Unit
distal proximal distal proximal

l Dendritic length 400 150 400 150 µm
d Dendritic diameter 4 4 4 4 µm
gm Leak conductance 1.29 0.32 29.57 7.39 nS
⌧d Membrane timescale 1.48 0.22 1.11 0.36 ms
gax Axial conductance 15.71 62.83 15.71 62.83 nS
Cm Membrane capacitance 25.13 6.28 50.27 12.57 pF

Table 2.4: Parameters for mouse (Duarte & Morrison, 2019) and human (Eyal
et al., 2018) excitatory synapses. Inhibitory synapse parameters derived from
Miles et al. (1996).

Symbol Description Human Mouse Unit
Excitatory AMPA NMDA AMPA NMDA

Er Reversal potential 0 0 0 0 mV
⌧r Rise time constant 0.26 8 0.26 1 ms
⌧d Decay time constant 2 35 2 100 ms

ḡs yn Peak conductance 0.73 1.31 0.73 0.159 nS
� Voltage-gating slope — 0.075 — 0.062 mV�1

Symbol Description Soma Dendrites Unit
Inhibitory GABAA GABAA GABAB

Er Reversal potential Vr Vr -90 mV
⌧r Rise time constant 0.5 4.8 30 ms
⌧d Decay time constant 15 29 400 ms

gs yn Peak conductance 0.38 0.27 0.006 nS

2.5 Appendix

Appendix A: Minimal axial conductance

In order to simplify the analytical treatment, we consider the fixed point of the
LIF equation, removing the exponential and the spike non-linearity. Because the
slope of the AdEx nullcline is monotonous after Vs > VT , there is no qualitative
difference in the presence of stationary input. Additionally, we consider a neuron
driven solely by excitatory inputs. With two dendrites (i = 1,2), the reduced
tripod circuit is described by the following system of equations:
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The system can be solved algebrically and, for EGluRs = 0, results in:
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In the limit of very large excitatory conductances (ge� gm+ gax), the neuron
is a simple voltage divider and the somatic potential is given by:
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This situation corresponds to a neuron with a single dendrite and maximally
excited in the d-th dendritic compartment. Hence, the condition for the neuron
to reach the spike threshold is:

gd
ax >

Er � VT

VT
gs

m = � gs
m (2.21)

where VT is the firing threshold of the somatic compartment. Eq.2.13 defines
the minimal condition for the dendritic compartment to elicit somatic spikes.
When the axial conductance gax > � gs

m, a full depolarization of the dendrites
suffices to generate spikes in the soma.

Within the constraints of the Tripod model, some relevant parameters are fixed
by the axo-somatic model used, namely the somatic leak conductance gs

m, the
resting membrane potential Er , and the spike threshold VT , which are all defined
by the AdEx model Brette and Gerstner (2005). The remaining parameter for the
axial conductance gd

ax is determined entirely by the cable geometry (diameter
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d and length l) (Rall, 2011) along with the dendritic membrane physiology as
expressed in Eqs. 2.5 2.6, 2.7. Once the physiological details are defined (Dasika
et al., 2007; Eyal et al., 2016), we can distinguish between geometries that elicit
spikes and geometries that do not.

Appendix B: Excitatory synaptic interactions in the passive

cable

Dasika et al. (2007) shows that a model neuron with stationary conductance de-
polarizes more when the inputs are distributed than when synapses are localized
on a single branch. This can be demonstrated by determining the equivalence
between a circuit with two active synapses on different branches (G1 and G2)
and a circuit with one single active conductance Gs (G1 = Gs and G2 = 0). The
following equivalence holds:

Gs =
G1 + G2 + 2G1G2

1
gd

ax ·gm

1� G1G2

Ä
1

gd
ax ·gd

m

ä (2.22)

where gax and gm are the axial and the leak conductances of the passive mem-
brane patch (the dendritic compartments), respectively. The equation shows
that, in the presence of segregated dendritic compartments (gax <1), Gs is al-
ways greater than G1+G2. The interaction has been further simplified in (Li et al.,
2019). The authors reduce the interaction between synapses in a second-order
approximation where the total current, in case of simultaneous firing synapses,
is given by:

Is yn =
X

gi
e(Ee � v) +�I

�I =
X

i

X

j

↵i, j g
i
e g j

e(Ee � v) (2.23)

where the Ee states the receptor reverse potential. The interaction has been
approximated to a binary function where the second-order synaptic contribution
↵i, j is almost zero for synapses on different branches and negative for synapses
on the same branch.
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Appendix C: Membrane dynamics across experiments

Balanced inputs condition

To study the model in naturalistic conditions we stimulated the Tripod with ex-
citatory and inhibitory spike trains. We defined a balanced condition such that
the somatic compartment is depolarized and both glutamatergic and gabaergic
conductances are large; this input configuration ensures that the dendritic com-
putations investigated are not artifacts of the unrealistic setup. The balance is
obtained by fixing the excitatory firing rate to 3 kHz and varying the correspond-
ing inhibitory rates. This procedure results in inhibitory firing rates of 3 kHz for
distal dendrites (400 µm); 4.8 kHz for proximal dendrites (150 µm); and 1 kHz
for the soma only model. With these inputs, the neuron (almost) never fires and
the somatic compartment rests around�67 mV for the three dendritic configura-
tions, distal-distal, distal-proximal, and proximal-proximal. Following the pro-
tocols presented in the Results section, each dendrite was activated by doubling
the excitatory input; when this happens, the dendrite depolarizes and causes
the neuron to fire. When both dendrites are activated the neuron’s firing rate is
approximately 30 Hz, with little variations between different dendritic configu-
rations. In experiments Fig.2.7, Fig.2.8, Fig.2.9 additional excitatory noise was
injected in the somatic compartment to ensure firing activity when one single
dendrite was activated.

The soma only balanced configuration was also defined on a similar basis, al-
though the soma compartment needs to be more depolarized �60 mV to initiate
spikes when one of the input pathways is activated. Fig.2.1 illustrates these ef-
fects and shows the three Tripod configurations and the soma-only condition in
the inactive (A) and active (B) states.

An important outcome of the balanced configuration is to avoid artifacts of
the AdEx model, as discussed in Górski, Depannemaecker, and Destexhe (2021).
When the AdEx is strongly excited, for example with strong GluRs stimulation
or injected currents, the neuron starts firing and the adaptive current rapidly
rises. If the stimulation terminates abruptly, the adaptive current pulls down the
membrane voltage, generating unnatural hyper-polarization. In Fig.2.2, Fig.2.3,
Fig.2.4 we show that, due to our balance condition, these artifacts are not ob-
served in the Tripod model and realistic membrane dynamics can be observed.
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SI Figure 2.1: Membrane dynamics of Tripod models
(A) Model activity in the inactive condition, with 3 kHz excitatory inputs and
dendritic-length-specific values for inhibition (see main text). (B) Membrane
dynamics in the active mode with doubled excitatory input rates.
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SI Figure 2.2: Tripod dynamics in the Logical operators task
(A)-(P) Somatic membrane potential (gray) and adaptive current (red) for the
4 dendritic configurations (vertical arrangement) and the 4 input configurations
(horizontal arrangement).
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SI Figure 2.3: Tripod dynamics in the Dendritic memory operators task
The figure depicts somatic membrane voltage and adaptive current (black and
blue) as well as dendritic voltages (red and green) for the distal-proximal den-
dritic configuration. Vertical dashed lines in red and black indicate the end of
the encoding phase and the onset of the retrieval phase, see main text for clari-
fications.
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SI Figure 2.4: Tripod dynamics in the Sequence recognition task
Somatic membrane potential (black) and dendritic membrane potentials (red
and green) for the four Tripod configurations. The two panels in (A) - (D) show
the dynamics of the Tripod in the AB✏ and the BA✏ sequence, see main text. To
facilitate the comparison, these simulations were run with frozen noise input. As
such, the difference between the upper and lower panels is only the strength of
the excitatory inputs which is doubled in the stimulated compartment: input A
in the AB sequence (top panels) and input B in the BA sequence (bottom panels).
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Abstract

Under intense synaptic bombardment, cortical neurons tend to operate in a high-
conductance state (HCS) where the cell membrane hovers close to the firing
threshold and is, therefore, more sensitive to input fluctuations. Typically as-
sociated with active processing, these states are transient and their characteris-
tics depend on input density, neuronal and synaptic physiology, as well as com-
putational demands. Under certain operating regimes, cortical neurons show
persistent transitions between the HCS (also referred to as an Up-state) and a
hyperpolarized Down-state. This type of bistability has been ascribed to cellular
and synaptic anatomy and physiology. Whereas the dependence of Up-state on
input fluctuations and the role of NMDA receptors has been well-characterized,
less is known about the detailed mechanisms that govern the Up-Down state
(UDS) transitions and whether this bistability is primarily due to the input or to
neuronal and synaptic properties.

The present work aims to fill this gap by investigating the emergence of UDS in
a minimal, three-compartment neuron model. This neuron has two segregated
passive dendrites and an axosomatic compartment and incorporates dendritic
geometry and physiology from human cortical pyramidal cells. Dendrites and
soma express conductance-based synapses with glutamatergic and GABAergic
receptors. We drive the dendritic compartments with fluctuating, balanced ex-
citatory/inhibitory Poisson inputs (E/I balance). We show that only neurons
expressing NMDARs support distinct UDS transitions. Although balanced inputs
themselves do not trigger the UDS, the bistable dynamics emerge when input
fluctuations increase within regimes observed in cortical activity (CVISI< 1.2).
Neurons expressing NMDARs display sharper bistability than models without
NMDARs. Voltage-gated receptors in dendrites make it easier to pick up input
correlations, whereas a point-neuron model or passive dendrites would require
large fluctuations to capture the same effects.

This work connects local, compartmentalized E/I balance in dendrites with
two important cortical properties: HCS and UDS transitions. It also clarifies the
role of NMDARs in governing the response to fluctuations in the input.
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3.1 Introduction

Word processing happens at multiple time scales because the relevant pieces
of pre-lexical information are delivered with different characteristic time con-
stants. This also requires multiple matching regimes of integration in relation
to the input rate of the relevant linguistic building blocks. As we have seen in
the previous chapter, the Tripod neuron provides the right spatial and temporal
organization to support the required computational machinery to recognize se-
quences of inputs at different timescales. In this chapter, we verify that this com-
putational machinery generates output consistent with the dynamics observed
in vivo recordings of single cells’ membrane potential. We study the dynamics of
the Tripod model when it undergoes high-rate pre-synaptic firing, as observed in
cortical networks. The analysis shows that the segregated dendrites and voltage-
dependent NMDARs, which play a major role in dendritic computation, are also
necessary to reproduce the transition between the up and down states of the cell
membrane and favor the sparse and irregular firing of the Tripod when in the
balanced state.

The balanced state in cortical networks

In cortical networks, neurons are subjected to a balanced barrage of spikes from
glutamatergic and GABAergic pre-synaptic neurons (Shu, Hasenstaub, & Mc-
Cormick, 2003); thus, their membranes are traversed by excitatory and inhibitory
(E/I) synaptic currents correlated in time and intensity (Okun & Lampl, 2008).
Due to the continuous synaptic bombardment, the synaptic conductance in-
creases by a factor of 3 relative to the membrane conductance in the cell’s
resting state, resulting in the so-called high-conductance state (HCS) (Destexhe,
Rudolph, & Paré, 2003). In the HCS, the neuronal membrane potential is strongly
depolarized and stays close to the spiking threshold; somatic firing then becomes
sensitive to small variations (fluctuations) in the pre-synaptic activity (Baker,
Zhu, & Rosenbaum, 2020; Destexhe et al., 2003; Ebsch & Rosenbaum, 2018;
Zhou & Yu, 2018). The E/I balance condition is met throughout the cell, and
the dendritic arborization accommodates for locally fine-tuned clusters of both
glutamatergic and GABAergic synapses (local E/I balance, Gjorgjieva, Drion, &
Marder, 2016; Iascone et al., 2020; Liu, 2004). As a result, the cells are in a
critical state that allows for dynamic compartmentalization of computation with
sub-regions of the dendritic tree driving the generated somatic spikes (Otor et
al., 2022).
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The HCS is measured regularly in-vivo and can be considered as the operat-
ing point of cortical neurons in awake animals (Destexhe, Hughes, Rudolph, &
Crunelli, 2007). However, the recordings reveal that the HCS is only one aspect
of the complex cortical dynamics. The somatic membrane of cortical neurons
is typically bi-stable, and its membrane potential fluctuates around two meta-
stable values known as Up-Down States (UDS). The up-state has the properties
of the HCS. The down-state corresponds to a silent neuron, with membrane
potential fluctuating close to the resting state (Cowan & Wilson, 1994; Wilson
& Kawaguchi, 1996). The transitions between up- and down-states have been
explained as the switching from active to inactive processing in local cortical
circuits, driven by the collective dynamics of the network (Jercog et al., 2017;
Luczak, Bartho, Marguet, Buzsaki, & Harris, 2007). Analytical insights and net-
work simulations have shown that two conditions are necessary for the emer-
gence of the up-down dynamics in spiking networks: balanced excitation and
inhibition as well as strong excitatory recurrent connections (Compte, Sanchez-
Vives, McCormick, & Wang, 2003; Cossart, Aronov, & Yuste, 2003; Droste &
Lindner, 2017; Tukker, Beed, Schmitz, Larkum, & Sachdev, 2020). The network
models that are used to reproduce the UDS are normally hyperpolarized until
external noise, intrinsic network fluctuations, or special pacemaker cells trigger
the onset of the up-state. Once stimulated, the recurrent excitatory connec-
tions maintain the up-state because of their strong recurrence until adaptation
or homeostatic inhibition takes over and restores the down-state. Crucially, the
conditions required for such bi-stable networks are relatively narrow, and the
models need to be fine-tuned to avoid pathological behaviors and elicit the in-
tended up-down dynamics (Brunel, 2000; Maksimov, Diesmann, & van Albada,
2018).

In contrast to network-driven bi-stability, experimental studies have suggested
a physiological explanation for the UDS which emphasizes the relationship be-
tween the up states and the onset of plateau potentials in the dendrites (Antic et
al., 2010; Milojkovic et al., 2005; Oikonomou, Singh, Sterjanaj, & Antic, 2014).
This view suggests that, whereas the up-state is triggered by the network activity,
its bi-stability is primarily a physiological phenomenon shaped by voltage-gated
receptors and other regenerative dendritic events (Antic et al., 2010; Larkum,
2013) or rectifying ionic currents (Loewenstein et al., 2005; Sanders, Berends,
Major, Goldman, & Lisman, 2013). However, it remains unclear whether NM-
DARs have a role in driving the up-down cortical dynamics, especially in light
of recent findings showing intact UDS despite NMDAR blocking (Palmer et al.,
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2014; Smith et al., 2013). Theoretical explanations also fall short in this re-
gard and the mechanisms for intra-cellular bi-stability remain uncertain. On the
one hand, the UDS seems to emerge from the dendritic balance between sev-
eral, short-lived excitatory and inhibitory currents (AMPA/GABAa) distributed
across the entire cell (Larkum, 2022); on the other hand, computational insights
suggest that the dendritic architecture and the physiology of the NMDARs are
essential for picking up correlations in the input and inducing the up-state (Be-
nucci, Verschure, & König, 2004; Papoutsi, Sidiropoulou, & Poirazi, 2014).

Given the previous work, three questions remain open. First, is the local den-
dritic balance sufficient to cause the onset of UDS, independently of dendritic
NMDA spikes? Second, how does the NMDARs’ non-linearity interact with the
local E/I balanced state to trigger the onset of the up-states? and third, what
is the dendritic resolution necessary to reproduce these effects in reduced com-
putational models? Here we investigate the relationship between E/I network
balance, high conductance states, and up-down states, and we propose a simple,
integrated description of how these phenomena relate to each other: up-down
states result from fluctuations around the E/I balanced state and are amplified
by dendritic non-linearities. In order to investigate these issues in this study,
we leveraged a recently published model of dynamic dendritic integration, the
Tripod neuron (Quaresima et al., 2022). We exposed this neuron to barrages
of presynaptic spikes at increasing rates. In the balanced condition, we trig-
ger up-down transitions by modulating the coefficient of variation of the inter-
spike-interval (CVISI) of the excitatory synaptic inputs. We demonstrate that lo-
cal balance and small fluctuations in the inputs are sufficient to explain the rise
of strongly bi-stable dynamics. The UDS in the Tripod neuron exhibits similar
characteristics to those observed in pyramidal cells in-vivo.

3.2 Methods

3.2.1 The Tripod neuron model

We investigated up-down dynamics in the Tripod neuron which is composed of
three computational elements, or compartments (Quaresima et al., 2022). The
neuron has an axosomatic compartment, representing the soma and perisomatic
dendritic segments, which is modeled as an adaptive exponential integrate-and-
fire neuron (Brette & Gerstner, 2005). In addition, it has two electrotonically
segregated passive dendritic compartments that are coupled to the soma in a Y-
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shape (Fig.3.1A) with membrane timescales determined by the dendritic length
(100 µm to 500 µm). A characterization of the model can be found in the previ-
ous Chapter of this thesis, and we do not repeat the details of the Tripod imple-
mentation here. In this study, we used human parameters for the dendritic and
synaptic physiology, which in the previous study proved to have greater compu-
tational capacity. We focus on the synaptic mechanism of the NMDA receptor
(NMDAR), which is crucial for the present work.

Synaptic dynamics. The Tripod neuron implements two excitatory glutamater-
gic receptors with fast (AMPA) and slow (NMDA) dynamics, and two inhibitory
GABAergic receptors with short (GABAA ) and long (GABAB ) timescales. The
receptors dynamics were modeled as conductances with double-exponential ki-
netics (Roth & van Rossum, 2009):
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where t0 is the pre-synaptic spike time, k 2 {AMPA, NMDA, GABAA, GABAB} and
⌧r

k and ⌧d
k are the specific rise and decay time constants of each receptor (see

Table3.3).
The conductance gating of the NMDA receptor was dependent on the intra-
cellular depolarization which was captured by a multiplicative voltage-gating
mechanism:
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where V is the membrane voltage of the dendritic compartment and � controls
the steepness of the voltage dependence. The extracellular concentration C of
magnesium ions Mg2+ was fixed at 1 µmol/L. The equations and parameters for
the NMDA receptor are based on Jahr and Stevens (1990).

To investigate the role of NMDA in regulating the onset and duration of the
up states, we considered two synaptic configurations, one with and another one
without NMDA receptors. In the condition without NMDA receptors (AMPA-
only), the AMPA conductance was scaled such that its maximal conductance
matched the sum of AMPA and NMDA conductances in the condition with NMDA
receptors. In this way, we could focus our investigation on two characteris-
tics of the NMDA receptor activation: its voltage dependence and its extended
timescale.
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Figure 3.1: Schematic of the Tripod neuron and inputs
The Tripod neuron has two dendritic and one axosomatic compartment. Prox-
imal dendrites are 150 µm long, distal dendrites are 400 µm long. Each den-
dritic compartment hosts glutamatergic (AMPA, NMDA) and GABAergic (GABAA,
GABAB) receptors. Input to the neuron is drawn from a Poisson distribution with
rates ⌫exc(t) and ⌫inh(t). The excitatory input rate was varied between 0.5 kHz
to 80 kHz and the inhibitory was adjusted to the ⌫ex t(t) times a factor (kE/I) to
maintain the balance condition.

Model parameters for the somatic and the dendritic compartments are shown
in Table3.1 and Table3.2, respectively. They are the same as in the original Tripod
model (Quaresima et al. (2022) and Chapter 2 of this thesis), except for the reset
potential ur which was set to �55 mV, following Bono and Clopath (2017) and
Duarte and Morrison (2019). Similarly, all the parameters for the synapse types
used in the Tripod neuron are described in Table3.3.

3.2.2 Excitatory and inhibitory inputs

Cortical neurons are exposed to continuous, intense synaptic bombardment from
local and long-range afferents. During awake activity, the E/I input streams are
balanced in cortical networks and the post-synaptic neurons remain depolar-
ized and fire at sparse, low rates. We replicated these physiological conditions
in the Tripod neuron by stimulating the model with Poisson-distributed excita-
tory and inhibitory (E/I) spikes at a high rate. The excitatory synaptic strength
is maintained fixed throughout the study (Jexc = ḡGluRs

s yn , Table3.3) while the ex-
citatory input rate was varied in the range of ⌫exc = 0.5 kHz to 80 kHz. This
stimulation protocol results in synaptic conductances larger than the membrane
leak conductance (HCS). However, if the excitatory stimuli overcome the in-
hibitory ones, the neuron is fully depolarized and enters a non-physiological
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firing regime; similarly, it remains hyperpolarized in the opposite case. These
two input configurations are discussed in Appendix A. Thus, to reproduce the
physiological condition of cortical cells we adjust the inhibitory firing rate such
that the two input streams are balanced.

Balance via modulation of the inhibitory rate

In line with experimental evidence on the HCS and previous computational stud-
ies (Kuhn, Aertsen, & Rotter, 2004; Wilson, 2008), we define the balance exci-
tatory/inhibitory (E/I) condition via the average membrane potential of the so-
matic compartment. The E/I balance is achieved when the somatic membrane
potential hovers right below the threshold potential for spike generation. We
chose this Vs =�55 mV because it corresponds to the average potential of the
up-state measured in-vivo (Wilson & Kawaguchi, 1996) and was also used in
previous modeling studies of the balanced state (Kuhn et al., 2004). To reach
this average potential, we simulate a Tripod neuron in the free-membrane condi-
tion, i.e., without the spike generation mechanism in the soma, and compute the
necessary inhibitory rate via gradient-free optimization. We ran a grid search for
all the excitatory rates (0.5 kHz to 80 kHz) and the inhibitory rate ratios (kE/I=
0 to 2, with resolution 0.01). We chose the value k̄E/Isuch that the average of
the membrane potential on 10 simulations was closer to the sub-threshold mem-
brane potential.

The illustration in Fig.3.2A briefly recapitulates the method; the inhibitory
rate (marked red) is used to attain the balanced condition. We compute the E/I
ratio for Tripod models with NMDA and AMPA-only receptors and for the soma-
only model. The kE/I resulting from the optimization algorithms are portrayed
in Fig.3.2B. The upper panels show the relative strength of the excitatory to in-
hibitory rate necessary to reach the balance (k̄E/I). The minimum rate for the
balance condition to be achieved, at least for some dendritic length, depends on
the presence or not of NMDARs. It is approximately 0.7 kHz for the standard
Tripod model, and 1.5 kHz for AMPARs-only models; these values are indicated
on the panels with a dashed black line. For the soma-only model, the minimum
input is 2 kHz circa. The color shades in the panels indicate the dendritic length
of the balanced model. Crucially, the balance is geometry-dependent in both
the NMDARs and AMPARs conditions; longer dendrites require a higher E/I ra-
tio than shorter dendrites, corresponding to higher values of the k̄E/I . Further
insights into the difference between the geometry dependence of the k̄E/I are
presented in Fig.3.1
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Input fluctuations

The high conductance state (HCS) reached via balanced E/I synaptic inputs is
part of a richer set of cortical states. These comprise the up-state (character-
ized by the HCS) as well as a hyperpolarized, inhibition-dominated, up-state. It
has been proposed that up-down transitions originate from fluctuations in the
balance of E/I inputs (Benucci et al., 2004; Jercog et al., 2017; Papoutsi et al.,
2014); thus, we study which neural mechanism can amplify the E/I fluctuations
and give rise to the bi-stable dynamics. For this purpose we introduce controlled
fluctuations in the input firing rates, following the method described in Vogels,
Sprekeler, Zenke, Clopath, and Gerstner (2011), and modulated the instanta-
neous rate (⌫input

t ) of an inhomogeneous Poisson process. The rate ⌫input
t is used

to draw the number of excitatory spikes on the Tripod’s synapses.
The stochastic process used, detailed in the Supplementary Methods section,

allows us to generate a spike train with a defined rate and inter-spike-interval
coefficient of variation (CVISI). It depends on three parameters, the correlation
timescale (fixed at ⌧ =50 ms, (Vogels et al., 2011)), the baseline firing rate ⌫0,
and the fluctuation size � . The latter parameter maps linearly to the CVISI of the
input. Some realizations of these spike trains, for fixed firing rate (⌫0 =1 kHz)
and CVISI in the range 1 to 1.5 are shown in Fig.3.2B.
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Figure 3.2: Excitatory inhibitory balance rates and fluctuations in the input
rates
(A) The upper panel illustrates a scheme of the protocol used to reach the E/I bal-
ance. The rate protocol modulates the inhibitory firing rate (red) until the mem-
brane potential stabilizes around �55 mV. The balance E/I ratio (k̄E/I) reached
(lower panels) depends on the dendritic lengths and input rates. The panels
report the E/I ratios reached via the rate protocol for models with and without
NMDARs (left and right panels) and the soma-only model (black dots). The ver-
tical dashed lines indicate the minimum input for which the balance condition
is met by at least one dendritic length. The color codes for dendritic lengths as
illustrated in the legend. In general, for increasing excitatory inputs, the E/I ra-
tio decreases (that is, less excitation is required to meet the balance condition).
Similarly, the E/I ratio increases with dendritic length (excitation is more effec-
tive for shorter dendrites). (B) Profile of the input spike rates and spike trains
used in the simulations. The panel’s left side illustrates nine input rate samples,
with increasing CVISI (fluctuation size, �) (blue to red). The right side shows
fifty spike train samples for each rate, drawn from non-homogeneous Poisson
distribution. With increasing � , the signal fluctuations increase in size (left),
and the spikes are less regular (right). The signal is scaled, so the average rate
remains constant (⌫0 = 1 kHz).



3 Dendritic non-linearities enable up-down states in single neurons 93

3.3 Results

3.3.1 Local E/I balance in the Tripod neuron

Local E/I balance depends on dendritic geometry and physiology

To understand the response of the Tripod neuron to barrages of pre-synaptic ex-
citatory and inhibitory spikes, we exposed the dendrites to intense synaptic bom-
bardment and measured somatic activity. Preliminary analyses of the neuron’s
response to pre-synaptic E/I firing indicate that dendrites govern the neuronal
transfer function. In Appendix A, we show that the somatic firing depends jointly
on the input rate and the dendritic geometry and configuration. However, for
input rates beyond 5 kHz to 10 kHz, the model’s firing is not in the biological
regime for most of the dendritic configurations. We know that the inconsistency
is due to an imbalance of excitatory and inhibitory afferents in the dendritic com-
partments. Indeed, the E/I balance is a fundamental characteristic of synaptic
distribution on dendrites; it is locally fine-tuned and depends on the distance
from the soma (Iascone et al., 2020; Liu, 2004). Thus we set the model in the
biological firing regime by balancing E/I inputs, which is individuated by im-
posing the physiological properties of the high-conductance state in the somatic
compartment (Destexhe et al., 2003). The procedure used to reach the balance
state is described in the Methods.

We disentangle the effect of segregated dendritic compartments and NMDARs-
based non-linear integration by comparing Tripod neurons with and without
voltage-gated receptors. First, we computed the average membrane potential
for balanced inputs in models with NMDARs and AMPARs, with increased gran-
ularity at low firing rates (inputs in the range 0.3 kHz to 5 kHz). The membrane
potential of dendritic and somatic compartments is illustrated in Fig.3.3A; the
panels portray symmetric models with increasing dendritic length. The upper
panels show the membrane potential reached by the dendrites in the balanced
condition, the lower panels show the membrane potential of the somatic com-
partment. The color shade indicates the input rate with which the model was
stimulated. The dendritic potentials will eventually accumulate on a straight
line for high input rates (blue shades), indicating that the balance condition has
been reached. The dashed line indicates the minimum rate for which the balance
condition is met, for at least one dendritic length.

In both synaptic conditions, the dendritic membrane potential increases lin-
early with the dendritic length; the increase indexes the segregation and is due
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to the larger axial impedance of longer dendritic branches. For dendrites with
NMDARs, the dendritic potentials split into two dense groups below and above
the dashed line. This threshold corresponds to the minimum dendritic input
necessary to activate the voltage gates of the NMDARs (⇠�50 mV). Above it,
the dendrites converge to the balance condition; below it, the neuron remains
hyperpolarized. In contrast, for AMPARs-only models, the membrane potential
grows slowly and steadily; every logarithmic increase in rate corresponds to a
linear increase in dendritic potential. The differences between these two dif-
ferent trends are also visible in the somatic membrane potential, portrayed in
the lower panels. First, for NMDAR models, there is a narrow interval of input
rates for which the balance condition is reached by some but not all models. For
AMPAR models, the interval spans 1 kHz. Second, for NMDAR models, the first
dendritic configurations that reach the balance are the ones with long dendrites,
advantaged by the electrical segregation and the NMDAR boost. The opposite is
the case for models without voltage-gated NMDA receptors. The rapid conver-
gence of models with NMDARs implies a mechanism for compensating electrical
distance in dendrites; because of the NMDARs boost, all dendritic configura-
tions reach the balance condition for the same input rate. This is not the case
for dendrites without NMDARs.

Under the E/I balance condition, the dendritic compartments transmit an
amount of current to the soma that is specified by the Tripod neuron physiol-
ogy (including somatic membrane permeability and its capacitance). To verify
the balance being independent of the dendritic arrangement, we measured the
somatic membrane potential for models with asymmetrical dendrites across all
permutations of d1,d2 = 100 µm to 500 µm. The local balance is sufficient to
achieve the target membrane potential in all configurations.

Membrane potential and firing activity in the balanced state

When in the balance state, the neurons are in the so-called fluctuation-driven
regime, or high conductance state (HCS), the somatic activity depends on the
fluctuations in the frequency of excitatory and inhibitory spike trains rather than
on the average amount of pre-synaptic activity. This condition is considered the
operative state of cortical neurons and has implications for the cell and the net-
work level computations (Baker et al., 2020; Destexhe et al., 2003; Higley &
Contreras, 2006; Maksimov et al., 2018). We therefore investigated the conse-
quences of the dendritic E/I balance on somatic activity and analyzed the statis-
tics of the output spike train in this condition.
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Figure 3.3: The Tripod in the high conductance state
(A) Membrane potential of dendrites (upper panels) and soma (lower panels)
in models with and without NMDARs (left and right respectively) with balanced
E/I inputs. The panels illustrate the average membrane potential for the sym-
metrical models’ compartment, for all the dendritic lengths (x-axis), and input
rates in the range 0.3 kHz to 5 kHz (color code). As before, the dashed lines
evidence the minimal input necessary to meet the balance condition. The up-
per panels show that the balance dendritic potential increases with the dendritic
length. Models with NMDARs have a steep convergence; for most rates, all or no
dendritic configurations reach the balance condition. For AMPARs-only models,
the convergence is slow, and there is a range of inputs for which the condition is
met in short dendrites but is not in longer dendrites. (B) Membrane dynamics in
dendrites and soma, for NMDARs (left) and AMPARs-only (right) models for 1 s
time interval. Three dendritic configurations are explored, proximal-proximal
(150-150 µm), distal-distal (400-400 µm), and proximal-distal (150-400 µm).
The same frozen spike trains are used to stimulate the compartments in all six
simulations. Dendrites with NMDARs exhibit larger fluctuations than AMPARs
only and drive the soma to fire.

To start with, we explored the activity of Tripod neurons with and without NM-
DARs and in different dendritic configurations. In Fig.3.3B, we show the mem-
brane potential of soma and dendrites for three dendritic configurations, distal-
distal, proximal-proximal, and distal-proximal with inputI rate

balance = (5 kHz; k̄rate
E/I ).

The labels distal and proximal are borrowed from the original Tripod paper and
correspond to dendritic compartment lengths of 400 µm (distal) and 150 µm
(proximal) (Quaresima et al., 2022). For simplicity of comparison, we used a
frozen noise input and applied the same excitatory and inhibitory spike trains to
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the six simulations. From visual inspection of 1 s of simulation, it emerges that
Tripod neurons with NMDARs, in the balance condition, have an active soma and
produce spikes at a low firing rate. Conversely, the Tripod models with AMPARs-
only synapses do not emit somatic spikes. Despite the average potential being
the same in both conditions, both for the soma and the dendrites (dark blue in
Fig.3.3A), the dendrites endowed with NMDARs present larger fluctuations than
the dendrites of AMPARs-only models. In the NMDAR condition, dendritic de-
polarization is boosted by the activation of the NMDAR voltage-dependent non-
linearity. Fluctuations are smooth and last in the order of 100 ms. Both in long
and short dendritic configurations, the soma responds with firing when two de-
polarized fluctuations overlap. In contrast, membrane fluctuations in AMPARs-
only models are small and high frequency; thus, the low-pass filter integration
in the somatic compartments results in a flat membrane that fails to reach the
threshold for spike onset.

3.3.2 Up- and down- states with NMDARs

NMDARs boost membrane fluctuations in the balance state and facilitate
firing

For an exhaustive insight into the Tripod’s activity under balance conditions, we
measured the statistics of the somatic firing (mean rate and CVISI), the somatic
membrane potential standard deviation and the cross-correlations between com-
partments’ membrane potential, for all input rates and dendritic configurations.
The scheme in Fig.3.4A illustrates these measures and refers to the panel where
they are displayed. For visualization purposes we divided the dendritic con-
figurations space (1600 dendritic configurations) into three subsets, grouping
dendrites in the range 100 µm to 300 µm (proximal symmetrical), 300 µm to
500 µm (distal symmetrical), 300 µm to 500 µm⇥100 µm to 300 µm (asymmet-
rical, twice).

The average over the four configuration subsets is portrayed in Fig.3.4B1 for
models with and without NMDARs, and soma-only models. The first panel shows
that, in the balance conditions, only the models with NMDARs present somatic
activity. Crucially the output rate is non-monotonic; the firing rate reaches a peak
around 3 kHz to 4 kHz, and then it decays to zero (the rebound at the end of the
rate range is due to numerical instabilities, see the Supplementary Methods).
As expected, the distal dendrite group has lower firing rates, while the short
proximal dendrites fire more. The asymmetrical group presents intermediate
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values, which correspond to the average over the four sets. The CVISI remains
stable around 1 for input rates in the range 1 kHz to 10 kHz, and shows a slight
increase for higher rates. In this case, the distal dendrites show lower CVISI,
indicating more regular fire. For the AMPARs-only models, there are almost no
spikes in any dendritic conditions, consequently, the CVISI statistics are poor. The
dynamics of the somatic potential is captured in Fig.3.4B3, which illustrates the
standard deviation of the membrane potential in the free-membrane condition
(without firing threshold), being the average �55 mV by definition. Consistently
with the results hitherto presented, the fluctuations are much larger (by a factor
of 2-3) in the NMDARs models than in the AMPARs. However, the differences
are less pronounced than in the firing rates, which suggests that the equilibrium
condition amplifies small somatic fluctuations into sizeable firing rates.

The measures for the soma-only model are in significant agreement with the
results reported in (Kuhn et al., 2004), confirming the procedure used to obtain
the E/I balance points. Unlike the model studied by Kuhn and colleagues, the
fluctuations of our soma-only model are insufficient to elicit somatic spikes. The
difference is due to the smaller maximal conductance (gAMPA

s yn ) of our synaptic
model. For a proper comparison, we have to factor in the synaptic efficacy in
the spike train statistics; assuming that for a unitary conductance, the input
stream has CVISI equal 1, then the spike train with the same rate has CVISI equal
to gmax

s yn , for a synapse with such maximal conductance. The maximal synaptic
conductance used in the soma-only model by Kuhn et al. (2004) is 10 times
larger (Table3.3) than in our model. An exhaustive comparison of soma-only
models with different parameters (Table3.4 is presented in Fig.3.1.

In the case of the NMDAR models, the dendritic configuration appears to de-
termine somatic activity in interaction with the input rate. In panel Fig.3.4C1 we
observe that the firing response depends on the dendritic lengths and the rate of
the pre-synaptic spike train. For low input rates, the response is stable around
2 Hz and homogeneous for all dendritic lengths. When the input rate increases,
models with long dendrites progressively reduce their firing rate till they fail to
reach the spike threshold. In contrast, models with shorter dendrites increase
the firing rate up to 10 Hz reaching a maximum before 10 kHz. At approximately
20 kHz, the firing rate drops to zero for all dendritic lengths. Interestingly, the
models with the highest firing rates are not those with the shortest dendrites,
but those with approximately 200 µm-long configurations. Similarly, the config-
urations with peak response change over the input rate; for low rates, the most
robust response comes from neurons with long, distal, dendrites; for larger rates,



98 3 Dendritic non-linearities enable up-down states in single neurons

A

B

ν kI/E

ν

ν
(B3, C2)

(D1)

(D2)

(B1, B2, C1)

ν kI/E
Fi
rin

g
ra
te

(H
z)

IS
IC

V

Input rate (kHz) Input rate (kHz)

M
em

.S
TD

(m
V
)

d2

proximal
distal
asymmetric
average

proximal
distal
asymmetric
average

C
ro
ss
-c
or
re
la
tio

n

dend.-som
a

dend,-dend.
5

Firing
rate

(H
z)

M
em

brane
S
TD

(m
V
)

Input rate (kHz)

C

D

(3)

(1)

(2)

(1)

(2)

(1)

(2)

Figure 3.4: The Tripod in the high conductance state
(A) Schematics of the measures performed on the Tripod neuron; firing rate,
CVISI, membrane standard deviation (STD) and cross-correlation between com-
partments. (B) Statistics of somatic firing and membrane potential averaged
over four regions of the dendritic lengths (100 µm to 300 µm (proximal), 300 µm
to 500 µm (distal), 300 µm to 500 µm ⇥ 100 µm to 300 µm), for both NMDARs,
AMPARs-only and soma-only models. From top to bottom, the panels depict the
firing rate, interspike interval coefficient of variation, and standard deviation
of the somatic compartment membrane potential. The panels show that only
NMDAR models are actively firing, consistently with large fluctuations in the so-
matic membrane. Both the average firing rate and the membrane fluctuations
have a peak at intermediate frequencies and then decay to zero. (C) Firing rate
and standard membrane deviation for NMDARs models, for symmetrical models
with all dendritic lengths. The panels show that the length of the model’s com-
partments has an effect on the somatic activity (D) Cross-correlation between
the two dendritic branches and between the dendrites and the soma. The mea-
sure compares symmetric and asymmetrical models, with ranges as in A. In all
conditions, the cross-correlation decreases with the increase of the input rate
but dendrites with voltage-gated receptors are twice more correlated than in the
AMPARs condition.

it shifts towards shorter configurations. This dependency on the dendritic length
of the neuron’s response offers a mechanism for network selectivity in neurons
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with different integration timescales that dominate the cortical activity, depend-
ing on the network’s activity. The bottom panel of Fig.3.4C illustrates the mem-
brane’s standard deviation, which assumes a similar pattern to the firing rate.
However, the standard deviation is globally shifted towards lower input rates
(as it is also visible in Fig.3.4B3) and it is more stable and homogeneous across
the dendritic lengths. The input rates around 1 kHz are the most interesting;
models that receive this input frequency present low to no firing rate but exhibit
a sizeable somatic membrane variation. In the next section, we show that this
discrepancy is because the neuron enters into a bi-stable dynamics resembling
the up-down dynamics of cortical cells.

Using the same grouping technique we measured the cross-correlation be-
tween the membrane potential of the dendritic (Fig.3.4D1) compartments. The
analysis reveals a stark difference in the internal dynamics between the NMDARs
and AMPARs conditions. In both synaptic configurations, the cross-correlation
between the two compartments decreases with the rate. However, in the pres-
ence of NMDA receptors, the cross-correlation between dendrites is three times
larger than in the AMPARs only. The high correlation indicates that the entire
neuron depolarizes and hyper-polarizes globally, compensating for the noise in
the spike trains arriving at each dendrite. The dendrites communicate among
them through the axial resistance and the somatic compartment, which consti-
tutes a low-pass filter. The Tripod amplifies low-frequency fluctuations and cap
high-frequency ones. With the increase of the firing rate, the fluctuations become
faster, and the somatic filtering decorates the dendritic compartments. Nonethe-
less, the soma remains in between dendritic voltage fluctuations and keeps high
cross-correlations with both dendrites (Fig.3.4D2). The high cross-correlation
between soma and dendrites suggests the presence of meta-stable states in the
membrane dynamics in which soma and dendrites drift, guided by external fluc-
tuations. We test this hypothesis in the next section and explore the impact of
increasing fluctuations at the dendritic sites. With increasing the input CVISI,
the correlations remain high in the NMDARs models (data not shown), and the
dendrites favor the onset of meta-stable up-down states.

Bistable somatic dynamics: Up- and down-states require non-linear
dendritic integration

When the E/I ratio is balanced, the Tripod neuron has the property of the HCS
and becomes sensitive to fluctuations in the barrages of pre-synaptic spikes.
However, in-vivo network activity usually has more variability than the homoge-
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nous Poisson input spike trains studied in previous sections (Maksimov et al.,
2018; Paré, Shink, Gaudreau, Destexhe, & Lang, 1998). The network fluctu-
ations to which a cortical cell is exposed have been connected to the onset of
somatic up and down states (Jercog et al., 2017; Papoutsi et al., 2014; Wilson
& Kawaguchi, 1996). We test these hypotheses on the Tripod neuron and, in
agreement with previous work, show that increasing the input CVISI leads to a
bi-stable somatic membrane in Tripod and soma-only neurons. However, bi-
stability emerges for smaller fluctuation sizes in Tripod neurons with NMDARs
than in the two control conditions (AMPARs-only and soma-only), indicating
a significant role of dendritic non-linearity in picking up over the afferent net-
work’s state. In order to test the consequences of fluctuations in the input spike
trains, we devised a stochastic process to modulate the amplitude of the input
rate without affecting its average. Thus, we produce spike trains that corre-
spond to locally inhomogeneous Poisson distributions, with the same average
rate; the stochastic process is discussed in detail in the Methods. The fluctuation
sizes studied (� parameter) correspond to an CVISI of the input spike train in the
range 1 to 2, consistent with the upper range of activity measured in-vivo (Holt,
Softky, Koch, & Douglas, 1996).

First, we visually inspected the membrane dynamics for Tripod neurons with
and without NMDARs. Fig.3.5 shows the membrane potential of one the den-
drites (distal, 400 µm) and the soma, and the all-point-histogram of the somatic
potential, for a balanced input spike train with increasing fluctuations (� =1 to
1.15). In the example, the input range was set to 1.6 kHz, which corresponds
to the input range with the largest standard deviation for distal dendrites. The
results evidence three clear aspects of the neuron’s dynamics. First, the den-
dritic membrane of models with NMDARs (Fig.3.5A) have excursions of more
than 30 mV, whereas dendrites without voltage-gated receptors are less sensi-
tive to input fluctuations (Fig.3.5B). Second, somatic firing follows the oscilla-
tions of the dendritic membrane; the neuron exhibits a burst of spikes when the
membrane is most depolarized. Third, with increasing size of input fluctuations
(increasing �), the somatic compartment of models with NMDARs enters into a
bi-stable dynamic, revealed by the APH. Contrarily, without NMDARs, the soma
has one single peak around �60 mV.

We used a Gaussian-kernel-estimate (GKE) approach to quantify the somatic
bi-stability, it allowed us to count the peaks and estimate the strength of the
APH bi-stability. The GKE is parameterized by the size of the window used for
the Gaussian kernel (details in the Supplementary Methods). With increasing
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Figure 3.5: Input fluctuations lead to bi-stable membrane potential in NM-
DARs models
(A) Membrane potential and all-point-histogram (APH) of a distal-distal model
endowed with NMDARs and exposed to intense synaptic bombardment with an
average input frequency of 1.6 kHz. The model has balanced E/I inputs. Both
excitatory and inhibitory input spike trains have increasing rate fluctuations with
� (CVISI) in the range 1 ( to 1.25 (panels below, from top to bottom). The den-
dritic membrane responds with large fluctuations visible in the somatic activity
(left) and the increasing bimodality in the APH distribution (right). (B) Equiv-
alent configuration and inputs than in (A) but with an AMPARs-only model;
without NMDARs receptor, the somatic model is less sensitive to fluctuations in
the inputs. The external inputs are frozen and the same in all panels to facilitate
comparisons.

window size, the number of peaks will monotonically decrease. An example
of the GKE for increasing window size is portrayed in Fig.3.6A. Our bi-stability
measure estimates the maximal window size that retains two peaks in the GKE
of the APH. There is one caveat for our measure, which corresponds to APH
with more than two peaks; for example, for high frequencies (beyond 30 kHz),
the APH will sometimes show three peaks (as in the APH of the distal-distal
model in Fig.3.6A). The appearance of three peaks at an increasing rate is due
to the decorrelation between the two dendrites, which will, independently, be
in a depolarized (up) or hyperpolarized (down) state. When permuting over
the dendritic states, there are four cases (three in symmetrical dendrites), up-
up, down-down, up-down, and down-up. Because the dendritic decorrelation is
higher for longer dendrites and higher rates, the three peaks structure will occur
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more often in those cases. To avoid counting the triple peaks in the bimodal
index, we count the APH with more than two as non-bimodal.

We investigated the emergence of bimodality in three dendritic models repre-
senting the possible dendritic configurations: distal-distal, proximal-proximal,
and distal-proximal. As a control, we also measured the bimodality index in
models without NMDARs and in the soma-only model. We tested the models for
all input rates in the range 0.5 kHz to 80 kHz and for � (CVISI) in the range 1
to 2. The results of the measures are reported in Fig.3.6B. Tripod neurons with
NMDARs have a high bimodal index when the input’s CVISI is larger than 1.2 and
for inputs within the range 0.5 kHz to 5 kHz. The bimodal membrane distri-
bution is robust across symmetrical and asymmetrical dendritic configurations.
The bimodality index slowly fades for higher inputs because the pre-synaptic
bombardment forces the neuron dendrites into decorrelated states and flattens
the APH. In these conditions, bimodality is recovered only for large fluctuations
in the inputs, CVISI >⇡ 1.5. Tripod neurons with AMPARs-only synapses (right
panels in Fig.3.6B) require massive fluctuations to enter the bimodal dynamics,
and the bimodality index remains low. The soma-only model, surprisingly, has
intermediate properties between the AMPARs and the NMDARs models. Its bi-
modality index is high in a short interval of the input rate (4 kHz to 8 kHz) and
for fluctuations beyond � = 1.4, in both the NMDARs and AMPARs condition. To
further explain the relation between bimodality and fluctuations in the inputs,
(�) we examined the distal-proximal model over inputs generated varying both
the fluctuation timescale (⌧r) and size (�), as expressed in Eq.3.4. The results
are illustrated in Fig.3.2. The best predictor of the bimodality index was neither
the � nor the ⌧r; rather, bimodality was higher when the input CVISI was higher.

The measure of the bimodality index for Tripod neurons with NMDARs ensures
that the model will enter the up-down dynamics for CVISI > 1.2 This result is com-
patible with the range of CVISI observed in the cortex (Maksimov et al., 2018; Os-
tojic, 2011; Shinomoto, Sakai, & Funahashi, 1999). On the other hand, the mea-
sure in Fig.3.6B does not clarify the role of the excitation/inhibition balance in
eliciting the up-down states. To test this, we set the � = 1.2 and measured the bi-
modality while varying the E/I ratio (kE/I), the results are illustrated in Fig.3.6C.
We varied the kE/Iwithin 5 % to 200 % of the k̄E/Isuch to explore nearly all possi-
ble input configurations for the excitatory and inhibitory rates; the measure was
carried on the four models previously indicated, two symmetrical (distal and
proximal), one asymmetrical, and the soma only. Consistently with the methods
used to set the balance, we maintained the excitatory rate fixed and varied the in-
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hibitory rate, I rate
balance = (⌫exc = 0.5 kHz to 80 kHz;⌫inh = ↵⌫exc · k̄rate

E/I ;� = 1.2),
with ↵ = 5 % to 200 %. The results show that the balance is not a necessary
outcome for input rates below 1 kHz but becomes critical for larger ones. The
UDSs occur only in a narrow band of possible E/I ratios and are centered around
the k̄E/I(alpha = 100%). We also computed the average membrane potential of
the soma, expressed in Fig.3.6C by the red-blue color code. For the Tripod neu-
ron, the soma will persist in the up (red) or down (blue) state when the balance
is increased (+) or diminished (-). For soma-only models, the fluctuation size
chosen as input was not sufficient to elicit bimodal states; however, the measure
indicates that when the excitatory input is sufficiently strong (2 kHz), the model
with k̄E/Iwill stay stable around �55 mV, as expected from the balance condi-
tion imposed. Interestingly, variations in the k̄E/Ihave less effect on the average
somatic potential in the soma-only rather than in the Tripod neuron.

Finally, we report the firing rate in all the eight models measured before for
the entire input range and � = 1 to 2 The firing rate of Tripod neurons with
NMDARs, AMPARs only, and the soma-only models are portrayed in Fig.3.6D. In
the absence of fluctuations (lower extreme of the plot, CVISI equal 0), the same
output rates curves illustrated in Fig.3.4Ciii are recovered; the Tripod neurons
fire at approximately 5 Hz, with a peak a low frequency and a slow decay for
higher input rates. In the distal-distal model, the fluctuation size does not af-
fect this trend, the firing rate increases at low input rates, reaches a peak, and
decreases. Conversely, for models with NMDARs receptor and at least one proxi-
mal dendrite (distal-proximal and proximal-proximal configurations), the firing
rate increases abruptly for � > 1.1 The response differs structurally from the
firing rate measured in the absence of input fluctuations (Fig.3.4Ciii). First, it
does not depend on the input rate; the response is stable at 15 Hz for the distal-
proximal model and around 8 Hz for the proximal-proximal model. Second, in
the presence of fluctuations, the firing rate does depend on the dendritic con-
figuration, and the asymmetrical (distal-proximal) model has a firing rate about
90 % larger than in the symmetrical case (proximal-proximal). This difference
between the symmetrical and asymmetrical model was absent at CVISI equal 1,
indicating that asymmetries increase the model’s sensitivity to fluctuations. In
contrast, the soma-only and the AMPARs-only models have maintained the clas-
sical input rate dependence; they show a peak at intermediate frequencies. The
AMPARs models have a second peak around 10 kHz, which may be due to the in-
teractions with the inversion of kE/Ireported in Fig.3.2B. In both cases, the firing
rate is larger than zero only when fluctuations are beyond � = 1.2.
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Figure 3.6: UDS depends on input fluctuations but requires E/I balance and
non-linear dendritic integration to express
(A) (Left) All-point histogram (APH) for three NMDARs Tripod neurons and
soma-only model. The orange line illustrates the Gaussian Kernel Density Esti-
mate (GKDE) for a window of 2 mV. The input rate is 1.6 kHz. (Right) APH of a
distal-proximal model with the same input rate, the color-shaded lines show the
GKDE for increasing window lengths (panel’s legend). For large windows, the
bimodality (two peaks in the distribution) of GKDE reduces monotonically. The
minim window with bimodal distribution indexes the bimodality of the APH.
(B) Bimodality index for symmetrical and asymmetrical Tripod neurons, with
and without NMDARs, and soma-only models. The bimodality is tested against
increasing fluctuation size (CVISI) in the input (y-axis, 1 to 2)) and for all the
input rates (x-axis 0.5 kHz to 80 kHz). Only Tripod neurons with NMDARs show
bimodality in the APH. Figure caption continues on the next page.
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Figure 3.6: (C) Bimodality index and average membrane potential against vari-
ations in the kE/I , for symmetrical and asymmetrical models, and � (CVISI) equal
1.2 kHz. For increasing input frequency, the range of kE/I for which the APH is
bimodal shrinks around the balance k̄E/I . The membrane potential indicates that
exceeding the k̄E/I turns in permanent hyperpolarized (down, blue) or depolar-
ized (up, red) states. (D) Firing rate for the eight models analyzed. The presence
of fluctuations in the NMDARs Tripod neurons causes higher firing rates. The
asymmetrical models benefit from fluctuations more than the symmetrical mod-
els.

We have shown that including dendrites and NDMA receptors in single neuron
models significantly impacts the somatic dynamics, both in the absence of input
fluctuations and when exposed to inputs with varying rates. Critically, the Tripod
neuron shows strong bi-stability when the fluctuations are in the regime of those
measured in-vivo, (CVISI approximately 1.2). In the next section, we analyze the
temporal traits of the emerging UDS.

3.3.3 Statistics of up-down states in the Tripod neuron

Following the analysis performed in (Benucci et al., 2004) we measure the statis-
tics of state duration, firing rate, and membrane potential of the UDS in the
Tripod neuron. For simplicity, we focus on Tripod neurons with distal-proximal
compartments, input rate of 1.6 kHz, and fluctuations corresponding to CVISI =
1.2 We chose this setup because the geometry reflects the heterogeneity of real
dendritic harbors, and the rate and CVISI are consistent with common cortical
conditions. The results, however, generalize to other models and fluctuation
sizes which are not illustrated here.

First, we inspect visually the somatic membrane fluctuations in the Tripod
neuron with and without NMDARs, and in the soma-only model (Fig.3.7A). The
three models were stimulated with the same input spike train to facilitate the
comparison. In agreement with the analysis of the previous sections, the Tripod
with NMDARs shows two distinctive meta-stable states in the membrane poten-
tial; the same oscillations in the potential are visible in the other two models,
but the variations are less sharp and pronounced. To quantify these states we
used the method proposed in (Anderson, Lampl, Gillespie, & Ferster, 2000) and
defined two thresholds for the up-down states. When the somatic membrane
crosses the UP threshold we count a somatic upstate, it lasts until the potential
crosses the DOWN threshold; the thresholds are set, respectively, to three fourth
(0.75) and one-fourth (0.25) of the range spanned by the membrane potential
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Figure 3.7: Statistics of up-down states in the Tripod neuron
(A) Membrane potential dynamics under fluctuating synaptic input. The pre-
synaptic spike train is the same for the three models presented, Tripod with
NMDARs (blue), without NMDARs (red) and the soma-only model (black). The
model with NMDA fires more and has more pronounced UDS. To quantify the
membrane dynamics, the potential has been clustered into an up and down re-
gion using two thresholds (Anderson, Lampl, Gillespie, & Ferster, 2000). (B)
Membrane potential of the up and down states for the three models. The down-
state is about �65 mV for the Tripod with NMDARs, but more depolarized for
the two other models. Thus, the difference underlying the bimodality is more
pronounced in models with NMDARs. Figure caption continues on the next page.
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Figure 3.7: (C) For each up-state, we compared the average membrane potential
and the instantaneous firing rate; models with NMDARs have a high correlation
between the potential and the firing rate (⇢ =0.36), which is not the case for the
other models. (D) Standard deviation of the membrane potentials clustered in
the UDS. (E) Cumulative distribution of the state duration for two conditions of
the input CVISI (1, solid line; 1.2 dashed line); the two conditions correspond to
awake and anesthetized animal and the Tripod NMDAR model matches qualita-
tively the physiological data. (F) Average dynamics of the membrane potential
around the UDS transition. The Tripod NMDARs transition lasts on the order of
25 ms and is pronounced and stable immediately after. Conversely, the UDS tran-
sitions are faster and less pronounced in the tripod without NMDARs and in the
soma-only model; the membrane potential moves in an unimodal distribution
and the UDS are its tails.

during the simulation. Once the UDS intervals are defined, we compute the av-
erage membrane potential in the state and compare it across the three models
(Fig.3.7B). All models have significantly different membrane potential averages
in the UDS, ensuring that the threshold technique used to individuate them is
effective. Nonetheless, the difference between up and down states is more pro-
nounced in the Tripod with NMDARs than in the two control conditions and only
presence of voltage-gated receptors the down-state is strongly hyper-polarized
(�65 mV). Furthermore, the up states of NMDAR models share several char-
acteristics with those measured in vivo by Anderson, Lampl, Reichova, Caran-
dini, and Ferster (2000) or reproduced with detailed neuron models (Benucci
et al., 2004). In particular, we report a significant correlation between the in-
stantaneous firing rate and the membrane potential in the up-state (Fig.3.7C);
and the larger variability in the membrane potential in the up-state than in the
down-state (Fig.3.7D). To test the functional properties of the up-down dynam-
ics emerging in the Tripod, we compared the cumulative probability of the states’
duration with and without correlations in the input streams (CVISI = 1 and 1.2).
The analysis aims to reproduce the variations measured in vivo when the animals
were exposed to visual stimuli or rather deprived of it (Anderson, Lampl, Gille-
spie, & Ferster, 2000). The effect of the manipulations, shown in Fig.3.7E is in
large agreement with the experimental evidence; an increase of the correlations
in the input stream causes the probability distribution to shift forward (left-top
panel) but has little effect on the distribution of down states (left-bottom panel).
While the Tripod model with NMDARs qualitatively reproduces in vivo measures,
it is not the case for Tripod models with AMPARs only or soma-only neurons
(Fig.3.7C, D, E). The up-down dynamics emerging in the Tripod model show
similarities with the up-down measured in the cortex also from a temporal per-
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spective. By averaging the somatic membrane potential we measured the time
course of the transition between the UDS. It results that the onset of up states
is faster and has a sigmoidal shape, in contrast, the transition to the down-state
is slower and has a linear trend (Fig.3.7F), these differences are consistent with
the temporal characteristics of the transition between UDS reported in Wilson
and Kawaguchi (1996).

3.4 Discussion

We investigated the response of a minimal dendritic model (the Tripod neuron,
(Quaresima et al., 2022)) to high-rate E/I balanced inputs and showed the emer-
gence of distinctive cortical traits, such as the high conductance state and the
up-down states. The Tripod neuron has two segregated passive compartments
that accommodate NMDA receptors. From systematic comparisons with simpler
models (no NMDARs and no dendrites), we conclude that NMDARs and seg-
regated compartments are sufficient for detecting fluctuations in the synaptic
inputs, thus reproducing functional aspects of cortical cells. The model indi-
cates that the UDS are the natural consequence of fluctuations of the balanced
E/I activity on the dendritic arborization. The UDS of the Tripod model reflects
the properties of UDS in cortical cells, such as the correlation between the mem-
brane potential and the firing rate, the bi-modal distribution of the sub-threshold
states, and the dynamics of the up-down transition.

Concerning the contribution of the dendrites to the HCS, our study indicates
that fine-tuned dendritic balance shapes the membrane potential of the neu-
ron and drives somatic depolarization. For unbalanced (E/I) inputs, the neuron
increases its firing rate exponentially, consistently with the traditional results
on leaky-integrate-and-fire (LIF) frequency-current curves (Nordlie, Tetzlaff, &
Einevoll, 2010), although not with physiological recordings (Anderson, Lampl,
Gillespie, & Ferster, 2000). Computational and experimental results converge
on the fact that cortical neurons are exposed to balanced E/I pre-synaptic fir-
ing (Destexhe, Rudolph, Fellous, & Sejnowski, 2001; Higley & Contreras, 2006;
Kuhn et al., 2004; Shu et al., 2003) and cortical neurons leverage different mech-
anisms to reach the E/I balanced state (Turrigiano, 2011; Vogels et al., 2013).
We investigated two E/I balance mechanisms and showed that, even if leverag-
ing different degrees of freedom (i.e., membrane potential and firing rate), they
reach similar excitatory/inhibitory equilibrium points. Crucially, we found that
the organization of excitation and inhibition depends on the dendritic geometry,
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with longer dendrites requiring more excitation than shorter dendrites to achieve
somatic balance; our results are in considerable agreement with whole-neuron
recordings on the distribution of excitatory and inhibitory dendritic spines (Ias-
cone et al., 2020) and respect the dendritic democracy hypothesis, with stronger
synapses in distal regions (Häusser, 2001; Magee & Cook, 2000).

The E/I dendritic balance yields a somatic activity profile similar to the one
reached by balancing somatic conductances (Kuhn et al., 2004), suggesting that
theoretical insights based on the properties of balanced networks should be ex-
tended to networks with dendrites (Baker et al., 2020; Denève & Machens, 2016;
Ebsch & Rosenbaum, 2018; Renart, Moreno-Bote, Wang, & Parga, 2007). How-
ever, two differences between somatic and dendritic balance must be consid-
ered for future computational work. First, passive segregated dendrites have
a low-pass filter effect on the signal; consequently, fast fluctuations are atten-
uated in models with AMPARs. The attenuation applies to models with linear
or sub-linear integration in the segregated compartment and is consistent with
previous work that explored coincident detection in the dendrites (Dasika et al.,
2007). Second, dendritic non-linearity, such as NMDAR, recovers the sensitivity
to fast fluctuations and introduces an interplay between the pre-synaptic rate
and synaptic efficacy and the dendritic location of the synapses (i.e., the den-
dritic length in our model).

Our study suggests the untested hypothesis that input correlations at differ-
ent timescales are best expressed by synaptic clusters located at different den-
dritic lengths. In particular, short dendrites should pick fast fluctuations, and
long dendrites should pick fluctuations on longer timescales. The geometry-rate
interaction is the natural consequence of the timescale introduced by the segre-
gated dendritic compartment (Quaresima et al., 2022). Such selectivity of the
dendritic branch is in line with recent physiological studies that show complex
arrangements of the pre-synaptic axons on the dendrites of sub-cortical and cor-
tical cells (Callan, Heß, Felmy, & Leibold, 2021; Lafourcade et al., 2022). An
additional macroscopic consequence of dendritic non-linearity is the high cor-
relation between dendritic compartments. Because input correlations are null
in our setup, it suggests that membrane potential information propagates more
efficiently in non-linear dendrites and accounts for the correlation between lo-
cal and global events observed in single branches of whole-cell imaging in-vivo
(Otor et al., 2022; Palmer et al., 2014; Russell et al., 2022). The linear drop
of the dendrite-dendrite correlation suggests that the cell can leverage multiple
regimes of integration depending on the input rate.
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The Tripod neuron model explains how cellular bi-stability can emerge by the
synaptic bombardment that produces the HCS. By varying the second moment of
the input spikes (CV ISI), the model switches from the depolarized state to the
stereotypical up-down dynamics. We investigated the constraints on the local
activity and showed that models with NMDARs naturally enter the UDS for fluc-
tuations within physiological boundaries. Our results are in agreement with the
early hypothesis that the onset of NMDA spikes and the consequent dendritic up-
state drive the UDS, as proposed in Antic et al. (2010); Milojkovic et al. (2005).
Furthermore, there is a striking similarity between the profile of the dendritic
up-states in the Tripod model and the membrane potential of dendritic branches
measured in vivo in a subclass of L5 cells (Dembrow & Spain, 2022). In the ex-
periment, however, the inhibitory synapses were blocked, which limits the range
of comparison to Dembrow and Spain (2022), to the lower range of the Tripod
input rates. On the other hand, the dependence of the UDS on the NMDARs’ non-
linearity is not in line with other experimental works that leveraged intracellular
MK-801 to block NMDARs in single cells (Chen, Rochefort, Sakmann, & Kon-
nerth, 2013; Palmer et al., 2014; Smith et al., 2013). These studies have shown
the emergence of UDS independently of the voltage-dependent receptor activ-
ity. Such evidence posits a different hypothesis on the relation between NMDA
spikes and somatic UDS (Larkum, 2022), the sub-threshold UDS are governed
by the barrage of synaptic inputs activating the AMPA receptors; whereas the
NMDA spikes are additional sparks, signaling that spatially-clustered synapses
were jointly activated.

While our model elicits somatic firing only in the presence of NMDARs - match-
ing the Larkum (2022) hypothesis, it cannot retrieve the bimodal membrane po-
tential for models without NMDARs when the fluctuation size is small; for AM-
PARs models, the bimodal state requires CVISI > 1.5. We advance three, possibly
concurrent, interpretations for the differences between our results and the latter
experimental evidence. First, it may be that the blockage of NMDARs does not
prevent other non-linear mechanisms, as evidenced in the entorhinal cortex by
Digby, Bravo, Paulsen, and Magloire (2017). In this case, our model has to be in-
terpreted as expressing the general function of a dendritic non-linearity. Second,
the explanation may rely on the role of inhibition in driving UDS. In our experi-
ments we remain close to the E/I balanced conditions, both in the up and down
states, however, it is possible that the up-state corresponds to the balanced state
while the down-state is dominated by strong inhibition (inhibition-stabilized,
Jercog et al. (2017)), or even the absence of excitatory sensory stimuli (Dem-
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brow & Spain, 2022). In this second case, the model with AMPARs-only should
receive inputs with leveled-up inhibition, which may result in UDS. Third, we
ought to consider the possibility that the UDS emerges from the complex den-
dritic morphology of real cells. The early computational findings by Benucci et al.
(2004) suggest that the temporal filtering of many dendritic branches with het-
erogeneous timescales supports the soma’s up-state with broad and continuous
depolarizing currents. Our models do not account for the sub-threshold sum-
mation of currents from multiple dendritic branches; rather, we show that the
extremely reduced dendritic morphologies are sufficient if the dendritic compart-
ments meet the local balance conditions and express non-linear voltage-gated
receptors.

Previous hypotheses on the rise and maintenance of up-states suggested that
cells use inward-rectifying potassium channels (Cunningham et al., 2006; Sanders
et al., 2013), or similar ionic mechanisms (Loewenstein et al., 2005) to main-
tain the membrane depolarization following a strong current pulse. However,
it is unclear how these fine-tuned systems may maintain stability in the face of
noisy network dynamics. In contrast, we provided evidence that reduced den-
dritic models can account for the UDS robustly via dendritic non-linearities. The
present results have broad implications for computational studies because they
indicate that dendrites relax the conditions for neuronal bi-stability in the pres-
ence of synaptic noise. The implication of dendrites on the UDS was already
investigated in previous computational studies by Papoutsi et al. (2014) and
Benucci et al. (2004). Our conclusions are in agreement with these previous
findings, although our model meets the E/I dendritic balance explicitly, result-
ing in firing statistics and membrane dynamics remarkably similar to cortical
cells. In addition, the Tripod can be efficiently implemented in medium to large
networks. Thus, it allows future studies to investigate the interaction between
local and network-level bi-stability.
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3.5 Supplementary Methods

Input spike trains and notation

Excitatory and inhibitory input spikes are drawn randomly from Poisson distribu-
tions. The excitatory input rate is the same for both dendrites and varies within
the range 0.5 kHz to 80 kHz. Conversely, the synaptic efficacy for the excitatory
inputs is fixed and corresponds to the peak amplitude of the glutamatergic recep-
tors ḡGluRs

s yn (Table3.3). Similarly, for the inhibitory inputs, the inhibitory synaptic
efficacy is fixed by the receptors’ peak amplitude and their firing rate varies. A
complete description of the set of parameters that characterize the model inputs
can be expressed by the tuple I = (⌫exc,⌫inh,� , ḡGluRs

s yn , ḡGABA
s yn ) = (⌫exc,⌫inh,�),

where the last term accounts only for independent variables.
We modulate the rate of the inhibitory inputs while controlling for the bal-

ance condition. In principle, there can be multiple values of the inhibitory rate
that satisfy the balance condition. However, our results show that for a given
excitatory rate there is only one inhibitory rate that achieves the E/I balance
condition. Therefore, we express the inhibitory rate as a fraction kE/I of the ex-
citatory rate. Therefore, in the absence of fluctuations (CVISI equal to 1), the
input to the models are fully charecterized by

Ibalance = (⌫exc; ⌫inh = k�1
E/I · ⌫exc; � = 0) (3.3)

Which can be compactly expressed with Ibalance = (⌫exc; kE/I). Note that we
will be referring to the E/I ratio as the factor kE/I , whose inverse modulates the
inhibitory input rate and synaptic strength in Eq.3.3. We chose to use the inverse
of kE/I instead of kI/E = k�1

E/I for consistency with previous studies (Kuhn et al.,
2004).

Fluctuations in the pre-synaptic firing rate

For excitatory spike trains, the instantaneous input rate is computed by multi-
plying the input rate (⌫0

exc) with a non-negative, time-dependent signal r̄t which
is defined as follows:

⇠ := rand [�0.5, 0.5] (uni f orm)

zt+1 := ⇠� (⇠� zt)e�
d t
⌧ (3.4)

rt := 1+ �̃max (0, zt)
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The variable zt is a discrete Ornstein-Uhlenbeck process and ⌧ is its autocorre-
lation time; it is fixed at 50 ms as in Vogels et al. (2011), however there are no
qualitative differences for values within a reasonable, physiological range (10 ms
to 100 ms). Finally, �̃ is a free parameter and determines the fluctuation size of
the rectified process rt . at 50 ms Vogels et al. (2011), We fix the signal average
to 1 by normalizing it with its average over the simulation interval r̄t =

rt
hri T

.
Thus, the instantaneous input rate is given by

⌫exc
( t) = ⌫0

rt

hri T
= ⌫0 r̄t (3.5)

The average input rate h⌫exc(t)i is constant for each input spike train and equal
to ⌫0.

The parameter �̃ can be transformed with a simple lineartransformation; we
define � .= 10�3�̃ + 1, or, equivalently:

�̃ = 103 (� � 1) (3.6)

With the substitution in Eq.3.6 the CVISI of the spike trains computed from the
heterogeneous Poisson distribution (Fig.3.2), matches the values of the param-
eter � . Thus, the CVISI of the spike train generated has the same range of the �
parameter, namely, 1 to 2 and we can use the CVISI as a proxy for the fluctuation
size of ⌫input

t . Further comparisons between the CVISI and the parameter � are
illustrated in Fig.3.2. The panels also show that the membrane bimodality de-
pends on the input statistics only through the CVISI and not the parameters ⌧ or
� .

Quantifying up-down states

All points histogram. The all-time-points histogram (APH) is a measure of
the average time the membrane potential falls within a certain voltage range.
It was first used in Wilson and Kawaguchi (1996) to characterize in vivo intra-
cellular recordings from cortical and striatal spiny neurons. In the presence of
up-down states, the APH shows a bimodal distribution of somatic membrane
potentials. Values most frequently assumed by the membrane are either near
the firing threshold (up state) or close to the resting potential (down state). We
compute the APH for simulations of 10 s if not otherwise specified. The APH has
a resolution in voltage of 1 mV.
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Bimodality of APH. We measured the presence of a bimodal distribution through
Gaussian kernel density estimate (GKDE). Following the method in Silverman
(1981), we computed the GKDE for the APH as

GKDE [APH, h] (x) =
�40 mVX

i=�90 mV

APHx

�
exp�((x � i)/h)2

�

h
(3.7)

where APHx is the magnitude of the histogram bin corresponding to the volt-
age x . The function GKDE [APH, h] (x) is a smooth curve that depends on the
particular realization of the APH and the window size h used for the Gaussian
convolution. It was demonstrated that, for a function obtained from Eq.3.7, the
number of local maxima of the curve GKDE(x) is a monotonically decreasing
function of the window size (h) (Silverman, 1981). Thus, to estimate the bi-
modality of an APH, we compute the GKDE for windows in the range 1 mV to
50 mV and count the number of maxima. Because the number of maxima is a
monotonically decreasing function, we can use the minimal window size (h̄) for
which there is a unique maximum in the GKDE (unimodal distribution) as an
index of the APH bimodality. The larger the minimal window h̄, the stronger the
APH bimodality, indicating the presence of up-down states. Notice that because
of intrinsic randomness in the APH, a local maximum is considered such only if
it is larger than 30% of the global maximum.

Numerical simulation

The differential equations of the model were integrated using the forward Euler
method (Heun’s method (Ascher & Petzold, 1998)) with explicit integration and
a step-size of 0.1 ms. The implementation followed the original Tripod study. In
the previous study, the low-rate pre-synaptic spikes did not result in numerical
stiffness. However, at high input rates (beyond 50 kHz), the synaptic conduc-
tance becomes large, and even small changes in the membrane potential lead
to large incoming synaptic currents. In this condition, the membrane poten-
tial varies largely in one single time step (tens of milli-volt in 0.1 ms), while
the coupled equations of the synaptic conductance changes over the time scale
of tens or hundreds ms, causing a stiffness problem. To solve this issue, we
limited the derivative of the membrane potential by capping to 1 nA the max-
imal current flowing through each compartment ionic channel. Simulations
were performed in Julia using the same code for Quaresima et al. (2022), ex-
cept for the capped dendritic currents. The code can be obtained on GitHub at
https://github.com/aquaresima/tripod_neuron.

https://github.com/aquaresima/tripod_neuron
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Table 3.1: Parameters for the axosomatic compartment of the Tripod neuron
(Quaresima et al., 2022) which is modeled as an adaptive exponential neuron
(Brette & Gerstner, 2005).

Symbol Description Value Unit
gL Membrane leak conductance 40 nS
Cm Membrane capacitance 281 pF
Vr Resting membrane potential -70.6 mV
VT Threshold potential -50.4 mV
uth Spike onset threshold 0 mV
ur Reset potential -55 mV
�T Slope factor 2 mV
⌧w Spike-triggered adaptation time scale 144 ms
a Sub-threshold adaptation conductance 4 nS
b Spike-triggered adaptation increment 80.5 pA

tup Spike width (soma clamped at 20 mV) 1 ms
tre f Absolute refractory period 2 ms

Table 3.2: Parameters for proximal and distal dendritic compartments in the
Tripod neuron model.

Symbol Description Distal Proximal Unit
l Dendritic length 400 150 µm
d Dendritic diameter 4 4 µm
gm Leak conductance 1.29 0.32 nS
⌧d Membrane time constant 1.48 0.22 ms
gax Axial conductance 15.71 62.83 nS
Cm Membrane capacitance 25.13 6.28 pF

Table 3.3: Synaptic parameters of the Tripod neuron used in the simulations in
the Results section.

Er(mV) ⌧r(ms) ⌧d(ms) ḡsyn(nS) �
�

1
mV

�

Excitation
Soma
AMPA 0 0.26 2 0.73 –
Dendrite with NMDA + AMPA
AMPA 0 0.26 2 0.73 –
NMDA 0 8 35 1.31 0.075
Dendrite with AMPA-only
AMPA 0 0.26 2 2.04 –
Inhibition
Soma
GABAA �75 0.1 15 0.38 –
Dendrite
GABAA �75 4.8 29 0.27 –
GABAB �90 30 400 �0.006 –
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3.6 Appendix

Appendix A: Dendritic integration under synaptic

bombardment

To understand the response of the Tripod to barrages of pre-synaptic excita-
tory and inhibitory spikes, we expose the dendrites to intense synaptic bom-
bardment and measure somatic activity. For this experiment, we stimulate the
neuron with stationary excitatory and inhibitory Poisson input at fixed rates,
I = (⌫ex t; kE/I = 1.25), while systematically varying the length of each com-
partment independently (Fig.3.1A). The synaptic strengths correspond to the
maximal synaptic conductance for excitatory and inhibitory synapses. We mea-
sure the rates and the coefficient of variation of the inter-spike-interval (CVISI)
for all dendritic lengths (x and y axes in Fig.3.1A and B, 100 µm to 500 µm)
and increasing input rates ⌫exc (8 panels, 1.5 kHz to 50 kHz). The output rates
and the CVISI of the models are illustrated in Fig.3.1 A and B, respectively. For
low input rates (⌫exc <1.5 kHz), the neuron is not sufficiently excited to pro-
duce spikes, regardless of the dendritic length. Increasing the input rate of both
excitatory and inhibitory neurons (⌫exc from 1.5 kHz to 15 kHz), the Tripod ac-
tivates and responds with increasing spike rate to the stimulus. Beyond 15 kHz,
the firing response stabilizes in the interval 10 Hz to 50 Hz for most dendritic
configurations, with the exception of the Tripod models with the shortest com-
partments (bottom-left corners) and the longest ones (top-right corners) which
tend to 70 Hz and 0 Hz respectively. Non-symmetric configurations (top-left and
bottom-right corners) have intermediate rates, suggesting that each dendritic
length contributes with the same depolarizing current to the soma as it does
in its symmetric counterparts. With regards to the firing regularity (Fig.3.1B),
sparse firing with biological CVISI (0.5 to 1.5) is observed only in the intermediate
input rates; for high input rates the model’s response tends to be the most reg-
ular, with CVISI approaching zero. Dendritic asymmetries have an impact on the
regularity of somatic spiking, too. In the intermediate ranges, dendritic asym-
metries lead to a higher coefficient of variation of the inter-spike interval (CVISI).
The impact of asymmetry is visible through the darker off-diagonal shades in the
central panels of Fig.3.1B.

In the experiment illustrated in Fig.3.1A and Fig.3.1B, the E/I ratio (kE/I) is
arbitrarily fixed to 1.25 to ensure a substantial firing from the Tripod. Similar
results were obtained by varying the value within a finite interval. The panel
in Fig.3.1C shows the firing rate for the symmetrical model averaged across all
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dendritic lengths and for kE/I in the range 0.5 to 5 The results are highly con-
sistent and there is no qualitative difference between simulations with different
kE/I . The balance ratio only determines the minimal excitatory rate necessary
to trigger somatic firing (it shifts the response pattern on the x-axis) and limits
the firing response (lowering the plateau from 60 Hz to 30 Hz on the y-axis);
crucially the steepness of the response function remains the same for different
balance ratios. In the case of small values of the E/I balance ratio (i.e., kE/I < 1),
the inhibition dominates, and the cell has little to no activity (lighter blue lines).

It is worth looking deeper into the response of the Tripod models at low input
regimes, illustrated in Fig.3.1D. For inputs in the range (1.5 kHz to 5 kHz), the
models with higher rates are not those with the shortest dendrites but those with
intermediate lengths. This trend is clearly shown in Fig.3.1D, which indicates
the dendritic length with the strongest response (highest output rate) for each
input rate, and for each E/I ratio. Long dendrites benefit from the electrical
segregation from the soma; in these input conditions, the NMDAR’s non-linearity
has a pronounced effect. On the other hand, short dendrites do not reach the
necessary potential to activate the NMDARs and remain hyperpolarized. The
same trend also emerges in the balance conditions discussed below. Around
5 Hz, all dendrites receive enough inputs to activate the NMDARs voltage-gating
fully; in these conditions, the high axial conductance of short dendrites favors
the Tripod with proximal configurations.
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Appendix B: Balance with inhibitory synaptic plasticity

To verify the robustness of our results on the balanced condition, we computed
the balanced state using a different operative definition of the balanced state
(the neuron firing at 10 Hz). For this purpose, it was not possible to use the free
membrane potential and we adjusted the inhibitory stream via inhibitory spike-
timing-dependent plasticity (Vogels et al., 2011). We impose the E/I balance
such that the Tripod fires sparsely (coefficient of variation of inter-spike-interval
(CV ISI)⇡ 1 and firing rate within 5 Hz to 10 Hz), under continuous and supra-
threshold excitatory stimuli. These requirements match with computational and
experimental evidence (Destexhe et al., 2003; Higley & Contreras, 2006; Mak-
simov et al., 2018; Vogels et al., 2011).

We set the excitatory and inhibitory rates equal and an inhibitory spike-time-
dependent plasticity (iSTDP) learning rule to compute the appropriate inhibitory
synaptic efficacy (gGABA

s yn ) (illustration in Fig.3.2A). The iSTDP rule from Vogels
et al. (2011) finds the inhibitory synaptic efficacy such that the Tripod firing
rate ⌫out converges to a target value ↵, which is set to 5 Hz in this study. For
each dendritic compartment, the synaptic efficacy is updated whenever a pre-
synaptic inhibitory spike arrives on the Tripod (X I = �(t I � t)) or the Tripod
fires (X out = �(tout � t)):

Jinh � Jinh +⌘
�
X out(⌫out �↵) + X I⌫inh

�
(3.8)

This rule acts as a homeostatic feedback; it increases the inhibitory synaptic
strength when the Tripod is firing more frequently than the target rate ↵= 5Hz
and decreases it when it is firing at a lower rate. The k̄E/Ireached with the iSTDP
protocol are portrayed in Fig.3.2B.

On the theoretical ground, it is hard to equate the balance reach via synap-
tic efficacy and rate in the Tripod model. Because the NMDARs’ voltage-gated
component prevents linearizing the neuron’s membrane potential and applies
Campbell’s theorem, as proposed in Kuhn et al. (2004). However, we could
evaluate the correlation between the k̄E/Ireached with the two protocols. For
the three models (NMDARs, AMPARs, soma-only), the rate and iSTDP protocols
converge on highly similar E/I ratios (⇢AMPA =0.95, ⇢NMDA = 0.94, ⇢soma =
0.99). The relationship between rate and iSTDP protocols is portrayed in the
scatter plots of Fig.3.2C). Each point indicates the k̄E/Iachieved with rate bal-
ance (y-axis) and the rate reached with iSTDP balance (x-axis), color-coded for
all dendritic lengths and inputs. The k̄E/Ivalues for the rate-balanced condition
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Appendix Figure 3.1: Spiking activity with unbalanced inputs
(A) Firing rate for all geometric configurations in the range 100 µm to 500 µm (x
and y axes) under increasing synaptic bombardment (panels 1-4). The kE/Iratio
is fixed to 1.25. The excitatory input rate is varied between 0.1 kHz to 50 kHz,
of which four intermediate input frequencies are shown. The firing rate of the
Tripod depends strongly on the dendritic lengths, and the difference in response
between models with long and short dendrites increases with the input rates.
(B) Same inputs configuration as in A, the four panels indicate the inter-spike-
interval coefficient of variation (CVISI) of the model under synaptic bombard-
ment. The CVISI is larger for asymmetrical models (near each panel’s left and
bottom axes) and also depends on the external input rate. The models simulated
in this experiment have biologically plausible responses only in the intermedi-
ate input ranges (panels 2 and 3). (C) Firing rate averaged across all dendritic
lengths as a function of the input rate. The panel compares it over several ex-
citation/inhibition ratio values KE/I (color shades). The firing response has a
consistent pattern against kE/I ; the neuron is unresponsive up to a threshold,
then rapidly converges to a firing rate plateau that remains unchanged for high
input rates. The excitation/inhibition ratio sets the firing threshold (shifts on the
x-axis) and the magnitude of the firing plateau (shifts on the y-axis); however,
the response curve remains the same. (D) Dendritic length of the model (sym-
metrical only) with maximal firing response plotted against the input rate. Low
frequencies show a more robust spike response in models with long dendrites.
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Appendix Figure 3.1: (D) Relative variations in k̄E/Iacross dendritic lengths, in
models with and without NMDARS. The variation is computed with respect to
the average. In the presence of voltage-gated receptors the relative variations
are contained within the 10%, furthermore, they invert around 10 kHz. In a
model with AMPARs only, the spread of k̄E/I is ten times larger.

are smaller (shifted left w.r.t. the diagonal) than the k̄E/Ivalues for the iSTDP
protocol. Such difference is due to the larger somatic depolarization necessary
to achieve the imposed firing rate than to stabilize the soma at �55 mV. The per-
fect match between the two conditions is reached for higher values of the target
rate for the rate-balance protocol, namely Vm = �50 mV, which was tested for
control.

The two protocols differ concerning the dependence of k̄E/Ion the dendritic
length. For each input rate, the fork between the shortest and the longest den-
drite is larger when the balance is reached via iSTDP than when the balance
is reached with the rate condition. This is visible by confronting the panels in
Fig.3.2B and Fig.3.2B and by considering the horizontal clusters of increasing
dendritic lengths in the NMDARs condition of Fig.3.2D. We hypothesize that
the dendritic length - k̄E/I interaction is due to the integration timescale of each
dendrite, which depends on the length. Slower or faster integration timescales
can accentuate or attenuate the shunting inhibition effect, thus affecting the
k̄E/Iobtained via the iSTDP protocol.

The interaction between dendritic length and dendritic-non linearity in deter-
mining the E/I balance is made clear in Fig.3.2C; the panel shows the relative
difference between the k̄E/Iobtained with the rate-modulation method, for all
the dendritic lengths. The difference is computed with respect to the average
k̄E/I . For NMDAR models, the equilibrium k̄E/I is contained within the 10 % of
variation for all the dendritic lengths. It means that for a dendrite of 500 µm, the
k̄E/I is less than 20 % larger than for a dendrite 100 µm long. When dendritic non-
linearities are absent in the dendrites, the variation reaches the 100 %. Thus, the
presence of NMDARs weakens the dependency on the dendritic lengths, indicat-
ing that the inhibitory neurons require less tuning for the dendritic target.
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Appendix Figure 3.2: Balanced excitation/inhibition with iSTDP
(A) The iSTDP protocol acts on the synaptic conductance of the gabaergic
synapses; it varies following an iSTDP learning rule until the output rate of the
neuron is 5 Hz (B) The panels illustrate the E/I ratio obtained by modulating the
inhibitory synaptic efficacy (iSTDP protocol). (C) The dependency on the den-
dritic length is larger in models with AMPA only, similar to what was observed
in the k̄E/Iobtained with the rate model. However, the iSTDP protocol results in
stronger dependency of the k̄E/I from the dendritic length, possibly because of
the effect of shunting inhibition on the spike-generation mechanism (see main
text). (D) Correlation, model per model and rate per rate, of the iSTDP and
rate-modulation k̄E/I . Although E/I with iSTDP shows higher dependence on
the dendritic length, the two methods maintain extremely high correlations in
the k̄E/I .
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Supplementary Figure 3.1: Somatic models do not express bistability, inde-
pendently from their synaptic strengths and timescales
In the three panels, we analyze E/I balance points, firing rate and membrane
standard deviation, and bimodality index of four soma-only models with differ-
ent synaptic efficacy and timescales (Table3.4). Two of the models were used
in Quaresima et al. (2022), a third one in Duarte and Morrison (2019), and a
fourth model matches the one investigated in (Kuhn et al., 2004). (A) k̄E/Ivalues
for the four models computed varying the inhibitory firing rate. (B) Firing rate
and somatic membrane standard deviation. The rate and membrane fluctuations
with KUHN synaptic parameters use a double-exponential fit of the ↵-function
synapses used in Kuhn et al. (2004); the output rate and membrane fluctua-
tions in this synaptic configuration reproduce the original work. Differences
with the remaining soma models are due to the smaller maximal conductance
(gAMPA

s yn ). The maximal synaptic conductance used in the soma-only model by
Kuhn et al. (2004) is 10 times larger (Table3.4) than in our model. If we factor
in the synaptic efficacy in the spike train statistics, the spike train has CVISI equal
to gmax

s yn ⇤ CV0
ISI; thus, the KHUN model is exposed to a spike train with larger

CVISIthan the other models. (C) Bimodality index for the four models. The soma
models report bimodality indices consistent with those shown in Fig.3.6B. Cru-
cially, the model with KUHN synapse shows no fluctuations.
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Table 3.4: Synaptic parameters of soma-only models

Receptor Er(mV) ⌧rise(ms) ⌧deca y(ms) gs yn(nS) �
�

1
mV

�

Tripod soma (Quaresima et al., 2022)
AMPA 0.0 0.26 2. 0.73 -
NMDA - - - -
Tripod soma AMPA-equivalent
AMPA 0.0 0.26 2. 2.2 -
NMDA - - - -
Soma model (Duarte & Morrison, 2019)
AMPA 0.0 0.26 2. 0.73 -
NMDA 0.0 1.00 100 0.159 0.62
Soma model (Kuhn et al., 2004) (alpha function synapse)
AMPA 0.0 0.25 0.30 7. -
NMDA - - - -
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Supplementary Figure 3.2: Tripod neuron bimodality depends on input CVISI
The stochastic process used to generate the input spike train (Eq.3.4) has two
free parameters: the autocorrelation timescale (⌧) and the fluctuation size (�).
In the main text, we use ⌧ =50 ms, consistently with previous work from Vo-
gels et al. (2011) and show that, in this condition, the CVISIof the spike train is
proportional to the second parameter (�̃ , Eq.3.6). Crucially, the results on the
onset of UDS in the Tripod neuron do not depend on the particular combina-
tion of ⌧ and � , but only on the resulting CVISI. (A) CVISIof the spike train for
⌧r =0.1 ms to 1000 ms and � = 0 to 1000, in log-log scale. (B) Linear relation-
ship between CVISI and � for ⌧ =50 ms. (C) The bimodality index measured in
the Tripod neuron with distal-proximal compartment and excitatory firing rate
equal 5 kHz. (D) The interaction between CVISIand bimodality index is quasi-
linear for ⌧ above 10 ms, which is a reasonable timescale for cortical processes.
It has an overall Pearson correlation of 0.31. If only the values of ⌧ larger than
10 ms are taken into account, the correlation reaches the 0.95. The results in-
dicate that our model processes the inputs similarly, whether their fluctuations
are fast and small or slow and big.
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Abstract

Storage and retrieval of sequences require memory that is sensitive to the tem-
poral order of features. For example, in human language, words that are stored
in long-term memory are retrieved based on the order of phonemes. It is cur-
rently unknown whether Hebbian learning supports the formation of memo-
ries that are structured in time. We investigated whether word-like memories
can emerge in a network of neurons with dendritic structures. Dendrites pro-
vide neuronal processing memory on the order of 100 ms and have been impli-
cated in structured memory formation. We compared a network of neurons with
dendrites and two networks of point neurons that have previously been shown
to acquire stable long-term memories and process sequential information. The
networks were equipped with voltage-based, spike-timing-dependent plasticity
(STDP) and were homeostatically balanced with inhibitory STDP. In the learning
phase, networks were exposed to phoneme sequences and word labels, which
led to the formation of overlapping cell assemblies. In the retrieval phase, net-
works only received phoneme sequences as input, and we measured the firing
activity of the corresponding word populations. The network with dendrites
correctly reactivated the word populations with a success rate of 80%, includ-
ing words composed of the same phonemes in a different order. The networks of
point neurons reactivated only words that contained phonemes that were unique
to these words and confused words with shared phonemes (success rate below
20%). These results suggest that the slow timescale and non-linearity of den-
dritic depolarization allowed neurons to establish connections between neural
groups that were sensitive to serial order. Inhibitory STDP prevented the poten-
tiation of connections between unrelated neural populations during learning.
During retrieval, it maintained the dendrites hyperpolarized and limited the re-
activation of incorrect cell assemblies. Thus, the addition of dendrites enables
the encoding of temporal relations into associative memories.
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4.1 Introduction

Speech perception results from the integration of continuous streams of acoustic
information over time. Understanding how this capacity is grounded in the un-
derlying neural activity remains a challenge for the brain sciences. One aspect
of the phenomenon to be explained concerns how the brain accesses long-term
memories on the base of environmental stimuli with temporal extent. During
spoken word recognition, it corresponds to recollecting words from a lifelong
learned lexicon based on the phonological information (McQueen, 2007). Al-
though many of the neural markers of this process are known, a mechanistic
theory of how word memories are learned, maintained, and accessed is lacking
(Poeppel & Idsardi, 2022). One hypothesis is that word memories are stored in
the long term in the mental lexicon in the form of cell assemblies that are ac-
quired through Hebbian learning (Garagnani et al., 2009; Pulvermüller, 1999);
this view is in agreement with cognitive and computational theories of cortical
processing based on the synaptic junctions (Amit, 1995; Fuster, 1997; Gastaldi,
Schwalger, De Falco, Quiroga, & Gerstner, 2021). However, because of the
phonological overlap between words in the human lexica (words being composed
of the same phonemes, such as /kæt/ and /tæk/), accessing the word forms en-
tails that cortical memories are sensitive to the order of the phonemes in the
stimulus. According to a long-standing critique of associative memories, these
computational requirements cannot be achieved in the synaptic connections be-
cause associative memories lack the necessary expressiveness to encode relation-
ships (Gallistel, 2021; Gallistel & King, 2011), i.e., the order among phonemes
in human words. Thus, the main theoretical issue concerning the implemen-
tation of a biologically constrained word recognition model is the capacity of
a spiking neural network to discriminate between sequences of similar inputs.
We refer to this problem as the sequence detection problem. In the next three
sections, we outline the requirements for long-term and short-term memory im-
posed by sequence recognition and finally present a model to solve this cognitive-
computational problem.

Formation and retrieval of word memories

A cell assembly is a functional population of neurons that emerges from the re-
peated co-activation of cells (Hebb, 1949). Reciprocal firing leads to synaptic
potentiation and the formation of synaptic engrams in the form of intercon-
nected subnetworks. The engrams are carved in the neuronal tissue through
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experience, following associative plasticity (Langille & Brown, 2018). Accord-
ingly, assemblies are considered the core unit of memory (Poo et al., 2016).
The strengthening of their synaptic connections, that is, the formation of an en-
gram through long-term potentiation (LTP), is considered the causal landmark
of memory formation (Dringenberg, 2020).

In the cell assembly view, the recognition of a familiar stimulus during sound
perception corresponds to the reactivation of groups of auditory neurons and
generates a burst of activity (Sakurai et al., 2018). Reliable, correlated cell activ-
ity is widely observed in the experimental literature on human and non-human
animals (Almeida-Filho et al., 2014; Cohen et al., 2020; Hemberger, Shein-
Idelson, Pammer, & Laurent, 2019), for a critical review of this phenomenon see
Langille and Gallistel (2020). Compelling evidence on word recognition comes
from two studies that obtained intracortical recordings in humans. Chan et al.
(2014) observed bursts of neural activity in localized populations of the tempo-
ral cortex upon acoustic presentation of single words, but not when the stimulus
was played backward. Secondly, Vaz, Wittig, Inati, and Zaghloul (2020) isolated
neuronal bursts in the middle temporal gyrus during recall of spoken word asso-
ciations. Cortical neurons reactivated in ordered sequences during the learning
period and when the cue-target pair was correctly recollected, but they lacked se-
quential structure when the association was wrong. Taken together, these stud-
ies suggest that accessing spoken word memories entails sequential firing of cell
assemblies in speech areas.

Sequential spikes within assemblies, named phase-sequences, were already
indicated as one of the distinctive features of memory access by Hebb (1949).
Sequential firing is pivotal for the passage of information to downstream neu-
ral populations with causal consequences on behavior (Buzsáki, 2010). Several
models have shown how Hebbian plasticity leads to the generation of phase-
sequences in spiking neurons; networks can be trained to repeat sequences and
activate assemblies in succession (Cone & Shouval, 2021; Haga & Fukai, 2018;
Maes, Barahona, & Clopath, 2020; Scott & Frank, 2023; Shouval, 2011). These
models are based on two properties of cortical learning. First, memories can be
instilled in the network connectivity via the repeated presentation of the stimuli
(Litwin-Kumar & Doiron, 2014; Tomasello et al., 2018; Zenke et al., 2015). Sec-
ond, Hebbian plasticity, in the form of spike-time-dependent plasticity (STDP),
supports the formation of directed connections, and thus sequentially sensitive
activity (Clopath et al., 2010; Fiete, Senn, Wang, & Hahnloser, 2010). How-
ever, the fact that engrams can be arranged to produce sequential activity does
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not explain how such spike sequences can be read out from downstream neural
assemblies.

The problem becomes pressing if one intends to explain word recognition
based on the neural mechanism of cell assembly; the order of phonemes in
phonological overlapping words is key to distinguishing between word mem-
ories. In this respect, two questions must be addressed. First, can sequential
activity trigger the recollection of order-dependent memories based solely on
associative synapses? Second, does Hebbian associative synaptic plasticity sup-
port the acquisition of such memories? On the one hand, detecting sequences
based on synaptic connections is achievable; networks with fine-tuned asymme-
tries in the weights structures can re-activate assemblies based on the order of
the stimuli (Sequence Detector Network, Knoblauch & Pulvermüller, 2005) and
supervised plasticity rules render neurons sensitive to the order of pre-synaptic
firing (Tempotron neuron, Gütig & Sompolinsky, 2006). On the other hand,
these solutions have not been demonstrated to be valid in realistic conditions.
For example, when the STDP rule was tested in a sequence labeling task in a bi-
ologically constrained network, plasticity among excitatory cells offered only a
moderate contribution (Duarte & Morrison, 2014). Thus, it remains unclear how
to induce order-sensitive memories in recurrent spiking models using Hebbian-
like plasticity.

Integration of long-term and short-term phonological memories

One possibility is that biological networks require additional computational prim-
itives to perform sequence detection. For example, variables to carry information
forward on the time scale of the memory to be accessed (Chaudhuri & Fiete,
2016). Theoretical and experimental work indicates that short-term memory
(STM) of phonological information must be held in the system by a dedicated
mechanism, distinct from long-term memory (LTM) (Norris, 2017). The volatile
auditory information storage must also allow for learning of the new association
in the LTM. Arguably, with a compatible STM storage, the STDP rule might be
sensitive to the sequential structure of the stimulus.

We hypothesize that the STM must satisfy certain requirements in order to
achieve sequence labeling. First, it must encode time information, for example,
in its slow decay to the resting state; second, there has to be a silent memory
such that rapid compensatory mechanisms do not erase it (Zenke et al., 2015);
and, third, it should interact with the long-term rule in the network to induce
potentiation of the salient synapses. Of the three main STM proposals in the
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computational literature, persistent activity (Papoutsi et al., 2014; Wang, 1999,
2021), synaptic short-term memory (Mongillo et al., 2008), and neuronal mem-
ory (Fitz et al., 2020; Salaj et al., 2020); the constraints described appear to
be satisfied only by synaptic short-term memories. Crucially, few computational
studies have tested the interaction of this type of STM with the formation of cell
assemblies. A previous study by Cone and Shouval (2021) demonstrated that
networks can learn sequences on the timescale of human words using synaptic
decay to encode STM and eligibility traces to update long-term memories. For
each neuron, the synaptic memory was shared across pre-synaptic cells, which
is not realistic considering the actual geometry of synaptic arrangements. In our
opinion, the slow, post-synaptic decay that was implemented is better expressed
by regenerative events in segregated dendritic compartments, for example, the
NMDA receptor spikes. The crucial role played by dendritic processes in detect-
ing spatiotemporal sequences is indeed demonstrated both experimentally and
computationally (Bhalla, 2017; Branco et al., 2010).

We propose that dendritic memory (Quaresima et al., 2022) can satisfy these
requirements as well as support the formation and maintenance of sequence
memories on the timescale of human spoken words. Dendritic memory is ex-
pressed by long-lasting (100 ms) plateau potential, elicited by NMDA recep-
tor spikes; the dendrites undergo long depolarized states that can bind the se-
quences of incoming phonemes. In addition, because the dendritic compart-
ments are segregated, the somatic firing activity is only weakly coupled to the
dendritic membrane potential and supports the silent encoding of short-term
memories. The hypothesis is that if STM is expressed as dendritic memory, it
will induce the formation of long-term memories through vSTDP, thus support-
ing sequence detection in biological networks.

The Tripod network model and the sequence recognition task

Dendritic neurons are modeled as Tripod neurons (Quaresima et al., 2022), a
three-compartment neuron model with two dendritic compartments and a soma.
The dendritic compartments are endowed with NMDA receptors and voltage-
gated channels that allow for dendritic memory in the order of a hundred mil-
liseconds (Fig.4.1A). The memory is provided by the long-lasting dendritic de-
polarization following an NMDA spike.

The network is composed of 2000 excitatory Tripod neurons, 175 fast-spiking
interneurons, and 325 slow-spiking inhibitory neurons, modeled as point neu-
rons (I1, I2). Each neuron is connected to 20% of the other neurons in the net-
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figure 4.1: Tripod network: neuron models, connectivity, and plasticity rules
Figure caption continues on the next page.
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figure 4.1: Tripod network: neuron models, connectivity, and plasticity
rules.
(A) The Tripod neuron has two dendritic compartments (circles) and a soma (tri-
angle). The dendritic length determines the electrical properties of the compart-
ment. Synapses included glutamatergic (AMPA, NMDA) and gabaergic (GABAA ,
GABAB ) receptors with the illustrated timescales. The soma was modeled as
an adaptive-exponential neuron and somatic spikes were backpropagates to the
dendrites, as shown in the inset.
(B) In the Tripod network, excitatory neurons targeted the dendrites of other
excitatory neurons and the soma of inhibitory neurons. Inhibitory neurons I1
(fast-spiking) and I2 (adaptive) targeted the soma and dendrites of Tripod neu-
rons. They also form recurrent connections within the inhibitory populations. In
the networks of point neurons, all synapses are connected to the somatic com-
partment.
(C) Schematics of excitatory and inhibitory synapses plasticity. The left side il-
lustrates voltage-based STDP in the glutamatergic synapses between excitatory
neurons (V d

i , V s
i are the membrane potential of dendritic and somatic compart-

ments). The plasticity rules are the same in the dendritic and somatic compart-
ments, except for the thresholds of long-term potentiation (LTP) and depression
(LTD), respectively ✓+ and ✓�. Right side; the inhibitory synapses onto the ex-
citatory cells are subject to iSTDP. The equilibrium values depend on the neuron
types. I2cells aim to stabilize the dendritic potential at V0 = �70 mV (v-iSTDP)
and I1cells regulate the firing rate of the soma, x E = 10 Hz (iSTDP). Excitatory
and inhibitory plasticity are driven by the pre-synaptic activity, in the form of

filtered spike train (x E
j ) or sum of delta functions (sE

j , s
I1
j , s

I2
j )

(D) External projections target a subset of excitatory neurons. The phoneme and
word projections are fixed and target 5% of the excitatory population in both
dendritic and point-neuron models. The phonemes are stimulated in sequence,
and the corresponding word is stimulated throughout the interval.
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work. The synaptic connections onto Tripod neurons are located on the dendrites
(Fig.4.1B) and subject to voltage-dependent spike-timing-dependent plasticity
(vSTDP, Bono & Clopath, 2017; Clopath et al., 2010). Excitatory plasticity sup-
ports the formation of engrams by strengthening the post-synaptic connections of
neurons that fire onto depolarized dendrites. Because of the strongly connected
cell assemblies, the network is prone to runaway activity. We used two addi-
tional mechanisms to prevent this from happening. First, homeostatic plasticity
keeps the total incoming synaptic strength constant (multiplicative synaptic scal-
ing, Tetzlaff, Kolodziejski, Timme, & Wörgötter, 2011). Second, the network is
stabilized by means of fast compensatory mechanisms in the form of inhibitory
spike-timing-dependent plasticity (iSTDP, Vogels et al., 2011). iSTDP is imple-
mented via plastic connections between I1 neurons and the soma of the excita-
tory cells. In addition, we introduce a voltage-dependent iSTDP rule between
the I2 population and the targeted dendritic compartment to reach a balanced
excitatory-inhibitory synaptic input on the dendrites (Fig.4.1C).

We investigate word recognition in a Tripod network simulation. Word memo-
ries are intended as long-term associations between sequences of phonemes and
words assemblies. The assemblies are induced on randomly selected subsets of
the excitatory population, with word and phoneme assemblies loosely overlap-
ping (Fig.4.1D). We use external input projections to induce the strengthening
of synapses within and across the cell assemblies. The projections stimulate the
dendritic compartments.

The network simulation is divided into two phases. The first phase is the as-
sociative one and we present both words and phonemes stimuli, simultaneously.
On the base of the STDP rule among excitatory neurons, the co-activation of
phonemes and word populations is expected to form auto-associative (recurrent
engrams) and, possibly, hetero-associative (feedforward connections, between
phonemes and words) memories. In the second phase, the recall phase, we
turn off the plasticity mechanism and present only phoneme sequences. During
recall, we measure the activity of all word populations and consider word recog-
nition successful if the target word population is the most active one in the pool
of the word populations.

We test word recognition on seven lexica that differ in the number of words
they contain (8 to 17) and the amount of phonological overlap among the words.
Two of them, Identity and No overlap, contain words whose phonemes are not
shared across the words in the lexicon; thus, each phoneme is univocally associ-
ated with a word. Conversely, the other lexica comprise words with phonological
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overlap. An example from the lexicon Overlap are three words log, dog, and god;
the first two words share two phonemes, but the second and the third share
all the phonemes, and they are distinguishable only on the base of the order of
the phonemes presented. Thus, correct word selection requires phonemes-word
associations sensitive to the order of the phonemes in the stimulus rather than
their sole identity features. The network must create order-sensitive associations
to achieve correct word recognition. We compare the Tripod network with two
point-neuron models endowed with similar plasticity mechanisms and measure
the differences in the recognition score, its dynamics, and the synaptic structure
formed following the associative phase.

4.2 Results

4.2.1 Word recognition in the Tripod network model

We investigated the capacity of the Tripod network to form and recall time
structure-dependent memories in a word recognition task. Because the den-
dritic neuron model has not been studied in a recurrent network before, we first
set the network to a realistic operational point and verified the absence of patho-
logical dynamics. We tuned background noise and synaptic strengths such that
the network was in a regime of sparse firing. When the three synaptic learn-
ing rules apply (v-STDP, iSTDP, v-iSTDP), the network’s baseline activity has a
low firing rate and tends to synchronize in slow bursts of activity. Conversely,
when receiving external input, the network shows a low degree of synchrony
and a sparse firing rate (Appendix A). The analysis indicates that the firing rate
is heterogeneous across cells, both in the associative and recall phases: neurons
receiving external projections fire more than neurons that do not. In the asso-
ciative phase, a strong response from both phonemes and word populations is
expected because of the external stimuli on both populations. Conversely, in the
recall phase, word assemblies are not stimulated, and their activation originates
from the reverberation of activity in the phoneme populations.

The following sections analyze in detail the activation of word assemblies in
the recall phase. First, we show that for each sequence of phonemes, the most
reactivated population is the one corresponding to the word associated with the
phoneme sequence (the word doll and the sequence D, O, L, L). Then, by us-
ing the firing activity of word assemblies as the index of word recognition, we
estimate the network capacity to detect sequences in a set of lexical with in-
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creasing phonological overlap. In the remaining sections, we investigate the
mechanisms that allow the network to recall word memories. To determine the
role of the dendrites in the network, we test four additional networks of point-
neuron and dendritic models on the same task and evaluate their recognition
capacity and dynamics. Thus, we analyze the network structure that emerges
during the learning phase. We demonstrate that the phonemes-to-word connec-
tions strengthen (long-term storage) as well as that the dendritic non-linearity
(short-term memory) determine the network’s capacity to recognize sequences.

Word assemblies are sensitive to phonological order

We start the analysis of the network recognition capacity by taking a closer look
at the coordinated firing of word and phonemes population during the associa-
tive and recall phases. To highlight the structure of the network activity, we
ordered the network neurons by the projections they receive and plotted their
spikes in the raster plots in Fig.4.2A. The figure shows the network activity for
the eight phonemes and ten words in the lexicon Overlap during both phases. In
the recall phase, only phonemes populations receive external inputs. The lex-
icon used in this experiment includes words with phonological overlap. Some
words are contained within others (e.g., poll/pollen), some are anagrams of one
another (e.g., lop/poll) or reversed (dog/god).

We first analyze the activity of the assemblies in the associative and recall
phases. The raster plot shows that the activity of phoneme assemblies lasts
longer than the stimulation intervals (grey vertical lines). Phonemes are stimu-
lated for 50 ms only, but their firing persists for about 50 ms after the offset of
the stimulus. Although the external input was the same for all phoneme pop-
ulations (8 kHz for 50 ms), phoneme assemblies were not reactivated with the
same strength. For example, the phonemes D, G, and L respond more strongly to
the external inputs than the phoneme O. Comparing the activity across the en-
tire simulation, it appears that the average activity of the phoneme assemblies
depends on the total number of occurrences of the phoneme (App. Fig.4.1 ).
The low firing of frequent phonemes is due to both neuronal adaptation, which
tends to hyperpolarize the frequently stimulated populations, and the homeo-
static component of the plasticity rule, which penalizes recurrent connections
associated with frequent phonemes. Similar to phoneme assemblies, neurons in
the word populations fire in the two phases. In the associative phase, the word
populations are activated along with the phonemes, and the external stimulus
dominates their time course. The beginning of the assembly firing coincides
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figure 4.2: Network activity in the associative and recall phases
(A) Raster plot of phoneme and word populations during the presentation of the
words doll and dog. Individual phonemes are stimulated for 50 ms each with a
silent interval of 50 ms between words. In the associative phase, the word as-
semblies are stimulated for the entire interval in which the words are activated
(doll 200 ms, dog 150 ms) (left). Conversely, they are not stimulated in the recall
phase but activate from the reverberation of activity related to phoneme asso-
ciated populations (right). (B) Average dendritic membrane potential for the
assemblies associated with the phonemes D, O and L, and the word doll; the
panels show the associative (top) and recall (bottom) phases. In the associative
phase, the external projections strongly depolarize the phonemes and word as-
semblies. In contrast, in the recall phase, only the phonemes reach the �40 mV
depolarization. The membrane potential of the word assembly slowy builds up
and reach the maximum depolarization at word offset. Similarly, the firing ac-
tivity of the word population changes in the two phases. In the associative phase
the word assembly starts firing at word onset (the yellow dots indicate the as-
sembly’s spikes), conversely, in the recall phase, the word population fires only
after 50 ms to 100 ms from the onset of the phoneme sequence.
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with word onset and quickly fades when the following word is presented. In
the associative recall phase, the word populations do not receive input but are
nonetheless activated by the activation of phoneme populations; they receive
the external stimulus through the reverberation of the phoneme assemblies. All
words that contain the input phonemes in some position are partially reactivated.
For example, for the input sequence D, O, L, L, the words dog, poll, and gold are
activated, however the population of the word doll fires more; presumably be-
cause it matches both the identity and the order of the phonemes (Fig.4.2A). This
behavior indicates that the word assemblies activate in a manner that depend
on the order of inputs and that the network can detect sequences.

Before proceeding with the analysis of the sequence recognition capacity, we
explored the dynamics of the dendritic membrane potential of phonemes and
word assemblies. Fig.4.2B offers insights into the prolonged activity of the as-
semblies. The panels illustrate the membrane potential of three phonemes (D,
O, L) and the word assembly doll during the presentation of the corresponding
phoneme sequence (D, O, L, L). The dendritic membrane potentials of both the
phoneme- and word populations remain depolarized beyond the duration of the
stimulus. Such slow decay is supported by the dendritic memory of the Tripod
neuron, and it is due to the rise of NMDA spikes in segregated dendrites. In
the intervals in which the phoneme population activity overlaps with the depo-
larized word population, the synaptic connections are potentiated by the STDP
rule. Despite the average word membrane being below the LTP threshold, cer-
tain cells are sufficiently depolarized and form stable connections within and
between assemblies. Thus, the large dendritic depolarization due to stimulation
enables the formation of phonemes-to-words associations that are sensitive to
the co-activation of phonemes.

In the recall phase, the reactivation of the target word population takes place
gradually during the presentation of the phonemes. Because the NMDA spikes
are all or none events in which the membrane potential reaches approximately
�20 mV, the slow building up of dendritic potential in the lower panel of Fig.4.2B
indicates the recruitment of more neurons in the word’s assembly. The slow de-
polarization transforms into a burst of activity after 100 ms, when enough neu-
rons are depolarized. The consequence of this dynamics is that the peak activity
of the word population lags behind the onset of the phonological stimulus. Such
delayed responses are observed across all the words inspected, and it appears to
be an intrinsic property of word assembly reactivation in the dendritic model.
In the following, we individuate an optimal interval in which word populations
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are maximally activated and use this interval to quantify the word recognition
in the model.

Word recognition latency

The previous analysis indicates that in the Tripod network word populations are
reactivated by the activity in the phoneme assemblies. In addition, the response
of the target word population has a latency of approximately 100 ms. We now
define a measure of word recognition that allows us to identify correct word
recognition and accounts for the delay in word reactivation.

To start with, and elucidate how the measure works, we analyze the firing
activity of the assembly associated with the word doll. The word lasts four
phonemes, which corresponds to 200 ms. To inspect if the network reactivates
the correct memory, we compare the assembly firing rate of the correct word
population with those of the other populations during the interval in which the
input is presented. For each interval in which the sequence D, O, L, L is presented,
the corresponding word population should activate. Thus we can identify each
of these intervals as trials to test word recognition. In addition, because of the
word’s population latency, we also test an interval shifted forwards of 100 ms.
An illustration of the comparison among word population rates is presented in
Fig.4.3A; the eight panels show the average firing rate of the target population
doll against five competitor words (dog, god, log, poll and goal) and across the
110 trials where the sequence of phonemes (D, O, L, L) was presented. The
activity of doll is shown on the vertical axis of each panel, and the horizontal
axes show the activity of the word competitors. The black circles present each
trial, and the red dots indicate when the average firing across the entire simula-
tion is significant. The number annotated on each panel is the chance-corrected
Cohen’s () word recognition score, based solely on the firing rate (Methods).

When the assembly’s activity is measured in the same interval of the phonolog-
ical input (0 ms to 200 ms, upper panel), the firing rate of the target is systemati-
cally less than when it is measured with a delay of 100 ms, in some cases, it is not
even sufficient to distinguish between the target and the competitor (god, sec-
ond panel). By taking the average on all words, including the remaining five, we
estimate that when the word recognition measure is delayed 100 ms, the word
assembly doll is correctly recognized in 90% of the trials, while only in the 60%
when it is measured in the same interval of the phonological input. Because the
delay is computed starting from the offset point, we refer to this as the offset
point (OP) measure.
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We can generalize the procedure described for the word doll and determine
the optimal word recognition latency in the network for all the words. One
issue is the difference in length among the lexical items; some words contain
more phonemes than others. For example, the OP measure of doll computes
the average firing over four phonemes, (200 ms), but its competitors have three,
four, or six phonemes. This difference can introduce biases when comparing the
firing rates of the associated assemblies. For this reason, we integrate the OP
measure with a second one with a fixed length. We measure the firing rate for
the duration of one phoneme (50 ms) and do so at the uniqueness point (UP) of
the word. The UP is the phoneme that makes the word unique in the lexicon; it
depends on the presence of other words with shared onset phonemes. As before,
we shifted the interval forward or backward in time to test the timing of word
reactivation. We refer to this shift as the interval delay. The UP and OP measures
are illustrated in Fig.4.3B and described in further detail in the Methods.

For each trial, we select the word associated with the population with the high-
est firing rate as the retrieved lexical item. Then we use it to compute a confusion
matrix. The confusion matrix indicates which word was expected (target) and
which was retrieved (reactivated). Correct word recognition implies that the tar-
get and reactivated words are the same and that the matrix has most of its trials
on the diagonal. An example of the evolution of the confusion matrix with the
delay is portrayed in Fig.4.3C. The stacked heatmaps show the confusion matrix
for the lexicon Overlap based on the uniqueness point measure. The bottom ma-
trix corresponds to 0 ms of delay, and the pairing between target and reactivated
words appears random. The reactivated words match the target more and more
as the delay increases, until a maximum of 100 ms and start decreasing. This
is somewhat unexpected because all words are optimally recognized with the
same delay despite the lexicon containing words with 3–6 phonemes. Moreover,
it is important to notice that the 100 ms interval overlaps with the presentation
of the following word. From the confusion matrix, we computed the -score as
described in the Methods, the -score for the Overlap lexicon is 0.77%

To characterize the model’s capacity to recognize sequences in the presence
of shared phonemes, we compared the recognition accuracy on seven different
lexica that varied in size, number of shared phonemes (phonological overlap),
and average word length. Some of the seven lexica have been used in previous
studies on word recognition. The lexica and their statistical differences are de-
scribed in the Methods. For the first two lexica (Identity and No overlap), words
can be identified based on the first phoneme because it is unique to each word.
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figure 4.3: Recognition accuracy at word offset and uniqueness point
(A) Firing rates of the target word population against competitor populations
for the phoneme sequence P, O, L, L. Rates are measured over the duration of the
target word, shifted forward in time by 100 ms. Each dot represents one trial.
When located above the diagonal, the target population was more active than
the competitor word. Orange dots show the mean over 100 trials. Figure caption
continues on the next page.
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figure 4.3: (B) Word recognition is tested at the word offset and uniqueness
points (blue and green arrows). Assembly activity is measured as the average
firing rate in the interval between word onset and offset (full interval, blue bar)
or the interval of the phoneme at the uniqueness point (single phoneme inter-
val, green bar). The word with the highest firing rate in the measured interval is
chosen as the network output. The measured interval is shifted in time (delay,
orange arrow) to test the evolution of the network dynamics recognition time
frame. (C) Network responses are summarized in the confusion matrix that indi-
cates the percentage of trials in which a word was activated for each target word.
Recognition accuracy is higher when the diagonal stands out, indicating that the
correct word was reactivated for most of the trials. Off-diagonal values different
from zero indicate failed recognition. The vertical axis shows the time shift at
which the matrix was computed. The matrices that are shown were obtained for
the Overlap lexicon at the offset point. (D) Cohen’s -scores for the seven lex-
ica averaged across ten samples for the offset (left panel) and uniqueness (right
panel) point measures, plotted as a function of the interval delay. The network
reaches maximum accuracy for delays between 50 ms to 150 ms for all lexica.
The sharp increase of the -score in the right panel highlights the fact that word
recognition cannot be achieved before the uniqueness point.

Thus, recognition does not require sequence memory, and we refer to these lex-
ica as memoryless. The other five lexica have phonological overlap and require
temporal integration of symbols in a sequence. We computed the -score on the
seven lexica for the offset and uniqueness point measures and varying the de-
lay between �100 ms to 200 ms. The accuracy measure associates every delay
shift with an average recognition score. Thus, it quantifies the latency of word
recognition. The recognition -score is plotted against the delay in Fig.4.3D.

In agreement with the confusion matrices, the -score increased when shifting
the measured interval forward in time. For both the OP and UP measures (left
and right panels), recognition accuracy peaked for delays in the range 50 ms to
150 ms. The offset point measure has a smoother ramp than the UP because
it averages the firing rate on a longer interval. Recognition accuracy was gen-
erally higher for the OP measure than the UP measure. At the OP, the highest
accuracy is above 70 % for all but the TISK lexicon. At the UP, the recognition
is proportional to the full interval measure (OP) but slightly lower (the Pearson
correlation between the two measures is 0.9). The similarity between the two
measures indicates the network activity before and after the short UP interval
contributes marginally to word recognition. Most importantly, the UP measure
(right panel) shows that recognition is not possible ahead of the word’s unique-
ness point; for delays below 0 ms, most lexica had a recognition score close to
zero. The UP measure indicates that before the UP, the network was in a state
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of co-activation of multiple assemblies with insufficient information to discern
between words (flat confusion matrix,  ⇡0). Accuracy increases towards the
UP for lexica with longer words because some of these words can be ruled out
already before the UP, resulting in a higher chance of recognition (non-flat con-
fusion matrix,  >0). For example, in the Cohort lexicon, the sequence C, A,
P, I, T will exclude the words capias, capillary and capistrate although T occurs
before the uniqueness point. We tested ten randomized realizations of the net-
work, which reached similar accuracy on each lexicon. The standard deviation
of the -score is below 5 % for all lexica and conditions, except Cohort in the OP
measure where it reached 10 %.

Dendrites are needed to recognize words with phonological overlap

To understand the computational role of dendrites in the formation and reac-
tivation of word assemblies, we compared the Tripod network with four other
models, two with dendrites and two without. The networks of point neurons
were chosen from the literature for their biological plausibility and relevance to
the task at hand. The networks with dendrites are instead copies of the original
model but stripped of the asymmetry in the dendritic compartments. By com-
paring the models, we aim to isolate the network mechanisms that support word
recognition. We hypothesize that the dendritic memory, provided by electrical
segregation and NMDA receptors in the dendritic compartments (Quaresima et
al., 2022) is the computational primitive that supports the recognition of words
with phonological overlap.

The first point-neuron model was the network described in Litwin-Kumar and
Doiron (2014) (LKD for short). It has previously been shown to learn and main-
tain stable cell assemblies in the presence of ongoing plasticity and background
noise, using interacting forms of excitatory and inhibitory STDP. Assemblies de-
veloped for 20 stimuli randomly injected into the network during the early phase,
similar to our associative phase. Later, in the absence of inputs, the network
spontaneously and robustly reactivated the assemblies, demonstrating that the
network learned the memories presented in the early phase. The second model
is based on the work of Duarte and Morrison (2019) (DM for short), which mod-
eled an L2/3 circuit of mouse cortex. The original study investigated the role
of various sources of heterogeneity on the network’s computational capabilities,
such as temporal integration and delayed decision-making. The network had no
plasticity in the synaptic connections, and its recurrent weights were calibrated
to achieve a balanced excitatory-inhibitory state. Because word recognition re-
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quires associations between phonemes and words, we endowed the DM network
with STDP on the synapses connecting excitatory neurons. Analysis showed that
the DM network was unstable and prone to oscillatory dynamics. To stabilize
the network, we added iSTDP and the v-iSTDP homeostatic inhibition, similar
to the Tripod network but with both inhibitory plasticity mechanisms related to
the soma of the excitatory neurons. Both the LKD and the DM networks im-
plemented conductance-based synapses; only the DM network modeled NMDA
receptors, which, independently from the results on dendrites, are known to
play a role in working memory in that they support the onset of persistent ac-
tivity in network cliques (Papoutsi et al., 2014; Wang, 1999, 2021). In addition,
the two models differ in the density of their recurrent connectivity, the num-
ber of cells considered, and, most importantly, the presence of distinct classes
of inhibitory neurons. The LKD model has 4000 excitatory cells and 1000 fast
inhibitory neurons. Conversely, the DM has 2000 excitatory neurons, 175 fast-
spiking gabaergic cells (I1) and 325 slow-spiking ones (I2). An illustration of
the point-neuron models and their synaptic learning rules is shown in Fig.4.1B
and C. Equations and parameters of the models can be found in the Methods.

Moreover, we compared the Tripod network with two other dendritic models,
one with only one dendritic compartment and one model where the input and
recurrent connections targeted both dendrites (symmetric network). The three
models differ in their dendritic and afferent configurations but are all endowed
with the dendritic memory provided by segregated compartments and NMDARs.
Compared to networks of point neurons, the networks with dendrites were more
robust to parameter variations. Network stability is due to the location of the
recurrent connections on the dendrites; because the axial conductance limits
the maximum current flowing from the dendrites to the soma the networks are
less prone to epileptic firing. The network with dendrites configurations of the
three models are illustrated in Fig.4.4A and further described in the Methods.
Note that symmetry here refers to both the synaptic connectivity pattern and the
dendritic lengths.

The five models were exposed to the seven lexica introduced in the previous
section. For each pair of models and lexicon, we computed the recognition accu-
racy according to the OP and UP measures, with delays in the range of �50 ms to
150 ms. We introduce two novel measures to elucidate the time course of word
recognition: the average recognition delay (ARD) and the optimal delay. The
ARD is a linearly weighted average of the delay intervals, using the -score as
weight (Eq.4.18, Methods); the optimal delay is instead the delay with which the
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model reached the maximum score on the lexicon. The comparison between the
models’ accuracy, optimal, and average recognition delays in the word recogni-
tion task is shown in Fig.4.4B. The panels refer to the UP measure. The analysis
for the OP measure is qualitatively similar ( SI Fig.4.6 ). The greyscale bars
show the two lexica that do not require recognition memory, while colored bars
refer to lexica that do. The -scores for the latter group were averaged for each
model and compared pairwise between models in Fig.4.4C. The red color in-
tensity codes for differences within +10 percentage points between models on
the y-axis and models on the x-axis, with the significance level of the relative
differences between pairs of models indicated.

The top panel shows that networks with dendrites have systematically higher
recognition scores than point-neuron models in lexica with phonological over-
lap. The point-neuron models perform well on the memoryless lexica, but their
accuracy drops when temporal integration is required. The confusion matrices
(SI Fig.4.6 A) showed that, in the latter case, the networks reactivated a subset
of the word assemblies for any input sequence, suggesting that the functional as-
sociation between the phonemes and word populations was not established. The
point-neuron models did not learn the sequential structure of word memories.
In contrast, the three dendritic models recognized all the words, in all lexica;
the errors were distributed equally among the remaining words (SI Fig.4.6 B).

In addition, the ARD and optimal delay measures reveal that the time course
of recognition differs in the two models. Dendritic models have high recogni-
tion, on average, for delays in the range 50 ms to 100 ms from the offset point
(middle panel). Conversely, the delays corresponding to the maximum score
(bottom panel) span a large range and depend on the lexicon property. The
ARD of the point-neuron models is negative and its optimal delay is negative or
close to zero, which indicates that the correct word populations are maximally
re-activated before the offset point. For the lexicon that requires memory, the de-
lay measure of point-neuron models is not informative because their scores are
close to the chance level. The analysis indicates that immediate access to word
memories is successful only if the identity of the early phonemes is sufficient to
disambiguate the word and access the correct word memory, as it happens for
the first two lexica. Otherwise, if the early phonemes contain insufficient infor-
mation, the recognition will be, at best, based on the marginal distribution of
the phoneme’s identity over the lexicon. The probability that the first phoneme
belongs to the correct word decreases with the increase in phonological overlap.
In networks with dendrites, the reactivation of word memories relies on the tem-
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figure 4.4: Comparison of point-neuron and networks with dendrites
(A) Dendritic configurations and connectivity patterns of the Tripod-based net-
work models. All three variants have dendrites whose length is uniformly ran-
dom in the range of 150 µm to 400 µm. The asymmetric neuron has randomized
pre-synaptic connections with density ⇢ =0.2 that target only one of the two
post-synaptic compartments; the length of the dendrites is also drawn indepen-
dently from each other. The symmetric network receives the same pre-synaptic
connections, external and recurrent, on both dendrites, with half the connection
strength than the asymmetric case; synapses have the same density (⇢); the two
dendrites have the same length in the symmetric neuron model. Finally, the sin-
gle dendrite neuron has only one segregated compartment, which receives all
synaptic connections.
(B) The three panels illustrate the maximal -score - across all delays, the av-
erage recognition delay (ARD), and their optimal delay (delay with maximum
score) for the five network models and the seven lexica tested. Grayscale bars
show the two memoryless lexica and colored bars show the five lexica that re-
quire temporal integration of phonemes for recognition. point-neuron models
perform best on memoryless lexica with negative delays; it indicates that recog-
nition is achieved before the offset point. Dendritic models outperform them on
lexica with overlapping phonemes and reach high accuracy with a delay between
50 ms to 100 ms from the uniqueness point. The dendritic models’ average and
standard deviations refer to a sample of three independent initializations per
model. (C) The matrix shows the difference in accuracy between a model on
the y-axis and a model on the x-axis, with a resolution of five percentage points,
for the five lexica that require memory for word recognition.
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poral integration of the inputs, confirmed by the large values (50 ms to 150 ms)
of average and optimal delays. Phoneme activity is carried forward in the den-
drite’s membrane potential and the word population fully activates when the
last disambiguation piece of the input sequence is presented at the uniqueness
point.

Concerning the role of asymmetry in the network, the present results indi-
cate that its contribution is marginal. Averaged over three independent sam-
ples, the asymmetric Tripod model scored higher than the other two dendritic
models, but the differences are less than 5 to 10% and not significant Fig.4.4C.
The delay measures of the three dendritic models resemble each other in offset
and uniqueness point measures. The models’ similarities indicate that dendritic
memory carries information over time independently of the connectivity and
dendritic configurations tested (Fig.4.4A). In addition, the difference in accuracy
among the three models does not depend on the lexicon; they all decrease their
recognition accuracy for the lexicon with larger phonological overlap, suggesting
neither asymmetry nor the number of dendrites provides additional mechanisms
to cope with the increasing phonological overlap. Finally, the lack of significant
differences between the two point-neuron models indicates the presence of two
classes of inhibitory neurons with distinct inhibitory plasticity rules (I1, I2) is
not the core mechanism for the word recognition task at hand.

From the comparison between the five models, we deduce that the dendritic
memory endowed by the NMDARs in segregated compartments is the mecha-
nism that allows the network to solve the word recognition task. However, be-
cause sequence detection requires the interaction of short-term and long-term
memories, it is not yet clear if the point-neuron models fail to establish the
hetero-associative connections or, rather, cannot perform temporal integration.
In the following section, we analyze the network connectivity emerging from the
associative phase in the five models and show that only networks with dendrites
form strong associations between phonemes and word assemblies.

4.2.2 Network configuration emerging from Hebbian

plasticity

Network with dendrites have strong connections from phonemes to words

The present section investigates the network structure that supports sequence
detection. To perform the network analysis, we reduce the model’s connectiv-
ity to an effective matrix that accounts only for words and phonemes assem-
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blies. We define the effective matrix (C ) as the average connectivity between
the cells belonging to two assemblies (Methods). The effective matrix is a non-
symmetric square matrix computed from the learned connectivity matrix at the
end of the associative phase. The C is composed of four blocks, the connec-
tions between word assemblies (CW!W ), between phoneme assemblies (C P!P),
from phonemes to words (C P!W ), and from words to phonemes (CW!P). An
example of the C matrix from the asymmetric Tripod model for the Overlap lex-
icon is shown in Fig.4.5A. The top-left quadrant shows the feedback connections
from word assemblies to phoneme assemblies, and the bottom-right quadrant
shows the feedforward connections from phonemes to words. The top-right and
bottom-left quadrants show the connectivity within phoneme and word assem-
blies, with strong recurrent connections on the diagonal. For completeness, the
effective connectivity matrix for the remaining models is shown in SI Fig.4.4 .

The four connection types of the effective matrix contribute differently to the
word recognition task. To test their impact, we selectively removed each of the
four blocks from C . The resulting effective matrices are similar to the origi-
nal Fig.4.5A, except for the removed block, whose elements are set to the aver-
age connection strength (SI Fig.4.5 ). Thus, we measured the recognition score
and calculated the percentage of recognition loss in each of the four conditions.
The recognition loss is computed as L = 0�

 , where 0 is the score with the
modified matrix and  is the baseline score. The loss is computed for each of
the seven lexica and then averaged. The results of the ablation experiments
(Fig.4.5B) indicate that the phonemes to word connections (C P!W ) are pivotal
for word recognition, recognition drops of the 100% when they are removed.
Such connections are necessary because they relay externally-driven activity in
the phoneme populations to the word assemblies. They emerge in the associa-
tive phase when phoneme and word populations are simultaneously activated.
Interestingly, the phoneme-to-word connections for the Overlap lexicon have a
similar, although weaker, structure in the DM network but are absent in the LKD
network (SI Fig.4.4 ). The word-to-word connections are also important but
not strictly necessary; in this case, the recognition drops of 25%. The other two
blocks in Fig.4.5A involve synapses targeting phoneme populations. Their con-
tribution to word recognition is marginal compared to the others, although the
loss is significantly larger than zero. These connections have a smaller impact
on the network dynamics because they are weaker than the external projections
that stimulate the phonemes populations.
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Based on the outcome of the previous experiment, we inspected the effec-
tivity connectivity matrix of the five models (point-neuron and network with
dendrites) to determine if the recognition capacity of the models was due to dif-
ferences in C . To this aim, we calculated which phoneme and word populations
should be associated for word recognition to succeed. We thus define a group
of lexical connections as the connections from any phoneme to the words that
contain it and vice versa, plus all recurrent connections within phoneme and
word assemblies. The three groups that compose the lexical connections are
illustrated in Fig.4.5C. We measured the average strength of the four types of
lexical connections for the Overlap lexicon for the five models tested. To facili-
tate model comparison, the columns were scaled between the maximum average
synaptic connection of each model’sC matrix (e.g., 26 pF in Fig.4.5A). The min-
imum corresponds to the initial synaptic strength of the excitatory to excitatory
connections, which determines the synaptic weight budget for synaptic normal-
ization. The initial weights are 10 pF for the dendritic models and vary for the
two point-neuron models (DM: 0.45 pF, LKD: 2.76 pF). It was not possible to
set the weights of the somatic models to be the same as the dendritic models
because of instabilities in the network activity. We return to this issue in the
Discussion.

Differences and similarities between the five models for the four lexical con-
nection types are shown in the bottom panel of Fig.4.5D. For the dendritic mod-
els, the hetero-associative connections (phoneme-to-word) have strength com-
parable to auto-associative ones (words-to-words and phonemes-to-phonemes).
In contrast, the point-neuron models have strong auto-associative synapses but
weak connections binding phonemes to word assemblies. Interestingly, the re-
current phonemic connections are as strong as the word-to-word in the point-
neuron and asymmetric models, but they are weaker for the symmetric and sin-
gle dendrite models. All models have relatively weak word-to-phoneme connec-
tions. Overall, the analysis of the effective connectivity matrices indicates that
the presence of dendrites promotes the strengthening of non-recurrent connec-
tions between phoneme and word assemblies. An overview of the effective con-
nectivity matrices for the five models on all the lexica is presented in SI Fig.4.7
. Comparing the panels across different lexica indicates that the formation of
hetero-associative connections is achievable in point-neuron models if the words
have no phonological overlap. A comparative analysis of these four types of con-
nections is also presented in Appendix B, which analyzes the learning dynamics
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figure 4.5: Feedforward structure in network with dendrites support word
recognition
(A) Effective connectivity matrix of the asymmetric network with dendrites for
the Overlap lexicon. The heatmap shows the average synaptic strength between
assemblies, measured in pF. The four quadrants show the recurrent connec-
tions within phoneme and word populations, the feedforward connections from
phonemes to words, and the feedback connections from words to phonemes. (B)
The word recognition -score changes when each of the four quadrants of the ef-
fective connectivity matrix is leveled to the initial synaptic weight (the resulting
matrices are shown in SI Fig.4.5 ). The four bars indicate the loss in recognition
in each condition. They are all significant. However, removing the phonemes to
word connection causes a drop in recognition of the 100%. (C) The schematic at
the top illustrates the four types of lexical connections and separates them from
the non-lexical ones, which are not expected to contribute to word recognition.
The non-lexical connections bind phonemes with words that do not contain them
or those among different words. (D) Average synaptic strength of the four types
of lexical connections for the point-neuron and dendritic models. All models
have strong connections within word assemblies, but only dendritic models have
strong phoneme-to-word connections. (E) Distribution of synaptic strength over
the entire network (top) and the word recurrent connections (bottom). The top
panel shows that most synapses remain close to their initial strength of 10 pF,
less than 3% of the connections developed stronger synapses (40 pF). The bot-
tom panel (zoom in the range 0 to 1% of synaptic connections) indicates that
for the symmetric and single dendritic models, the word assemblies have only
strong recurrent connections. In contrast, in the asymmetric network, recurrent
word engrams have both weak and strong synapses within the engram.
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of the five models during the associative phase. the results are fully consistent
with the ablation study presented here.

Further differences between the dendritic models can be gleaned from an anal-
ysis of the synaptic weights landscape of the three networks. The histograms in
Fig.4.5E show the percentage of connections (y-axis) against their respective
synaptic strengths (x-axis) for the entire network (top) and within the recurrent
word engrams (bottom, grey shades show the entire network for comparison).
The top row indicates that the dendritic models reach similar network config-
urations through Hebbian learning. The distributions of synaptic strength each
have three peaks at 1.78, 10, and 40 pF. The two extrema are the minimum and
maximum synaptic strengths allowed in the plasticity rule (Methods), and the
mid-value is the synaptic strength with which the model is initialized. Synap-
tic normalization (i.e., homeostasis) enforces that if a compartment develops a
strong incoming synapse, some other synapses will get weaker; one fully potenti-
ated synapse requires four fully depressed ones. Thus, homeostasis explains the
leftmost peak as a consequence of the strengthening of lexical connections. The
most pronounced peak occurs at 10 pF. These synapses remain unchanged by
learning and do not contribute to any engram. The asymmetric Tripod network
has roughly twice as many idle connections as the single dendrite model and
40 % more than the symmetric one. The difference is visible in the lower panel;
for the single and symmetric Tripod models, most of the recurrent word con-
nections are fully potentiated, whereas only half are for the asymmetric model.
Comparing the panels in Fig.4.5D and E with the effective connectivity of the
symmetric and single dendrite network SI Fig.4.6 , we infer that the asymmetric
configuration recruits fewer synaptic resources for the recurrent word-to-word
connections. The STDP redistributes the synaptic budget among the other con-
nection types. The larger availability of synaptic resources explains why the
asymmetric model has phoneme-to-phoneme and word-to-phoneme synapses
whose strength is comparable to the word-to-word connections, which is not the
case in the other two dendritic models.

Structures in the effective connectivity matrix mediate recognition of
words with phonological overlap

Because the phoneme stimuli do not encode temporal information, i.e., the po-
sition of the phoneme in the word, the network must rely on recurrent con-
nections to process sequential order and reactivate the correct word assemblies.
For example, the words dog and god share the same phonemes (lexicon Over-
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lap), but their order is different. When presented with the phoneme sequence
D,O,G, the word assemblies dog and god should assume different states such that
sequential order information triggers the reactivation of dog. Because hetero-
associative synapses are prominent in mediating the activation of word assem-
blies, we looked for the serial order mechanism in this set of connections. We
notice that the phonemes-to-word connections show variability in their synaptic
strength; the variability is visible in the rows of the lower-right block of Fig.4.5A.
Following the theoretical results by Knoblauch and Pulvermüller (2005), we hy-
pothesized that the different strengths encode the order of each pre-lexical unit
and support sequence recognition capacity in the model. Thus, we now investi-
gate the architecture of the synaptic weights in the phonemes-to-word connec-
tions and whether it also contributes to the word recognition capacities of the
networks with dendrites.

To test the hypothesis that average synaptic weights encode the phoneme se-
rial position, we assigned an index to each phoneme, matching its serial po-
sition in the word, and determined the average synaptic connection between
the phoneme and the word assemblies. For this analysis we considered the five
lexica requiring memory. Because the weights of the phoneme-to-word connec-
tions vary across words and even more across the lexica, we normalized the
synaptic weights by the strongest phoneme-to-word connection in each word.
Similarly, because words have different lengths, we centered all the samples to
their uniqueness points. The schematic on top of Fig.4.6A illustrates the serial
position of the phonemes relative to the UP of the word golden from the Over-
lap lexicon. Here, the phoneme E corresponds to the uniqueness point, and the
other phonemes are ordered according to it. The lower panel shows the average
synaptic weight of each phoneme-to-word connection (y-axis) corresponding to
the phoneme position in the word (x-axis). The minimum on the y-axis corre-
sponds to the initial synaptic strength of the connections (W0).

The plot in Fig.4.6A shows significant differences among the three phonemes
before the UP. The strength of the projections from phoneme to word increases
with the serial position of the phoneme in the word: assemblies associated with
early phonemes have weaker connections than those closer to the uniqueness
point. In the present work, we have not investigated the dynamics leading to
the formation of the weight architecture in Fig.4.6A. However, in the following,
we show that this structure in the synaptic weights is necessary for recogniz-
ing words with phonological overlap, and it is not a spurious property of the
network.
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figure 4.6: Feedforward structure in network with dendrites support word
recognition
(A) Strength of the phoneme-to-word connections organized by the serial or-
der of phonemes in the word. The phoneme position is computed relative to
the uniqueness point (top panel). The graph shows data pooled from all words
in the five lexica that require memory. Red dots indicate averages, while the
violin plots account for the entire sample. Significative differences in the aver-
age synaptic weights are evidenced between the three phonemes preceding the
uniqueness point. (B) Lower quadrants of the connectivity matrix with flattened
structure in the phoneme-to-word connections. The matrix shows the modified
phonemes-to-word connections, the original being in panel Fig.4.5A. Flattened
connections maintain the associations between phonemes and words but remove
the internal structure necessary for distinguishing phonologically overlapping
words. (C) Word recognition accuracy in networks with flattened connections,
compared with the original connectivity matrix (grey). The -score decreases
for the dendritic models when lexica have a large phonological overlap. (D)
Average dendritic membrane potential with the original and the flattened con-
nectivity. The membrane potential is portrayed for four distinct word assemblies.
The black line indicates the normal dendritic dynamics, and the orange is the one
in the flattened condition. The four plots show that in the flattened condition,
the cell assemblies have a weaker sustained depolarization after word offset.
(E) Assembly dynamics for the word doll, also comparing the original and the
flattened network. The upper panels show the dendritic membrane potential,
with black traits indicating potential above 20 mV (NMDA spikes). The lower
panels show the somatic firing activity. Both the membrane potential and the
firing activity are pooled over 10 samples of the sequence D, O, L, L. The panels
show that the lack of sustained depolarization is due to fewer NMDA spikes and
results in weaker somatic activity.
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To test whether the increase of synaptic strength with serial order contributes
to word recognition, we manipulated the network weights. We flattened the
phoneme-to-words connections such that the curve in Fig.4.6A would appear
flat (Methods). The panels in Fig.4.6B show a schematic of the transformation
(top) and the resulting effective connectivity matrix (bottom) for the asymmet-
ric Tripod network tested on the Overlap lexicon. For each post-synaptic word
(y-axis), the strength of all incoming connections from the phoneme assemblies
(x-axis) was identical. We then tested recognition accuracy as before and com-
pared the two conditions (Fig.4.6C). We found that the structure of phoneme-to-
word connections matters for the lexical items that require memory but not for
the other two lexical items. Crucially, the Digits and TIMIT lexicon require mem-
ory, but they are less affected by the flattening of connections. The explanation
is that if the words in the lexicon are distinguishable by the specific combination
of phonemes, they do not rely on the serial order. The weight structure does
matter when the phonological overlap is large, and the serial order is necessary
to distinguish among words. Recognition accuracy drops for all dendritic mod-
els, losing 40 % to 60 % for the three lexical items with the highest degree of
phonological overlap (i.e., Overlap, Cohort, TISK).

Further insights into the role of weight differences are obtained by comparing
the average dendritic potential of words’ assemblies in the original and flattened
conditions. The four panels in Fig.4.6D portray four words of the Overlap lexi-
con (doll, poll, god, and dog). The black line refers to the original model, and
the orange line refers to the one with flattened phonemes to word connectivity;
the values indicate the recognition score of the specific word. A zoom-in in the
assembly dynamics is offered for the word doll. Fig.4.6E shows the membrane
potential (top) and somatic activity (bottom) for all the neurons in the assembly
in both the original network and flattened conditions; the traces are obtained
averaging 10 presentations of the word. In the upper panels, the color scale is
chosen such that only the NMDA spikes are visible (black reveals dendritic poten-
tial larger than 20 mV). Taken together, Fig.4.6D and E indicate that tampering
with the effective connectivity matrix affects the average membrane dynamics
of the word’s assembly. In the flattened condition, the membrane potential in-
creases upon the presentation of early phonemes: between 0 ms to 100 ms, the
assembly activity resembles the one in the original network. Then, at the presen-
tation of the third phoneme (100 ms to 150 ms), the assembly fails to ignite the
NMDA spikes that trigger the full reactivation. The result is that the membrane
potential decays faster (orange traces), and the word population has sparser fir-
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ing activity. Crucially, this does not entail that the word cannot be recognized at
all, nor that all the words are equally affected, as evidenced by the word scores in
Fig.4.6H. Rather, the weight structure offers an additional network mechanism
that supports the distinction of words with full phonological overlap.

The present results illuminate pivotal role of dendrites in forming a structured
and functional connectivity matrix. Models with dendrites support the forma-
tion of hetero-associative connections (phonemes to words), which are neces-
sary for word recognition. The differences in the connection weights, which
encode both the identity and order of the phonemes, are read by the activity of
the phonemes assemblies and maintained in the dendritic memory of the word’s
population. We now shift the focus from network structure to the short-term
memory mechanism and show that it results from the interplay of non-linear
dendritic integration and dendritic inhibition.

4.2.3 Dendritic memory and inhibitory control

Dendritic non-linearity and inhibition governs temporal integration

The results have shown that networks of dendritic neurons are better at achiev-
ing word recognition than networks of point neurons. The sequence detection
capacity follows from delayed temporal integration and feedforward connectiv-
ity between phonemes and word assemblies. We evidenced how dendritic mem-
ory in segregated compartments is the mechanism supporting the computation
in networks with dendrites. However, to activate and maintain the dendritic
memory, the cells must be at a specific operational point that allows the expres-
sion of NMDA spikes. In addition, to avoid encoding the wrong memory, the
network has to control the dendritic non-linearity and suppress NMDA spikes
upon spurious activity in the assemblies. The voltage dependency in the NM-
DARs and tight dendritic inhibition permit such a computational state. We now
show that the interactions of these mechanisms are necessary for the network
model to achieve word recognition.

In the Tripod network, the dendritic non-linearity is governed by the ratio of
NMDA-to-AMPA peak-conductances of the glutamatergic receptors (NAR) and
the decay timescale of the NMDAR receptors (⌧d). Fig.4.7A illustrates the im-
pact of variations in the NMDA receptor on the dendritic membrane potential
of the post-synaptic cell. The panels show the excitatory post-synaptic potential
(EPSP) of a 300 µm dendrite following an excitatory spike on a synapse with
weight 100 nF. In the left panel, the NAR varies between 0 and 2.7; in the right
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panel, the decay timescale ⌧d ranges from 2 ms to 50 ms. In both cases, the non-
varied parameter maintains the baseline value of the model, NAR = 1.8 and
⌧d = 34 ms. The dashed lines portray this couple of parameters. The curves in
the left panel show a NAR threshold for the onset of the non-linear response,
approximately at NAR = 1.2. Above this NAR, the dendritic membrane enters a
long-lasting depolarized state called plateau potential. These plateau potentials
can be viewed as a form of intra-cellular dendritic memory on short timescales,
and the conditions that elicit such states in the Tripod neuron have been de-
scribed in Quaresima et al. (2022). The right panel in Fig.4.7A shows that the
duration of plateau potentials was proportional to the timescale of the NMDA
decay, ⌧d .

Inhibitory control is determined by the potential V0 that sets the target value
for the voltage-dependent iSTDP rule on the dendrites of I2neurons. To deter-
mine the role of inhibitory plasticity v-iSTDP on synaptic learning, we varied the
dendritic target voltage V0 in the range of �90 mV to �40 mV. The histograms
in Fig.4.7B show the distribution of the post-synaptic weights from I2 neurons
onto the dendritic compartment after the association phase. For a target value of
V0 = 70 mV or lower, the synaptic weights accumulated at the maximum value
243 pF that we allowed for inhibitory synapses. When the target V0 was set
higher, inhibitory synapses were potentiated less during the association phase,
and the weight distributions flattened towards smaller values.

Changes in the dendritic non-linearity and inhibitory control do not imply that
the network cannot process the phonemic stimuli correctly. Indeed, because the
connectivity matrix remains unchanged, it may still drive correct assembly reac-
tivation against weaker non-linearity or higher dendritic noise. In the present
study, the structure of the excitatory connections is frozen to the one obtained
from the associative phase. Thus, it could be that the parameter changes do not
affect the task performance but only change the network dynamics. We mea-
sured the word recognition performance on all the parameter ranges to test this
hypothesis. The three panels in Fig.4.7D illustrate the performance loss corre-
sponding to networks simulated with each parameter variation. The score ob-
tained for baseline values is used as the comparison term, and the loss is the
difference between the score in the test condition and the score achieved in the
baseline (-score ⇡ 0.85). From the comparison of the three parameters swaps,
it results that the inhibitory control plays the most significative role, with per-
formance dropping of 60 % when the V0 is increased to �55 mV. To match the
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figure 4.7: Dendritic non-linearity and inhibitory control enable word recog-
nition
(A) EPSP of the dendritic membrane in Tripod neurons after stimulation of a sin-
gle synapse. Curves show the membrane potential for varying NARs and NMDA
decay timescales. The dashed line indicates the model that was used in the pre-
vious section, corresponding to a Tripod neuron with human synapses, with NAR
= 1.8 and ⌧d = 35 ms. (B) Histograms of the inhibitory synaptic strength onto
dendrites, measured at the end of the recall phase, for increasing v-iSTDP target
potentials V0. Synapses potentiate towards their maximum value for V0 lower
than �70 mV. (C) Loss of -score for variations in the parameters NAR, ⌧d , and
V0. The bars with the darker shade correspond to the original model. Accuracy
reduces up to 60 % when the dendritic non-linearity is absent (NAR < 0.6) or
short (⌧d < 18 ms). The changes are larger for increased values of the dendritic
inhibition target potential (V0). (D) Difference in membrane potentials upon
presenting the phonemes P, O, L, L. The plots express the difference between the
average dendritic potential of the assembly associated with the word poll and
the dendritic potential of the entire network. The difference in membrane po-
tential is measured for all the parameter variations, i.e., NAR, ⌧d , V0. The black
solid line is the same for the three panels and refers to the baseline asymmetric
Tripod model.
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same loss, the NAR has to diminish to 0 to 0.6 and the timescale to 2 ms to 10 ms,
which corresponds to absent plateau potentials.

Variations in the NMDA non-linearity and the strength of inhibitory control can
also be traced in network activity. To investigate changes in the dynamics, we
compared the average dendritic membrane potential of a word population with
the average in the rest of the network while presenting the associated phoneme
sequence. The difference between the control and the dendritic potential of the
target population (poll) is shown in Fig.4.7C for the variations in the NMDARs
and dendritic inhibition parameters. The left and middle panels show similar
trends in that the difference in membrane potential stays close to zero for weak
and short dendritic non-linearity. The activity of the target word assembly peaks
after the first phoneme (P) but then returns to that of the control condition. On
the other hand, if the non-linearity is parameterized as in the baseline model
(black line), the dendritic membrane potential increases throughout the presen-
tation of the phoneme sequence until it reaches a peak around the word offset
and. A different pattern can be observed when the target potential V0 of v-iSTDP
is varied. The rightmost panel in Fig.4.7C shows that the ERP is wider when den-
dritic inhibition is strong, although weaker inhibition also generates a substan-
tial ERP relative to control. When V0 is equal to �70 mV or lower, the difference
in membrane potential is nearly identical because the I2 inhibitory synapses
that have developed during the association phase are similar (see Fig.4.7B). The
changes in the network activity expressed by the difference in membrane po-
tential (Fig.4.7D) match the -score loss of the word recognition task match
(Fig.4.7C). This indicates that the dynamics portrayed in Fig.4.7D are causal for
the task.

Crucially, in the latter case, the difference in membrane potential has a di-
rection that seems counter-intuitive regarding the inhibitory function; more po-
tent dendritic inhibition should cause weaker dendritic depolarizations. Hence,
we inspected the average membrane potential for the word assembly and con-
trol condition to shed light on the ongoing dynamics. The four panels in SI
Fig.4.9 show the soma and dendritic average potentials and solve the paradox
of the role of v-iSTDP control. When the inhibitory target potential is larger,
e.g., V0 =�50 mV, the network dendrites are permanently depolarized, and the
difference between the target population activity and the control condition is
less significant. Thus, the dendritic inhibition acts as a signal-to-noise control
mechanism that allows the assembly to reactivate only upon the correct stimu-
lus, maintaining the cells hyperpolarized otherwise.
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figure 4.8: Dendritic non-linearity and inhibitory control enable the forma-
tion of phonemes to word connections
(A, B) Cohen’s -score of the Tripod asymmetric model for pairs of NMDA-to-
AMPA ratio (NAR) and ⌧d and for pairs of NARs and V0. The model’s parameters
are varied in both the associative and recall phases. The dashed lines indicate
the baseline model. The left panel indicates that the -score is stable if changes
in the NMDAR’s timescale are compensated with the NAR. Conversely, the in-
teraction between the NAR and V0 variables is weaker (right panel); the per-
formances decay linearly on both axes. (C, D) Strength of the recurrent word
connections for the same parameter swap. Connections’ strength is divided by
the average synaptic weight (10 pF) to evidence the formation of engrams. The
contour plot of the words-to-words connection mirrors the -score panels, in-
dicating that the changes in the dendritic non-linearity and inhibitory control
also limit the formation of hetero-associative connections. (E, F) As in previous
panels, for the phonemes to word connections. The hetero-associative connec-
tions respond similarly to the auto-associative for variations in the dendritic non-
linearity (panel E). Conversely, weaker dendritic inhibition is more detrimental
for the phonemes-to-word connections than for the recurrent ones.
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4.2.4 Dendritic network features are necessary to develop

sequence detection networks

We reasoned that the loss in recognition could be caused by testing recall with
parameters different from those used in the associative phase, hence the mis-
match. Thus, to exclude this possibility, we modulated dendritic non-linearity
and inhibitory control during the associative phase and again tested word recog-
nition. The panels in Fig.4.8A, B show the -score for a range of NARs, ⌧s, and
V0 and indicate that enabling STDP plasticity does not solve the issue. Recogni-
tion drops for NAR below 1.0, for timescales shorter than 10 ms, and inhibitory
target potential (V0) larger than �60 mV. In addition, there is an interaction
between the NMDAR timescale and synaptic efficacy (NAR); for weaker non-
linearity, longer timescales are beneficial. Rather than stabilizing, changes in the
dendritic non-linearity and inhibitory control that occur during the associative
phase also affect the formation of recurrent and hetero-associative connections.
The average strength of the recurrent connections diminishes for most of the
parameter variations and so does for the phonemes-to-word, in both cases the
trends are similar to the recognition score (Fig.4.8C, D). These latter results indi-
cate that both dendritic non-linearity and inhibitory control are necessary for the
network with dendrites to form assemblies. In the case of the dendritic linear-
ity, this can be explained by the high threshold for synaptic strengthening in the
STDP. The threshold is at �20 mV and if the dendrites are not sufficiently depo-
larized they will not enter the potentiation range. For the inhibitory control, the
mechanism is more subtle. The strong external stimuli will override any network
activity. Consistently with this observation, recurrent associations form despite
weaker inhibitory control (Fig.4.8D). Conversely, the hetero-associative connec-
tions seem to require a high signal-to-noise ratio in the assemblies, and when
inhibitory control weakens, this class of connections rapidly fades (Fig.4.8F).

To conclude, we have shown that dendritic non-linear excitability is necessary
for the network’s word recognition capacity. The contribution of dendritic inhibi-
tion is also crucial because it governs dendritic depolarization and thus reduces
the possibility that NMDA spikes originate from the intrinsic fluctuations in the
network activity. The analysis suggests that NMDA spikes and tight inhibitory
control are necessary during both the recall and associative phases. In the for-
mer, they contribute to forming the phonemes-to-word connections; in the latter,
they allow for the temporal integration that is necessary for word recognition.
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4.3 Discussion

The present work investigated the formation and reactivation of Hebbian cell as-
semblies by stimuli with temporal structure. To this scope, we propose a novel,
biologically constrained, spiking neural network model with dendrites and plas-
tic excitatory connections. We evaluated the model in a phonemes-word associ-
ation task and compared it with control networks with and without dendrites.
The networks received sparse and overlapping excitatory projections, represent-
ing words and phonemes. The task was to activate the correct word assembly
following the phonemic sequence. We demonstrated that the introduction of
segregated dendritic compartments endowed the network with the capability to
recognize sequences of inputs with overlapping features. In dendritic models,
paired stimulation and STDP organized the networks in auto-associative and
hetero-associative engrams. Word memories were then correctly recollected in
vocabularies with partial or complete phonological overlap (as in the words dog
and god). In contrast, the point-neuron models tested failed in the word recog-
nition task when the vocabulary contained words with shared phonemes and did
not form hetero-associative connections. In the following, we first discuss the
significance of the present result for theories of biological memory, then we out-
line the contribution of dendritic non-linearity and inhibition in memory access.

Recognizing word memories with phonological overlap

The perception and recognition of phonological sequences is a fundamental hu-
man cognitive capacity (Dehaene, Meyniel, Wacongne, Wang, & Pallier, 2015;
Povel & Essens, 1985). The recollection of sequence memories entails that the
neural processes transform temporal patterns of activity into spatially-coded and
time-compressed representations of the stimulus (Bagur et al., 2022; Chan et
al., 2014; Fox, Leonard, Sjerps, & Chang, 2020; Vaz et al., 2020). However, how
such a computation is carried out in biological networks remains poorly under-
stood. First, it is not clear how word memories are stored in the neural substrate
through Hebbian plasticity (Poeppel & Idsardi, 2022). Second, it is unknown
how the networks integrate the short-term memory of the acoustic stimuli with
the long-term memory of the lexical item to be accessed (Norris, 2017).

Concerning the storage of long-term memories, the dominant hypothesis is
that consolidated memories are maintained in the strong recurrent connections
of cell assemblies (Amit, 1995; Fuster, 1997; Poo et al., 2016; Pulvermüller,
1999). Cell assemblies and synaptic engrams successfully account for associa-
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tive memories and their principles have been implemented in several computa-
tional models. Some of these studies have shown that associative plasticity, such
as spike-time dependent plasticity (STDP), supports the acquisition of long-term
synaptic memories and their recollection (Garagnani et al., 2009; Litwin-Kumar
& Doiron, 2014; Tomasello et al., 2018; Zenke et al., 2015). However, these
forms of associative memories seems to fall short in encoding relationships (Gal-
listel, 2021), such as the sequential order of phonemes in word memories. Our
Tripod model shows that introducing dendritic compartments resolves this co-
nundrum and supports the formation of order-sensitive memories.

The Tripod network model acquired word memories via STDP and maintained
the memories in the hetero-associative connections between phonemes and word
assemblies. The network memories were sensitive to both the identity and the
order of the phonemes presented in the input. Information about the order was
stored in the synaptic connections, and the strength depended on the serial posi-
tion of the phoneme in the word. Weights were larger for phonemes closer to the
uniqueness point. A similar mechanism for sequence detection in cell assemblies
was already proposed by Knoblauch and Pulvermüller (2005). In contrast, the
two point-neuron models investigated did not form hetero-associative connec-
tions for vocabularies with phonological overlap, let alone the sequence detec-
tion synaptic architecture. Remarkably, the DM model from Duarte and Morri-
son (2019) did better than the LKD model (Litwin-Kumar & Doiron, 2014). The
main difference between the two models was related to the presence of longer
timescales in the somatic NMDA receptors in the DM model. Similar to the Tri-
pod network, the presence of slow-decaying depolarizing currents contributes
significantly to the formation of the phonemes-to-words connections. The fact
that these connections form in the case of memory-less vocabularies rules out
that the models fail because of a shortage of synaptic budget in the face of the
homeostatic mechanism.

Transitory stimuli are integrated over time through dendritic memory

The presence of hetero-associative connections is, however, not sufficient for
recollecting the word memories. The model requires that the dendritic compart-
ments express NMDA spikes. The nonlinearity in the segregated dendrites of
the Tripod neuron mediates the interaction of short (dendritic) and long (synap-
tic) memories. Upon the presentation of external phonemic stimuli, the synap-
tic variables are read and encoded into the dendritic plateau potential of single
cells. The integration of successive pieces of information is expressed in the slow
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build-up of the assembly dendritic membrane potential. The dendritic mem-
ory allowed for the integration of these sources of information over the word’s
timescale. Crucially, the synaptic and dendritic memories have different compu-
tational trade-offs in terms of stability, robustness to noise, and duration of their
transients (Chaudhuri & Fiete, 2016). The dendritic memory is encoded within
a few tens of milliseconds and erased within hundreds while the engrams form
over tens of seconds and remain stable over time (Appendix B). While stable
memories have been shown to form in point-neuron models Litwin-Kumar and
Doiron (2014), the novelty of our results is that also hetero-associative connec-
tions are stable and can re-activate overlapping memories.

To understand the relevance of the present contribution we must clarify how
the word recognition task presented distinguishes from other instances of se-
quence learning. Sequence memories can also be instantiated as a chain of neu-
ral assemblies that activate in fixed order (Almeida-Filho et al., 2014, Hebb’s
phase sequences). This neural phenomenon is observed during hippocampal
replay and in bird song (Buzsáki, 2010) and can be reproduced in classical spik-
ing network models (Clopath et al., 2010; Fiete et al., 2010; Gillett, Pereira,
& Brunel, 2020; Gjorgjieva, Clopath, Audet, & Pfister, 2011; Haga & Fukai,
2018; Maes et al., 2020; Rajan, Harvey, & Tank, 2016; Reifenstein, Bin Khalid,
& Kempter, 2021; Riquelme, Hemberger, Laurent, & Gjorgjieva, 2023). In most
cases, these models leverage hetero-associative connections between the chained
assemblies. Nonetheless, the sequences investigated commonly include items
that do not repeat. When there is overlap among the items, the model expresses
additional features that allow distinguishing the identity of the sequence pre-
sented. For example, the network in Cone and Shouval (2021) implements an
external reservoir that depends on the identity of the sequence, while the net-
work in Maes et al. (2020) leverages an external neural clock.

Two elements set our model apart from these previous studies. First, the word
memory is accessed at the word’s uniqueness point rather than at the end of the
sequence. Early word memory access, at the uniqueness point, indicates that
the memories are immediately retrieved when sufficient information is avail-
able in the input. Second, the sequence overlaps for long intervals, which im-
pose temporal integration on the scale of a hundred milliseconds. Few studies
have directly investigated whether STDP is sufficient for learning and retrieving
word-like sequences. Among these, Duarte and Morrison (2014) investigated
a point-neuron model with biological constraints and reported no net contribu-
tion of glutamatergic plasticity in sequence detection. Similarly, our attempts to
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implement sequence detection in the two control point neuron networks were
not successful.

A few more recent studies have included dendritic computations in network
models with weak physiological constraints (Bouhadjar, Wouters, Diesmann, &
Tetzlaff, 2022; Hawkins & Ahmad, 2016; Leugering, Nieters, & Pipa, 2023). Sim-
ilarly to our model, these networks leverage plateau potentials to implement se-
quence detection. However, they present substantial abstractions in the dynam-
ics of dendritic integration and synaptic plasticity. It is now well-known that
dendritic processes determine the transfer function of single cells (I. S. Jones &
Kording, 2021; Koch, 1998; London & Häusser, 2005; Payeur et al., 2019; Poirazi
et al., 2003; Poirazi & Papoutsi, 2020; Ujfalussy et al., 2018). Their contribution
is remarkable in synaptic clustering, processing memory, expanded memory stor-
age, signal filtering and processing (Cazé & Stimberg, 2021; London & Häusser,
2005; Mel, 1992; Poirazi et al., 2003; Quaresima et al., 2022; Spruston, 2008).
However, it is not yet well understood how these computational primitives in-
teract with the network dynamics and whether explicit modeling of dendritic
processes can enrich the computational capabilities of neural networks (Larkum,
2022). Thus, the present work contributes to clarifying the computational im-
plications of considering dendrites in realistic biological networks. Our study
implements a reduced three-compartment dendritic model (the Tripod neuron,
Quaresima et al., 2022), and studies the effect of the dendritic computations
in networks. By comparing dendritic models with one single compartment and
with symmetric synaptic connections, we deduced that dendritic memory is the
most important ingredient of the Tripod neuron for the task at hand. Dendritic
memory is retained in the long-lasting depolarization (plateau potential) fol-
lowing the onset of NMDA spikes. In our network model, dendritic memory is
strictly necessary for word recognition in the recall phase and contributes to the
formation of phonemes-to-word connections in the associative phase. We have
not tested if the same computations could be achieved leveraging other types of
short-term memories, such as synaptic short-term adaptation (Cone & Shouval,
2021; Mongillo et al., 2008). Conversely, we verified that the same task cannot
be achieved via neuronal memory (Fitz et al., 2020). The point neuron models
were endowed with such memories in the form of membrane and spike-threshold
adaptation.

Along with short-term memory, the two dendritic compartments of the Tripod
neuron offer segregated pathways for signal integration. Each dendritic com-
partment supports a synaptic cluster; thus, it is balanced by dendritic inhibition
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and can autonomously elicit an NMDA spike (Quaresima et al., 2022). This
property reflects the spatial distribution of synaptic clusters along the dendrites
(Kastellakis & Poirazi, 2019; Larkum, 2022; Poirazi et al., 2003). Synaptic clus-
ters allow the neuron to take part in multiple engrams because memories are
maintained and reactivated independently (Kastellakis et al., 2016; Legenstein
& Maass, 2011). We tested the implications of this capacity by comparing three
dendritic models, of which only one model had two segregated dendritic path-
ways. Although their sequence-recognition performances were not significantly
different, the asymmetric model required half of the specialized connections than
the other dendritic models.

A third contribution of the dendritic compartments concerns the stability of
the voltage-dependent plasticity rule. The segregated dendritic compartment
spans approximately 60 mV between the hyperpolarized and depolarized state,
and the potentiation region is accessible only to NMDA spikes. Thus, the den-
dritic non-linearity ensures that only salient stimuli are encoded in the long-
term memory. Our results are in agreement with previous work on STDP in
dendrites. These studies show that voltage-dependent STDP in the dendrites
maintains stable memories across time (Bono & Clopath, 2017; Bono, Wilmes,
& Clopath, 2017; Kastellakis et al., 2016) and that decoupling dendritic poten-
tial from somatic activity mitigates the stability-plasticity dilemma (Wilmes &
Clopath, 2023).

Dendritic inhibition controls memory encoding and access

The strengthening of excitatory connections makes the network prone to run-
away excitation, a type of winner-takes-all dynamics (Ermentrout, 1992), and
it destabilizes the network dynamics, causing continuous burst activity. In our
model, the problem is solved by plasticity on the synapses of fast-spiking in-
hibitory neurons, which target the soma of tripod neurons and act fast compen-
satory mechanisms (Litwin-Kumar & Doiron, 2014; Zenke & Gerstner, 2017).
However, somatic inhibition does not prevent dendrites from becoming strongly
depolarized. This interferes with the formation of synaptic engrams. Following
the experimental evidence on the role of inhibitory control on dendrites, (Chiu
et al., 2018; Herstel & Wierenga, 2021; Zucca et al., 2017), we introduced den-
dritic inhibition as an additional compensatory mechanism, which can selectively
silence dendritic branches, prevent the overriding of synaptic memories, and
overall change the neuronal transfer function. The computational advantages
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of tight inhibitory balance on dendritic compartments were already reported by
G. R. Yang et al. (2016) and Mikulasch, Rudelt, and Priesemann (2020).

The present work introduces voltage-dependent iSTDP in gabaergic synapses
targeting dendritic compartments. The rule steers the dendritic compartment
toward a hyperpolarized state. When the dendritic compartment is depolarized,
the inhibitory synapses are strengthened. Our results indicate that this form of
inhibitory control is necessary for sequence detection and for the formation of
hetero-associative connections. However, our implementation of the voltage-
based dendritic iSTDP presents some limitations. Our model requires strong
dendritic inhibition, resulting in the inhibitory plasticity driving all the weights
to the maximum synaptic efficacy, so there is no neuronal specificity in the in-
hibitory connections. We observed that lowering dendritic inhibitory control
results in heterogeneous inhibitory synaptic weights but also reduces the recog-
nition score. Future work should explore the inhibitory plasticity mechanism
and individuate the correct parameters to develop neuron or assembly-specific
inhibitory connections. This could be done by changing the plasticity rule with
a non-spike-time-dependent one (Miehl & Gjorgjieva, 2022; Pedrosa & Clopath,
2020) or changing the connection probability to have more gabaergic synaptic
contacts per dendrite.

Moreover, the lack of neuron-specificity in the inhibitory weights indicates
that dendritic inhibition does not act as a competition mechanism. This is in
contrast with other models of sequence processing (Cone & Shouval, 2021; Maes
et al., 2020, Vlachos et al., in preparation) or word recognition (Hannagan et
al., 2013; McClelland & Elman, 1986), in which inhibition mediates competition
among the excitatory assemblies. Somatic inhibition could still play this role
because its synaptic strength depends on the neuron’s firing rate (Appendix A).
However, the lack of plasticity in the glutamatergic connections of the inhibitory
cells (E!I1) makes it such that inhibition acts as a uniform blanket rather than
a competition mechanism. Thus, our network solves the word recognition task
without leveraging lateral inhibition among lexical competitors.

The homeostatic mechanism in the vSTDP, which maintains the incoming synap-
tic strength fixed for each neuron, is the only mechanism that can mediate com-
petition, and its effect is expressed in the weak reciprocal connections among
words. However, homeostasis seems ineffective. The connectivity matrices in
the results and the appendices indicate that the assemblies that share some
phonemes have, on average, stronger excitatory interactions than those that
do not. We deem that implementing an explicit competition mechanism would
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increase the capacity of the network to distinguish among words with shared
phonemes.

4.4 Methods

In this study, we examine the activity of spiking network models when exposed to
external stimuli representing phonemes and words. In the following sections, we
first describe the equations characterizing the neuron models and their synaptic
dynamics. Then we describe the network architecture, the recurrent connec-
tivity, and the plasticity rules for each network class. Finally, we describe the
experimental protocol used to model word recognition.

4.4.1 Neurons and synapses

The network models investigated are composed of two types of neurons, ex-
citatory and inhibitory. The excitatory neurons have been modeled as three-
compartment neurons in the Tripod networks and single-compartment units in
the point-neuron networks. The inhibitory neurons have two sub-types, both
modeled as single-compartment neurons. The models and parameters used vary
for each network, and the variations are constrained to ensure stability during
the simulation. For the two previously published networks, namely the L2/3 cor-
tical circuit by Duarte and Morrison (2019) and the balanced network by Litwin-
Kumar and Doiron (2014), we used models and parameters identical with the
original publications; except for the plasticity rules introduced in the Duarte and
Morrison (2019). In the following particular attention is reserved to the network
with dendrites, as it is the most complex model and constitutes the novel con-
tribution of the present work.

Excitatory neurons

Tripod neurons The Tripod neurons comprise three electronically segregated
compartments: an axosomatic compartment and two membrane patches. A de-
tailed description of the model is presented in Quaresima et al. (2022), which
also constitutes the second chapter of the present manuscript. The somatic com-
partment is modeled with the adaptive exponential integrate-and-fire model
(Brette & Gerstner, 2005), it is two-dimensional and comprises the dynamics
of membrane potential and adaptive hyper-polarizing currents (Eqs.4.1,4.2).
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The leak conductance gs
m defines the electrical permeability of the somatic mem-

brane, Cs
m its capacitance, and gs

k the set of variable synaptic conductances. The
membrane potential V s is reset to Vr after a spike, and the adaptation current w
is increased by a constant value b (Eq.4.2). Spikes occur at times t f when the
potential V s exceeds a threshold ✓ (Eq.4.3). Parameters for the somatic com-
partment were fixed and set to the values used in Brette and Gerstner (2005)
and are listed in Table4.1.

The somatic compartment is coupled to the dendrites by the term gd
ax (Eq.4.1),

it accounts for the axial conductance of the soma and the dendrite. The electrical
properties of the dendritic compartment are governed by the passive membrane-
patch equation Eq.4.4 (Koch, 1998). The equation’s parameters depend on the
dendritic geometry combined with physiological parameters. The physiology
concerns the membrane permeability, the membrane capacitance, and the ax-
ial impedance to the soma ( ḡm =25.6 µScm2; C̄m =0.5 µF/cm2; ḡax =0.5 Scm2)
(Eyal et al., 2016; Koch, 1998). In the present study, we use the parameters
obtained from human pyramidal cells Eyal et al. (2016) because they show en-
hanced dendritic memory (Quaresima et al., 2022). The dendritic diameter is
fixed at 4 mm, and dendritic electrical properties are determined only by the
dendritic length Ld , in agreement with the equations:

Dendrite [Ld , d = 4 µm] =

8
>>><
>>>:

Cm = ⇡c̄m · Ld

gd
m = ⇡ ḡm · Ld
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In all the dendritic models tested in the present study, the dendritic compart-
ments have heterogeneous lengths in the range 150 µm to 400 µm.

The current flow between soma and dendrites depends on gax (Vd > Vs). It
usually is positive (dromic); conversely, during somatic firing, the soma com-
partment’s membrane potential is clamped to 20 mV for the duration of the spike
(spike width, 1 ms). During the spike interval, the current flow is antidromic
(Vd < Vs), and the current flowing to the dendrites acts as a backpropagating
axon potential (the dendritic and soma potentials are illustrated in Fig.4.1A, the
inset shows the potentials’ dynamics during somatic firing).

The Tripod neurons express AMPA, NMDA, GABAA , and GABAB receptors on
the dendrites and only AMPA and GABAA on the soma. The synaptic transmission
is modeled with a double-exponential equation (Roth & van Rossum, 2009). The
equation describes the rise and decay of the receptors’ conductance gk. The
synaptic conductance gk is given by:

gk(t) = ḡsyn
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with k 2 {AMPA, NMDA, GABAA, GABAB} indicating that each receptor has specific
parameters. The timescales of rise and decay are given by ⌧r and ⌧d while the
amplitude of the curve is defined by the maximal conductance parameter gs yn.
To ensure that the amplitude equals ḡsyn

k , the conductance was scaled by the
fixed normalization factor Nk Eq.4.6. The ratio between the maximal conduc-
tance of NMDA to AMPA receptors (NAR) governs the non-linear response to
glutamatergic stimuli, in the present work is set as in human-like cells in Eyal
et al. (2018); Quaresima et al. (2022). The synaptic parameters of the Tripod
neuron are listed in Table4.3.

Point neuron models The excitatory cells of the point-neuron networks are
also implemented with the AdEx model (Eq.4.1). For the point-neuron models,
the membrane potential threshold ✓ changes over time and increases after each
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spike. The dynamic threshold facilitates voltage-dependent synaptic plasticity
during the bursting intervals, it is governed by the equation:

⌧✓
d✓
d t

= �(✓ � ✓0) + ✓+
X
�(t � t f ) (4.7)

(4.8)

For the network borrowed from Duarte and Morrison (2019), the soma hosts four
types of receptors, as in the Tripod. Conversely, the model from Litwin-Kumar
and Doiron (2014) only has AMPA and GABAA receptors. The parameters of the
point-neuron AdEx models and synapses are listed in Table4.1 and Table4.3 .

Inhibitory interneurons

Inhibitory neurons are modeled as single, isopotential compartments with leaky
integrate-and-fire dynamics. The membrane potential Vi is governed by the fol-
lowing equations:

Cm
dVi

d t
= �gm(Vi � Vr)�

X

k

gk(t)(Vi � Ek)� w (4.9)

⌧w
dw
d t

= a(Vi � Vr)� w

if V > VT ! V = Vr (4.10)

Following previous modeling efforts (e.g. Duarte and Morrison (2019); Park
and Geffen (2020); G. R. Yang et al. (2016)) and consistently with physiolog-
ical description (Tremblay et al., 2016), we implement two types of inhibitory
interneurons: fast-spiking and non-fast-spiking. The first class corresponds to
a set of well-defined parvalbumin-expressing (PV) GABAergic neurons, among
which basket-cells; these cells primarily target the perisomatic regions and are
indicated in this work as I1population. Conversely, the second group includes
parvalbumin-negative GABAergic neurons expressing somatostatin. For nota-
tional simplicity, we refer to the second group as I2. Following Duarte and Mor-
rison (2019), the fast-spiking neurons are modeled as not adaptive while the
I2 neurons are. The two classes differ in LIF model parameters (Table4.2), and
synaptic properties (Table4.3). In our model, they also differ for the compart-
ment of the Tripod neuron they connect to. I1 neurons target the soma compart-
ment, and their synapses express fast GABAA receptors. I2 neurons, on the other
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hand, target the dendrites and, due to the additional slow GABAB component of
the dendritic synapses, have a longer timescale. The inhibitory neurons’ synapses
express AMPA, GABAA receptors, and the synaptic transmission is modeled with
a double-exponential model. The parameters for the inhibitory neurons are bor-
rowed from Duarte and Morrison (2019) and are reported in Table4.1 and Ta-
ble4.4.

4.4.2 Network architectures

We implement three main classes of networks that vary for the number and types
of neurons considered and for the connectivity between them. The novel net-
work model is composed of Tripod neurons as excitatory cells. The network
counts 2000 Tripod neurons with dendritic lengths uniformly distributed in the
range150 µm to 400 µm; along with 175 fast-spiking neurons, and 325 slow-
spiking neurons. The proportion of inhibitory neurons follows Duarte and Mor-
rison (2019). The network lacks geometrical structure and is conceived as a local
cortical circuit. The Tripod neurons connect reciprocally through the dendrites
and to the soma of inhibitory neurons. The fast-spiking neurons target the Tripod
neurons’ soma, while the slow-spiking neurons target the dendrites. Inhibitory
neurons also connect reciprocally. All connections have a probability of p =0.2.
The connections targeting the two dendrites of a Tripod neuron are drawn inde-
pendently from each other. Hence some neurons will connect through one den-
drite only, and others will connect through both dendrites (pre-synaptic spikes
arrive separately on both compartments). The connectivity pattern described is
the default network configuration and is identified as the asymmetrical network.
As a result, the Tripod network has 10 different connection types; the Tripod-
Tripod and I2-Tripod are doubled because they account for the two dendrites.

The remaining two networks are composed of point-neuron models, illus-
trated in the right panel of Fig.4.1B. One of the models implements an exact
copy of the network described in Litwin-Kumar and Doiron (2014) (LKD model).
The network is composed of 4000 excitatory neurons and 1000 inhibitory neu-
rons. Then neurons are sparsely connected with a probability, p =0.2. The third
network is composed of 2000 excitatory neurons, 200 fast-spiking neurons and
200 slow-spiking neurons. The network is modeled after the non-heterogeneous
model of cortical L2/3 (Duarte & Morrison, 2019). Neurons are connected with
probability and connectivity strength that depends on the type of connection, for
a total of nine types of connections. The network is dubbed the DM network.
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The networks’ neuron types and the number of cells are listed in Table4.6. In
all the models, the synaptic weights change according to the connection types
and are listed in Table4.7 with the respective connection probability. An illustra-
tion of the Tripod and point neuron networks connectivity is offered in Fig.4.1B

4.4.3 Synaptic learning rules

The synapses connecting excitatory neurons (EE) and from the inhibitory to the
excitatory neurons (IE) are subject to spike-time-dependent plasticity (STDP).
The two plasticity rules are illustrated in Fig.4.1C.

Excitatory STDP The glutamatergic synapses undergo a voltage-dependent STDP
rule (Clopath et al., 2010). The voltage-dependent STDP (vSTDP) strengthens
the connection when, following a pre-synaptic spike, the post-synaptic neuron’s
membrane potential is depolarized. The equations governing the vSTDP rule
are:
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The J EE
i j indicates the connection between the excitatory neurons, post-synaptic

i, and pre-synaptic j. The variable s j =
P

t �(t � t f
j ) is the spike train of the

presynaptic neuron, and xi is the filtered spike train of the post-synaptic cell. In
addition, the variables Vj, uj, vj are the membrane potential, the slow, and the
fast-filtered membrane potential of the targeted compartment. The two thresh-
olds (✓+,✓�) mark the region where long-term potentiation (LTP) and long-term
depression (LTD) occur, coupled with the learning rates ALT P and ALT D. In the
point-neuron models, the vSTDP is applied to the soma (Vi = V s

i ), while in the
Tripod neurons, the vSTDP is applied to the dendrites (Vi = V d=1,2

i ). For each
couple of connected Tripod neurons, there are two values J E1E

i j and J E2E
i j , one

for each dendrite, and they are updated independently. In addition, the vSTDP
rule includes a homeostatic mechanism that maintains the sum of pre-synaptic
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weights fixed; the homeostatic rule follows the prescription of synaptic scaling
(Tetzlaff et al., 2011; Triesch et al., 2018; Turrigiano, 2011) and is multiplicative.
Conversely, the homeostatic rule in Litwin-Kumar and Doiron (2014) is additive.
The multiplicative homeostatic rule is implemented as follows:

J EE
i j  J EE

i j

P
k JikP
k J0

ik

(4.15)

where J0
i j is the initial value of the synaptic weight. Homeostasis is applied every

20 ms.

Inhibitory STDP For the connections from inhibitory to excitatory neurons,
the networks implement the iSTDP rule from Vogels et al. (2011). The iSTDP
governs the network stability by regulating the inhibitory synaptic strength. It
is a necessary ingredient for the formation of assemblies in the original LKD
network because it prevents winner-takes-all dynamics. We implemented the
same mechanism for the I1or fast-spiking interneurons in the three networks,
(EsI1); the iSTDP maintains the firing rate of the excitatory cells by modulating
the synaptic strength of the inhibitory pathways. In addition, we modified the
iSTDP rule for the slow interneuron type such that they can control the dendritic
non-linearity of the Tripod’s dendrites. The I2iSTDP targets the membrane po-
tential of the post-synaptic neuron, rather than its firing rate. We refer to it as
voltage-dependent iSTDP or v-iSTDP. It applies to synapses on the soma (E[s]I2)
in the DM and to synapses on the dendrites (E[d]I2) in the Tripod network. Be-
cause there are non I2neurons in the LKD network, this plasticity rule does not
apply there. The two iSTDP rules follow the equations:

if j 2 I1, i 2 Exc :

J EI
i j  J E[s]I

i j +⌘d t
î

x jsE
i + (xi �↵) sI

j

ó
(4.16)

if j 2 I2, i 2 Exc :

J EI
i j  J EI

i j +⌘d t
î

x jsE
i + (vi � V0) sI

j

ó
(4.17)

The sI
j is the spike train of the inhibitory neuron j, xi is the filtered spike trains

of the excitatory neuron i and vi is the dendritic or somatic potential (depending
on the network to which the plasticity rule applies), respectively. The ↵ is the
target firing rate for the iSTDP of I1neurons, while the V0 is the target membrane
potential for the iSTDP of I2neurons. ⌘ is the learning rate. The parameters of
the iSTDP rules are listed in Table4.5.
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4.4.4 Stimuli

Phonemes and word projections The networks were stimulated through exter-
nal projections encoding phoneme and word inputs. Depending on the lexicon
used, each network has 20 to 35 distinct projections, each representing a distinct
phoneme or a word. Each projection targets ⇢ = 5 % of the network, creating an
assembly of co-activated cells. The assemblies were approximately 100 neurons
in the Tripod and DM network and 200 in the LKD network. The projections are
distributed randomly to the network’s neurons; therefore, the assemblies lack
any geometrical structure and each cell can be contained in more than one as-
sembly. The phoneme and word assemblies were stimulated with spike trains.
All pre-synaptic projections have fixed firing rate (8 kHz) and synaptic efficacy
(2.78 pF for point-neuron models, 20 pF for the Tripod model). These num-
bers were optimized to have a strong neuronal response but not unstabilize the
network. Stimuli spike trains are drawn from a Poisson distribution at every
presentation, with the rate being the same for all projections; as a consequence,
the stimuli cannot be interpreted as rate- or time-coded. The only information
available to the networks to discriminate between the stimuli is the identity of
the activated assemblies, which constitutes a spatial code. The phoneme stim-
uli were presented for 50 ms each, and the word stimuli were presented for the
entire duration of the stimulus. Each word was followed by a silent interval
without external stimuli, the pause lasts 50 ms.

Sequence association and recall The stimulation protocol consists of two phases
during which the phonemes to words associations are first established and then
recall is tested, both phases last 5 min. During the associative phase, we present
the network with external stimuli on both phonemes and word projections. The
stimuli are presented in sequence; one word is drawn randomly, and the cor-
responding phoneme projections are activated. The phonemes populations are
activated for 50 ms each, while the word ensembles are activated for the entire
duration of the word (that is 50 ms times the number of phonemes contained in
the word). The number of words presented in the two phases depends on the
average length and the interval duration; for the experiments discussed here,
each word is presented 50 to 100 times. All words are presented approximately
the same number of times; therefore, there are no frequency effects. The phase
duration has been chosen to be long enough for the synaptic weights to con-
verge, but short enough to allow for several simulations and maintain the study
reproducible.
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Lexica The lexica were chosen from previous publications or assembled for this
specific study. The seven lexica tested vary for the number of items, the average
length of words, and the phonological overlap. Phonological overlap is com-
puted as the ratio between the number of words in the lexicon and the number
of phonemes: O = Nw/Np. The lexica and their characteristics are presented in
Table4.8.

The TIMIT lexicon has been selected based on the work from Dong, Huang,
and Xu (2018). The Cohort lexicon was obtained from Granger, Whitson, Larson,
Lynch, and Lynch (1994). The TISK lexicon was obtained from Hannagan et al.
(2013). The remaining lexica are original to this work.

4.4.5 Word recognition measure

Uniqueness and offset point We individuate two salient time points for word
recognition for every phoneme sequence presented during the recall phase. One
is the offset of the word (offset point, OP), that is, the last phoneme of the
sequence. The other is the word’s uniqueness point (UP). The UP corresponds
to the phoneme that permits distinguishing a word from any other in the lexicon
(Marslen-Wilson, 1973); when the word is contained in another word (such as
gold and golden), the UP is the phoneme following the last shared phoneme, i.e.,
the silence after the end of the word in case of gold. As in the previous section,
we estimate word recognition for every trial by measuring the firing rate in the
adjacent interval. We associate the OP with an interval lasting the entire length
of the phonemes’ sequence, from the word onset to the word offset (50 ms times
the length of the word); this measure is the same one portrayed in Fig.4.2D.
Conversely, the UP interval is shorter and corresponds to the duration of one
single phoneme (50 ms); in this case, the interval starts and ends with the UP
phoneme. An example of the uniqueness and offset points of the word golden,
and their intervals, is illustrated in Fig.4.3A; the offset and UP time-points are
marked on the phoneme sequence, respectively, by the blue and green arrow
marks. Because words are longer than one phoneme, the interval associated
with the offset is, on average, longer than the one associated with the UP.

Recognition -score Because the reactivation of word assemblies is delayed
with respect to the onset ofset of the phoneme sequence, we introduced a vari-
able time shift in the measure of the firing rate to individuate the optimal interval
of word recognition. For both the offset and UP measures, the measured inter-
vals were probed with delays from�150 ms to 200 ms, sampling every 5 ms. The
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delayed interval is also illustrated in Fig.4.3A; the applied time shift is indicated
with the orange arrow. We computed the lexicon confusion matrix (CM) for any
given delay. The confusion matrix indicates which word is reactivated when a
target word is presented; the sum of each column is one and corresponds to the
fraction of trials (column) assigned to each target (row). Values close to one on
the CM’s diagonal indicate correct recognition, while off-diagonal elements indi-
cate mistaken phoneme sequences. The average recognition score is computed
from the confusion matrix using Cohen’s  to correct against chance.

Average Recognition Delay The average recognition delay is computed for
both the uniqueness and offset measures starting from the -score. The ARD is
the linearly weighted average of the delay function, with respect to the -scores.
That is:

ARD=

Pd=df

d=d0
(d)d
Pd=df

d=d0
(d)

(4.18)

Effective connectivity matrix Excitatory cells have recurrent connections with
20 % of the remaining network’s cells. These connections are formed between
the soma and the soma in the point-neuron models and the soma and the den-
dritic compartment in the dendritic models. We label these connections W s

i j or
W d

i j , where s and d are the somatic or dendritic compartment of the post-synaptic
neuron i, onto which the pre-synaptic neuron j projects.

For the asymmetric model W 1
i j 6= W 2

i j and the two matrices were drawn in-
dependently. For the symmetric model W 1

i j = W 2
i j , and for the model with a

single dendrite only W 2
i j is set to zero. For all the dendritic models, W s

i j is also
set to zero. The opposite is true for the point-neuron models, for which only
W s

i j is defined. We define the effective connectivity matrix (C ) as the average
of the connections between neurons from the pre-synaptic assembly A to the
post-synaptic assembly B

CBA =
1

NANB

X

i2A; j2B

Nc(W
[1]
i j +W [2]

i j +W [s]
i j )

where NA (NB) is the number of neurons that belong to the assembly A (B) and
the superscripts in W 1,2,s, indicates whether the post-synaptic connection targets
the two dendrites or the soma. The factorNc accounts for the compartments that
receive inputs, it is 0.5 in the symmetric and asymmetric dendritic models and
1 otherwise. The C is composed of four blocks, the connections between word
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assemblies (CW!W ), between phoneme assemblies (C P!P), from phonemes to
words (C P!W ), and from words to phonemes (CW!P).

Block-wise update of the effective matrix To test which connection types are
necessary for word recognition, we leveled the synaptic strength of selected
synapses to the initial synaptic strength value (W0). The synapses are updated
based on their pre and post-synaptic cell assemblies. The synaptic update is
defined by:

for each i 2 A and j 2 B :

W d
i, j =

8
<
:

0, if W d
i, j = 0

W0, otherwise
(4.19)

where i, j are the indices of two excitatory cells, A, B are the post and pre-synaptic
assemblies, and the superscript d indicates the dendritic compartments, which
are updated independently. The update rule in Eq.4.19 is iterated among all the
A, B assemblies belonging to the block that has to be flattened. For example, to
level the phonemes-to-word connections (C P!W ), the update rule is repeated for
all the assemblies A associated with words, and all the assemblies B associated
with phonemes.

Flattening of lexical connections The strength of the connections between the
phonemes and word assemblies depends on the serial position of the phoneme
in the word (Results, Fig.4.6A). To evaluate the computational role of the differ-
ences in synaptic weights, we modified W d

i, j such that all connection strengths
from each phoneme to the word populations are the same. The result is an
effective matrix in which the connections from any phoneme to the word that
contains them have the same strength. To this aim, we used a similar procedure
to Eq.4.19, selecting A, B only among the lexical connections. In this case, the
synaptic value was not updated with the initial value but with the average of all
the synapses targeting the word population hW d

i, jiPA!A
. Namely,

for each A2 W and B 2 PA:

for each i 2 A and j 2 B :

W d
i, j =

8
<
:

0, if W d
i, j = 0

hW d
i, jiPA!A

, otherwise
(4.20)
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Table 4.1: Parameters for the axosomatic compartment (Duarte & Morrison,
2019; Litwin-Kumar & Doiron, 2014; Quaresima et al., 2022).

Symbol Description Tripod LKD DM Unit
Vr Resting membrane potential -70.6 -70. -76.43 mV
gL Membrane leak conductance 40 15. 4.64 nS
Cm Membrane capacitance 281 300 116.5 pF
VT Threshold potential -50. -52. -44.45 mV
uth Spike onset threshold 0 0 0 mV
ur Reset potential -55 -60 -54.18 mV
�T Slope factor 2 2 2 mV
a Adaptation conductance 4 4 4 nS
⌧w STA1 timescale 144 150 144 ms
b STA1 increment 80.5 80.5 80.5 pA
tup Spike width (20 mV) 1 1 1 ms
tre f Refractory period 2 2 2.1 ms
1 Spike-triggered adaptation

where W is the set of word assemblies and PA is the set of phonemes contained
in the word A. The result of the update rule in Eq.4.20 is illustrated in Fig.4.6B.
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Table 4.2: Parameters for the axosomatic compartment of the inhibitory neu-
rons for the three network models (Duarte & Morrison, 2019; Litwin-Kumar &
Doiron, 2014). The inhibitory neurons of the Tripod network have the same pa-
rameters as those in the Duarte and Morrison model.

Symbol Description I1 (LKD) I1 (DM) I2 (DM) Unit
gL Membrane leak conductance 15 9.75 4.61 nS
Cm Membrane capacitance 300 104.52 102.86 pF
Vr Resting membrane potential -62 -64.33 -61 mV
VT Threshold potential -52 -38.97 -34.4 mV
uth Spike onset threshold VT VT VT mV
ur Reset potential -57 -57.47 -47.11 mV
a Adaptation conductance - - 144 nS
⌧w STA1 time scale - - 4 ms
b STA1 increment - - 80.5 pA
tup Spike width (20 mV) 1 1 1 ms
tre f Refractory period 1 0.5 1.3 ms
1 Spike-triggered adaptation

Table 4.3: Synaptic parameters for the excitatory and inhibitory neurons in the
Tripod network.

Receptor Er (mV) ⌧r i se(ms) ⌧decay(ms) gs yn(nS) �
Ä 1

mV

ä

Tripod soma
AMPA 0.0 0.26 2. 0.73 -
GABAA -70 0.1 15 0.38
Tripod dendrites
AMPA 0.0 0.26 2. 0.73 -
NMDA 0.0 8. 35. 0.73 · NAR 0.075
GABAA -70 4.8 29.0 0.27
GABAB - 90 30 400 0.006
I1soma
AMPA 0.0 0.18 0.7 1.04 -
GABAA -75.0 0.19 2.5 0.84 -
I2soma
AMPA 0.0 0.18 1.8 0.56 -
GABAA -75.0 0.19 5.0 0.59 -
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Table 4.4: Synaptic parameters for the excitatory and inhibitory neurons in the
point neuron models (Duarte & Morrison, 2019; Litwin-Kumar & Doiron, 2014).

Receptor Er (mV) ⌧r i se(ms) ⌧decay(ms) gs yn(nS) �
Ä 1

mV

ä

LKD soma
AMPA 0.0 1.0 6.0 1.0 -
GABAA -75.0 0.5 2.0 1.0 -
LKD I1
AMPA 0.0 1.0 6.0 1.0 -
GABAA -75.0 0.5 2.0 1.0 -
Duarte soma
AMPA 0.0 0.25 2.0 0.73 -
NMDA 0.0 0.99 100.0 0.16 -
GABAA -75.0 0.5 6.0 0.26 -
GABAB -90.0 30.0 100.0 0.01 -
Duarte I1
AMPA 0.0 0.1 0.7 1.6 -
NMDA 0.0 1.0 100.0 0.0 -
GABAA -75.0 0.1 2.5 1.0 -
GABAB -90.0 25.0 400.0 0.02 -
LKD I2
AMPA 0.0 0.2 1.8 0.8 -
NMDA 0.0 1.0 100.0 0.01 -
GABAA -75.0 0.2 5.0 0.7 -
GABAB -90.0 25.0 500.0 0.02 -
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Table 4.5: Parameters for the v-STDP, iSTDP, and v-iSTDP plasticity rules. The
v-STDP parameters for the point-neuron models (LKD and DM) are obtained
from Clopath et al. (2010), and identical to the original study by Litwin-Kumar
and Doiron (2014); for the dendritic model is obtained from Bono and Clopath
(2017). The iSTDP and v-iSTDP rules follow the parameters by Vogels et al.
(2011) with variations on the learning rate ⌘ and the target of the homeostasis
for the two interneurons.

Symbol Description LKD DM Tripod Unit
v-STDP
a� LTD learning rate 8.0E-05 8.0E-05 4.0E-05 Hz
a+ LTP learning rate 1.4E-04 1.4E-04 1.4E-04 Hz
✓� LTD threshold -70 -70 -40 mV
✓+ LTP threshold -49 -49 -20 mV
⌧u slow membrane filter 10.0 10.0 15.0 ms
⌧v fast membrane filter 7.0 7.0 45.0 ms
⌧x spike train filter 15.0 15.0 20.0 ms
⌧s homeostasis timescale 20.0 20.0 20.0 ms
j� minimum synaptic weight 2.78 2.78 2.78 pF
j+ maximum synaptic weight 21.0 4.0 41.4 pF
iSTDP
⌘ learning rate 1.0 0.2 0.2 Hz
j+ maximum synaptic weight 243.0 243.0 243.0 pF
j� minimum synaptic weight 2.78 2.78 2.78 pF
I1neurons
r0 target firing rate 5 10 10 Hz
⌧y rate filter timescale 20.0 20.0 20.0 ms
I2neurons
vd target dend. potential - -70 -70 mV
⌧d dend. potential filter timescale - 5.0 5.0 ms

Table 4.6: Number and types of neurons for each model, intensity of the back-
ground noise.

Parameter Description Tripod DM LKD Unit
№E Excitatory neurons 2000 2000 4000 -
№I1 Fast inhibitory neurons 175 175 1000 -
№I2 Excitatory neurons 325 325 - -
Excitatory Noise Excitatory noise 4 4 4 kHz
SST Noise SST noise 0.5 0.5 0.5 kHz
PV Noise PV noise 0.5 0.5 0.5 kHz
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Table 4.7: Connectivity for the three network models. The connections subject
to STDP and iSTDP are in bold text, the synapses are listed in the couple post-pre
synaptic and the squared parentheses indicate the post-synaptic target compart-
ment. The numbers indicate respectively the connection probability and initial
synaptic strength. The synaptic strength is in parenthesis, expressed in pF.

Synapse LitwinKumar & Doiron Duarte & Morrison Tripod
E[d]E - - 0.2 (10.78)
E[s]E 0.2 (2.76) 0.168 (0.45) -
I1E 0.2 (1.27) 0.575 (1.65) 0.2 (5.27)
I2E 0.2 0.244 (0.638) 0.2 (5.27)
E[s]I1 0.2 (48.7) 0.6 (5.148) 0.2 (15.8)
E[d]I2 - - 0.2 (15.8)
EsI2 - 0.465 (4.85) -
I2I2 - 0.381 (0.83) 0.2 (16.2)
I1I1 0.2 (16.2) 0.55 (2.22) 0.2 (16.2)
I1I2 - 0.379 (1.47) 0.2 (1.47)
I2I1 - 0.24 (1.4) 0.2 (0.83)

Table 4.8: Lexica that are used in the simulations. The table presents the words
that compose each lexicon, the average phonological overlap, and the lexicon
size

Vocabulary Words Phon. Overlap Lexicon size
Identity a, b, c, d, e, f, g, h, i, j 1 10

No overlap abcd, efghi, jkl, mno, pqrst, uvw,
xyz

1 7

TIMIT all, ask, carry, dark, don’t, had,
like, me, oily, rag, she, suit, that,
wash, water, year, your

2.63 17

Digits zero, one, two, three, four, five,
six, seven, eight, nine

3.33 10

Overlap pollen, gold, golden, doll, lop,
god, log, poll, goal, dog

5.0 10

Cohort capias, capillary, capistrate, cap-
ital, capitalise, capitalism, capi-
talist, capitate, capitol, capitoline,
capitulate, capitulation

7.69 12

TISK art, artist, arts, rats, star, start,
stat, tar, tars, trist

8.33 10
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4.5 Appendix

Appendix A: Network activity during the learning and recall

phase.

To characterize network activity, we measured the average firing rate and the
variability in the interspike intervals (ISI)(Fig.4.2B). We observe the firing rate
of the excitatory neurons is heterogeneous and ranges from 0 Hz to 15 Hz. The
rate of the excitatory population (Tripod neurons) divides into two groups. One
group comprises neurons that receive external stimuli and thus belong to an
assembly (Exc. with inputs); these cells fire at various rates in the range 5 Hz
to 15 Hz. The second class is composed of neurons that do not receive external
stimuli; they fire at a lower rate, in the range 0 Hz to 10 Hz. Because of the
heterogeneity in the neurons’ rate, we cannot use the standard coefficient of
variation for the ISI measure, it would associate higher variability to neurons
with higher rates (Holt et al., 1996). For an unbiased estimate of the CVISI we
computed the coefficient of variation based only on adjacent interspike intervals
(CVISI2). Accordingly, the differences between excitatory neurons are less visible
in the ISI variability; neurons with no inputs have CVISI2 in the interval 0.5 to
1.3 while the measure is slightly lower for neurons that receive external stimuli.
Finally, interneurons of types I1and I2also fire at heterogeneous rates in the
interval 5 Hz to 50 Hz, their coefficient of variation remains around 1, consistent
with Poisson input they receive from the remainder of the network.

The variability observed in the rate of excitatory neurons is unexpected. In-
deed, the rapid compensatory mechanism implemented in the network (iSTDP
on somatic compartments) should steer the neurons to fire at 10 Hz. In point-
neuron models (both 4.6 and Litwin-Kumar and Doiron (2014)), the rate is
tightly centered at the homeostatic value, although some neurons receive in-
puts, and some do not. These initial results show that including dendrites in the
neuron model greatly impacts the network dynamics and leads to heterogeneity
in the firing rate in the face of counteracting homeostatic mechanisms.

We exclude the presence of pathological synchronicity, we computed the fast
Fourier transform (FFT) of the network firing rate during the associative and
recall phases. At this scope, the spikes of the excitatory and inhibitory popula-
tions were merged and binned in intervals of 5 ms, corresponding to Nyquist fre-
quency of 100 Hz for the FFT. The spectrogram for the recall phase is illustrated
in App. Fig.4.1 C. The frequency analysis reveals clear peaks at the frequency
of the phonemic input 20 Hz and 40 Hz - corresponding to the fundamental fre-
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quency and the first harmonic of the phonemic stimuli (50 ms). The peaked
spectral reveals the resistor-capacitor (RC) circuit subserving the Tripod neu-
ron’s dendritic compartments; the dendritic compartments start charging when
the phoneme projections activate and slowly decay when it is turned off. A
smaller but more interesting peak is visible around 5 Hz (orange band in the
panel); this frequency interval corresponds to word inputs. Because no external
activity is carried out on the word projections in the recall phase, the peak in the
spectrum must correspond to the reactivation of the word assemblies, indicating
an internally generated response. The fact that words are interleaved by 50 ms
of silence (absence of inputs) offers a possible confound, however, the peak at
low frequency is present also when there is no silence among words in the recall
phase.

Additional evidence that the word assemblies populations are reactivated in
the recall phase is obtained by the comparative analysis of the firing rate corre-
lations. In App. Fig.4.1 D, we illustrate the average autocorrelation function of
network subpopulations corresponding to phonemes, words, or randomly sam-
pled neurons (control group of 100 neurons); we mark the half-height (HH)
correlation time, that is, the time for the firing rate to decorrelate of 50 %. For
the phonemes populations, the differences between the associative and recall
phases are expected to be minor because they receive the same external input in
the two phases; the HH is 48 ms in the associative phase and (55 ms) in the recall.
Despite being a marginal difference, the HH in the recall phase is systematically
(10 network samples) longer than in the associative phase; we hypothesize this
to be due to the fewer external inputs in the former condition, which interfere
less with the reverberations of the assemblies. The word assemblies shows a rad-
ically different scenario. In the early phase, the populations are maintained in
continuous firing by the external projections, lasting 150 ms to 350 ms. The as-
semblies have HH correlations longer than 100 ms (orange dashed lines). When
the external stimulation is removed (recall phase, orange solid lines), the corre-
lation time of the word assemblies shrinks to 75 ms. The difference in the two
conditions indicates that the retrieved activity is less stable than the input ac-
tivity. Nonetheless, the HH of word populations is twice the HH of the control
populations (grey, 40 ms), which points to the role of the acquired word engram
in fostering activity in the assemblies.

Finally, we report the strength of the inhibitory neurons with respect to the
firing activity of the excitatory cells. The difference in the inhibitory plasticity
rule decouples the two inhibitory populations. In the case of the I1, the synaptic
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Appendix Figure 4.1: Firing activity during the associative and recall phase
Figure caption continues on the next page.
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Appendix Figure 4.1: (A) Raster plot of the Tripod network during an interval of
1 s. Excitatory dendritic neurons are shown in black, fast-spiking interneurons
(I1) in light blue, and slow-spiking interneurons (I2) in dark blue. (B) Mean
firing rate and CV2 ISI for excitatory and inhibitory populations. Excitatory neu-
rons are divided into two groups, those with (green) and without (purple) ex-
ternal input. The former have a higher firing rate and a lower CV2 ISI. (C) The
frequency spectrum of the excitatory firing activity across the entire simulation
(5 min). The large peak at 20 Hz and 40 Hz reflect the frequency of the phonemic
inputs (blue marker). Conversely, the smoother peak at low frequency (orange
marker) is due to the network’s internal dynamics. The spectrogram is computed
for a recall protocol with no silence in between each word, hence the peak is due
to word re-activation, Overall the frequency spectrum indicates the network is
in the asynchronous firing regime. (D) Assembly firing rate autocorrelation av-
eraged over phonemes (blue) and word (orange) assemblies in the associative
(dashed) and recall phase (solid). The grey line illustrates the autocorrelation of
a population of randomly sampled neurons. The word assemblies (orange) have
the longest autocorrelation time in both phases. It indicates that the engram ac-
quired during the association phase can collectively reactivate and sustain firing
during retrieval. (E) The total inhibitory synaptic weight between I1 neurons
and Tripod somatic compartments depends on the average firing rate of the cell.
(F)Conversely, the total strength of inhibitory synapses targeting the dendrites
(I2 neurons) does not depend on the neuron firing rate.

strength correlates with the firing rate of the Tripod neurons. Inhibitory synapses
are small for cells that seldomly fire, and strong for those that fire often App.
Fig.4.1 E. Conversely, the dendritic inhibition does not depend on the rate, all
excitatory cells form strong inhibitory synapses on the dendritic compartments
App. Fig.4.1 F.

Appendix B: Formation and maintenance of word memories

We can visualize the evolution of the recurrent and forward connections by
computing the effective connectivity matrix throughout the simulation (C , App.
Fig.4.2 A). The panels in App. Fig.4.2 B show the average synaptic strength for
each element of the effective connectivity matrix during the associative phase.
Each row indicates one of the five models tested on the Overlap lexicon. Similarly
to the main text, the maximum and minimum values refer to the maximum of
the effective connectivity matrix and the initial synaptic weight.

All models have strong recurrent word memories, only the dendritic models
have distinct phonemes-to-words and word-to-phonemes connections. In addi-
tion, the strengthening of synaptic connections on the dendritic compartments is
slower than in the soma models. Synapses grow smoothly throughout the asso-
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Appendix Figure 4.2: Formation and maintenance of network memories
(A) Effective connectivity matrix for the Tripod Asymmetric model, the scheme
illustrates the types of connections analyzed in the remainder of the figure. (B)
Weights formation during the associative phase, for all the connections in A and
the five analyzed models. (C) Average recurrent and feedforward connection
weights during the memory formation phase. The five models are drawn to-
gether for comparison. The maximum and minimum refer to the extrema of the
EC for each model. (D) Weights decay during the recall phase for the three den-
dritic models. The synaptic strengths remain overall stable with the largest drop
happening in the word recurrent connections.
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ciative interval. Conversely, in the point neuron models, the recurrent memories
are more volatile and prone to be overridden, as indicated by the large fluc-
tuations in the average synaptic weights. A more compact view of the memory
formation process is presented in App. Fig.4.2 C, with a direct comparison of the
recurrent and feedforward connections of the five models. For all the dendritic
models, the learning trajectory is exponentially fast, with a timescale in the order
of 10 s for the recurrent memories and 100 s for the feedforward connections. In
contrast, the two point-neuron models reach high synaptic strength for the re-
current connections within just a few words presentation, but the non-recurrent
connections remain close to the initial synaptic weight.

To verify the stability of the memory formed in the associative phase, we run
the network with excitatory plasticity active during the recall phase. The pan-
els in App. Fig.4.2 D show the evolution of the synaptic strengths over 150 ms
during the presentation of the phoneme sequences. The weights do change less
than 5 % from those reached at the end of the associative phase; the recognition
score, not shown, also remained high, despite a systematic drop of a few percent
points. In the main text, the weights were frozen because the integration of the
STDP equations is computationally demanding.
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4.6 Supplementary Material

SI Figure 4.1:

SI Figure 4.2: Activity and recurrent weights of phoneme assemblies in the
Overlap lexicon
(A) Frequency of the phonemes in the input sequence. (B) More frequent
phonemes have low firing rates, possibly due to neuronal adaptation of the fir-
ing rate. (C) Additionally, the synaptic scaling applied to glutamatergic synapses
tends to reduce the synaptic strength of phonemes that are contained in several
words. Because the incoming synaptic weight is fixed, phoneme populations
that occur in multiple words must share their synaptic strength among more
pre-synaptic pathways, reducing the available synaptic resources for the recur-
rent connections.
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SI Figure 4.3: Confusion matrices for point neuron and dendritic models
Confusion matrices for six of the lexica that were measured. The left columns
show the confusion matrix for the Duarte model, and the right columns are those
for the asymmetric tripod network. The elements on the diagonal indicate cor-
rect word recognition; conversely, the off-diagonal ones indicate wrong recol-
lection. E.g., in the network with dendrites, when tested in the Cohort lexicon,
the word capitulation is often confused for the word capitoline, but the opposite
does not happen. Crucially, the confusion matrices of the point neuron model
show correct word recognition for the lexicon with less phonological overlap but
are completely random for the three with large phonological overlap. This is not
the case for the network with dendrites where most of the words are recognized
also in the lexica with large phonological overlap.
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SI Figure 4.4: Effective connectivity matrices for each model in the Overlap
lexicon
Effective connectivity matrices for the symmetric and single dendritic models
( the asymmetric model is portrayed in Fig.4.5)A and the two-point neurons
models (bottom). The dendritic models develop strong connections between
phonemes and word assemblies (bottom-right quadrants). In contrast, the point
neuron models do not - as in the LKD network- develop connections that are
ineffective in re-activating the word populations - as in the DM.
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SI Figure 4.5: Effective connectivity matrices with flattened connections
Effective connectivity matrices for Asymmetric Tripod with flattened connec-
tions. Respectively (i) phoneme recurrent connections, (ii) phonemes to word
connections, (iii) words to phoneme connections, and (iv) word recurrent con-
nections.
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SI Figure 4.6: Model comparison for the full interval measure firing profiles
(A) Comparison of recognition scores and average delay for the full interval
measure. The panel up-right shows the average score differences between the
five models; asymmetrical and symmetrical models perform slightly better than
the single dendrite model. (B) Firing rate profile for the five network models
during the recall phase of the Lexicon dictionary. The point neuron models have
distributions peaked around the firing rate promoted by the inhibitory plasticity;
there is a minor difference between the neurons within assemblies and those
not. In contrast, the firing rate of dendritic models is largely heterogeneous,
and neurons with no direct projections have a low firing rate. Remarkably, the
firing rate profile is similar for the three dendritic models. We hypothesize that
heterogeneity in the average firing rates of the neurons is an indicator of the
network performing the task correctly.
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SI Figure 4.7: Effective connectivity matrices for all models and lexica
The overall comparison of the effective connectivity matrices indicates
that point-neuron models can form hetero-associative connections between
phonemes and words (bottom-left quadrants) when the recollected words have
no phonological overlap (first two rows, Identity and No overlap lexica)
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SI Figure 4.8: Synaptic efficacy of phoneme to word connections
The synaptic strength between phonemes and word populations is compared
with the serial position of the phoneme in the word. The five panels show the
phonemes-to-word connectivity for all the lexica that require memory, for the
Tripod asymmetric model. The measures are averaged together in Fig. 5 of the
main text. Conversely, here, the scale changes for every model.
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SI Figure 4.9: Dendritic inhibition governs signal-to-noise ratio in dendritic
membrane potential
(A) The average membrane potential of the dendritic and somatic compartments
of a word assembly during the presentation of a phoneme sequence. The left
panel shows the average potential of 100 cells randomly selected cells (control),
instead, the right panel illustrates the membrane potential of the word assembly
corresponding to the phoneme sequence presented (target). The colors indicate
five different target membrane potentials (V0) used for the v-iSTDP rule. The
plot shows that for more hyperpolarized target potential (�70 mV to �80 mV)
the difference between the target and the control population increases.
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Abstract

Humans efficiently retrieve spoken words from a lifelong learned lexicon in just
a few hundred milliseconds. The selection of the lexical candidate follows paral-
lel and incremental access to all the word memories matching the phonological
input. This capacity is captured in models of spoken word recognition, such
as TRACE, Shortlist B, TISK, and others. However, recognizing words in the
face of the phonological overlap of the human lexicon imposes ad-hoc algo-
rithmic solutions (Temporal Order problem, TOP). Most computational models
assume position-dependent phonemic representations, which conflicts with re-
cent experimental findings. This study proposes a biologically constrained net-
work model with position-invariant encodings. The model recognizes words
with phonological overlap and reproduces the dynamics of lexical access.

The model comprises spiking neurons with dendritic structure and represents
phonemes and words as sparsely connected cell assemblies. During an associ-
ation phase, the model learns to connect phoneme sequences to co-activated
word assemblies through Hebbian plasticity. In recognition, words are activated
from phoneme input alone. Analysis of somatic firing rates and dendritic poten-
tials in word assemblies reveals incremental activation and lexical competition
during the presentation of phoneme sequences. Temporal integration occurs in
the dendrites, which implement the relevant short-term memory required for
solving the TOP. This memory component is due to dendritic plateau potentials
induced by NMDA spikes. We also explore the effects of phonological mismatch
on a phonemic continuum. By measuring the activity of the phoneme popula-
tion as a proxy for phonemic categorization, we find that the recurrent network
connectivity provides lexical feedback only after lexical selection occurs but not
during the early stages of lexical access.

Finally, we develop a simplified abstraction of the spiking neural network,
including a hidden variable for the dendritic membrane potential. The model
is a small recurrent rate network that solves the TOP thanks to the extended
timescale of the hidden nodes. This research attempts to bridge the gap between
biophysical models and cognitive computations in word recognition through a
biologically constrained implementation of sequence detection networks.
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5.1 Introduction

Speech is one of the most outstanding human capacities. Within less than a
hundred milliseconds, the acoustic information picked in the cochlea arrives in
the auditory cortex; there, the sensory inputs are integrated into the listener’s
cognitive experience. The first stage of speech comprehension involves the iden-
tification of words from the acoustic stimuli; in everyday speech, as in con-
trolled settings, this process lasts 150 ms to 300 ms (Costa, Strijkers, Martin,
& Thierry, 2009; Marslen-Wilson, 1973, 1987). The speed and robustness with
which words are accessed catalyzed researchers’ attention for a long time. How-
ever, how word recognition happens in the human brain remains largely unan-
swered (McQueen, 2007). Or, more precisely, which is the nature of the brain
processes supporting it? (Poeppel & Idsardi, 2022). We attempt to answer this
question through the lens of the dendritic network model. Here, we test the
model against well-characterized phenomena of word recognition and discuss
similarities and differences. Crucially, we show that our biologically constrained
network solves a long-standing issue in connectionist models, the Temporal Or-
der Problem, and offers a new perspective to the debate on the role of lexical
feedback.

The cognitive processes in spoken word recognition

Human word recognition (HWR) has been extensively described as a computa-
tional process (McQueen, 2007; Scharenborg et al., 2005; Vitevitch et al., 2018).
Over decades, this agenda yielded a body of experimental evidence on the com-
putations carried out by the speech recognition system residing in the human
brain. First, word recognition is continuous and incremental; all the words
matching the phonological evidence must be co-activated in the lexicon until
disambiguating sounds are perceived (Allopenna et al., 1998; Marslen-Wilson &
Welsh, 1978; Zwitserlood, 1989). Second, the processing of information be-
tween the pre-lexical and lexical levels is cascading, such that the goodness
of the available phonological information influences lexical processing during
the selection of the lexical candidate (Gow & Gordon, 1995; Toscano, McMur-
ray, Dennhardt, & Luck, 2010), where the selected candidate is the word that
is recognized. And third, the lexical alternatives compete, affecting the speed
and probability of correct lexical selection (McQueen et al., 1994; Vitevitch &
Luce, 1998). In addition, human speakers have a lexicon in the order of 10 to
100 thousand words built with only a few dozen phonemes (Maddieson, 1984).
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Thus, word recognition requires a fine-grained sensitivity to the disposition of
the sounds in the utterance, which is crucial for mapping the speaker’s intention
to the correct lexical item in the listener’s mind (McQueen, Dahan, & Cutler,
2003).

These computational principles have hence guided the derivation of cognitive
models of word recognition (Weber & Scharenborg, 2012) in the hypothesis that
a detailed specification of the mapping between input-output transformations
(computational and algorithmic levels of abstraction, Marr (2010)) might help to
infer the cognitive operations supporting word recognition and, eventually, their
implementation in the neural substrate (Magnuson & Crinnion, 2022). Unfortu-
nately, neither theoretical nor experimental evidence in HWR has been sufficient
to determine the complete picture of the ongoing neural processes. Computa-
tional and cognitive models can explain several of the principles described, but
they remain largely unconstrained at the implementation level, and cannot pin-
point which neural mechanisms carry out the operations they describe. Two
main obstacles hinder the validation of such models. On the one hand, most of
the computational models have no clear linking hypothesis. It is virtually impos-
sible to correspond the models’ dimension-less entities (nodes, activation, etc.)
either with the psychophysical measures, such as the response time measures
- pp. 88 in Spivey, Joanisse, and McRae (2012) - or with the constituents of
the neurobiological substrate (Poeppel, 2012). On the other hand, there is no
agreement on which levels of analysis the models should be compared and with
which priority; certain are highly accurate in the behavioral predictions but lack
a neurally plausible description (Shortlist B, Norris and McQueen (2008)).

Explanatory power and limits of connectionist models

Computational cognitive models can, however, formalize the wealth of data in
simple descriptions and clarify the gaps in our current understanding. For exam-
ple, the TRACE model, with its successes and limitations, outlines the fundamen-
tal issues that connectionist models of spoken word recognition face (McClelland
& Elman, 1986). TRACE was developed to formalize the interactive hypothesis
of the lexical access process, and its functioning is based on feedback and feed-
forward connections between lexical and pre-lexical layers. The model is a re-
current network that shares some similarities with the architecture of the human
brain, that is, the recurrent network of cortical neurons and conciliates the dy-
namics of word recognition with general facts about the brain’s biology, such as
recurrence, facilitation (excitation), and competition (inhibition). Beyond the



5 A biological model of word form recognition 201

lack of an explicit link with the implementation level, the TRACE model — and
the whole class of connectionist models — has been criticized for two algorithmic
assumptions that do not conciliate with experimental evidence.

The first and most debated issue with TRACE relates to the computational role
of feedback connections. In interactive models, feedback makes the model ro-
bust to noise and implicitly encodes sub-lexical representations such as diphones
and triphones (Elman & McClelland, 1988; Magnuson, Mirman, Luthra, Strauss,
& Harris, 2018; McClelland & Elman, 1986). Lexical feedback was initially intro-
duced in models to account for the experimental evidence of online interactions
between lexical and sub-lexical representations (Ganong, 1980). In phoneme
categorization experiments, listeners tended to associate the same ambiguous
sounds with different phonemes, depending on whether they were presented
in a word or non-word context. This evidence has long favored the hypothesis
of a continuous stream of feedback information from the lexical stage, aiming
to sharpen the representations in the pre-lexical one (Magnuson et al., 2018).
However, the Ganong effect did not stand the proof of time. Attempts to repro-
duce the original study showed that pre-lexical statistics and phonotactics played
a significant role in phonetic perception (Mann & Repp, 1981; Pitt & McQueen,
1998) and that the lexical bias may instead be a spurious effect (McQueen, Jesse,
& Norris, 2009). Moreover, upon closer inspection, the functional principles of
online lexical feedback can also be contended. Computationally speaking, feed-
back cannot improve word selection because it cannot integrate the lack of sen-
sory information; conversely rather, it may cause perceptual hallucinations at
the phonemic level (Norris, McQueen, & Cutler, 2000).

The second well-known problem concerns TRACE’s mechanism to recognize
words over continuous time. In the model, word activity depends on the combi-
nation of phonemes presented rather than their temporal disposition; order does
not matter. Thus, the sequence of phonemes that belong to multiple words, e.g.,
phonemes within anagrams (dog and god), cause the co-activation of multiple
lexical items and limit successful word recognition. Considering the sizeable
phonetic overlap in human lexica, the problem is structural. In TRACE, as in
many other models, the solution is to code for an additional feature that ex-
presses the temporal occurrence of the phoneme, a temporal marker. This frame-
work prescribed that the word dog is composed of D1, O2, G3, while the word
god contains G1, O2, D3, thus only the phoneme O2 is shared, while the others
are specific to the two sequences. Critically, the approach leads to the redupli-
cation of phonemes and words, such that the model becomes computationally
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intractable even for a lexicon of small size. McQueen et al. (1994) shows that the
number of necessary connections exceeds 100 billions for a lexicon of 200 words
and 15 phonemes, which is [...] arguably inelegant and implausible solution (pp.
83, Spivey et al., 2012). A more recent connectionist model, the time-invariant
string kernel (TISK) model (Hannagan et al., 2013), presents some improve-
ments concerning the computational resources necessary for the model. The
authors fix TRACE by introducing a position-invariant diphone matrix between
the pre-lexical and lexical layers. The feedforward phonemic connections acti-
vate the diphone, which, in turn, activates the word. Although this mechanism
solves the explosion of connections, it does not relieve from encoding the or-
der of phonemes via additional features. This underlying assumption is at odds
with experimental evidence, which showed time-invariant encoding of phonetic
and phonemic features in the superior temporal gyrus (Gwilliams et al., 2022;
Mesgarani et al., 2014), rejecting the hypothesis of time-dependent encoding of
speech cues.

In synthesis, although the architecture and algorithms of connectionist mod-
els bear a resemblance with the causal dynamics of the brain, their predictions
and assumptions are at odds with experimental and theoretical evidence. To
solve this impasse, we propose a recurrent network model based on dendritic
computation and derived bottom-up from known biological principles (Pulver-
müller, Tomasello, Henningsen-Schomers, & Wennekers, 2021; Quaresima et al.,
2022). The model is summarized in sufficient detail in the Methods section, and
a full description is presented in Chapter 4. In the Results sections, we show that
the model respects the principles of word recognition discussed and presents a
parsimonious solution to the Temporal Order Problem.

5.2 Methods

The present chapter studies the dynamics of single-word recognition on the Tri-
pod network model and corroborates the analysis with a minimal dynamical
system reduction of the network computations. The following presents a recap
of the general properties of the model implemented while a detailed description
is available in Section 4.4. The details concerning the implementation of the
minimal dynamical system model are presented in the respective section.
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The dendritic spiking neural network model

We investigate word recognition on a biologically constrained neural network
composed of neurons with dendrites. The model is a spiking neural network
composed of 2000 excitatory cells and 500 inhibitory neurons, of which 175
fast spiking and 325 slow spiking cells. The excitatory cells are Asymmetric
Tripod neurons (Quaresima et al., 2022). They are composed of three com-
partments: two passive dendritic compartments of uniformly distributed length
(150 µm to 400 µm) and a somatic AdEx compartment (Brette & Gerstner, 2005).
The dendrites integrate external inputs via four synaptic receptors, two with
fast timescales, AMPA and GABAA , and two with slow timescales, NMDA and
GABAB . The dendrites endow the cell with a short-term memory, expressed
in the depolarized membrane potential. The network is connected recurrently
on the dendritic compartments; each soma-dendrite connection has a binomial
distribution with p =0.1. Conversely, inhibitory cells target both the somatic
or the dendritic compartments p =0.2. The synaptic connections among the
cells are plastic; excitatory plasticity forms bonding in co-activating cells (Bono
& Clopath, 2017), inhibitory plasticity aims to control the firing rate and the
dendritic membrane potential to homeostatic values (Vogels et al., 2011).

Stimuli and cell assemblies formation

The model is stimulated with sequences of phonemes and words; it receives ex-
ternal projections over sets of randomly sampled cells. Each linguistic entity
(words and phonemes) targets 5% of the network population (approximately
100 cells). The stimulation protocol is divided into two phases; during the
associative phase, the network receives pre-synaptic activity from both words
and phonemes projections, and, via unsupervised Hebbian synaptic plasticity, it
forms homo-associative and hetero-associative synaptic engrams.

The network model was presented with seven lexica. Five of them were al-
ready presented in the previous study (Digits, TIMIT, Overlap, Cohort, TISK ); in
addition, we included the lexica Labials & Alveolars and Velars from the Ganong
(1980) study shown in Table5.1.

Notice that, in all the lexica used, the pre-lexical representations used are not
actual phonemes but the letters of the written word form. This choice was made
to simplify the analysis and has no consequences on the generality of the results.
Words and phonemes were presented in random order, with a 50 ms interval
among each. All the items were presented approximately 50 times; the exact
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Table 5.1: Lexica from the Ganong (1980) study. The table presents the words
that compose each lexicon, the average phonological overlap, and the lexicon
size

Vocabulary Words Phon. Overlap Lexicon size
Labials & Alveolars dirt, deep, dark,

teach, boat,
babe, beef,
depth, tarp, turf,
page, bash, text,
peace, pope,
past

4 16

Velars geese, keep,
corpse, couch,
gorge, gulp, kiss,
cult, gift, garb,
cars, gout

3.3 12

number of word occurrences depended on the lexicon size, the average word
length, the phoneme duration, and the simulation time. In the experiments, the
network is always simulated for 5 min in the associative phase and 5 min in the
recall phase.

Firing rate and statistics

Alpha function To analyze the firing rate, we convolved the neuronal spike
trains with an alpha-function with timescale 10 ms.

r(t) =
NX

n=0

⇥ (t � tn)
t � tn

⌧
exp
⇣

1�
t � tn

⌧

⌘
(5.1)

The alpha function is skewed forward and ensures that no information on future
spikes influences the previous firing states (Roth & van Rossum, 2009).

Statistical tests To measure the statistics of word recognition based on the
firing rate measure (Fig.5.1), we used classical p-value statistics leveraging two
pre-existing Julia packages, HyphothesisTest and MultipleTesting. After slicing the
word interval in chunks of 10 ms, we used the UnquelVarianceTTest to estimate
the significance of the target word activity. The null hypothesis is that the word
and the competitors have equal mean rates. To combine the word-pairs statistics,
we used the Simes procedure (Simes, 1986). It implements an advanced version
of the Bonferroni correction but is suitable for highly correlated T-distributions,
which is the case for the populations’ activity. The same procedure was used to
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estimate the p-value across words and lexica. A p-value analysis was also per-
formed in Fig.5.4. The correlation measures performed in Fig.5.3, Fig.5.3, and
Fig.5.4, Fig.5.5 were computed with the package Statistics and the confidence
intervals estimated with LsqFit. All the correlations annotated in the pictures are
within the 95% confidence interval.

5.3 Results

5.3.1 Computational principles of spoken word recognition

Lexical access occurs at the uniqueness point

In the present study, aiming for comparisons with experimental results in word
recognition, we analyze the word activity based on the average across trials of
the population firing rate. The average is performed across approximately 70
words and over 10 network instantiations (or network configurations). The lat-
ter should be considered as the grand average across different participants. The
firing rate was computed by convolving the network spikes with an alpha func-
tion (Eq.5.1). The average rate of the assemblies of four words, together with
their standard deviation, are portrayed in Fig.5.1A; the remaining words and
lexica are illustrated in Appendix C. The dotted and dashed vertical lines in the
panels indicate the uniqueness (UP) and the offset point (OFF). In agreement
with the time course of single-trial recognition presented in Section 4.2, the
traces indicate there is a peak in the firing rate between 50 ms to 100 ms after
the uniqueness point.

By comparing the activity of the target word population with those of the
remaining words in the lexicon (lexical competitors), we also observe that the
difference in the population firing rate is significant at the uniqueness point.
We uncover the dynamics of word recognition by computing the firing rate’s
significance for each word, with a binning window of 10 ms. Hence we aligned
each word’s p-value measure to the onset, uniqueness point, and offset point of
the word and computed the combined p-value for the entire lexicon (Methods).
The three panels in Fig.5.1B show the time course of the p-values of the lexica for
each of the three reference time frames. In the top panel, the zero of the x-axis
is the word-onset time, the UP in the central panel, and the OFF in the bottom.
The time course of word recognition is similar across the seven lexica, in the
face of variations in lexicon properties (word length and average phonological
overlap, Appendix A).
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figure 5.1: Grand-average measures of the firing rate show significant lexical
access
Figure caption continues on the next page.

Eventually, we combined the statistical significance of the seven lexica in Fig.5.1C.
The offset and uniqueness point curves remain significant, but the onset curve
does not (top panel). Word’s activity peaks before the offset point (bottom panel)
and within 0 ms to 100 ms from the UP (middle panel). Considering the net-
work delay between the activation of the phonemes and the word population,
we conclude that the phonemes presented at the offset time are not causal to
word recognition and that the UP is the crucial time point for lexical access in
the grand average measures. The non-significance of the onset curve is because
words have different lengths, and the distance between the uniqueness and on-
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figure 5.1: Grand-average measures of the firing rate show significant lexi-
cal access
(A) Grand average of word activation based on firing rate; the panel shows four
examples for the lexicon 5. Overlap. The firing rate is obtained by averaging
over all the word presentations in each experiment. The ribbon indicates the
standard deviation across ten datasets. The activity of the target word popu-
lation and its competitors is color-coded and the percentage indicates the word
recognition -score (Appendix A). The firing rate of the target populations peaks
approximately 50 ms after the uniqueness point (UP, dotted line). In the four ex-
amples, the offset point (OFF, dashed line) matches the uniqueness point (UP
solid line) only in the first and last panels. (B) We measure the p-values of
the firing rate binning with 10 ms intervals. The panel indicates the combined
statistics of words’ p-values across each lexicon. When aligned to the onset,
uniqueness, and offset points, the curves reveal that lexical access is significant
at a fixed distance from the uniqueness and offset points. (C) The p-values are
also combined across lexica; the three curves represent the significance statistics
combined across all the lexica. In the three panels, the curves are aligned to the
onset, uniqueness, and offset points. The UP appears to be the critical time point
for lexical access because words are significantly recognized after the phoneme
presented at the UP.

set points is variable. Thus, the intervals in which words are significant do not
match. Conversely, the pool of words used presents less variability in the inter-
vals between the uniqueness and the offset points (the OFF follows UP of one or
two phonemes on average).

The present results indicate that the Tripod network has a time course of
word recognition dynamics compatible with psychophysical (Marslen-Wilson &
Welsh, 1978) and electrophysiological (Gwilliams et al., 2018; Winsler, Midgley,
Grainger, & Holcomb, 2018) evidence. Further analysis of the dynamics of word
recognition is presented in Appendix B, where we look closer at the dendritic
membrane potential. The analysis reveals that the peak depolarization of the
average membrane potential of the word population correlates with the single
word score (Appendix A) while the peak firing rate response does not. We infer
that although the firing rate of the word populations can be used as a read-out of
word recognition, as shown in this section, the membrane potential is the causal
variable for lexical access and selection.

Effects of lexical neighbors on target word activation

The grand-average analysis of population activity suggests that lexical access
occurs after the uniqueness point. However, in our experiments, as in natural
languages, some words are more challenging to recognize than others. This
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is testified by the variations in single word scores (Fig.5.1A and Appendix A).
To explain the differences within our lexica, we focus on the impact of lexical
neighbors on the word recognition score. Words that share sequences of sounds
(phonemes) with the target words are co-activated until sensory or contextual
evidence is sufficient for lexical selection. In addition, words compete for ac-
tivation and, consequently, the number of lexical neighbors impacts the time
course and success probability of recognizing the target word (Connine, Blasko,
& Titone, 1993; Luce & Pisoni, 1998; Marslen-Wilson & Zwitserlood, 1989; Mor-
ton, 1969; Toscano, Anderson, & McMurray, 2013; Vitevitch & Luce, 1998).

We test the co-activation of lexical competitors and target words by comparing
the average rate of four groups of words: the target words, the cohort, the rhyme,
and the non-related words. The cohort class accounts for the words that share
the same onset sequence (two or more phonemes). Conversely, rhyme refers to
words with the same ending sequence (two or more phonemes). To compare
the activity of these four categories, we estimated the activity of each as the
average across all the competitor words in the pool. To align the activity profile
of words with different lengths (3 to 10 phonemes), we used the uniqueness
point as the center of the word, similarly to how it was done in the previous
section. The results are presented in Fig.5.2A. The top panel shows the average
rate over time of the word categories; as expected, the target word, or referent
(green), has a pronounced peak 100 ms after the uniqueness point. The two
classes of lexical neighbors, i.e., cohort (purple) and rhyme (yellow), are also
activated above the average of the remaining words (orange). The curves show
clear signs of the phonemic inputs in small bumps at the frequency of 20 Hz;
these bumps are not visible in the target word average for two reasons. First,
there are more samples for the target words than the competitors; second, the
target word activation via the recurrent connections rather than the phonemic
projections.

Because of the sequential order with which phonemes are presented, the co-
hort group activates at the word onset. In turn, the rhyme peaks after the unique-
ness point. To increase the statistical power, we averaged segments of time to-
gether in intervals of 100 ms. For each, we computed the average activity of the
four groups. The result is the bottom panel in Fig.5.2A, starting from the in-
terval (�300 ms to �200 ms) before the UP. The interval averages indicate that
the cohort group is significantly activated, above the rhyme and target words,
in the two intervals before �100 ms. At the uniqueness point, the cohort and
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rhyme words have similar activity, but rhymes remain high in the two following
intervals while the cohort group slowly fades.

B

C

* * ***

A

Hz κ

(κ
)

figure 5.2: Lexical neighbors activate and affect word recognition time and
accuracy (A) The top panel shows the average rate of target, cohort, and rhyme
words. Words are aligned to their uniqueness point in the origin of the x-axis
(0 ms). Each curve was chunked in intervals of 100 ms; the bottom panel shows
their average and the standard deviation. The cohort words are significantly
more active than the target and the rhyme words in the early intervals (purple
stars); similarly, the rhyme words are more active after the target word unique-
ness points (yellow stars). (B) Measures of the average recognition time as
a function of the number of lexical neighbors: words that share two or more
phonemes in the lexicon. The recognition time is measured as the peak of the
firing rate response of the target word population. The recognition time from the
word onset increases significantly with the number of lexical neighbors but de-
creases when the time is measured from the uniqueness point. (C) The strength
of the target population response (orange, solid line and circles) and the recog-
nition score (blue, dashed line and diamonds) decreases when the number of
lexical neighbors increases.

We probed the ongoing competition between word populations by measur-
ing the impact of lexical neighbors on the time course and accuracy of lexical
access. This time, we grouped the target words by the number of lexical neigh-
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bors. Fig.5.2B shows the time of the firing rate peak measured from the onset
and uniqueness points. An increase in the number of neighbors delays lexical
selection (positive correlations with onset time, red diamonds) but accelerates
recognition after sufficient evidence is presented (negative correlation, UP, green
circles). These trends are consistent within a 5% confidence interval - and in line
with the average recognition delay measured in Appendix A. Lexical neighbors
also affect the recognition score. When the number of competitors augments
the score decreases (Fig.5.2C). We measured both the population peak rate (Hz,
blu circles) and the word recognition score (orange diamonds). The presence of
words with shared phonemes hampers recognition significantly; the population
response drops by 50% (⇢Hz =�0.71) and so does the recognition scores, from
0.85 to 0.5 (⇢ =�0.7).

Early phonemic mismatch reduces, not prevents, lexical access

The third computational principle of word recognition that must be addressed
concerns the impact of phonetic mismatch on word recognition. Because in-
formation cascades from the phonemic level to the lexical one in a continuous
fashion, the occurrence of phonological misalignment reduces the probability of
correct lexical access in a graded manner (McQueen et al., 2003; N. O. Schiller &
Meyer, 2003). As a consequence, the accuracy and time course of lexical access
depends on the phonological support provided for the target word (Andruski,
Blumstein, & Burton, 1994; Dahan, Magnuson, Tanenhaus, & Hogan, 2001).

We investigate the network response to ambiguous phonological information
by measuring word accuracy on words with gradually distorted inputs. To this
aim, we used the two lexica from (Ganong, 1980), (Labials & Alveolars and Ve-
lars). The words composing them are four or five phonemes long and begin with
a voiced or voiceless phoneme, they are paired together such that the acoustic
continuum moves from a non-word to a word in one direction and from a word
to a non-word in the other direction (e.g., Dext-Text and Dark-Tark). In the
original experiment, the authors mixed the phonemic stimuli by modulating the
voice-onset-time (VOT) of a synthetic speech input on a continuum, similarly, we
modulated our phonemic input by mixing the external projections on the two tar-
get phonemes (b-p, and d-t in the first lexicon, and g-c in the second one). We
encode phonetic ambiguity through displacements of the external projections;
synaptic afferents are moved between the voiced-voiceless pairs according to the
position in the continuum. The population coding of the VOT feature is compati-
ble with electrophysiological evidence on spatial coding of temporal speech cues
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(Fox et al., 2020). The mixing protocol is illustrated in Fig.5.3A. The continuum
was divided into seven steps (the voiced phoneme received the 15 to 85 % of
projections activity and the voiceless one its complementary amount). The raster
plots in Fig.5.3B show that reduced external inputs imply weakened activation
of the phoneme populations.

We run ten network simulations for each word pair where the entire phonemic
continuum is presented - only one pair receives the ambiguous input - for a total
of 140 simulations. The results are aggregated based on the continuum and
presented in Fig.5.3C. The two curves indicate the average word score over the
words starting with the voiced consonants (moving from word to non-word,
purple) and those starting with voiceless phonemes (word to non-word, green).
In both directions, the words converge to the optimal recognition score (0.90
to 0.95) as an exponential function of the phonological evidence presented; at
each step of the continuum, additional evidence on the phoneme identity has
less informational value. We should notice that the two groups do not reach the
same average recognition score, most likely due to the unbalanced distribution
of the phonemes used, which was not controlled.

Further insights on the dynamics of the word populations were gathered by
recording the word assemblies’ rate activity and membrane potential across the
phonemic continuum. The panel in Fig.5.3D illustrates the two measures. In
this case, we considered only the trials where the target words start with voiced
consonants and used the other group as a contrast; we limited the analysis to
words with four phonemes. The panel in Fig.5.3E shows the average rate of
the target populations. Direct inspection of the curves indicates that moving
on the phonemic continuum (red to light-blue) decreases the word assembly
rate since the early stages 0 ms to 50 ms. The target populations (solid lines)
and the contrast (dashed lines) increase their firing rate over the word interval,
with graded intensity, depending on the degree of phonetic mismatch. Crucially,
50 ms before the word offset, which corresponds roughly to the average unique-
ness point, the two populations set apart; the target one reaches peak activity,
and the contrast fades away. In both cases, the traces of the phonemic mismatch
converge together, such that the rate does not contain information on the phone-
mic continuum right after the words offset 200 ms to 250 ms. The target pop-
ulation reaches approximately the same maximum over the entire continuum.
Eventually, the average rate decays upon the arrival of the following word. The
membrane potential Fig.5.3F (blue to yellow color-coded) follows a similar tra-
jectory. However, its variability within the phonemic continuum is smaller than
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figure 5.3: Phonemic mismatch has graded effect on word’s score and pop-
ulation dynamics
Figure caption continues on the next page.

in the rate case. The differences between target and contrast words are also
small in the early word stages. As a consequence, the two sets of conditions
cannot be fully distinguished in the early interval (0 ms to 100 ms). Following
the uniqueness point, the membrane dynamics present a more neat distinction
between the target words with full and partial phonemic match. This difference
is noticeable in the peak membrane potential at 200 ms, which is larger when
words have more phonological support. We observe gradation in the membrane
potential across the phonemic continuum. A weaker membrane depolarization
corresponds to larger ambiguity and lower -score . On the other hand, the peak
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figure 5.3: Phonemic mismatch has graded effect on word’s score and pop-
ulation dynamics
(A) Scheme of phonemic continuum manipulations. The populations of P1 and
P2 are interpolated by a weighted sampling among their projections. The result-
ing phoneme population is indicated by the placeholder phoneme X. (B) Vari-
ations in the continuum result in weaker or stronger phonemic population ac-
tivity. (C) Average -score for the words starting with the voiced and voiceless
phonemes, the VOT reduces left to right and the percentage of active projections
(x-axis). The score (y-axis) depends on the phonemic continuum and increases
exponentially when phonological ambiguity is reduced. (D) Schematic of the
membrane potential and firing rate measures; the former averages the mem-
brane potential of the dendritic compartments and the latter concerns somatic
activity. (E) Average firing rate of voiced-onset words (target, solid lines), com-
pared to voiceless-onset ones (contrast, dashed lines). Only words with four
phonemes were considered. The average rate is color-coded for its position in
the phonemic continuum. Red represents the voiced extreme (15%) and light
blue the voiceless one (85%). (F) Likewise E, here, the measured variable is the
dendritic membrane potential. We plot only four continuum points (1,3,5,7) to
ease the visualization. The impact of phonemic mismatch on both measures in-
creases throughout the word interval (graded rate curves, 50 ms to 200 ms) but
disappears after lexical access.

rate activity is not modulated by the phonemic continuum. The dissociation of
rate and membrane potential is a pivotal feature of our model.

5.3.2 Late lexical bias in the phonemes’ assembly membrane

potential

The correspondence between the phonemic continuum and word -score in-
dicates an interaction between the sub-lexical and lexical levels during word
recognition. The modes and nature of this interaction have been the center of
a long-standing debate since the seminal work by Ganong (1980). The origi-
nal experiment indicated the presence of a lexical bias in the perception of the
phonemic units; ambiguous phonemes are attracted towards the word-like end
of the continuum. In the interactive hypothesis, upon presentation of an am-
biguous input, the lexical bias, or Ganong effect, is expressed as activation of
the phoneme consistent with the lexical context. For example, Xast should re-
activate p over b, because the first corresponds to a word in the lexicon and the
latter does not (past vs.bast). We reproduced with our model an analysis similar
to the original study and tested the strength and the time course of feedback
activity between the lexical and pre-lexical populations. In order to avoid ef-
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fects due to phonotactic regularities, e.g., the repetition of one of the measured
phonemes (as in babe), we removed all the words that contained a repetition of
either the voiced or voiceless phoneme, reducing the lexica to 9 pairs of words.

Hence, we measured the time course of the average population rate (Fig.5.4A,
red to light-blue) and membrane potential (Fig.5.4B blue to yellow) of the voiced
phonemes during the word (solid) or non-word (dashed) conditions. The inten-
sity of phonemic activity in the early stage (0 ms to 100 ms) is proportional to
the percentage of voiced-population’s neurons targeted by the mixed projections
in the continuum, larger at the left end of the continuum. This is the case for
both the rate and the membrane curves. In contrast, at the late stage of the word
interval, 150 ms to 200 ms, the rate continues to decay to the homeostatic range
3 Hz to 5 Hz but the membrane potential undergoes a second peak. The depo-
larization of the phoneme population’s dendrites is due to the feedback from the
recurrent connections in the lexical stage. The difference between the word and
non-word conditions is significant only within this late peak.

To favor the comparison with the experimental literature, we devised a sim-
ple measure that resembles the phonetic decision task in the original experi-
ment. We selected two relevant intervals, early ([ON, ON + 50 ms]) and late
([OFF - 50 ms, OFF + 50 ms]), where ON and OFF indicate the onset and off-
set points. Thus, we compute the average population rate and membrane and
compare it across non-word and word conditions. Following the methods of the
original study, in Fig.5.4C, we measure the average difference in the activity of
the phoneme population, e.g., p and b, when in the word to non-word contin-
uum (green) and in the non-word to word direction (purple). If present, the
difference between the two continuum directions (purple minus green) must be
interpreted as a bias effect due to the lexical context; such measure is portrayed
in Fig.5.4D.

The analysis in Fig.5.4C indicates that, in the early intervals (left column),
the strength of the phonemic populations depends on the inputs from the pro-
jections; inputs on the voiced side of the continuum (x-axis, left) correspond to
more robust responses in the voiced population (y-axis, top), and similarly, in-
puts on the voiceless side cause stronger activation in the voiceless phonemes.
Crucially, this appears the same for both directions of the continuum, indicating
the absence of the Ganong effect, both in the rate (top-left) and in the membrane
potential (bottom-left) in panels C and D. The lexical bias effect appears later
in the word interval. Our measure indicates that although the phoneme rate
is close to the baseline activity, the membrane potential is not. The feedback
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figure 5.4: Word recognition depends on lexicon properties
(A) Average firing rate of the voiced phoneme populations (B, D, G) when pre-
sented throughout the phonemic continuum (red to light-blue), in the two lexical
conditions (word, solid line; non-word, dashed). The rate response depends on
the continuum; voiced phonemes are less active at its right end, where the inputs
correspond to 85% of the voiceless phoneme population (cfr. with Fig.5.3A). The
rate converges to baseline at the late interval stage, 150 ms to 200 ms. (B) Like-
wise, in A, the curves represent the average membrane potential. The dynamics
are analogous only in the early phase of the dendritic membrane. After lexical
access, the potential has a bump, significantly larger in word (solid line) than
in non-word (dashed line) conditions. (C) Average difference of the activity in
the voiced and voiceless populations across the continuum. The four panels il-
lustrate the measure of the rate (top) and membrane potential (bottom) at an
early interval (0 ms to 50 ms, left) and at a late interval (offset minus 50 ms
to offset). Only the membrane potential measured at the late interval (bottom
right) significantly differs between the two traces. (D) Size of the lexical bias
effect in the four conditions described in C. The lexical bias effect in phonemic
population activity is present only in the membrane potential at the lexical ac-
cess time; it does not depend on its position on the continuum, and it remains
significant in all the measures.
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connections provide a significant increase in the dendritic depolarization of the
phoneme population during the late interval (0.8 mV, p < 0.001). The effect
is approximately the same across the continuum, which means it does not bear
memory of the amount of phonemic mismatch at the onset period.

The results provided in this section indicate that lexical access can be achieved
upon mismatching input without the help of feedback activity. The activation of
word populations bias the phoneme assemblies only after lexical selection and it
is insufficient to trigger the burst of the phonemic populations. However, it can
be detected in the subthreshold membrane potential. This difference may speak
for a different functional scope for the feedback connections; dendritic depolar-
ization can silently act on the dendritic synapses and favor the re-organization of
the network connectivity, for example, to adapt to a novel sound context (Norris,
2003). Crucially, the model we implemented has a recurrent component, usu-
ally associated with interactive models. We argue that what sets the model apart
is the presence of two classes of variables: the observable variables, expressed
by the neuron firing activity, and the slow-decaying hidden variables expressed
in the dendritic membrane timescale. To prove that including these elements
makes a good word recognition model, we show in the following section that
a reduced version of the network with dendrites can address one of the funda-
mental problems of word recognition: the issue with time. Further evaluations
of the model response in the lexical-bias experiment, along with the necessary
criticisms of the current implementation, are presented in the Discussion.

5.3.3 Word recognition in a minimal dynamical system: long

timescales and inhibition are enough for recognition

The present network model shows that the word recognition dynamics can be
retrieved without explicit encoding of phoneme onset time (position-dependent
representations). We hypothesized that such capacity can be isolated from the
network and belongs to two simple computational primitives: the implementa-
tion of long timescales in the network’s hidden states and the presence of in-
hibitory feedback. To this scope, we explored an extremely simplified computa-
tional model obtained from reducing the network with dendrites to its bare-bone
components. For each word and phoneme population of the network, we substi-
tuted it with a single node in a directed graph. An example of the graph corre-
sponding to the Overlap lexicon is portrayed in Fig.5.5A. The connections among
the nodes correspond to the average synaptic weights in the original dendritic
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model. The resulting graph is a recurrent network, and its connections contain
all the information necessary to achieve correct lexical retrieval. It is important
to notice that such connections were learned through Hebbian plasticity in the
spiking network, and we offer no solutions to derive them in the reduced model.
Similarly, the dashed arrows express the external projections on the phoneme
populations. In order to favor the stability of the network, we normalize the
connectivity matrix column-wise (Ti j). The matrix Ti j expresses the activation
of the post-synaptic node i after the activity on the pre-synaptic one j.

The first question is whether Ti, j can compute the correct word starting from
the input phonemes when the order of phonemes is not expressed. We assume
that the activity on the phonemic projections is homogenous for all the input
phonemes and compute a word input vector (Ii) Hence, we multiply the input
vector times the transition matrix and obtain an output vector (Oj), which in-
dicates the graph’s output state based on the phonemic input. The operation
is a simple matrix multiplication; O = T · I . For example, the input vector for
the word golden contains the phonemes O, N, L, G, E, D (right side of Fig.5.5B).
After the matrix product, the node with the strongest activation corresponds to
the word golden (left side). We verified that the correspondence between inputs
and words holds for all those input vectors with partial phonological overlap.
In contrast, when the lexicon contains anagrams, words composed of the same
phonemes as in dog and god, the correct word cannot be activated because the
input vectors are intrinsically ambiguous for the two words (D, G, O, SI Fig.5.4
A).

To overcome the limits posed by the lack of temporal information and retrieve
the sequential structure of the input vector, we encode the inputs with an alpha-
function (Eq.5.1) with timescale � = 50 ms and centered at the phoneme onset
time. The function aims to represent the activity over the projected phoneme
populations. The phonemic inputs obtained are illustrated in Fig.5.5C; they
overlap each other, and the only difference between the input vectors of the
two anagrams (dog, god) is the onset point of the alpha function: the identity
of the phonemes is position independent. The input information is thus inte-
grated over time with a simple dynamical system that expresses the three main
features of the network with the dendrites: the synaptic configuration, the long
dendritic timescales and feedback inhibition. The state update of the dynamical
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figure 5.5: Minimal interactive model of word recognition
(A) Network representation of the average synaptic connections among the
phonemes and word populations. The network has feedforward and feedback
connections. (B) The normalized connectivity matrix, or transition matrix Ti j,
projects the phonemic inputs into word nodes’ activity. The panel shows the ac-
tivation of the word golden upon presenting a set of phonemes stripped of the
temporal information. (C) Temporal information is reintroduced in the reduced
model by associating an alpha function with the phonological input. The onset
time of the function is aligned with the phoneme onset time but the position is
not explicitly coded.
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figure 5.5: (D) The inputs are integrated into a minimal dynamical system. The
inputs (I(t)) stimulate the hidden state of the system (h(t)) via the transition
matrix (T). The hidden state has a slow decay with timescale ⌧ and determines
the state of the observable (O(t)) which expresses the node activity. Finally,
O undergoes feedback inhibition, which maintains the activity within a bound-
ary; the inhibition is proportional to the average value of the observable itself.
(E) The model has scarce word recognition accuracy when inhibition is omit-
ted (left), but performances improve when the control mechanism is in place.
Crucially, the model can proficiently process words in a sequence. (F) The recog-
nition score of the reduced model depends on the ratio between the phoneme
timescale (�) and the population timescale (⌧). The recognition score peaks
when the latter is approximately 1.4 ⇥ the former (straight black line). (G)
Within the same parameter range, the word -score score of the extended net-
work model correlates significantly with the recognition score of the simplified
model.

system is also governed by the transition matrix Ti j. Two equations fully define
the dynamical system:

⌧
dhi

d t
= �hi(t) +
X

j

Ti j(I j(t) +Oj(t)) (5.2)

Oi(t) = hi(t)� hh(t)i (5.3)

The first equation describes the dynamics of a hidden variable h, which loosely
represents the membrane potential of the network with dendrites. The hidden
state has a decay timescale ⌧ and receives feedforward (I j) and recurrent (Oj)
inputs through the transition matrix. The second equation controls the ampli-
tude of the graph’s observables; it acts as the homeostatic mechanism generally
associated with inhibitory processes. The scaling operation in Eq.5.3 is strictly
necessary to implement the recurrent connections; otherwise, the system enters
into a run-away activity state, and the dynamical system diverges. The three
variables in the system, hi; Ii; Oi, represent the hidden population states, the in-
put vectors, and the observable variable, respectively. They evolve over continu-
ous time and are approximated by discrete equations with the Euler (first-order)
finite difference method. The dynamical system is illustrated in Fig.5.5D.

Next from the recurrent matrix, the reduced model has only two variables:
the timescales of the phonemic projections (�) and the hidden variable (⌧). For
a quick insight into the dynamics of the model, we tested the activation of two
successive words, separated by 100 ms of silence. Fig.5.5E illustrates the word
nodes activity in models with and without inhibition. The comparison indicates
that the target words are correctly reactivated in the model with inhibition (right
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panel, red and purple peaks) but not when the model is purely feedforward (left
panel). In the inhibition-less model, the inputs saturate the state vector, and all
word populations get activated. The node activity timescale used in the exam-
ple is ⌧ =70 ms, similar to the timescale of dendritic processes. For longer or
shorter timescales (e.g., 20 and 150 ms, SI Fig.5.1 B) the recognition process is
less accurate. We examined this relationship systematically in Fig.5.5F compar-
ing the average recognition accuracy among the lexica. To measure the model
accuracy, we computed the average difference between the target node’s activity
and the remaining competitors within 150 ms from the uniqueness point; in this
estimate, values above zero indicate that words are recognized above chance.
The method is illustrated in greater detail in SI Fig.5.2 . Fig.5.5F shows a region
of parameters that reaches a significantly higher recognition score. When the
population timescale (⌧) is approximately 1.4 times the phoneme duration (�)
word recognition is maximal. The same trend applies to all the lexica measured
(SI Fig.5.1 C) except the TISK and DIGITS. Crucially, when the timescales are
chosen in agreement with the network’s ones (phoneme duration, � =50 ms;
dendritic integration, ⌧ =70 ms), the reduced model’s scores have a significant
correlation with the word -score of the extended dendritic model (⇢ =0.48,
Fig.5.5F).

The reduced model achieves correct lexical access with minimal ingredients.
Thus, the minimal computational principles it relies on are sufficient for the word
recognition task. It retrieves correct words based on phonemes whose feature
space lacks a temporal marker. Unlike the network with dendrites, constructed
with fidelity to known biological processes and dimensions, the reduced model
has two loose ends. First, the integration of recurrent and feedforward con-
nectivity is not commensurate. The two streams should be scaled such that the
output of the transition matrix remains unitary; in the present case, the streams
are summed together, and the model output is not interpretable in biophysical
terms. Second, the reduced model does not include non-linearity in the signal
integration; so far, our attempts to use the non-linear transformation of the hid-
den state (e.g., sigmoid function) have not been successful; the model diverges.
Because non-linearity is one of the canonical aspects of neuronal dynamics, we
think future work should elaborate further on this inconsistency.

In conclusion, the reduced model presented in this section offers an algorithmic-
level interpretation of the implementation-level model hitherto analyzed, the
network with dendrites. Albeit its recognition is far from perfect, it shows that
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simple, interactive models of word recognition can get rid of explicit temporal
information for the integration of phoneme sequences.

5.4 Discussion

The present work investigated the neural dynamics of spoken word recognition
in a network model with dendrites. The study is divided into three sections.
First, we show that the model is consistent with the computational principles
derived from psychophysical and electrophysiological experiments (Gow & Gor-
don, 1995; Luce & Pisoni, 1998; Marslen-Wilson, 1987; McMurray et al., 2022;
McQueen, 2007; Toscano et al., 2010; Vitevitch & Luce, 1998; Winsler et al.,
2018; Zwitserlood, 1989). These are, in short, the following. Lexical repre-
sentations are incrementally activated during the presentation of phonemic ev-
idence; the presence of lexical neighbors delays and obstacles lexical selection,
with both cohort and rhyme lexical classes being re-activated; and partial phone-
mic mismatch degrades the word recognition score but keeps its time course
intact. Later, we derived the model’s predictions on the lexical bias effect and
observed how it aligns with the perceptual learning hypothesis for feedback be-
tween lexical and pre-lexical representations. Finally, we obtained a highly re-
duced version of the model, which retains similar performances and exposes the
core computational mechanisms driving phonemic integration: the long integra-
tion timescales of dendritic non-linearity and recurrent inhibition.

The results demonstrate that detailed neurobiological implementations, such
as models of the dendritic structure in cortical neurons, lead to a parsimonious
mechanistic description of human word recognition. The network responded
to phonemic stimuli on a realistic time course (50 ms) with assembly activity
on timescales comparable to the actual system, the brain. This was achieved
without fitting the network’s parameters; they were obtained from bottom-up
modeling of human neuronal physiology (Chapter 2) and mammals’ cortical net-
works (Chapter 4). Additionally, we stress that the recognition score achieved
for single words may be a lower bound of the network capacity; indeed, the
delayed activity of the word assemblies exceeded the timeframe in which the
phonemes were presented, causing an interference with the words following.
We do not account for this interaction among successive lexical items nor at-
tempt to minimize it with longer pauses in between words. Instead, we deem
that such interference proves that activity at the lexical level is robust against
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the incoming sensory input, and this property may allow for sentence-level uni-
fication on longer timescales.

It is also essential to notice that we tested spoken word recognition based on
the average activity of the word populations, with the firing of single cells av-
eraged into a single variable for each word presentation. In contrast, the two
electrophysiological studies that inspired the present work (Chan et al., 2014;
Vaz et al., 2020) leveraged single-unit recordings. Nonetheless, our model would
maintain a high recognition score if we increase the spatial resolution of the rate
measure, for example, sub-sampling among the most active cells in the assem-
bly; because the averages correspond to a linear summation, the lower resolution
can only diminish the information expressed in each cells’ firing rate. Thus, our
assembly-level measure also sets a lower bound to the network’s read-out per-
formance by giving up fine-grain spatial resolution. We chose to focus on the
population scale because it is relatable to the signals measured in the larger set
of word recognition studies that use magnetoencephalography (Gwilliams et al.,
2022, 2018; Piai, Roelofs, Jensen, Schoffelen, & Bonnefond, 2014), extracranial
(McMurray et al., 2022; Winsler et al., 2018) and intracranial electrophysiol-
ogy (Cibelli et al., 2015; Leonard, Bouchard, Tang, & Chang, 2015; Pasley et al.,
2012); as they result from averaging the current flow in large neuronal popu-
lations. In the following, we will first discuss the strengths and misses of the
model, comparing it with the known facts on biological networks. Hence, we
will focus on the implications of our results on the two open debates addressed:
the computational nature of lexical feedback and the solution to the temporal
extent problem.

A biological causal model of word recognition

The dendritic model presented aims to conciliate computational descriptions of
the nervous tissue with psychological evidence of cognitive functions. Our ef-
fort aims to build causal explanations of the lexical access process amenable to
being neuroscientifically tested. Such an attempt is in line with the growing
necessity of biologically constrained models that can cap the space of possible
computational solutions and establish explicit links between cognitive and bio-
logical descriptions (Poeppel, 2012; Poeppel & Idsardi, 2022; Pulvermüller et al.,
2021). However, our model complies with some but not all the requirements for
biological realism proposed in Pulvermüller et al. (2021) and Fitz et al. (2022,
under revision). In agreement with the constraints on biological networks, it
implements a spiking multi-compartment model with rich receptor dynamics



5 A biological model of word form recognition 223

that undergo unsupervised Hebbian learning and homeostatic inhibitory mech-
anisms; the model also integrates single-cell dynamics within the cell assembly
(100 cells) at a full network scale (2500 cells). Conversely, it lacks inter- and
intra-areal connectivity and the layered architecture of the cortical sheet and its
parameters are not tuned to the specifics of language regions of the human brain
(Palomero-Gallagher & Zilles, 2017). The absence of network structure has con-
sequences for the computations that the model can express. In the following,
we will address the severity of these missing components for the cognitive func-
tion at stake and, where possible, propose improvements to implement in future
work.

Experimental evidence indicates that speech signatures are decodable from
the temporal areas (Herschl’s Gyrus and Superior Temporal Gyrus) as early as
50 ms from word onset (Chang et al., 2010; Gwilliams et al., 2018) and word
forms are retrieved within 250 ms (Costa et al., 2009; Marslen-Wilson & Welsh,
1978), such rapid access is due to the few synaptic relays that separate the
cochlea and the language areas. Nonetheless, in natural speech, lexical access
relies also on context and word meaning (Brodbeck et al., 2022; Hagoort et al.,
2004) so, in such a short time we must account for two additional functional
stages besides word recognition, namely, speech normalization and segmenta-
tion (Eisner & McQueen, 2018; McQueen, 2005; Nusbaum & Magnuson, 1997).
These operations originate from the interactions between both hemispheres and
between frontal and temporal areas and imply the integration of lexical cues
with semantic, syntactic, and pragmatic information (Formisano et al., 2008;
Hagoort, 2017, 2019).

Thus, not modeling intra-areal connectivity, we commit to model lexical access
in a strictly bottom-up fashion, where no information is available for recognition
beyond the acoustic evidence and the immediate word-form context. The word
recognition process described concerns only the access to the phonological word
form in the Superior Temporal Gyrus (STG), devoid of its semantic or syntactic
features, which would indeed require modeling further brain regions, such as
those associated with the Wernicke’s and Broca’s areas (Garagnani et al., 2009;
Tomasello et al., 2018). The underlying hypothesis is that word recognition, via
dendritic integration, occurs on a timescale faster than the inter-areal interac-
tions, such that the contextual information appears as a parameter rather than
a variable in the model. We propose this based on the spatiotemporally local-
ized dynamics of word-forms neural correlates (Gwilliams et al., 2018; Yi et al.,
2019). Also, it is essential to highlight that the lack of pathways for contex-
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tual information should not be solved solely by introducing additional synaptic
inputs that mimic full-brain afferents. To adequately accommodate inter-areal
connectivity, we should implement a spatial scaffold that arranges incoming con-
nections from higher-order areas to the STG model. Indeed, the biological net-
works of the cortical sheet are organized in layers, with the feedback and feed-
forward axonal afferents targeting the superior and inferior layers, respectively
(Braitenberg & Schüz, 1998b; Senzai et al., 2019). The layered architecture is
not present in our model and it seems an inescapable feature of the network if
we want to study the interaction between feedforward and feedback streams.

The hypothesis that our model accounts for lexical access in the STG based
on sole feedforward information is apparently at odds with the abstract repre-
sentations we use as input for the model. Indeed, the abstract phonetic cate-
gories become available to the system following phonemic normalization. The
process of extracting abstract phonemic categories from the contingent speech
sounds takes place, arguably, before word recognition (Clarke & Garrett, 2005;
Norris, 2003; Poellmann, Bosker, McQueen, & Mitterer, 2014), and it must orig-
inate from the interaction between the auditory stimuli and the contextual in-
formation; for example, prior expectation on the speakers’ pronunciation (Klein-
schmidt & Jaeger, 2015). In the following section, we address this discrepancy,
motivate our assumptions on the nature of the phonemic representations used,
and then postulate a normalization stage that is autonomous from the lexical
access one.

Abstract phonemic representations and lexical feedback

In the traditional view of linguistic theory, phonemes are the atomic units of
language (D. Jones, 1962; Kazanina, Bowers, & Idsardi, 2018; Liberman et al.,
1957); accordingly, words’ phonological memories in the lexicon are stored and
accessed based on sequences of phonemes. The phoneme hypothesis is sup-
ported by recent electrophysiological studies that could locate and time-track
the neural correlates of phonemes’ identity in the temporal lobe (Chan et al.,
2014; Chang et al., 2010; Fox et al., 2020; Gwilliams et al., 2022). Consistently,
the present work adopts phonemic segmented units as the fundamental code for
lexical access. Abstract phonemes are represented in the network by means of
external projections on cell assemblies; such projections are intended to repro-
duce the feedforward streams from the earlier stages in the auditory hierarchy.
On the other hand, it is well-known that phonemes assume different phonetic
vests when uttered. When placed in a different lexical or pre-lexical context,
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the acoustic realization of a phoneme changes (Uppstad & Tønnessen, 2010).
Similarly, there are phonetic variations among speakers that require the listen-
ers to adjust their phonological memory to new and, sometimes, unpredictable
sounds (Best et al., 2015; Kleinschmidt & Jaeger, 2015). Such a systematic lack
of invariance in phoneme realizations requires a dedicated stage that normalizes
the input based on the context and maps the acoustic information into abstract
phonemic categories. We address the two issues of lexical and speaker phone-
mic variability separately and show that a feedforward normalization stage can
account for them if we assume the two stages are autonomous.

First, we address the case when phonemic variability is structural to the lan-
guage. There are two main instances. One relates to phonemes that change
their acoustic realization across different words; for example, the phoneme /k/
in /kæt/ and /d⇤k/ is realized by the aspirated phone [kh] in cat and a plain or
unreleased [k’] in duck (Kazanina et al., 2018). The other concerns phonemes
that vary dependently on their lexical context; for example, certain phonemes
assimilate with the preceding or following sounds (Gaskell & Marslen-Wilson,
1996; Weber, 2001). Such systematic variability may indicate that the supra-
segmental allophone information is the fundamental speech unit rather than the
phoneme (Mitterer, Reinisch, & McQueen, 2018). In this view, word memories
are accessed based on the allophones heard; thus, the correct pre-lexical to lex-
ical mapping should leverage this type of pre-lexical representation rather than
the abstract phonemic ones. This richer segmental information can be included
in the model’s representations and it will not affect its dynamics as long as the
bottom-up signals are expressed in spatialized cell assemblies, as it seems to be
the case for phonological representations (Voice Onset Time Fox et al., 2020).
Indeed, the sort of phonological representations we use in the pre-lexical layer
is not linguistically accurate, it just aims to illustrate the computations in the
model. An expanded representation space may even alleviate the computational
burden on the sequence recognition mechanism and facilitate lexical access in
words with overlapping phonemes.

The second issue we must address is the lack of invariance at the speaker level
(Liberman et al., 1967; McQueen, 2005). In contrast to the systematical varia-
tions discussed, the speaker variability cannot be addressed by expanding the set
of pre-lexical representations because the listeners will always face novel speak-
ers whose phonemic categories cannot be learned ahead. Instead, the problem
must be solved by considering a normalization pre-processing stage of the speech
sounds. Normalization requires contextual information to bias pre-lexical deci-
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sions (Sjerps, Fox, Johnson, & Chang, 2019). In our model, we do not account
for this stage and assume that phonemes, possibly allophones, are already re-
solved into abstract categories. Thus, the lexical and recognition stages are func-
tionally encapsulated, such that context must modulate the normalization stage
after lexical access (McQueen et al., 2009; Norris et al., 2000) and not during it.
The alternative hypothesis to autonomous lexical and pre-lexical layers is that
the two work together to determine both the pre-lexical and lexical decisions,
that is, they are interactive (McClelland & Elman, 1986; McClelland, Mirman, &
Holt, 2006)

Because cortical networks are intrinsically recurrent within and across regions
(Braitenberg & Schüz, 1998a), it would be largely implausible that the lexical
and pre-lexical populations are anatomically isolated. However, it is crucial to
specify the nature of the information passed across the two functional stages
during word recognition. Our model offers a double-fold insight into this prob-
lem; even though the two stages are interactive by design, we show that the
biological constraints and the predictions are more in line with the autonomous
rather than interactive hypothesis. First, although there is no privileged direc-
tion for the flow of information during the associative phase, the network de-
velops strong feed-forward connections that bind phonemes to words, but the
feedback connections remain weak. This network connectivity feature is evi-
denced in Fig. 5 of Chapter 4 and is also visible in the recurrent network con-
nectivity of Fig.5.5. The directional asymmetry presumably emerges from the
plasticity rule combined with synaptic scaling, which limits the fan-in weights in
phoneme populations. Second, the model does not reproduce the online lexical
bias effect on the pre-lexical representations when we tested with a setup anal-
ogous to Ganong (1980)’s experiment. Crucially, the lexical bias effect is one
of the strongest pieces of evidence that supports the interactive hypothesis. In
our simulations, phoneme populations did not activate more or less depending
on the word or non-word condition; conversely, we found a significant effect of
lexical bias in the sub-threshold membrane potentials, after the end time of the
stimulus interval. The increased membrane depolarization can provide a mech-
anism for learning a new mapping between the phonetic and phonemic levels
based on voltage spike-timing-dependent plasticity. These computational results
indicate an interaction between the two functional stages exists, but only after
lexical access occurred. The model’s prediction offers a causal explanation of
lexical to pre-lexical activity observed in neuroimaging studies (Gow, Segawa,
Ahlfors, & Lin, 2008; Myers & Blumstein, 2008) and provides a highly plausible
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mechanism for perceptual learning (Norris, 2003). Interestingly, the membrane
dynamics of pre-lexical populations are in punctual agreement with novel data
obtained from magnetoencephalography recordings by Gwilliams et al. (2018)
during a phonemic continuum manipulation. The study shows that phonemic
ambiguity is strongly represented in the neural signal, and lexical bias does not
affect the early processing stages. In their analysis and our model (Fig.5.5), pre-
lexical representations are re-activated at the word uniqueness point and encode
the amount of phonological ambiguity.

The network with dendrites seems a good model candidate for the sought-
after sequence integration mechanism in lexical access (Yi et al., 2019), which
is, so far, not fully explained by any of the biologically plausible models available
in the literature. The core mechanism of the model is dendritic integration,
which, we showed, helps solve one of the core problems in connectionist models.
The following section compares the network with the dendrites model to these
previous studies and discusses its advantages and limitations.

Solving the temporal extent problem with long timescales

The last decades have seen the flourishing of computational models in explaining
speech perception. In particular, from the seminal introduction of TRACE (Mc-
Clelland & Elman, 1986), an increasing number of connectionist (NNs) models
achieved word recognition, or more in general sequence labeling (Amodei et al.,
2015; Graves, 2012; Hannagan et al., 2013; Scharenborg, van der Gouw, Lar-
son, & Marchiori, 2019). Nowadays, the spoken word recognition problem can
be successfully solved by leveraging network recurrence and backpropagation
algorithms (Adolfi, Bowers, & Poeppel, 2023). However, the algorithms used to
train neural networks are often not plausible, and when the model is constrained
to dynamics that match psychological and neural evidence, things change. One
of the main difficulties to account for is the temporal structure of words and their
staggering level of phonological overlap. This problem was already present in
the TRACE model, often referred to as the temporal extent problem or temporal
order problem (TOP). The problem is due to the necessity of introducing tem-
poral markers in phonemic inputs such that anagrams and words-within-words
can be correctly distinguished. It results in an implausibly large number of nodes
and connections the network must include to process a moderate-sized lexicon.
Mitigations for the problem have been introduced by Hannagan et al. (2013);
You and Magnuson (2018); the model presents a pre-lexical layer that can detect
diphone structures in the input. However, the model has two limits that must
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yet be addressed; first, it does not provide a strategy to learn the diphone matrix
that is biologically plausible; second, it still requires explicit temporal markers in
the phoneme inputs, markers that cannot be found in electrophysiological data
(Gwilliams et al., 2022).

Our model provides a systematic and biologically plausible solution to the
problems mentioned above. We demonstrated that introducing slow-decaying
neural states, be it in the dendritic membrane or the hidden states of the re-
duced model, leads to the successful recognition of anagrams. The network
structure is achieved following biologically plausible plasticity rules. Crucially,
our work reached a similar weight structure than the one predicted in Sequence
Detection networks (Knoblauch & Pulvermüller, 2005); successive phonemes
have stronger synaptic weights than early ones. Our truly novel contribution is
the introduction of the slow decay of dendritic compartments which allows the
phonemes to bind each other upon arrival in the system and makes the word-
form populations sensitive to sequences rather than to single phonemic features.
In spite of the computational advantages of the long timescale, phonological
overlap still degrades the accuracy and the significance of lexical access (Ap-
pendix A and Appendix B). The lexicon where the model encountered the most
difficulties is borrowed from the original TISK study (Hannagan et al., 2013)
and it contains a dozen words composed from only six phonemes.

The models’ shortcomings in accounting for human performance must still
be put in perspective, and the network with dendrites should be evaluated in
light of its small scale compared to the real system. We used a network of only
2000 neurons, which has six orders fewer neurons than the STG (a hundred mil-
lion, if we assume the conservative estimate that only one per thousand cortical
neurons belong to the region). Similarly, the Tripod has only two dendritic com-
partments, while the actual computationally segregated compartments in a real
neuron could be one or two orders larger (Hawkins & Ahmad, 2016; Larkum,
2022). In contrast, the dozen words and phonemes tested in the model are three
or four orders of magnitude smaller than those of human languages. Thus, if the
same neural mechanism has to be implemented in the brain, the signal-to-noise
ratio would be much higher than the one obtained in the model. The scaling
problem remains crucial to account for human cognitive functions and, so far,
neither the connectionist models, TISK and TRACE, have satisfying results when
tested in large lexica (Nenadić & Tucker, 2020).
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5.5 Appendix

Appendix A: Shared phonemes decrease task accuracy and

delay word recognition

In the previous chapter, we introduced the lexicon -score score as a measure of
lexical access. Here, we recap the measure and derive the word -score . The
lexica tested in the present chapter comprises real English words; each set varies
in the number of words and the number of phonemes involved, and they have dif-
ferent recognition scores. An overview of their recognition score (-score) and
average recognition delay (ARD) is portrayed in App. Fig.5.1 A for the unique-
ness and offset points measures. The -score indicates whether words can be rec-
ognized based solely on the average population firing rate; the ARD gives an idea
of the time it takes from the word onset for optimal recognition. Both values are
computed from the score-delay functions in App. Fig.5.1 A. Instead, the unique-
ness point (UP) and offset point (OP) measures refer to the time interval used
to compute the population firing rate. The UP measures one single phoneme
interval 50 ms at the uniqueness point of the word; in contrast, the OP measures
the entire word interval between the onset and the offset of the word. The two
measures achieve similar -score (Pearson correlation ⇢ =0.89). However, their
ARD are independent (⇢ =�0.01), as depicted in App. Fig.5.1 B, which express
different aspects of the word recognition dynamics. The -score is an estimate
of recognition over the entire lexicon; however, word accuracy varies within
it. Starting from the confusion matrix (Chapter 4, Figure 2), we computed the
recognition index associated with each single word. The panel in App. Fig.5.1
shows that the difference in the recognition score presents significant differences
among the words of certain lexica.

To understand why certain lexica achieve higher scores or take longer to be
recognized, we individuated four lexicon properties and compared the -score and
ADR across each. We computed (1) the word overlap as the average number of
phonemes in a word divided by the number of phonemes in the lexicon; (2) the
average word length; (3) the number of words in the lexicon, its size; and (4)
the average distance between the onset and the uniqueness point, or onset over-
lap measure. The panels in App. Fig.5.1 D show the recognition score against
these dimensions for all the lexica, for both the offset point (top panels, I-IV)
and the uniqueness point (bottom panels, V-VIII). The relationship between the
lexicon properties and the score was interpolated with a linear fit. We report the
interaction as significant if the fit’s slope does not change sign within the 5 %
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Appendix Figure 5.1: Word recognition depends on lexicon properties
(A) Cohen’s -score measured in function of the delay from the offset and
uniqueness points for the nine lexica tested. The offset measure compares the
population spike rate on the full word interval, and the uniqueness point mea-
sures only the activity at the uniqueness point phoneme (50 ms interval). (B)
Comparison of Cohen’s score (-score, left panel) and average recognition delay
(ARD, right panel) in the offset (x-axis) and uniqueness point (y-axis) condi-
tions. The average recognition delay is computed as the -score weighted sum
of the delays in the interval�150 ms to 200 ms. The -score of the two measures
has a Pearson correlation of 0.89, but their ARDs are uncorrelated (⇢=0.01).
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Appendix Figure 5.1: (C) Recognition score of each word for all the lexica tested.
The recognition score is homogeneous within the lexicon. (D) -score as a func-
tion of word overlap, average word length, lexicon size, and onset overlap. Each
of the ten points with the same color represents a different instance of the same
lexicon. The straight lines correspond to the linear fit of the data. The recogni-
tion score is negatively correlated with the word overlap and the average word
length (I, II, IV, V, VI, VIII) but not with the lexicon size. The impact of the lex-
icon’s properties is the same in the offset and uniqueness point conditions. The
grey lines indicate the 5 % confidence interval of the linear fit. Black lines are
absent when the correlation is not significant. Notice that the four dimensions
of each lexicon are not independent; longer words tend to have larger phonemic
overlaps. (E) Comparison of the lexica properties against the ARD, similarly to D.
The time between the sequence presentation and the word recognition increases
for the offset time measure when the lexicon increases in phoneme and sequence
overlap (I, IV). Conversely, the uniqueness point measure becomes more respon-
sive (VIII)

confidence interval (dashed lines); when not significant, the panel only shows
the range (absent black line). The recognition score correlates negatively with
the word overlap (I, V), the average word length (II, VI), and the onset overlap
(IV, VIII) for both the offset and the uniqueness point measures. These corre-
lations indicate that the more words share phonemes, the more difficult it is
to recognize them. Conversely, the lexicon size has a null correlation with the
recognition score, which suggests that the network’s memory capacity is larger
than the lexicon sizes tested. The analysis indicates that a network with 2000
cells has enough memory capacity for a lexicon of the order of 10 to 20 words.
However, the recognition score is affected by shared sequences and phonemes
among the words. Given the limited number of phonemic signs in human lan-
guage (order of fifty), increasing the number of words in the lexicon would nec-
essarily increase the phonemic overlap.

A clearer picture of the impact of shared phonemes on the recognition dynam-
ics emerges from the analysis of the model’s average recognition delay (ARD),
App. Fig.5.1 D. The contrast between ARDs and -scores is due to the opposite
interactions between the variables and the lexicon’s characteristics. A picture of
the interactions with the lexicon’s dimensions (1-4) in the offset and uniqueness
point measure is portrayed in App. Fig.5.1 D. In this case, only the phonemic
(I, V) and onset overlap (IV, VIII) significantly impact the ARD measure. For the
full interval measure (OP), increasing the number of shared phonemes, the ARD
goes from 60 ms to 120 ms. Conversely, the ARD in the UP measure decreases
with the length of the overlapping sequences in the lexicon (IV); the later the
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UP is encountered, the faster the word assembly is reactivated after it, which
is confirmed by direct inspection of the score delays curves (App. Fig.5.1 A).
By contrasting the two results, we can infer the dynamics of the word popula-
tions. The reactivation of the correct assembly occurs late when the identity of
the phonemes carries ambiguity; because of the phoneme overlap, other word
assemblies are partially reactivated. Hence, population activity during the early
phonemes gives no decisive or misleading information. However, targets are pre-
activated during the lexical competition, and their firing activity rapidly peaks
when the input disambiguates at the uniqueness point, reducing the ARD in the
UP measure.
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Appendix Figure 5.2: Combined p-values over word grand-average The p-
values were computed with the Simes procedure starting from the target-control
pairs in each lexicon. The annotated fraction indicates the number of words that
were recognized with p<0.05
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Appendix B: Dendritic membrane dynamics is causal to

correct lexical access

In the neuronal circuitry, the spikes are the main form of intracellular communi-
cation; however, the somatic spike accounts for the integration of pre-synaptic
spikes only indirectly. Before the soma fires, several processes occur in the cell
body that mostly goes unseen to the post-synaptic cells; the spike is only a prob-
abilistic expression of the membrane potential (Fiorillo, Kim, & Hong, 2014;
Mikulasch et al., 2020). Hitherto, we have only measured word reactivation
through a spike-rate measure. In the Tripod model, the hidden processes com-
prehend the membrane potential in the two dendrites and the synaptic conduc-
tances. Hereby, we explore the dynamics of membrane potential in the word
population and show that it has larger predictive power on the correct word
recognition than not the spike rate itself.

To measure the neurons’ membrane potential, we have to record the dynamic
variable during the simulation; this procedure is costly for both computation
time and memory usage. Hence, we limited the measure to a subset of words
and lexica. We chose to record only words composed of four phonemes in the
Overlap, Labials & Alveolars and Velars lexica. The restriction to words of four
phonemes facilitates the comparison and limits the possibility of confounds in
the analysis. We considered 24 word populations. The average membrane dy-
namics are shown in the top panel App. Fig.5.3 A. The membrane potentials
are mediated across the two dendrites and on the entire population; the color
scheme sorts the word by the average of the membrane potential in the mea-
sured interval, 400 ms. The bottom panel shows the firing rates, convolved via
an alpha-function with 10 ms timescales. In panel App. Fig.5.3 C, we average
across the entire set of words and compare the firing and membrane potential.
Because the two variables have different units of measure, we present them to-
gether by scaling them to their numeric range, thus their maximum and mini-
mum.

From inspecting the words’ membranes, we notice that the potential presents
clear signs of the phonetic inputs’ time course. Upon the first phoneme (0 ms),
the membrane potentials have a peak depolarization, which fades within the
first 50 ms. We hypothesize that these initial up and down strokes are due to
the inhibitory activity on the word populations. After the 50 ms of silence, the
network global rate is diminished, and the sudden activity is not balanced by in-
hibition. Network activity increases rapidly following the activity of the external
phonetic projections. Thus, it leads to more robust and undirected inhibitory
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feedback, which re-hyperpolarizes the word populations’ dendrites. The arrival
of the second phoneme hits the dendrites at 50 ms when the word’s average
potential is sitting at a slightly larger value than its equivalent at word onset.
However, now the membrane potential increases steadily and jumps of approxi-
mately 10 mV, the contrast between the input of the first and second phonemes
is also visible in the global membranes average (App. Fig.5.3 B); this time the
membrane goes up and there is no down-stroke. The difference is likely due
to the triggering of the NMDARs’ regenerative processes, which maintain the
membrane depolarized in the face of the inhibition. In addition, the population
also starts firing, and the recurrent connections contribute to keeping the mem-
branes depolarized. In this early 100 ms, the membrane anticipates the firing,
suggesting that its dynamic is causal to the activation of the word populations.
From the third phoneme onwards, the impact of the phoneme inputs diminishes
in favor of the depolarization due to the recurrent spikes. In between 150 ms to
200 ms, both the firing rate and the membrane reach their peaks and start fading
away. They are hampered by the rising feedback inhibition, the fast time course
of somatic inhibitory plasticity, and the adaptive firing threshold of the excita-
tory cells. Interestingly, the firing rate does not present the step-like dynamics
of the membrane potential; this is partly because the alpha-function convolu-
tion smoothes it and because the firing is mainly due to recurrent contributions,
which have timescales independent from the phonemic inputs’ interval.

To clarify the dendritic membrane’s causal role, we also measured the correla-
tion of membrane depolarization with the word -score . The first panel in App.
Fig.5.3 C shows a significant positive correlation (⇢ =0.64, within a 95% con-
fidence interval) between the peak membrane potential (x-axis) and the word
-score . In contrast, although relying on the same spike measure, the firing
rate does not correlate significantly with the recognition score (central panel).
Neither does it with the membrane potential (bottom panel). We also tested
these correlations by measuring the mean of rate and membrane rather than
their peak values, with identical results. This analysis suggests that the mem-
brane potential of the word populations contains more information regarding
the network state than the population firing rate. Indeed, the -score does not
account for the strength of word activity but rather for the relative intensity of
the target population compared to the competitors’ firing rate. Thus, we con-
clude that measuring the population firing rate in isolation is not, strictly speak-
ing, a measure of word recognition because it is not re-scaled against the whole
network activity. Conversely, the membrane potential average is a measure of
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Appendix Figure 5.3: Dendritic membrane potential anticipates firing activ-
ity and explains recognition score
(A) Membrane potential (top) and firing rate (bottom) of 24 words selected
across four lexica; the color scheme orders the words by their average membrane
potential. We selected only words with four phonemes so the neural dynamics
can be successfully compared within an interval of 400 ms after word onset. The
membrane potential traces show the signature of the phonemic inputs (upward
spikes every 50 ms), but the firing rate does not. (B) Comparison of average
membrane potential and firing rate for the set of words in A, both are scaled by
the maximum and minimum values reached in the interval. The membrane po-
tential anticipates the firing rate in the early phonemes 0 ms to 100 ms; the rho
states the average correlation between each word’s membrane-rate pair. (C) Cor-
relation between membrane potential, firing rate, and word-recognition score.
The maximum membrane potential of the word population correlates with the
recognition score (top panel), but the firing rate does not (central panel). The
bottom panel also indicates no significant correlation between the membrane
potential and the firing rate when compared across words.
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recognition that expresses the target activity in relationship with the lexical com-
petitors. The present results may not hold when the lexical pool is expanded to
words with heterogeneous phonemic lengths. However, they potentially impact
the experimental analysis of spiking activity in animals and humans.
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C
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Appendix Figure 5.4: Membrane potential and firing rate of target popula-
tions
(A-B) The mean and maximum value of the membrane and rate correlate among
them. (C-D) The word -score correlates with the average and peak of the mem-
brane potential (left panel) but does not correlate with the statistics of the firing
rate (right panel). Rate and membrane do not correlate in any combinations
tested (max-max, mean-max, etc.).
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Appendix C: Firing rate and p-values

Appendix Figure 5.5: Firing rates Digits lexicon
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Appendix Figure 5.6: Firing rates TIMIT lexicon
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Appendix Figure 5.7: Firing rates Overlap lexicon
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Appendix Figure 5.8: Firing rates Cohort lexicon
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Appendix Figure 5.9: Firing rates TISK lexicon
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Appendix Figure 5.10: Firing rates Labials & Alveolars lexicon
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Appendix Figure 5.11: Firing rates Velars lexicon
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5.6 Supplementary Material
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Supplementary figure 5.1: Minimal interactive model
(A) The transition matrix Ti j necessarily fails in distinguishing anagrams because
the inputs encode no information about the temporal order. In the example, god
and dog reactivate with the same strength. (B) The timescale of the hidden
state ⌧ determines the accuracy in integrating the inputs. Timescales too short
(upper panels) lead to memory-less processes that can recognize short words
(lop) but fail on longer ones (doll). If the timescale is too long (bottom panel,
⌧ = 150 ms), the activity from the previous input presentation merges in the
following word, impairing lexical access. (C) Average recognition across the
lexicon six of the lexica tested (DIGITS is omitted). Except for the TISK lexicon,
the others present a darker shade on the diagonal; recognition is optimal when
the population timescale is 1 to 1.5 times longer than the input timescale. The
average of the first five panels is presented in Fig.5.5E.
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UP UP + 150ms

Supplementary figure 5.2: Word score measure of the dynamical system
model
To measure word recognition, we computed the average difference between the
target node’s activity and the envelope of the competitor’s activity within 150 ms
from the uniqueness point; the average is then normalized against the total area,
it yields a number in the interval (�1, 1). The colored curves are the target pop-
ulations, while the black curves account for the competitors. When the targets’
activity dominates over the other words in the lexicon (colored areas vs. black
areas), recognition is successful, and the score is positive. Comparison of the
activity traces of four words from the Overlap lexicon. The targets have, on aver-
age, larger activity than the competitors. The score is computed as the difference
between the colored and black areas divided by the area of the former. Thus,
the score is positive when recognition is successful. The score is then divided
by the activity envelope average (target plus competitors), resulting in values in
the interval (-1,1) TODO: recompute the values with normalization.
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6.1 Summary of the experimental chapters

In this dissertation, I proposed a link between the neurobiology of cortical net-
works and the psychological phenomena observed during lexical access and se-
lection. The work relies on a novel neuron model, the Tripod neuron (Quaresima
et al., 2022). It was derived from electrophysiological evidence on dendritic pro-
cessing and accounts for important features of pyramidal cells such as segregated
integration, NMDA spikes, and shunting inhibition. These neuronal properties
are not captured by point-neuron models and are expected to play a role in the
overall computational capacities of network models (Larkum, 2022; London &
Häusser, 2005; Papoutsi et al., 2014; Poirazi & Papoutsi, 2020; Spruston, 2008).

A careful analysis of the Tripod neuron model was presented in Chapter 2,
where two sets of physiological parameters from mouse and human cortical cells
were compared. In the latter case, the neuron showed a strong non-linear den-
dritic response with prolonged membrane depolarization. I refer to this as den-
dritic memory because it maintains information about previous synaptic inputs
on short timescales. Later, I showed that the Tripod neuron achieves various
computational tasks that require temporal integration. I conclude that segre-
gated dendritic integration is a computational primitive that introduces a pro-
cessing memory in the order of a hundred milliseconds in the neuron model and
expands its capacity for sequence processing.

The neuron model was further investigated in Chapter 3. Here, I analyzed
the cell’s response to synaptic bombardment, as observed in cortical networks.
Following previous results on the balance of excitation and inhibition (E/I) in
a single-compartment model (Kuhn et al., 2004), I investigated the conditions
for dendritic balance under synaptic activity with a high input rate. In the E/I
balanced condition, the Tripod neuron reproduced distinctive cortical dynamics,
such as the high-conductance state and the up-down transition. The study re-
vealed that the non-linear integration provided by NMDA receptors in dendrites
also increases the model’s sensitivity to fluctuations in the input and provides a
better fit to the response function of biological neurons.

In Chapter 4, I moved from single-cell simulation to investigating a network
of Tripod neurons in a simplified word recognition task. I presented the net-
work with sequences of phonemes and the associated word forms. The network
received phoneme and word inputs as spatially segregated projections; via Heb-
bian synaptic plasticity, the projections induced the formation of cell assemblies.
The word forms were selected from lexica with eight to sixteen lexical items.
Crucially, some of the lexica contained words with large phonological overlaps.
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To correctly recognize words in these lexica the word memories must be sensitive
to the order of the phonemes presented. Recognition was measured based on the
activation of the correct word assembly in response to the sequence of phone-
mic inputs. Along with the dendritic neuron model, the network also included
other important anatomical and physiological constraints (Fitz et al., 2024; Pul-
vermüller et al., 2021), such as sparse recurrent connectivity, plastic excitatory
synapses, background noise, and fast and slow spiking interneurons (Duarte &
Morrison, 2019; Litwin-Kumar & Doiron, 2014; Tomasello et al., 2018; Zenke
et al., 2015). A novel element was the introduction of voltage-dependent in-
hibitory synaptic plasticity (v-iSTDP) on the interneurons that target dendritic
synapses.

The combination of excitatory and inhibitory plasticity enabled the forma-
tion of stable word memories in the dendritic model. Word memories consist
of potentiated synapses between phonemes and word assemblies. These hetero-
associative connections were necessary for the activation of word assemblies,
and their specific arrangements mediated the discrimination of words with high
phonological overlap. However, these network properties were not sufficient.
To achieve high recognition accuracy, the Tripod neurons had to exhibit strong
non-linear integration jointly with tight dendritic inhibition. These two neuronal
mechanisms governed the encoding of dendritic memory and thus the temporal
integration capacity of the network. Through dendrites, the short-term memory
of the input sequence interacted with the long-term memory of the stored word
forms, mediated by inhibitory control. In contrast, networks with simpler point
neurons did not form phoneme-to-word connections when the lexicon had words
with phonological overlaps and thus failed to recognize most of the lexical items.
This work demonstrates that dendrites enhance the computational capacities of
the network and provide novel insights into the nature of word recognition and
the mental lexicon.

The dynamics of word populations were then evaluated against core compu-
tational principles of lexical access and selection, such as incremental access,
competition among lexical neighbors, and cascading information between the
pre-lexical and lexical stages (McQueen, 2007; Vitevitch et al., 2018). This anal-
ysis was carried out in Chapter 5. The model showed broad agreement with
the postulated dynamics of word form access, even though the model param-
eters were not explicitly tuned to reproduce human behavior: first, the firing
rate of target word assemblies becomes larger than that of lexical competitor
only when sufficient phonological information is provided, i.e., at the unique-
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ness point; Second, stronger lexical competition delays word recognition; and
third, corrupted phonemic input causes a decrease in the recognition score.

In the Tripod network model, lexical selection is expressed in the word’s fir-
ing rate, but lexical access occurs in the assembly’s dendritic compartments: the
membrane potential integrates the stimuli throughout the word, reaching the
peak at the word uniqueness point (Chapter 5, Appendix B). Importantly, the
presence of dendrites in the model allowed the network to solve the Tempo-
ral Order Problem without the implementation of position-dependent phonemic
representations (Hannagan et al., 2013; Magnuson et al., 2013; McClelland &
Elman, 1986). In the final section of the chapter, I also reduced the dendritic net-
work model to a smaller dynamical system with only phoneme and word nodes.
The reduced model shows that introducing a slow-decaying hidden variable for
the membrane potential allows for word recognition with an accuracy that is
comparable to the spiking network.

Together, these results indicate that the fundamental computations in word
recognition can be achieved in a biologically constrained model of the cortical
tissue. The studies bridge the neurobiological description of brain networks and
the cognitive ontology of word recognition. Starting at the implementation level
and with a clear computational goal in mind, I derived the algorithmic solution
that the network provides. The bridge is provided by the dynamical systems
perspective on brain activity and language processing (Fitz et al., 2024).

The outcome of these studies is a two-fold mapping hypothesis. First, I pro-
pose that word-form memories are due to strong, hetero-associative synapses
between phonemes and word assemblies. Second, I hypothesize that the incre-
mental activation of word memories observed in human word recognition is due
to the rise of the dendritic plateau potential following NMDA spikes in word as-
semblies. These links are established by systematically reducing the biological
substrate to a biophysical dynamical system, via mathematical abstraction and
computer simulations. The reductions aim to isolate the bio-physical dynamics
that contribute to the sequence detection capacity. First, the Tripod neuron is
a reduced model of a biological neuron which incorporates key aspects of den-
dritic integration and supports temporal integration (Chapter 2). Second, the
dynamical system network is a reduced model of the biological network that
retains dendritic memory through the addition of hidden variables (Chapter 5).

The simulation work in this thesis spans three subfields of neuroscience; neu-
rophysiology (Chapters 2 and 3), network computation and plasticity (Chapter
4), and cognitive-computational modeling (Chapter 5). Each chapter includes a
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discussion of results and their relevance in the field. I will now focus on what
I consider the three central contributions of the thesis: the role of dendritic in-
tegration in network computation, the synaptic architecture of word memories,
and the time course of lexical feedback during word form selection.

6.2 Outcomes of the present study

6.2.1 Dendritic integration and network computations

One of the contributions of this work concerns the role played by dendrites in the
computations carried out in neural networks. The question is now center stage
in computational neuroscience due to the extensive experimental and compu-
tational evidence indicating that dendrites perform essential functions beyond
the linear addition of inputs to the soma (London & Häusser, 2005; Payeur et
al., 2019; Poirazi et al., 2003; J. Schiller et al., 2000). Remarkably, human den-
drites seem to have unique physiological properties (Eyal et al., 2018, 2016; Gi-
don et al., 2020), that endow them with additional processing capabilities. The
question of whether modeling dendrites is conceptually useful is addressed in a
recent perspective article by Larkum (2022). The author argues that dendrites
are likely to be an important level of resolution for modeling and understanding
cortical networks. The somatocentric view may be too simplistic and not ade-
quately capture the computational function of biological neurons. My results are
in line with such a view. I show that the reduced dendritic model presented in
Chapter 2—the Tripod neuron—expresses a form of temporal integration that is
not available in point-neuron models.

Among the functional primitives provided by segregated dendritic compart-
ments, dendritic memory is the most relevant for the present work. Dendritic
memory is a form of short-term, or processing memory (Fitz et al., 2024; Pe-
tersson & Hagoort, 2012). Information is maintained in the depolarized state of
a dendritic compartment and lasts approximately a hundred milliseconds. The
physiological underpinnings of dendritic memory are the electrical segregation
of the dendritic compartments from the soma and the regenerative currents due
to voltage-gated receptors, i.e., NMDARs. Notably, the possibility that plateau
potentials could encode transient memories was also proposed by Major et al.
(2008) and Augusto and Gambino (2019). However, it had yet to be tested in a
computational model of cognitive function. Only recently it was shown that seg-
regated dendritic integration can be used to process sequential patterns of stim-
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uli (Leugering et al., 2023), achieving results that are similar to those presented
in Chapter 4. In addition, dendritic memory is not the only short-term memory
component available to the cell. Fitz et al. (2020) proposed another neuronal
adaptation mechanism for memory maintenance, which is helpful for process-
ing inputs with temporal structure (Pedrelli & Hinaut, 2022; Salaj et al., 2020).
Neuronal adaptation can be modeled as a hyper-polarizing current (Brette & Ger-
stner, 2005), i.e., a slow dynamic variable coupled to the temporal evolution of
the membrane potential. However, such a current reduces neuronal excitability
and may therefore limit the capacity of neurons to form memories through Heb-
bian plasticity. Thus, dendritic memory could have a twofold role. On the one
hand, it maintains information about previous synaptic activity, and on the other
hand, it interacts with long-term plasticity and facilitates synaptic potentiation.

In chapters 2 and 3, I also investigated differences in neuronal integration
due to varying dendritic geometry. I showed that long dendritic compartments
(distal configurations) endow the neuron with a longer memory span than short
ones (proximal configurations). Conversely, the proximal compartments have
a stronger impact on the somatic activity than distal ones and can elicit burst
firing. The asymmetrical Tripod neuron, with one distal and one proximal den-
drite, exhibits several distinct firing patterns while maintaining long-lasting den-
dritic memories. However, direct comparisons of different dendritic and wiring
configurations in the network (Chapter 4) revealed that neither asymmetry nor
additional dendritic branches enhanced network capacity for word recognition.
The present study does not yet offer a satisfactory explanation of why and how
models with one or two dendrites achieve the same recognition score. This result
is even more puzzling if one considers that Tripod neurons with two segregated
dendritic branches form only half of the synaptic contacts within the assemblies
than single–dendrite neurons (Fig.4.5). The reduced number of synaptic con-
nections in neurons with two dendrites suggests that these models are more
efficient in encoding memories. This result agrees with previous computational
evidence which associates an increase in the number of dendritic branches with
larger storage capacity (Baronig & Legenstein, 2024; Bono & Clopath, 2017;
Cazé, Jarvis, Foust, & Schultz, 2017; Hawkins & Ahmad, 2016; Kastellakis &
Poirazi, 2019; Legenstein & Maass, 2011; Mel, 1992; G. R. Yang et al., 2016)
and with the recently formulated hypothesis that compartmentalized non-linear
dendritic branches serve as the fundamental memory unit of the nervous system
(The dendritic engram, Kastellakis, Tasciotti, Pandi, & Poirazi, 2023). However,
whether our model implementation can fully leverage the dendritic engram to in-
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crease its word recognition capacity and increase the recognition scores remains
an open empirical question for future studies.

The absence of functional differences between symmetric, asymmetric, and
single-dendrite configurations may be due to a more general limitation of the
neuron model implemented in this thesis. The Tripod neuron is a model of the
basal region of the pyramidal cell (Eyal et al., 2018; Spruston, 2008), and it ex-
presses only one (i.e., the NMDA-spike) of the several dendritic non-linearities
observed in cortical cells (Gidon et al., 2020; Larkum et al., 2022; London &
Häusser, 2005). Crucially, the Tripod lacks a mechanism for the generation of
Ca2+ (Calcium) spikes, a type of dendritic action potential that is widely observed
in pyramidal cells of the mammalian cortex (Larkum et al., 2007, 2022). Typ-
ically, Calcium spikes signal the simultaneous activation of multiple dendritic
branches in the apical tuft, and they interact non-linearly with backpropagat-
ing action potentials from the soma (Hay, Hill, Schürmann, Markram, & Segev,
2011; Larkum, Nevian, Sandler, Polsky, & Schiller, 2009). Functionally, Ca2+

spikes play a role in modulating perception (Takahashi et al., 2020; Takahashi,
Oertner, Hegemann, & Larkum, 2016), and have been proposed as a neural cor-
relate of the integration of internal states (expressed on apical dendrites) and
sensory experiences (targeting the basal region) (Larkum, 2013). Because the
Tripod neuron does not implement this dendritic mechanism, it is possible that
it is not equipped with sufficient physiological machinery to distinguish the co-
activation of one or multiple branches, limiting its capacity to instantiate the
dendritic engram. Modeling Ca2+ spikes in the Tripod neuron would allow us
to study the cortical mechanism for integrating sensory (e.g., acoustic) and con-
textual linguistic information (e.g., semantic). I will return to this aspect in the
Outlook section below (Section 6.3).

6.2.2 Word memories as cell assemblies

The second main contribution of this thesis concerns theoretical insights into the
synaptic organization of long-term memories with sequential structure, specif-
ically word-form memories. Recently, Poeppel and Idsardi (2022) argued that
“we don’t understand how the brain stores anything, let alone words”, highlight-
ing the fact that the mechanisms supporting long-term storage of linguistic units
are not fully understood (see also Gallistel, 2021). This thesis offers a computa-
tional implementation of word memories based on neurobiological constraints. I
show that word memories can be stored as cell assemblies where synaptic struc-
ture encodes the order relationship among phonemes. Importantly, the network
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model had to include segregated dendritic compartments with pronounced non-
linearities and strong dendritic inhibition to form memories in the face of phono-
logical overlap. When these conditions were applied, word memories could
be acquired rapidly from sparse input and were maintained robustly over time
(Chapter 4, Appendix B).

Similar ideas about word memories and cortical engrams were already dis-
cussed in Pulvermüller (1999). Previous cortical models of the mental lexicon,
however, focused on the acquisition and activation of word memories as dis-
tributed neural representations (Garagnani et al., 2009; Tomasello et al., 2018).
In addition, these studies did not address lexical access and selection based on
the recognition of phoneme sequences. Thus, the present work is novel in that
it can achieve word form recognition. One important outcome of this study is
that, through vSTDP, the network with dendritic structure converges towards a
specific synaptic organization, which is necessary to recollect word memories
with phonological overlap. Such a synaptic structure was already proposed in
previous theoretical work (Sequence Detector networks, Knoblauch & Pulver-
müller, 2005; Pulvermüller, 2003). Although Sequence Detector networks were
not tested in simulations, the authors provided a mathematical demonstration
that these networks would selectively activate distinct assemblies depending on
the sequential order of input stimuli. This capacity relies on a relatively sim-
ple synaptic configuration where later inputs had stronger synaptic connections
onto engrams than early ones. A similar structure emerged in the Tripod network
through vSTDP (Fig 5.6). However, the present work does not yet address ex-
actly how this structure between phonemes and words is achieved through STDP.
Based on experience with the model, I hypothesize that the slow decay of the
dendritic dynamics and the homeostatic synaptic mechanism cooperate to form
stronger synapses in later phonemes. Further investigations should manipulate
the plasticity rule to test this hypothesis explicitly.

The problem of categorizing inputs with sequential structure is not specific to
language processing. In computational neuroscience and biologically inspired
machine learning, several spiking network-based algorithmic solutions to se-
quence recognition can be found. However, these models typically use biologi-
cally implausible learning rules. A classical example is the Tempotron (Gütig &
Sompolinsky, 2006, 2009), a supervised plasticity rule for leaky-integrate-and-
fire point-neuron models, which optimizes the pre-synaptic weights such that
a trained neuron fires depending on different classes of spike input patterns.
Other approaches leveraged reservoir computing (Buonomano & Maass, 2009;
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Duarte et al., 2018; Fitz et al., 2020; Nicola & Clopath, 2017) and more recently
gradient-based algorithms for SNN, such as eligibility propagation (Bellec et al.,
2019) and surrogate gradient learning (Zenke & Vogels, 2020). In these cases,
temporal integration is intertwined in the network latent space and requires
supervised read-out algorithms (Duarte & Morrison, 2014; Fitz et al., 2020).
Whether the same read-out computation can be performed by a network as-
sembly remains unclear because, besides the supervised algorithm, the read-out
layer often violates Dale’s principle 1. In addition, achieving sequence recog-
nition through cell assemblies rather than read-out neurons offers advantages
concerning the robustness of the process. Cell assemblies can maintain system-
atic input-output transformations in the face of synaptic or neuronal turnover
(Fauth & van Rossum, 2019; Kossio, Goedeke, Klos, & Memmesheimer, 2021).

Another aspect of the synaptic configuration that requires further investigation
is the functional role of recurrent connections among the pre-lexical assemblies.
These connections may contribute to the activation of the target word assem-
bly by sharpening the network response to the external stimuli and encoding
the lexicon’s phonotactic and phonemic transition probabilities. For example,
in the Overlap lexicon, the phoneme transition (P ! O) is more likely to occur
than the transition (L ! D). We have shown that removing these connections
caused small, although significant, drops in the recognition capacity. However,
the networks were driven by strong external inputs, which mostly override re-
verberating activity from previously activated phonemes and this might have
obscured the functional role of these connections. Future studies should try to
balance the magnitude of external stimulation with the internal activity from
recurrent connections and quantify the contribution of the phoneme engrams
to word recognition. Reducing the external drive would also clarify the impact
of word-to-phonemes feedback connections during and after lexical access and
selection. At the present stage, these connections have a limited impact on the
activity of phoneme populations.

6.2.3 Feedback activity from lexical to pre-lexical assemblies

Although feedback connections were weaker than feedforward ones, it was pos-
sible to characterize the time course of lexical feedback on the phoneme popu-
lations. In the human word recognition system, feedback streams support rec-

1Dale’s principle states that a given neuron contains and releases only one neurotransmitter
and exerts the same functional effects at all of its termination sites. Instead, read-out neurons
of different classes associate positive and negative weights to the same pre-synaptic cell.
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ollection when phonological features are ambiguous. The degree of acceptable
mismatch between the phonological evidence and the retrieved word form de-
pends on the linguistic and semantic context of the utterance (Connine, 1994,
2004; Whalen, 1991). For example, if a word is phonologically similar to an-
other word that could be used in the same context, these two words may be
confused. Conversely, if the context strongly constrains the interpretation of the
phonological information, one of the words is recognized more easily (Connine,
Titone, Deelman, & Blasko, 1997; Dahan et al., 2001). Contextual inference of
phonological information may rely on feedback streams from the associative cor-
tex to the sensory-perceptual areas (de Lange, Heilbron, & Kok, 2018; Heilbron
& Chait, 2018; Heilbron, Richter, Ekman, Hagoort, & de Lange, 2020; Rao &
Ballard, 1999) and there is broad agreement that when features are predictable
based on previous context, these predictions influence the neural activity of pre-
lexical features in the STG (de Lange et al., 2018; Heilbron, Ehinger, Hagoort,
& de Lange, 2019; Leonard, Baud, Sjerps, & Chang, 2016). However, neither
the exact time course nor the neural underpinnings of lexical feedback are well
understood.

In speech comprehension, there are two competing hypotheses concerning the
functional scope of feedback from lexical to the pre-lexical stage. The interac-
tive hypothesis posits an online, bidirectional stream of information between
the lexical and pre-lexical stages (Magnuson et al., 2018). This hypothesis is
expressed in terms of the recurrent structure of connectionist models, such as
(McClelland & Elman, 1986, TRACE) and (Hannagan et al., 2013, TISK), in
which pre-lexical and lexical nodes interact in both directions. The autonomous
hypothesis, in contrast, postulates a degree of functional encapsulation for the
pre-lexical stage (Norris et al., 2000). In this view, the feedback information
does not sharpen pre-lexical representations online; its contribution is to adapt
the perceptual receptive fields to the novel input and to update the priors of pre-
lexical categories for future processing (Kleinschmidt & Jaeger, 2015; Norris,
2003; Norris, McQueen, & Cutler, 2016). While the arguments of this debate
are discussed in Chapter 5 in greater detail, here I highlight how a neurobiologi-
cally grounded model makes explicit the constraints on the time course of online
interactions.

In Chapters 4 and 5, I showed that word assemblies were fully activated af-
ter the uniqueness point which, on average, occurred 100 ms from the stimulus
onset. Accordingly, when the activity of phoneme populations was measured in
word vs. non-word conditions, lexical feedback occurred after 150 ms from the
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onset of the ambiguous pre-lexical stimulus. Thus, lexical feedback was not im-
mediate. Arguably, online lexical feedback requires the activation of the word
form representations. This is possible in interactive models (e.g., TRACE) be-
cause the node activity increases throughout the stimulus presentation and can
immediately reverberate onto the pre-lexical units. However, in the Tripod net-
works, the integration process is not observable in the population firing rate
because the membrane potential of assemblies depolarizes slowly. The firing
rate increases only after sufficient disambiguating information is presented, that
is, at the uniqueness point. Therefore, the activity of the word form represen-
tations is not accessible to the pre-lexical stages during lexical access. In other
words, feedback only occurs after lexical selection. Thus, the outcome of my sim-
ulations suggests that sensory information is not interactively processed in the
lexical and pre-lexical stages. Such temporal constraints are in line with some
experimental observations. For example, Gwilliams et al. (2018) has shown that
neural activity is sensitive to phonemic ambiguity both in the early stage of the
acoustic input and after the word uniqueness point. The phonemic ambiguity
re-emerges a hundred milliseconds after the acoustic signal has vanished. Simi-
larly, Cibelli et al. (2015) could detect significant differences between words and
pseudo-words, such as cohort size, only after hundreds of milliseconds from the
stimulus onset.

Although lexical activation in the model does not influence phonological fea-
tures during the presentation of the stimulus, this does not imply that lexical in-
formation will not affect future words. In line with this, the results in Chapter 5
indicate that there was a lexical bias for the phoneme populations connected to
a lexical assembly and it occurred after lexical selection. This effect is observed
in the depolarization of the membrane potential of the pre-lexical populations
connected to the lexical item. Thus, in the model, feedback has a facilitating
effect on the activation of pre-lexical assemblies. In addition, dendritic depo-
larization interacts with the Hebbian plasticity mechanism in the network and
promotes the re-organization of synaptic structure. Hence, it may also support
perceptual adaptation to acoustic contexts or speaker identities (Clarke & Gar-
rett, 2005; Norris, 2003). However, to leverage feedback information of this
type, the network model would require additional plasticity mechanisms that
can keep track of the synaptic activity during the stimulus. This form of plas-
ticity has recently been observed in behaving animals during delayed reward
tasks (Bittner et al., 2017) and especially involves the Ca2+ messenger released
during an NMDA spike (Gonzalez, Negrean, Liao, Polleux, & Losonczy, 2023).
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This form of synaptic plasticity acts on the timescale of seconds, and thus the
name Behavioral Timescale Synaptic Plasticity (BTSP). Future work should test
an explicit perceptual adaptation protocol and implement BTSP, or similar plas-
ticity rules, to investigate whether the lexical feedback observed in the model
supports the re-organization of the perceptual space.

6.3 Thesis outlook

Before moving forward to the research questions stemming from the present re-
sults, I would like to highlight that this work is an interdisciplinary effort that ties
together computational neurobiology and psycholinguistics. The results demon-
strate that this approach can open novel perspectives in all the research areas
involved. For instance, the study of temporal integration on the timescale of
words contributes to the understanding of the temporal computations occurring
in networks with dendrites. The biological models provided rely on neurobi-
ological evidence and clarify the constraints of the adaptive dynamical system
that supports language, i.e., the brain. The constraints are determined by neu-
robiological research and they determine the building blocks from which causal
models are synthesized (Fitz et al., 2024; Pulvermüller et al., 2021). Because
there is a finite set of processes and mechanisms that are known to occur among
brain cells, the model can constructively verify which of them contribute to the
linguistic task at them.

The word recognition model outlined in this thesis is a work in progress since
causal models need to constantly be refined. Because most of my efforts went
into building the neuron model and the functional network, less time was avail-
able for crafting the vocabularies. One linguistic imprecision concerns the actual
statistics of phonological overlap in human lexica, which is not reflected in the
vocabularies used in Chapter 4 and Chapter 5. I also refer to the pre-lexical fea-
tures as phonemes, but they are just letters corresponding to the written word
forms. Therefore, the presented model of spoken word form accounts for a lan-
guage that has English-like words, rather than English. The use of letters as
inputs, however, creates more ambiguity for the model than phonemes would
(e.g., the grapheme /o/ in doll and poll would be pronounced differently in
British English). As I write, I am analyzing further lexica with phonological cat-
egories, and the results are fully consistent with the observations in Chapter 5.

Despite these linguistic simplifications, the model is a step towards neurobi-
ological realism. As pointed out by Magnuson and Crinnion (2022) in a recent
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review, “future progress will likely require a deeper understanding of the neuro-
biological foundations of speech processing guided by innovative, neurally-realistic
models” (p. 490). Thus, I will focus on three main future projects that lever-
age biological plausibility to address some relevant questions in spoken word
recognition.

6.3.1 Phonological variability, suprasegmental information,

and incremental learning

The lexica that were used in Chapters 4 and 5 were borrowed from previous
studies, or designed ad-hoc, to test the implications of phonological overlap.
However, they also lack other important properties of spoken words in English,
e.g., variability in the duration of phonemes, stress, and syllabic structure. Pre-
cise acoustic information is critical in spoken word recognition (Fox et al., 2020;
Gwilliams et al., 2018; McQueen, 2007) and including it in the model is likely
to change the outcome of the selection process. In some cases, variability in
phoneme duration, or the presence (absence) of stress may contribute to coping
with phonological overlap. Thus, testing the model with more realistic phono-
logical units is desirable and may provide further insights. For example, it is
currently unclear whether word selection in the network would still work when
phonological segments do not have constant length. Secondly, using more re-
alistic stimuli would also allow a direct comparison of modeling results with
behavioral and electrophysiological studies. Such comparisons would help to
test the model against experimental evidence, beyond the computational prin-
ciples of word recognition established in Chapter 5. Since the dendritic model
evolves in real physical time, it is expected to yield fine-grained temporal pre-
dictions that might inspire novel experiments (Magnuson et al., 2013; Vitevitch
et al., 2018).

Another change that one could introduce concerns the learning protocol in
the associative phase. Phonemes and words were presented together during
learning, with no intermediate sub-lexical representations between phonemic
segments and words. However, access to representations such as syllables or
morphemes has been observed experimentally (Frye et al., 2008; Gwilliams,
2020; Tabossi, Collina, Mazzetti, & Zoppello, 2000). The simultaneous learning
of pre-lexical features and words is also at odds with evidence from language ac-
quisition, which indicates that babies learn short sub-lexical units first (Mehler,
Segui, & Frauenfelder, 1981). Future simulations should consider suprasegmen-
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tal structures and test whether incremental learning of phonemic, syllabic, mor-
phemic, and word-form assemblies contributes to word recognition. Presumably,
this could enhance the recognition of long words and also the discrimination of
short ones in lexica with large phonological overlap. Moreover, consolidating
sub-lexical assemblies first could boost the learning speed for novel words and
enable fast mapping of phoneme sequences to novel words (Constant, Pulver-
müller, & Tomasello, 2023).

6.3.2 Explicit modeling of acoustic and phonetic features

The present model assumes that the transformation from low-level acoustic fea-
tures to abstract phonemic categories (e.g., phonemes and allophones, Mitterer
et al., 2018) occurs in an unspecified upstream circuit. Thus, I omit modeling
normalization, which is one of the components of the pre-lexical stage. This
operation parses acoustic features into categories (Magnuson et al., 2013; Mc-
Queen, 2005) and is believed to occur in the STG (Bidelman, Moreno, & Alain,
2013; Chang et al., 2010). Normalization is necessary to retrieve prototypical
word forms from the variable acoustic production of human speakers. In ad-
dition, listeners can also adapt their categorical priors to the acoustic context,
which is thought to occur via feedback connections from lexical areas (de Lange
et al., 2018; Kleinschmidt & Jaeger, 2015).

A model of normalization should account for the mapping of variable speech
onto word forms. It would provide insights into how acoustic features are uni-
fied into sub-segmental (e.g., voice onset time) and segmental (e.g., phonemes)
categories and how brain networks integrate and adapt to novel acoustic inputs.
However, to include these computations in the model, one must first identify a
meaningful encoding of sensory information reaching the cortex. This can be
done through spike encodings that reproduce the physical transformations of
acoustic signals into spike trains occurring in the cochlea. I re-implemented two
recently published spike encodings (Cramer, Stradmann, Schemmel, & Zenke,
2020; Pan et al., 2020) in a point-neuron network model without dendrites. In
these experiments, STDP did not lead to the emergence of categorical represen-
tations of the variable acoustic inputs. Future studies that harness the temporal
integration properties of dendrites might lead to different outcomes.

Increased linguistic realism would come at the cost of more input features and
larger superposition between cell assemblies in the network. Although I have not
observed adverse effects of lexicon size on recognition (Chapter 5, Appendix A),
the overlap of phonological features may negatively affect network behavior. A
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solution suggested by biology is the spatial organization of receptive fields in
the STG, tuned to hierarchies of increasingly longer chunks of inputs (Berezut-
skaya et al., 2017; Sjerps & Chang, 2019). To reproduce this topology, one may
consider cortical circuits with spatial structure and non-random synaptic con-
nections. Such a circuit could receive input projections that are organized based
on similarities between phonological units.

6.3.3 Lexical integration in cortical circuits

Eventually, one should aim to include the last stage of word recognition in the
model, lexical integration. This would imply modeling the interface between
phonology and semantics (Jackendoff, 2007) and thus the unification of lex-
ical items into sentences (Fitz et al., 2020; Hagoort, 2005; Uhlmann, 2020).
Also in this case, knowledge of the human brain biology can guide the model
constituents. In neocortex, neurons are organized into six layers, each express-
ing neuronal types with diverse morphology, electrophysiology, and connectiv-
ity (Braitenberg & Schüz, 1998b; Palomero-Gallagher & Zilles, 2017; Zilles &
Amunts, 2009). Computational studies indicate that this structure influences
both the ways in which information is processed within the local circuit and
how it is integrated across brain areas (Haeusler & Maass, 2007; Haeusler et al.,
2009; Heinzle, Hepp, & Martin, 2007; Markram et al., 2015).

These studies are based on the principle that the layer structure and its internal
connectivity, known as canonical microcircuit, is a fundamental computational
unit of the neocortex (Bastos et al., 2012; Douglas & Martin, 2007). My network
model, which features Tripod neurons with only the basal region of pyramidal
cells, would loosely correspond to the superior layers of a microcircuit. It lacks
the large pyramidal cells of the inferior layers from which cortical-cortical con-
nections depart (Harris & Shepherd, 2015), the rich apical dendritic tufts that
collect feedback from the top layers (Larkum et al., 2007), and the highly inter-
connected granular cells of the central layer, which gather most of the incoming
connections from the thalamus (Atencio, Sharpee, & Schreiner, 2009).

In the present model, the lack of specificity in the populations that receive,
process, and relay the incoming signals may reduce the present model’s capacity
to integrate acoustic and contextual information and prevent it from accounting
for language processing beyond single-word recognition. A neurobiologically
grounded model of word recognition in context would require the implementa-
tion of the rich layer structure of the neocortex. Adding two more layers, i.e.,
the granular and infragranular ones, together with the relevant neuron types and
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connectivity, would already offer new insights into the neuronal dynamics sup-
porting lexical integration. To this aim, our group has started developing a Julia
software package that embeds the Tripod neuron in a reduced layer structure.
Modeling this structure would greatly increase biological realism and therefore
take the model one step closer to exhibiting human-like language behavior.

6.4 Final remarks

This dissertation has established a computational bridge between the cellular
biology of the brain and the psychological operations carried out during word
recognition. The model accounts for some aspects of word recognition, but much
has yet to be done to understand the biological foundations of our capacity
for language. Nevertheless, the dynamical system presented here instantiates
a constructive model that connects physical variables, dendrites, and synapses
to linguistic notions such as phonemes, and words. It constitutes a mapping hy-
pothesis between the units of language and basic neurobiological processes. To
validate this hypothesis, it is necessary to complement the simulation work with
experiments that can test the model’s predictions. This can only be achieved with
interdisciplinary collaborations between theorists and experimenters. I hope the
work presented here will foster future interaction between researchers in lan-
guage modeling, experimental psycholinguistics, and computational neurobiol-
ogy.
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Nederlandse samenvatting

Wat gebeurt er in onze hersenen als we een woord herkennen? Het beantwoor-
den van deze vragen vereist het doorgronden van het woordherkenningsproces
en hoe onze hersenfysiologie dit mogelijk maakt. De psycholinguïstiek gaat voor-
uit in het begrijpen van hoe woorden in menselijke taal worden gebruikt, maar
we moeten nog veel leren over welke delen van de hersenen dit ondersteunen.
Dit proefschrift verbindt de psychologie van woordherkenning met neurobiolo-
gie; het stelt computermodellen voor die de fysiologie van zenuwcellen associ-
ëren met het leren en onthouden van gesproken woorden. De modellen imple-
menteren vergelijkingen die rekening houden met de biologische processen die
plaatsvinden in de neuronen, zoals de elektrische stromen in of door cellen. De
vier experimentele hoofdstukken hoofdstukken gaan van een model van neuron-
fysiologie naar het bestuderen van de rekencapaciteit van een corticaal netwerk.
In de hoofdstukken 2 en 3 wordt een nieuw model van de zenuwcel voorgesteld
en geanalyseerd, het Tripod-neuron, dat nauwkeuriger is in het reproduceren
van functies en dynamiek van neuronen die in in-vivostudies zijn waargenomen.
Het model introduceert vergelijkingen voor de dendrieten, enkele substantiële
anatomische delen van de zenuwcellen die vaak zijn verwaarloosd in computa-
tionele studies. Computersimulaties geven aan dat menselijke dendrieten het
geheugen van het ontvangen ingangssignaal gedurende een korte tijd behou-
den, ongeveer 0.1 s. Hoofdstuk 5 bewijst dat dit vermogen in netwerken van
neuronen kan worden gebruikt om sequenties op de tijdschaal van menselijke
taal te herkennen, zoals woorden met overlappende klanken (god en dog). In
hoofdstuk 6 wordt het model met succes vergeleken met klassieke resultaten
in de psycholinguïstiek. Het netwerk houdt zich aan de rekenprincipes die zijn
afgeleid van menselijk gedrag en geeft voorspellingen over verschijnselen die
moeilijk experimenteel te onderzoeken zijn. Omdat het model sterk is gebaseerd
op de werkelijke hersenbiologie, biedt het huidige onderzoek een fysiologische
verklaring voor hoe woorden worden geleerd, onthouden en opgeroepen tijdens
spraak. De resultaten geven aan dat dendrieten, langzame excitatoire recepto-
ren en remmende controle coördineren voor het vormen en heractiveren van
netwerkgeheugens met sequentiële structuren, zoals gesproken woorden.
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English Summary

What happens in our brains when we recognize a word? How do humans dif-
fer from animals in understanding speech sounds? What goes wrong when we
don’t grasp it? Answering these questions requires fathoming the word recogni-
tion process and how our brain physiology enables it. Psycholinguistics strides
in understanding how words are used in human language, but we still have
much to learn about which parts of the brain support this. This thesis bridges
the psychology of word recognition with neurobiology; it proposes computatio-
nal models that associate the physiology of nervous cells with the learning and
recall of spoken words. The models implement equations that account for the
biological processes occurring in the neurons, such as the passage of electric
currents within or across cells. The four experimental chapters build up from a
model of neuron physiology to studying the computational capacity of a cortical
network. Chapters 2 and 3 propose and analyze a novel model of the nervous
cell, the Tripod neuron, that is more accurate in reproducing functions and dy-
namics of neurons observed in in-vivo studies. The model introduces equations
for the dendrites, some substantial anatomical parts of the nervous cells that
have often been neglected in computational studies. Computer simulations in-
dicate that human dendrites maintain the memory of the input signal received
for a short time, approximately 0.1 s. Chapter 5 proves this capacity can be leve-
raged in networks of neurons to recognize sequences on the timescale of human
language, such as words with overlapping sounds (god and dog). In Chapter 6,
the model is successfully compared to classical results in psycholinguistics. The
network adheres to the computational principles derived from human behavior
and provides predictions on phenomena that are hard to investigate experimen-
tally. Because the model is highly constrained to actual brain biology, the present
study offers a physiological explanation of how words are learned, memorized,
and recalled during speech. The results indicate that dendrites, slow excitatory
receptors, and inhibitory control coordinate for forming and reactivating net-
work memories with sequential structures, such as spoken words.
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Sommario italiano

Cosa succede nel nostro cervello quando riconosciamo una parola? Perché gli
esseri umani differiscono dagli animali nella comprensione dei suoni del par-
lato? Cosa va storto quando una parola ci sfugge? Per rispondere a queste
domande dobbiamo sapere come le parole vengono riconosciute nella nostra fi-
siologia cerebrale. La psicolinguistica ha largamento progredito nello spiegare
come vengono utilizzate le parole nel linguaggio umano, ma abbiamo ancora
molto da imparare su quali parti del cervello supportano questa capacità. Que-
sta tesi mira a conciliare le teorie psicologiche sul riconoscimento delle parole
con le più recenti scoperte in neurobiologia; propone modelli computaziona-
li che associano la fisiologia dei neuroni all’apprendimento e al richiamo delle
parole pronunciate. I modelli implementano equazioni che tengono conto dei
processi biologici che si verificano nelle cellule, come il passaggio di correnti
elettriche all’interno o tra neuroni. I quattro capitoli sperimentali procedono da
un modello di fisiologia del neurone allo studio della capacità computazionale
di una rete della corteccia. I capitoli 2 e 3 introducono un nuovo modello della
cellula nervosa, il Tripod neuron, più accurato nella riproduzione delle funzioni
e della dinamica dei neuroni osservati negli studi in vivo. Il modello introdu-
ce equazioni per i dendriti, alcune parti anatomiche delle cellule nervose che
sono spesso trascurate negli studi computazionali. Le simulazioni indicano che
i dendriti umani mantengono la memoria del segnale elettrico ricevuto per un
breve periodo, circa 0.1 s. Il capitolo 5 dimostra che questa capacità può essere
sfruttata nelle reti di neuroni per distinguere sequenze sulla scala temporale del
linguaggio umano, ad esempio riconoscere parole con suoni sovrapposti (Roma
e amor). Nel Capitolo 6, il modello viene confrontato con successo con i risul-
tati classici della psicolinguistica. Aderisce ai principi computazionali derivati
dal comportamento umano e fornisce previsioni su fenomeni difficili da inda-
gare sperimentalmente. Poiché il modello è vincolato alla biologia cerebrale, il
presente studio propone una spiegazione fisiologica di come le parole vengono
apprese, memorizzate e richiamate nel parlato. I risultati indicano che i dendriti,
insieme ad alcuni ricettori e al controllo inibitorio, coordinano la formazione e
la riattivazione di memorie di rete con struttura sequenziale, come le parole.
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