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12 1 General introduction

1.1 Recognizing a word

Imagine yourself entering a supermarket, busy recollecting all the items on your

grocery list. Suddenly, your attention is caught by a sound. You hear a fragment

of a sentence from the storeÕs speakers. You hear the wordHIMALAYA.

Before you understand it is about a trendy type of table salt, you canÕt help but

think of a faraway mountain peak covered with snow.

How is it possible that a word and its meaning can be retrieved from a brief se-

quence of sounds? The present manuscript investigates the neural mechanisms

that make possible the association of sequences of sounds to words, in a biolog-

ically constrained, computational model of the human brain.

Figure 1.1: Acoustic signals and semantic content of the word HIMALAYA
(A) Waveform graphs of different pronunciations of the word HIMALAYA, from
three English speakers. The horizontal axis represents time, and the vertical axis
represents the amplitude of the air pressure. (B) One of the many pictures of
the Himalayan mountain chain.

When a word is uttered, the sound generated by the vocal apparatus of the

speaker reaches the ears of the listeners. There, the cochlea transforms the

acoustic signal into an electrochemical one. Following the projections of the

auditory neurons in the brain stem, it traverses the central nervous system and

reaches the temporal lobe, where the primary auditory cortex is located. Once

in the forebrain, this piece of information generates a cascade of neuronal activ-
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ity that ultimately produces, to the attentive listener, the recollection of a word.

This entire process occurs in a few hundreds of milliseconds.

An example of a speech fragment is offered in Fig.1.1A. The waveforms por-

trayed show three different acoustic realizations of the English word HIMALAYA

Ð the reader should intend the graphs as the sounds they represent, acoustic sig-

nals rather than visual ones. The speech fragments show two properties. First,

even though they present peaks and valleys, they have no iconic relationship

with the mountain chain located north of the Indian subcontinent (Fig.1.1 B),

and second, they differ from each other. Remarkably, in the face of arbitrary

sound-meaning relationships and intrinsic variability across speakers, any per-

son who previously encountered the English word HIMALAYA will, likely, recog-

nize each of the three acoustic signals presented.

Indeed, the sound waves in Fig.1.1A conceal a third property, which is some-

how obvious to the attentive listener. The three speech signals are composed

of a sequence of sounds that most English listeners will recognize in the same

discrete set of phonemes,/hIm@laI@/1. Independently of its speciÞc acoustic real-

ization, the word HIMALAYA is recognized whenever the listenerperceivesthat

sequence of phonemes. Or, in more general terms, words are retrieved when

there is a sufÞcient match between the phonological information in the acoustic

signal and the wordÕs phonological form in the mental lexicon of the listener.

Spoken word recognition depends on the human capacity ofmapping an unin-

terrupted stream of phonemes onto a series of word forms stored in memory(Mag-

nuson & Crinnion, 2022, p. 462). Humans rely on this faculty for comprehend-

ing speech and communicating. When it is impaired, it carries dire consequences

for the speaker (Mirman & Britt, 2014). Even though spoken word recognition

(SWR) is central in human language, and much work has been done to charac-

terize it (Magnuson & Crinnion, 2022; McQueen, 2007; Vitevitch, Siew, & Cas-

tro, 2018), it is not yet clear which are its neuronal underpinnings. It is not

understood how lexical retrieval is implementedin the human brain.

The present work attempts to address this open issue and to contribute with

theoretical insights toward a neurobiological explanation of SWR capacity. The

study is carried out by simulating a network of biophysical neuron models. The

network aims to reproduce the activation of neuronal populations represent-

ing word-form memories and phoneme-like units. By mapping a set of abstract

linguistic representations to the dynamics of the modeled neurons, I propose

1The International Phonetic Alphabet (IPA) transcription was obtained from http://tom
.brondsted.dk/text2phoneme/
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a linking hypothesis, a bridge, between the computational primitives of word

recognition and the neurobiological principles that govern brain processes.

The Introduction chapter addresses some necessary preliminaries to the inves-

tigation carried out in the experimental chapters.

Section 1.2 sets the boundary conditions for a mechanistic explanation of SWR

and frames it as a computational problem. On this base, I present the require-

ments that a model of word recognition must satisfy to be considered biologically

explanatory. The section outlines the dynamical system framework as a work-

ing hypothesis for a model that describes linguistic capacities based on neural

mechanisms. Section 1.3 summarizes linguistic and neurobiological evidence

on SWR. The section describes the fundamental psycholinguisticexplanandathat

the model must address. Finally, Section 1.4 offers a summary of the neuroscien-

tiÞc evidence that must be included in the model to constrain its implementation.

The biological processes described in this section are theexplanansof the word

recognition capacity.

1.2 Computational models of spoken word

recognition

1.2.1 Language and the computational brain

Word recognition is a linguistic capacity that is at play within the human meaning-

making cognitive system (Hagoort, 2020). This capacity is acquired during de-

velopment and is mastered only if the individual has sufÞcient cognitive abilities

and is part of a language community. Although spoken communication relies

on other organs, such as the vocal system and the ears, clinical evidence in sub-

jects with full body paralysis indicates that a functioning brain is a necessary and

sufÞcient condition to recognize spoken words (Fedorenko & Thompson-Schill,

2014; Hagoort, 2014; Metzger et al., 2023; Rowley, Rogish, Alexander, & Riggs,

2017). Thus, the core operations supporting the recollection of a word memory

occur according to the principles that govern the brainÕs neurobiology (Kandel,

Schwartz, Jessell, Siegelbaum, & Hudspeth, 2012; Luo, 2015; Sterling & Laugh-

lin, 2015) A neurobiological explanation of the word recognition capacity must

account how this capacity is realized in the physiology of the human brain. This

is not an easy task because it requires understanding two extremely complex

phenomena: the human language and the brain.
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Traditionally, cognitive sciences look at these two phenomena together through

the lens of computation2(CCTM Rescorla, 2020). Word recognition can be de-

scribed as a linguistic computational operation, and the brain is the machine

that operates this transformation. However, as we show in the following, not all

computational descriptions of language capacities are equivalent. The introduc-

tion of computing machines in the early half of the last century fostered the idea

that computers can be used as metaphors for the human brain (Von Neumann,

1958). In accordance, psychologists and linguists dedicated a great deal of effort

to deriving computational explanations of the language function. Word recog-

nition has been one of the Þrst to be addressed with a computational model.

The Logogen model by Morton (1969) could compute quantitative predictions

of lexical decisions of human subjects during single-word recognition. Remark-

ably, the model was based on a threshold mechanism that vaguely resembled the

logical calculus of nervous activity described thirty years earlier by McCulloch

and Pitts (1943).

Over the following Þfty years, several computational models were devised to

reproduce the input-output relationship observed in experimental data. New

models were often introduced to explain aspects of human behavior that were

not matched by the earlier models or to propose simpler algorithmic solutions

(Magnuson & Crinnion, 2022; Weber & Scharenborg, 2012). The underlying

hypothesis of this research agenda is that an increased match between the model

output and human behavior (among which neural markers) indicates that the

brain computations are similar to those achieved in the model (Caucheteux &

King, 2022). In this sense, they model the functions, and algorithms, of the

human brain.

Notably, the pursuit of computational models was successful. In a computa-

tional sense, the problem of word form recognition is reasonably solved. For

example, Bayesian models of cognition account for human behavior in extract-

ing linguistic categories from variable speech sounds and retrieving the correct

word (Kleinschmidt & Jaeger, 2015; Norris & McQueen, 2008). However, these

computational models do not explain how the word recognition capacity relates

to the human wetware, the brain circuitry (Poeppel & Idsardi, 2022). Indeed,

the multiplicity of algorithmic solutions in psycholinguistics spoken word recog-

nition models reveals that cognitive computational models are unconstrained.

There are many, perhaps inÞnite, ways to achieve word recognition. This wealth

2Computation is the action of a physical system transforming inputs into outputs, following
a set of rules.
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of solutions becomes a problem if one aims to explain theone which is imple-

mented in the human brain.

1.2.2 Cognitive models are not causal models of the brain...

The explanatory limits of cognitive-computational models become evident if we

observe the brain as a complex information-processing system. In his inßuential

work (Marr, 2010, I edition 1982), David Marr postulates that the processing

of information in the brain can be analyzed at three levels: computational, al-

gorithmic, and implementation. The Þrst concerns the computational problem

the system is solving (i.e., retrieving the word form that is associated with the

acoustic input). The second level relates to the algorithm that the system uses

to solve that problem (e.g., searching in a vocabulary? or creating a shortlist

of matching items?); and the third to how that algorithm is implemented in the

brainÕs wetware.

Cognitive computational models of word recognition address the Þrst two lev-

els. They carry out the expected linguistic computation with a Þne-grained de-

scription of the expected input-output relationships (e.g., frequency effects in

SWR, Brysbaert, Mandera, & Keuleers, 2018), and they propose algorithms to

achieve them. However, these models compute on symbolic abstractions, whose

relationship to the implementational substrate of the brain is opaque (Fitz, Ha-

goort, & Petersson, 2024). In cognitive models, it is difÞcult to establish a link

between the model representations and the neurobiological parts and processes

that govern brain activity. This has important consequences for the explanatory

status of these models. According to Kaplan and Craver (2011)

[ ...] the line that demarcates explanations from merely empirically

adequate models seems to correspond to whether the model de-

scribes the relevant causal structures that produce, underlie, or main-

tain the explanandum phenomenon.

And further, for models to be explanatory

(a) the variables in the model correspond to components, activities,

properties, and organizational features of the target mechanism that

produces, maintains, or underlies the phenomenon, and (b) the (per-

haps mathematical) dependencies posited among these variables in

the model correspond to the (perhaps quantiÞable) causal relations

among the components of the target mechanism.
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The authors refer to these principles as the model-to-mechanism-mapping

(3M) requirements. The concept of mapping is pivotal here and explicitly refers

to the implementational level of description. If a cognitive model does not spec-

ify the neurobiological variables that correspond to its algorithmic components,

it is non-explanatory with respect to the causal generators of behavior (Fitz et al.,

2024). Similarly, Poeppel and Embick (2005) argue that existing neurolinguistic

approaches fail to establish explicit links between linguistic categories and brain

biology because of two intrinsic problems of the neuro-linguistics research pro-

gram, the ontological incommensurability and granularity mismatch problems;

together the Mapping Problem(MP). The Þrst refers to the fact that linguistics

and neurobiological ontologies rely on different foundational entities; the latter

is that these ontologies have spatial and temporal scales that are not matched

(Fig.1.2).

Figure 1.2: Fundamental ontological units of linguistics and neuroscience
The lists provide a canonical inventory of neurobiological and linguistic phenom-
ena. Each domain is governed by principled relationships between the items, de-
noted as vertical connections. Contrarily, the interconnections across disciplines
are arbitrary (horizontal connections). Figure from Poeppel and Embick (2005).

Cognitive computational models of human and sWR the speech units and

words are represented as abstract categories with a transition probability, or

in some cases, as nodes of a network (Grossberg, 2003; Hannagan, Magnuson,

& Grainger, 2013; Marslen-Wilson, 1987; McClelland & Elman, 1986; Norris &

McQueen, 2008). The nodes and the probabilities are underspeciÞed biological

entities. Thus it is not possible to trace these units in the brain activity (MP), nor

it is not possible to derive any causal dynamics to govern their interaction (3M).
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1.2.3 ... but dynamical systems models are

An alternative strategy to establish a mapping between linguistic and neurosci-

entiÞc categories is to address MarrÕs computational level starting from a biologi-

cally constrained level of implementation. This can be achieved if the neural and

linguistic processes are described in a dynamical systems framework. Dynamical

systems express the evolution of a set of variables through differential equations

and are extensively used in neuroscience (Gerstner, Kistler, Naud, & Paninski,

2014). For example, the dynamical systems are used to model the membrane

potential of neurons, which evolve in physical time and have physical units of

measurement. Thus, if the entities of linguistics could be reformulated in the

dynamical systems framework, one could aim to map language to the ontology

of brain parts with causal explanatory power.

Figure 1.3: Schematic of an adaptive information processing system for lan-
guage
The processing dynamicsP, driven by input ( ! ), state (" ), and model param-
eters (M), produces its own internal state and possibly a language output (! ).
The processing is coupled with learning dynamicsL, it enables information en-
coding and retrieval across timescales. On short timescales,L acts as an active
processing memory. Figure from Fitz et al. (2024).

One crucial step is to formulate a theory of linguistic processing that happens

in physical time, as the temporal evolution of linguistic variables. This approach

is called causal modeling of language, and it has recently been proposed by

(Fitz et al., 2024) and investigated in a biological model of sentence processing

by Uhlmann (2020). Language processing is expressed as an adaptive dynam-
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ical system S, which couples a neural information processing deviceP and an

adaptive mechanism for storage and learningL (Fig.1.3). The operations in P

are driven by linguistic inputs ( i t ! ! ), the internal state of the system (st ! " ),

and the linguistic knowledge both acquired with previous experience and en-

coded in the human genome (mt ! M). These three elements can be combined

in a differential equation P : ds = P(s, i , m)d t that yields a new internal state

(s" ! " ) and, optionally, an output ( ! ). The adaptive mechanismL follows takes

a similar shape but operates on longer timescales. Its arguments are the internal

states (st ), the linguistic knowledge ( mt ), and the developmental trajectory of

the individual over time ( Tt ). The adaptive mechanism updates the speakerÕs

linguistic knowledge which is used recursively to parse new stimuli.

In addition, the states and dynamics of a dynamical system can also be inter-

preted as the stages of a computation. The equationsL and P are the inÞnitesi-

mal version of the transition table of a Turing machine (Fitz et al., 2024). They

describe the input-output transformations, the state updates occurring during

the computation, and its memory structure. In an abstract sense, memory is an

adaptive change in the systemÕs state that encodes information about past events

(Chaudhuri & Fiete, 2016). Computing devices often distinguish between a fast

and volatile short-term memory (STM), and a more persistent long-term mem-

ory (LTM). In computing machines, memories are organized in data structures,

which are necessary to store and re-access the memory; the data structures in

which LTM and STM are organized in neurobiology are not expected to be the

same. In dynamical systems, the organization in data structures is reßected in

the hierarchy of dependencies and timescales among the coupled variables in

the formalism. All the variables in the system evolve according to one or mul-

tiple timescales on the basis of which long and short-term memory can be dis-

tinguished. In word recognition, acoustic inputs ( i t ) force the internal states

along a trajectory # that is governed by processing memory of the phonologi-

cal evidence that has accumulated (st ), and the long-term memory of abstract

linguistic categories previously acquired (mt ).

1.2.4 A biologically constrained model of word recognition

The dynamical system view ties together brain operations, linguistic processing,

and computing machines. In theory, it provides a solution to the ontological

incommensurability problem. However, the problem of granularity mismatch

remains open. Because of their different scales and dynamics of interaction, it

is not trivial to determine which linguistic and neuroscientiÞc elements can be
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mapped (Fig.1.4). Moreover, it is not clear how to evaluate the adequacy of this

mapping. To solve this conundrum, I adopt three design choices common in the

physical sciences, which determine the modelÕs structure and scope and will help

deÞne the biophysical model.

¥ First, the model aims to elucidate the computations supporting the capacity

of word recognition. It should only include those biological and linguistic

elements that are necessary to it.

¥ Second, the modelÕs scope is limited to a range of timescales. Only neuro-

biological and linguistic entities that evolve within the timescales of word

recognition enter the model.

¥ Third, the model is a computational simulation. The simulation integrates

biophysical equations whose descriptive accuracy has to be independently

veriÞed. Their evolution through time deÞnes an input-output transfor-

mation, the linguistic computation.

The remainder of this introduction attempts to ßesh out these design require-

ments, drawing on experimental work in psycholinguistics and neuroscience.

1.3 Representations and computations in spoken

word recognition

1.3.1 From sounds to abstract representations

At the computational level of analysis, word recognition is often divided into

two stages of processing, pre-lexical and lexical (McQueen, 2007; Scharenborg,

Norris, Bosch, & McQueen, 2005; Vitevitch et al., 2018). The pre-lexical stage

categorizes the input and transforms the sensory experience of the acoustic sig-

nal into a discrete perceptual experience of the linguistic sign (Liberman, Harris,

Hoffman, & GrifÞth, 1957; Warren, 1970). The second computational stage con-

cerns word retrieval from the mental lexicon. At this stage, word forms are ac-

cessed based on the pre-lexical and contextual evidence, if available (McQueen,

2005). The word form memory that optimally Þts the phonological and contex-

tual constraints is selected, and the corresponding lexical item is retrieved. (Ha-

goort, 2019; McQueen, 2005; Scharenborg et al., 2005; Vitevitch et al., 2018)
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The pre-lexical stage infers abstract representations, such as phonemes, de-

spite the idiosyncrasies of speakers and variable acoustic contexts. This chal-

lenge is known as the Ôlack of invarianceÕ problem (Liberman, Cooper, Shankweiler,

& Studdert-Kennedy, 1967). A shared view in the psychology of language is

that speakers solve the problem through an active process of speech normal-

ization. They infer phonological categories from the contingent sound, access

word memories based on these experience-independent categories (Eisner & Mc-

Queen, 2018; Nusbaum & Magnuson, 1997), and parse the speech sounds into

a hierarchy of linguistic representations (Jackendoff, 2007; McQueen, Cutler,

& Norris, 2006). However, the form of these abstractions is still debated, and it

is not yet clear whether the categorical representations that linguists postulate

have one-to-one correlates in the neural processes that support speech compre-

hension.

Because of the uncertain nature of pre-lexical forms, a more coarse-grained

classiÞcation divides them into segmental and supra-segmental categories. The

segmental features are phoneme-sized and the suprasegmental include syllables,

prosodic words, lexical stress patterns, and intonational phrases, which are nec-

essary to distinguish among words in certain languages (McQueen, 2005). Their

neural correlates are organized in an ascending hierarchy of spectro-temporal

complexity, in which both linguistic and non-linguistic categories can be traced

(e.g., temporal landmarks and speaker identity, Berezutskaya, Freudenburg,

GŸ•lŸ, van Gerven, & Ramsey, 2017; Evans & Davis, 2015; Formisano, De Mar-

tino, Bonte, & Goebel, 2008; Hullett, Hamilton, Mesgarani, Schreiner, & Chang,

2016). Although the neurobiological evidence is inconclusive on which are

the right pre-lexical representations that a word recognition model should con-

sider, the spatial and temporal scales at which segmental and suprasegmental

processes take place are clearer (Formisano, 2019; Sjerps & Chang, 2019; Yi,

Leonard, & Chang, 2019).

Both speech and other sounds activate the primary auditory cortex (PAC, lo-

cated on HerschlÕs Gyrus in humans), but only sounds whose spectro-temporal

structure is sufÞciently complex (such as phonetic features) induce activation of

the Superior Temporal Gyrus (STG). The HG and the STG are anatomically ad-

jacent, and the neural signals propagate within 50 ms from the PAC to the STG.

When the speech chunks are sufÞciently long (on the order of 1 s, thus con-

taining suprasegmental information) speech-selective brain activity also invades

the Superior Temporal Sulcus in a spatiotemporal pattern that moves ventro-

medial from the posterior STG (120 ms) to reach the mid-STS within 250 ms.
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In this time period, the ventromedial gradient of activity moves towards the

anterior STG and Middle-Temporal Gyrus (MTG), where the neural correlates

of word form memories activate (Armeni, Willems, van den Bosch, & Schoffe-

len, 2019; Cibelli, Leonard, Johnson, & Chang, 2015; Ojemann, 2013; Ojemann,

SchoenÞeld-McNeill, & Corina, 2009).

1.3.2 UniÞcation of phoneme sequences into words

The retrieval of word forms from abstract representations is achieved in the lex-

ical stage of word recognition. While the pre-lexical stage comprises a complex

taxonomy of representations, the lexical stage is dominated by a single one, i.e.,

word form (McQueen, 2007). The lexical stage is divided into three phases that

unfold in a cascaded, incremental stream. Words are pre-activated in parallel

(lexical access), and when sufÞcient evidence is available one of the lexical can-

didates is selected and integrated into the sentence meaning (lexical selection,

Marslen-Wilson & Zwitserlood, 1989; McQueen, 2007). Unless contextual infor-

mation already excludes some of the candidates, lexical selection usually occurs

at the wordÕsuniqueness point, that is, the Þrst speech unit that allows one to

distinguish between the given word and other competitors in the lexicon.. Even-

tually, the lexical item is integrated into the sentence context (Hagoort, Hald,

Bastiaansen, & Petersson, 2004).

Word form memories are accessed based on the correspondence between the

pre-lexical evidence and the phonological prototype of the word form in the lex-

icon. In most modern languages, the ratio between the items contained in the

lexicon and the number of segmental and suprasegmental speech units in the

language is strikingly high. One immediate consequence of the wealth of word

forms is that multiple words share the same pre-lexical features and can be dis-

tinguished only based on their sequential order. Some words are even contained

in other words. For example, the lexicon of an average English speaker contains

on the order of 50 thousand words, composed of less than 50 speech sounds,

among which PEST (pEst) and PETS (pEts), and BONE (b@Un) and TROMBONE

(tromb@Un). Thus, activation of word form representations requires the compo-

sition of pre-lexical features which must be sensitive to serial order3, and inte-

grates information at multiple timescales (e.g., segmental and suprasegmental).

3The composition of pre-lexical elementary linguistic units can also be viewed as a form of
UniÞcation over the pre-lexical memories activated by the speech input (Memory, UniÞcation,
Control model, Hagoort, 2013)
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Crucially, composition is achieved on short-lived, transient information that re-

quires a processing memory.

The fact that the same phonemes presented in different order must be mapped

to different words is sometimes referred to as the Temporal Order Problem (TOP)

(Magnuson, Mirman, & Myers, 2013). Computational models of word recogni-

tion must be able to solve it and retrieve words with full phonological overlap.

The most common algorithmic solution consists of adding an extra feature to

the pre-lexical unit that speciÞes the position in the word, for the onset time

of the phoneme. We refer to these units as time-coded or position-dependent

pre-lexical representations. In connectionist models (e.g., (TRACE McClelland

& Elman, 1986) and (TISK Hannagan et al., 2013)), these units, be they acous-

tic phones, allophones, or phonemes, activate supra-segmental nodes that use

the temporal features of the pre-lexical representation to select the correct word

form.

Crucially, the assumption of position-dependent representation does not re-

ßect experimental evidence on the neural correlates of speech integration. For

example, Gwilliams, King, Marantz, and Poeppel (2022) shows that phonetic

content is encoded similarly at different serial positions within a word, indi-

cating that position-speciÞc (or context-dependent) features may not be part of

the neurocomputational machinery for word recognition. A possible way out

from the impasse is proposed by Yi et al. (2019). The authors suggest that the

acoustic and temporal landmark features resolved in the STG are combined by a

specialized temporal circuit, which time-stamps the phonemic features and makes

them position-dependent units. However, the model is only a sketch and it is not

demonstrated that this computation can be carried out in neurobiology. In any

case, the synthesis of position-dependent features by itself does not explain how

these features are maintained in processing memory, nor how their composition

is achieved. Fig.1.4B, borrowed from Gwilliams, Linzen, Poeppel, and Marantz

(2018), highlights that these are missing pieces of the puzzle in our understand-

ing of human word recognition.

1.3.3 What must be explained?

I conclude this section with a brief recapitulation of the linguistic elements and

processes that must be included in the model to be explanatory of the word

recognition capacity.
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Figure 1.4: Algorithms for combining phonological information into word
forms
The top panel shows the integration of a hierarchy of acoustic and linguistic
features in a word recognition model by Gwilliams et al. (2018). The acoustic
input is parsed into linguistic units of increasing granularity, up to the phoneme
level. Phonemes are then composed into sequences iniv. It is not known in
which cortical region this operation occurs (bottom panels), nor which neural
mechanisms support it.

¥ Linguistic units activate representations distributed across the entire STG,

suggesting that multiple and overlapping neural populations are co-activated

for each linguistic unit (Mesgarani, David, Fritz, & Shamma, 2014; Yi et

al., 2019).

¥ The timescales of these representations are on the order of 20 ms to 150 ms

for the pre-lexical units (Gwilliams et al., 2018) and 200 ms to 500 ms for

lexical units (Tucker et al., 2019).

¥ The computation that supports the retrieval of word memories from pre-

lexical features, e.g., phonemes, is a many-to-many mapping with parallel

and fast access to several word forms (Allopenna, Magnuson, & Tanen-

haus, 1998; Marslen-Wilson & Welsh, 1978).

¥ The selection of word forms is mediated by competition between lexical

neighbors (Luce & Pisoni, 1998; McQueen, Norris, & Cutler, 1994).
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¥ Access and selection rely on ßeeting sensory information that is maintained

in processing memory. Because of phonological overlap, this memory must

also encode the order in which the pre-lexical representations were acti-

vated (Magnuson et al., 2013; Yi et al., 2019).

1.4 Brain anatomical elements and computations

The brainÕs anatomy and physiology are the second term of the mapping hy-

pothesis I intend to formulate. In accordance with the Neuron doctrine(Cajal,

1954), neurons are the fundamental computational units of the brain, and neu-

ral networks are the engine of information processing. Following this assump-

tion, I will introduce the elements of processing in neuronal systems and brain

anatomy. The interested reader can Þnd an exhaustive description in Kandel et

al. (2012), Gerstner et al. (2014), and Braitenberg and SchŸz (2013).

1.4.1 Elements of neuronal systems

Neurons are large cells with a central body, the soma, and hundreds of ex-

tensions that branch from the soma to connect with other cells. One of these

branches is the axon, which transmits electrical signals integrated within the

soma to the neighboring cells. The other branches are calleddendrites and,

normally, receive inputs from the axons of other cells. The connections between

axon-terminals and dendrites are calledsynapse. The synapse is the site where

the pre-synaptic neuron makes contact with the post-synaptic cell.

When a cell is sufÞciently stimulated, it emits an action potential and its

axon terminals release a bulk ofneurotransmitters on the post-synaptic cells.

The neurotransmitters bind to a group of proteins sitting on the post-synaptic

cell, the synaptic receptors , and favor the inßux of ions in the membrane. The

amount of neurotransmitters and receptors available in the synapse determines

the strength of the pre-post synaptic interaction. This is commonly referred to

as synaptic strength. Depending on their electric charge, the ions will increase or

decrease themembrane potential . When the membrane potential of the soma

reaches a certain threshold, it will lead to an action potential so that the process

starts again.

Because the action potentials are all-or-none events, they carry binary infor-

mation about the state of the neuron. However, post-synaptic cells also have

access to theÞring rate at which spikes are emitted. The Þring rate is one of the
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main indicators of the state of a cell or a population of cells in the brain network.

Beyond offering a read-out of the neuronal states, the Þring rate plays a role

in synaptic plasticity , that is the process governing the increase and decrease

in synaptic strength between two cells. The main form of plasticity described

in neural networks is associative, or Hebbian (Hebb, 1949). Cells that are co-

activated, have a large Þring rate, tend to strengthen their reciprocal synapses

and form engrams. The group of cells that is tightly connected after associative

plasticity is named a cell assembly .

Brain networks contain several types of neurons, that divide by their electro-

physiological properties and the types of connections they make with other cells.

The main distinguo is between excitatory and inhibitory neurons. The former

creates synapses that, upon the arrival of an action potential,depolarize the

post-synaptic cell. Excitatory transmission is mediated byglutamate , and thus

the excitatory cells are also called glutamatergic. In contrast, inhibitory cells

release the GABA neurotransmitters, which bind to receptors that favor the inßux

of negative ions. They hyper-polarize the cell and prevent it from Þring an

action potential.

The processes hitherto described are relatively generic, and they apply to the

nervous system of most of the animal kingdom. On the other hand, language,

and spoken word recognition, is an exquisitely human capacity. To understand

the differences between humans and non-human animals we have to take a step

backward and look at the brain anatomy.

1.4.2 Neurobiological underpinnings of word recognition

The human brain comprises a network of 90 billion neurons tied together by a

hundred trillion synapses. (Braitenberg & SchŸz, 1998a). The brain structure

that the most distinguishes humans from non-human animals is the neocortex

(Moln‡r & Pollen, 2014). The neocortex is also considered the substrate of lin-

guistic memories (Formisano et al., 2008; Sjerps & Chang, 2019; Yi et al., 2019).

Here, cells are ontogenetically organized in micro-columns of hundreds of cells

(Mountcastle, 1957, 1997), which emerge during the formation of the cortical

sheet, a thin layer of 2 mm to 4 mm which contains most of the cortical cell

bodies (Adesnik & Naka, 2018; Leuze et al., 2014; Senzai, Fernandez-Ruiz, &

Buzs‡ki, 2019). Within the cortical sheet, neurons are divided into three main

layers: granular, infragranular, and supragranular. Layer structure varies across

the entire cortex, and the forebrain regions can be characterized by the type of

cell body and connective tissue they contain, i.e., cyto- and myelo-architecture,
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and the receptor types these cells express (Palomero-Gallagher & Zilles, 2017;

Zilles & Amunts, 2009).

A valuable approach to determine which of these components should be con-

sidered for a biological model of word recognition is to look at the spatial and

temporal scale of the cognitive problem and then parcellate the anatomical hier-

archy into its characteristic scales ( Fig.1.5). Brain timescales range from tens of

microseconds, at which molecular signaling occurs, to tens of seconds, at which

the brain acts as a single complex system, to the lifetime of linguistic, episodic,

and semantic memories. Notice that processes that live on long timescales also

exist at shorter ones and the reverse; however, with certain precautions, the evo-

lutions of dynamical systems at different timescales can be considered disentan-

gled. In mathematical terms, this is achieved by separating equations and pre-

senting slower or faster processes as effective parameters rather than variables

(Sec. 4.6, Gerstner et al., 2014). The result is that the systems are simpliÞed

and can be considered, to an extent, in isolation.

The schematic in Fig.1.5 highlights six anatomical units that live on the hun-

dreds of millisecond timescales; synapses, dendrites, neurons, cortical layers,

cortical columns, and local circuits. All these elements are contained within a

brain region, such as the temporal lobe or perisylvian region, and span a spatial

scale of a few centimeters. In addition, we have to consider the two other physio-

logical processes that enable neurons to communicate with each other and learn

from experience, action potentials and synaptic plasticity.

1.4.3 Models of neuronal networks

The separation of the brainÕs spatial and temporal scales indicates that a neuro-

biological model of word recognition must account for the activity of neurons

in the Superior and Middle Temporal Gyri. However, we do not have sufÞcient

speciÞcations of the cell types and connectivity patterns in this area of the hu-

man brain to constrain our network model. Similarly, it is beyond our capacity to

simulate a replica of the actual system. Instead, I implement agenericnetwork

model which aims to account for the fundamental capacity of word recognition

listed in Section 1.3.3. As I will demonstrate throughout the thesis, such a simpli-

Þed model already provides precious insights into which physiological processes

may support lexical access and selection.

The core of the network is the neuron model. Neuron models account for the

dynamics of the membrane potential(Fig.1.6A, Hodgkin & Huxley, 1952; Koch,

1998). A realistic neuron model typically has several variables that describe the
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Figure 1.5: Elements of brain neurobiology The organization of the nervous
system exhibits temporal and spatial scales. There is a signiÞcant overlap in
scales, as dendrites, cells, and columns operate on similar temporal and spa-
tial levels. Because word recognition occurs within 10 ms to 500 ms from the
acoustic stimulus, we select only those elements that live in this temporal range.
The elements in red shade, with boldfaced font, are the anatomical elements
included in the model described in the following chapters. Image adapted from
Lytton et al. (2017)

membrane potential in different regions of the cell. However, they are computa-

tionally hard to integrate, which puts limits on their use in network models. On

the other end of the spectrum, reduced neuron models describe a cell with only

a few differential equations that focus on the evolution of the membrane poten-

tial at the axon hillock (Brette & Gerstner, 2005). These models are called point

neurons and constitute the common implementation of single cells in biological

neural networks.

Despite their mathematical convenience, point neurons neglect the role of

dendrites in neuronal integration and only model the spike generation mecha-

nism at the soma. According to recent experimental and computational research,

this view is excessively simplistic and may lead to overlooking the computations

carried out within the cell (Fig.1.6 B, Larkum, 2022). For example, it has been

shown that dendrites foster the interaction among synapses sitting on the same

branch and exhibit non-linear responses to pre-synaptic activity if their poten-
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tial is sufÞciently depolarized (Fiüsek & HŠusser, 2020; Larkum, 2022; Payeur,

BŽ•que, & Naud, 2019; J. Schiller, Major, Koester, & Schiller, 2000; Wilmes &

Clopath, 2023).

The network model also deÞnes the biophysical equations for the synapses that

connect the neurons. Network models of information processing implement two

types of receptors, glutamatergic and GABAergic. The former occurs when the

pre-synaptic cell is excitatory, the latter when it is inhibitory. Within each class,

there are fast (AMPA, GABAA ) and slow receptors (NMDA, GABAB ) (Fig.1.3C,

D, Roth & van Rossum, 2009) Concerning the plasticity, the models follow the

associative plasticity scheme described earlier. Synapse strengthens when both

cells are active. A more reÞned form of plasticity accounts for the causal role of

the pre-synaptic cell in leading the post-synaptic to Þre, and include the time of

the spike. This is called spike-time-dependent plasticity (STDP, Clopath, BŸsing,

Vasilaki, & Gerstner, 2010).

Eventually, one has to indicate the types and number of neurons and the den-

sity of neural connections Fig.1.3E. Because of the computational constraints

discussed, network models are normally much smaller than actual brain net-

works. However, if the network is above a certain scale (i.e., 103$ 104) the model

can still account for the emergence of network dynamics observed in neuronal

circuits, for example, excitatory/ inhibitory balance (Brunel, 2000; Hiratani &

Fukai, 2017; Litwin-Kumar & Doiron, 2014; Renart et al., 2010; Zajzon, Duarte,

Mahmoudian, Morrison, & Duarte, 2019).
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Figure 1.6: Models of the anatomical elements supporting word recognition
(A) Model of action potential initiation by Hodgkin and Huxley (1952). The
model describes the neuronal membrane as an electrical circuit, it introduces a
system of differential equations to describe the evolution of the ion channelsÕ
opening. (B) Excerpt from the study by Ujfalussy et al. (2018), the panel shows
two possible reductions of a complex, realistic dendritic tree. The model on the
left is a point neuron reduction, and the model on the right is a four-compartment
reduction. The study demonstrates that few compartments are sufÞcient to ex-
plain most of the computations taking place in the realistic model. (C) Net-
work models implement four main receptor types. The curves in dark and light
blue represent the fast and slow excitatory receptors (AMPARs and NMDARs).
The receptors in dark and light red represent the inhibitory ones (GABAA and
GABAB ). ( D) The timescales of these receptors change depending on the neu-
ron types connected by the synapse. The illustration provides the timescale of
the AMPA and GABAA receptors (same colors inC) when it applies to excitatory
(E) or inhibitory ( I1, I2) cells. (E) An example of a small circuit with one type of
excitatory neuron (blue) and two inhibitory neurons (red, orange), the neurons
are connected by synapses with type-speciÞc properties. PanelsC, D,and E are
adapted from Duarte and Morrison (2019).
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1.4.4 Biologically constrained models of associative

memories

The models presented describe the dynamics of brain networks and are useful for

formulating hypotheses and computational experiments concerning the neural

substrate of cognitive operations. For example, they have been used to prove that

biological networks with Hebbian plasticity support the formation of associative

memories in the form of cell assemblies (Litwin-Kumar & Doiron, 2014; Zenke,

Agnes, & Gerstner, 2015). This result is remarkable because it bridges a long-

standing theory of animal Ð and human Ð cognition with the activity of single

cells in a brain-like network (Amit, 1995; Fuster, 1997; Ojemann & SchoenÞeld-

McNeill, 1998).

Importantly, cell assemblies have also been indicated as the possible substrate

of word memories (PulvermŸller, 1999). Garagnani, Wennekers, and Pulver-

mŸller (2009) and Tomasello, Garagnani, Wennekers, and PulvermŸller (2018)

have developed biologically constrained networks that implement lexical mem-

ories through cell assemblies. The models account for the organization of lexical

memories across brain areas and can give mechanistic insights concerning the

role of motor and sensory areas in cognition.

However, these models of lexical memories, akin to those of associative mem-

ories, do not consider the interaction of different cell assemblies: each memory

is stored independently of the others. This is a general issue in biological models

of memory, they struggle to implement any cognitive operation that goes beyond

simple associations. Gallistel (2021) presents a severe critique of the problem.

In the authorÕs view, biological models that express memories through the synap-

tic junction fail to explain how living beings store relational memories. In the

case of word memories, the relationship is the order of phonemes. This view

is shared in psycholinguistics, Poeppel and Idsardi (2022) argued that there are

no implementation proposals for storing word memories and, consequently, our

understanding of the neural organization of word memories [ ...] is somewhere

between unsatisfactory and incoherent.

The limits of present models of associative memories Ðnamely, the lack of

mechanisms to encode relationships and solve the Temporal Order ProblemÐ

is the starting point of the present thesis. The present study introduces dendritic

structure in a biological model of associative memories. The remainder of this

thesis will show that this is sufÞcient to foster the formation of network memo-

ries that are sensitive to the order of the input presented, thus encoding order

relationships.
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1.5 Overview of the thesis

The present thesis is structured into a General Introduction, four experimen-

tal chapters, and a General Discussion. Each of the experimental chapters is

intended as a journal article. One of them has been published, one has been

submitted and the remaining two are in preparation. The content of the experi-

mental chapters is the following.

Chapter 2 investigates dendritic integration in a novel reduced model of the

pyramidal cell, the Tripod neuron. The model is endowed with two segregated

dendritic compartments and NMDA and GABAB receptors on each with parame-

ters from human cortical cells. The combination of segregation and long synaptic

timescales allows the model to reproduce computations that are inaccessible to

point-neuron models, such as coincidence detection, on-path inhibition, non-

symmetric logical operations, and temporal integration. Temporal integration is

supported by the slow decay of dendritic membrane potential, which I refer to

as dendritic memory.

The Þrst chapter individuates computational differences in the model but does

not assure that these hold when the Tripod is tested in more naturalistic condi-

tions. This analysis is achieved inChapter 3 . Here, the model was studied in re-

sponse to a balanced stream of excitatory and inhibitory inputs. The study shows

that the dendritic integration also offers the substrate for the high-conductance

state and the UpDown cortical dynamics.

The Tripod model is investigated in the context of a network of neurons in

Chapter 4 . Here I study a network of Tripod neurons and inhibitory cells. The

network implements excitatory and inhibitory STDP. In the chapter, I analyze the

capacity of the network model to form hetero-associative memories and recog-

nize sequences. The memories represented pre-lexical and lexical units in the

form of distributed cell assemblies. I individuate in dendritic memory and in the

speciÞc network structure that emerges from the plasticity protocol the mecha-

nism that supports the recollection of sequential memories.

Finally, in Chapter 5 , the network model is compared to computational and

behavioral results in the psychology of language. The study indicates that the

model is accurate in predicting classical results in word recognition, such as the

incremental and cascade nature of the process, the competition among lexical

neighbors, and the robustness to variability in the inputs. In addition, the results

indicate that word recognition can be achieved in biologically plausible networks

without position-speciÞc representations and open a novel perspective on the

computational requirement of pre-lexical representations.
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Abstract

Neuron models with explicit dendritic dynamics have shed light on mechanisms

for coincidence detection, pathway selection, and temporal Þltering. However,

it is still unclear which morphological and physiological features are required to

capture these phenomena. In this work, we introduce the Tripod neuron model

and propose a minimal structural reduction of the dendritic tree that is able

to reproduce these dendritic computations. The Tripod is a three-compartment

model consisting of two segregated passive dendrites and a somatic compart-

ment modeled as an adaptive, exponential integrate-and-Þre neuron. It incor-

porates dendritic geometry, membrane physiology, and receptor dynamics as

measured in human pyramidal cells. We characterize the response of the Tri-

pod to glutamatergic and GABAergic inputs and identify parameters that sup-

port supra-linear integration, coincidence-detection, and pathway-speciÞc gat-

ing through shunting inhibition. Following NMDA spikes, the Tripod neuron

generates plateau potentials whose duration depends on the dendritic length

and the strength of synaptic input. When Þtted with distal compartments, the

Tripod neuron encodes previous activity into a dendritic depolarized state. This

dendritic memory allows the neuron to perform temporal binding and we show

that the neuron solves transition and sequence detection tasks on which a single-

compartment model fails. Thus, the Tripod neuron can account for dendritic

computations previously explained only with more detailed neuron models or

neural networks. Due to its simplicity, the Tripod model can be used efÞciently

in simulations of larger cortical circuits.
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2.1 Introduction

Biological neurons integrate complex afferent inputs within a dendritic struc-

ture which accounts for most of the spatial extent of a neuron. The dendritic

arborization hosts a signiÞcant part of excitatory and inhibitory synapses and

processes the input signals before the resulting signal reaches the cell body and

in particular the axon hillock. In the dynamical systems theory of neural informa-

tion processing, neurons function as non-linear, non-stationary (and stochastic)

operators, and the dendrites determine important aspects of the neuronsÕ trans-

fer characteristics (Gidon et al., 2020; Larkum, Wu, Duverdin, & Gidon, 2022;

Payeur, Guerguiev, Zenke, Richards, & Naud, 2021; Poirazi & Papoutsi, 2020;

Stuart & Spruston, 2015).

Neuron models that explicitly consider the dynamics of the dendritic tree

are typically referred to as multi-compartment models. These models capture

the spatio-temporal dendritic dynamics by introducing additional state variables

and differential equations that describe the dynamics of the dendritic mem-

brane potential (Koch, 1999). Depending on the implemented dendritic ar-

chitecture, membrane dynamics, and receptors/ ion-channel repertoire, high-

resolution multi-compartmental models can reproduce the membrane physiol-

ogy in detail (Branco, Clark, & HŠusser, 2010; Ujfalussy et al., 2018; Winnubst

& Lohmann, 2012). Simulations with neuron models including dendrites shed

light on important problems of brain functions, including unsupervised learning

(Bono & Clopath, 2017; Payeur et al., 2021), signal Þltering (G. R. Yang, Mur-

ray, & Wang, 2016), temporal discrimination (Branco et al., 2010), coincidence

detection (Mel, 1992; Poirazi, Brannon, & Mel, 2003), structured sequence pro-

cessing (Ahmad & Hawkins, 2016; Haga & Fukai, 2018), and the creation and

maintenance of associative memories (Kastellakis, Silva, & Poirazi, 2016). This

body of evidence suggests that dendritic processing is fundamental to nervous

system computation. However, the computational cost of simulating detailed

multi-compartment models impedes their use in large networks. Thus, most

studies that analyze processing properties in large networks do not explicitly

consider dendritic structure but often use simpler point-neuron models instead.

These studies regard neural computation as the outcome of the particular net-

work structure used, disregarding the complexity of cell-internal processes (Bas-

tos et al., 2012; Duarte & Morrison, 2019; Haeusler, Schuch, & Maass, 2009;

Potjans & Diesmann, 2014).

The present work introduces a computationally efÞcient, three-compartment

model that includes relevant dendritic degrees of freedom and remains simple
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enough to be used in larger network simulations. This model, which we call

the Tripod neuron, is derived from previous theoretical and experimental work,

and three main ingredients deÞne its dynamics. First, the Tripod has two den-

dritic compartments. This is the minimum number of dendritic compartments,

in addition to the somatic compartment, which allows a branching dendritic

tree. Several studies have shown that relatively few dendritic degrees of free-

dom are sufÞcient to reproduce the non-linear integration effects of apical den-

drites in pyramidal cells (Larkum, 2013; Poirazi et al., 2003). Accordingly, an

extensive comparison of the number of dendritic compartments to mimic in-

vivo dynamics indicates that two compartments are sufÞcient to explain most

of the observed variability in the somatic membrane potential (Ujfalussy et al.,

2018; Wybo et al., 2021-01-26, 2021), and models with more than two den-

dritic compartments show modest qualitative differences (Ahmad & Hawkins,

2016; Bono & Clopath, 2017; Kastellakis et al., 2016). Secondly, the inter-

nal dynamics of the Tripod neuron are consistent with observed neurophysi-

ology. The dendritic structure consists of two isolated compartments connected

to the somatic compartment. Each compartment integrates fast and slow exci-

tatory and inhibitory inputs locally through conductance-based synapses, and

we show that a simple circuit approximation (Koch, 1999) suggests that a sin-

gle degree of freedom, the electrotonic distance from the soma, determines an

integration time-scale of the dendrites and analytically deÞnes two types of com-

partments, here called short and long dendrites. Finally, we investigated slow

voltage-dependent NMDA receptors that mimic an important property of den-

dritic computation. When the post-synaptic potential exceeds a certain thresh-

old, the NMDA receptors open to Ca2+ ions and boost post-synaptic membrane

depolarization, generating a so-called NMDA spike, or plateau potential (An-

tic, Zhou, Moore, Short, & Ikonomu, 2010; Mel, 1992; Tabone & Ramaswami,

2012). This non-linear phenomenon, along with self-regenerative events such as

back-propagating spikes (Rapp, Yarom, & Segev, 1996) in proximal dendrites,

enrich the computational toolkit of the dendrites and determine the most in-

teresting properties of the present model. The slow voltage decay of the den-

dritic potential provides a short-term dendritic memory which is not accounted

for by other adaptation mechanisms in single-compartment models, for example

(Brette & Gerstner, 2005; Fitz et al., 2020). This aspect of our work complements

previous studies of NMDARs in models with a small number of compartments

(Bono & Clopath, 2017; Mel, 1992; G. R. Yang et al., 2016), and provides a basis

for further explorations of the role of NMDA spikes in neuronal working mem-
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ory (Fitz et al., 2020; Wang, 1999), and temporal binding (Augusto & Gambino,

2019; Baggio & Hagoort, 2011).

2.2 Methods

2.2.1 The Tripod neuron model

The Tripod neuron is composed of three separate computational elements or

compartments. It has an axosomatic compartment, representing the soma and

perisomatic locations, and two electrotonically segregated dendritic compart-

ments coupled to the soma in a Y-shape (Fig.2.1).

Axosomatic compartment. The soma was modeled as an adaptive exponen-

tial integrate-and-Þre (AdEx) neuron (Brette & Gerstner, 2005). It is a two-

dimensional neuron that models the dynamics of the somatic membrane poten-

tial Vs and an adaptive current w:

Cs
m

dVs

d t
= $ gs

m

!
(Vs $ Vr ) + # T exp

Vs $ VT

# T

"
+

$
#

k

gk( t )( Vs $ Ek) $ w + I d (2.1)

" w
dw
d t

= $ w + a(Vs $ Vr ) (2.2)

The leak conductancegs
m deÞnes the permeability of the somatic membrane,Cs

m

its capacitance andgk the set of variable synaptic conductances (Fig.2.1B). The

synaptic conductances and reversal potentialsEk are further described in the

sectionSynaptic dynamicsbelow. We use the superscripts throughout to refer to

variables and parameters of the somatic compartment, whereas the superscript

d refers to dendritic compartments. The Þrst equation of the AdEx neuron aims

to reproduce the sub-threshold and spike-onset dynamics of pyramidal cells. For

a membrane potential Vs below the rheobase thresholdVT, the neuron behaves

as a leaky integrator of the currents from the dendritic compartments Id and the

somatic leakage conductancesgk(Vs $ Ek). For larger depolarizing events, the

membrane potential exceeds the rheobase thresholdVs > VT and activates the

exponential non-linearity, mimicking a spike-generation mechanism. The slope

of the exponential growth is governed by # T. The spike events occur at timest f

when Vs exceeds the spiking thresholduth. Afterward, the membrane potential

is reset to Vr and the adaptation current w is increased by a constant valueb.
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The adaptation currently accounts for several physiological processes and de-

creases the excitability of the neuron after it has spiked. All parameters of the

somatic compartment were Þxed and set to the values used in Brette and Gerst-

ner (2005), except for the somatic leak conductance which was set to 40 nS in

agreement with the multi-compartment model of Bono and Clopath (2017), see

Table 2.1. The reset potential of the AdEx model has been set tour = $ 70.6mV

as in (Brette & Gerstner, 2005) rather than to ur = $ 55 mV (Bono & Clopath,

2017; Duarte & Morrison, 2019) so that the bursting behavior in the Tripod will

depended only on the dendritic dynamics.

Dendritic compartments. Dendritic compartments were approximated as con-

ductive cylinders whose voltage was governed by a passive membrane-patch

equation similar to the soma but lacking mechanisms for spike generation and

intrinsic adaptation:

Cd
m

dVd

d t
= $ gd

m(Vd $ Vr ) $
#

k

gk( t )( Vd $ Ek) $ Id (2.3)

Id = gd
ax(Vd $ Vs) (2.4)

The current Id was computed as the potential difference between the dendritic

and somatic compartment, multiplied by the axial conductance gd
ax (Fig.2.1C).

Current ßow was positive from the dendrites to the soma, Id > 0, except when

the somatic potential Vs exceeded the Þring threshold and the neuron emitted

a spike. Consistent with Bono and Clopath (2017), we captured the backprop-

agation of somatic action-potentials by clamping Vs( t f ) to 20 mV for 1 ms. The

effect of the back-propagating action potential is illustrated in Fig.2.2D.

Dendritic geometry. The capacitanceCd
m, leak conductancegd

m, and axial con-

ductance gd
ax of the dendritic compartments depended both on the geometry and

the membrane properties. The macroscopic parametersCd
m, gd

ax and gd
m can be
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Figure 2.1: Schematic of the Tripod neuron
(A) Dendritic compartments were modeled as cylindrical segments of a cable
with length l and diameter d. Their electrical properties were set by the mem-
brane patch equations (Eqs. 2.5, 2.6, 2.7) and membrane-speciÞc parameters
(Table 2.2). When dendrites had a larger potential than the soma, current ßowed
along the dendritic axis towards the soma. (B) Circuit diagram of a dendritic
membrane patch with time-varying conductances across the membrane. Con-
ductances were regulated by glutamatergic receptorsgGluRs or GABAergic recep-
tors gGABA with reversal potentials EGluRs and EGABA, respectively (Table 2.4). The
membrane reversal potential Er coupled in series with the leak conductancegm

and the membrane acted as a capacitanceCm with respect to the extracellular
space (ground). The membrane potential Vm was determined by the currents
ßowing to the dendritic compartment. (C) The dendritic potentials V1 and V2

were coupled to the somatic membraneVs through the axial conductances g1
ax

and g2
ax. The resulting current I1 + I2 ßowed dromically from the dendrites to

the soma. (D) The Tripod neuron with two dendrites and a somatic compart-
ment. Each dendrite received synaptic input mediated by four types of recep-
tors, AMPA, NMDA, GABAA and GABAB . Distal dendritic compartments were
modeled using a smaller axial conductance compared to proximal ones. The
spike-generating soma is represented as a triangle.
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computed from the relative densities cm, raxandrm via the standard cable-theory

(Koch, 1999):

Cm = # cmld (2.5)

gd
m = #

ld
rm

(2.6)

gd
ax =

#
4

d2

rax l
(2.7)

where l and d refer to the length and diameter of the dendritic cylinder (Fig.

2.1A), respectively. The microscopic parameterscm and rm reßect the trans-

membrane capacitance and resistance per unit of surface area andrax the axial

resistance per units of volume that a dendritic current experiences in the direc-

tion of the axosomatic compartment. The integration timescale " d of a dendritic

compartment is given by the effective timescale of the corresponding RC circuit:

" d %
Cd

m

gd
ax + gd

m

(2.8)

Synaptic dynamics. For synaptic transmission, we considered the principal re-

ceptors concerning excitation and inhibition, including two glutamatergic recep-

tors with fast (AMPA) and slow (NMDA) dynamics, and two GABAergic receptors

with short (GABAA ) and long (GABAB ) timescales. Each receptor was modeled

as a conductance with double-exponential kinetics (Roth & van Rossum, 2009):

gk( t ) = øgsyn
k & k

$
exp

%
$ t$ t0

" r
k

&
$ exp

$
$ t$ t0

" d
k

''
(2.9)

with k ! { AMPA, NMDA, GABAA, GABAB} indicating that each receptor has speciÞc

parameters. The equation describes the rise and decay of the receptor conduc-

tance gk. The timescale of rise and decay is given by" r and " d while the am-

plitude of the curve is deÞned by the maximal conductance parametergs yn. To

ensure that the amplitude equals øgsyn
k , the conductance was scaled by the Þxed

normalization factor & k. This normalization factor is computed, for each recep-

tor type, as

& k =
%
$ e$ t peak/" r

+ e$ t peak/" r
d

&$ 1
(2.10)

t peak
k =

" d" r

" d $ " r
ln

" d

" r
(2.11)



2 The Tripod neuron 41

The ratio between the maximal conductance of the NMDA and the AMPA recep-

tor is deÞned as the NMDA-to-AMPA ratio (NAR). The conductance gating of

the NMDAR depends on the intra-cellular depolarization which is captured by a

multiplicative voltage-gating mechanism:

gNMDA = øgsyn

NMDAG(v)

G(v) =
(

1 +
C

3.57µmol/ L
áe$ $v

) $ 1

(2.12)

where $ regulates the steepness of the voltage-dependence. The extracellular

concentration C of magnesium ions Mg2+ was Þxed at 1µmol/ L. These equa-

tions and parameters were obtained from Jahr and Stevens (1990). The rise

and decay timescales of the NMDAR, the NAR, and$ assume different values

in mouse (Duarte & Morrison, 2019) and human neurophysiology (Eyal et al.,

2018). All compartments were endowed with excitatory and inhibitory synapses

but differed in relative receptor composition and the corresponding parame-

ters. Following previous experimental Þndings (Petralia, Yokotani, & Wenthold,

1994; Schulz, Knoßach, Hernandez, & Bischofberger, 2018) and modeling work

(Pongracz, Poolos, Kocsis, & Shepherd, 1992), NMDARs were located only on

the dendritic compartments. However, this was inconsequential in the Tripod

model because the voltage threshold for NMDAR activation was larger than the

somatic Þring threshold, thus resulting in no contribution of NMDA channels

to the somatic synaptic current. During stimulation of glutamatergic receptors,

both NMDARs and AMPARs are activated. Even though the NMDAR voltage-

dependent component in Eq.2.12 is continuous, its non-linear rise allows us to

deÞne a soft threshold at approximately $ 40 mV. This value is referred to as

the NMDA spike threshold throughout the manuscript. We chose$ 40 mV be-

cause for more hyperpolarized membrane potentials (below the threshold) the

NMDAR conductance is less than one-third of its AMPAR counterpart and does

not trigger NMDA-spikes, as shown in Fig.2.2C. To parameterize the inhibitory

responses, we Þt the inhibitory post-synaptic potentials (IPSPs) obtained from

guinea-pig hippocampus (Miles, T—th, Guly‡s, H‡jos, & Freund, 1996), which

characterize the dendritic versus somatic inhibition on pyramidal cells and can

be considered as an effective parametrization of the differences between peri-

somatic and dendritic inhibition. The timescales obtained from data entail that

inhibitory inputs on dendritic compartments have a slower time course, whereas

somatic inhibitory inputs have a larger amplitude and faster rise and decay, and
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suggest that somatic GABAergic transmission is mediated primarily by GABAA
receptors (Miles et al., 1996).

Figure 2.2: Synaptic kinetics and conductance, and backpropagating action
potential
(A) The dynamics of glutamatergic (upper panel) and GABAergic (lower panel)
synapses for the parameters reported in Table2.4.(B) Fit of GABAA timescale and
maximal conductance for somatic and dendritic synapses, original data (dashed
line) from Miles et al. (1996). (C) NMDAR conductance as a function of the
compartment membrane potential. Horizontal dotted lines express the voltage-
independent conductance of AMPARs and the maximal NMDARs conductance.
(D) Back-propagating action potential in the dendrites. The backpropagation is
purely due to the high membrane potential of the somatic compartment during
the spike duration (1 ms). After reset the membrane potential of the soma is held
Þxed at the reset potential (ur ) for the entire duration of the refractory period
(2 ms).

Fit of inhibitory synapses. The Þt was achieved by reproducing the somatic

IPSPs reported in Miles et al. (1996). The Tripod neuron was held at resting

potential and the inhibitory reversal potential was further lowered of $ 30 mV,

similar to the experimental procedure used to record the data. The Þt was per-

formed on the minimal IPSPs, which correspond to the smallest quanta of PSP
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that a single inhibitory synapse could elicit in the soma. Considering that the

inhibitory neurons stimulated in the physiological experiment had more than

a single synaptic contact with the pyramidal cell, we compared the Þt to the

stimulation of 5 simulated synapses.

2.2.2 Numerical simulation

Numerical integration used an improved forward Euler method (HeunÕs method

(Ascher & Petzold, 1998)) with explicit integration and a step-size of 0.1 ms.

Dendritic currents were computed from the potential difference between two

coupled compartments. Because of the short integration step, the order of inte-

gration of dendrites and axosomatic compartments was unimportant. We com-

puted the axial currents Þrst, then the dendritic and somatic voltage changes.

Note that the time-step of the explicit integration scheme used is less than half

of the fastest timescale in the system and that the time scales in the model are

within two orders of magnitude of each other and the explicit Table2.3; there-

fore, the integration scheme does not incur in numerical instability or stiffness

issues at double precision computation that can emerge in the integration of ca-

ble equations in Þne-grained spatial discretization models (Hines & Carnevale,

2001). Simulations were performed in Julia using custom code which can be ob-

tained on ModelDBLINK and athttps://github.com/aquaresima/tripod
_neuron.

2.3 Results

Physiological parameters for pyramidal cells are difÞcult to reconcile across datasets

because there exists signiÞcant morpho-physiological variation in the mammalian

neocortex, both across species and across regions and laminae. The functional

consequences of this variation can be difÞcult to assess. In this section, we show

that some of this variabilityÑin particular in the membrane timescale and dif-

ferences in excitability between human and mouse pyramidal cellsÑcan be ex-

plained by explicitly incorporating simple dendritic geometry and membrane

physiology. We report important differences in the neuron model behavior when

varying the dendritic morphology, the capacitive properties of the cell mem-

brane, and the dendritic NMDA-to-AMPA ratio (NAR).



44 2 The Tripod neuron

2.3.1 Geometry and physiology of dendritic compartments

Dendritic geometry determines activation boundaries

Excitatory synaptic input to the dendritic tree results in a forward, dromic ßow of

depolarizing current. This current depends on the potential difference between

the perisomatic region and the location of synaptic contact, with an upper bound

set by the maximum depolarization that the dendritic compartments can reach.

Given the axial resistance and membrane leakage, the geometry of the dendritic

branch determines whether dendritic activity can elicit somatic spikes or not.

Here, we determine theseactivation boundariesas a function of dendritic length,

diameter, and membrane physiology in mouse versus human pyramidal cells.

Assuming that a dendrite of the Tripod is fully depolarized after a synaptic event,

its capacity to generate somatic spikes is determined by the ratio between the

axial conductance gd
ax and the membrane leakagegs

m at the soma. For integrate-

and-Þre neurons, the dendrite can generate a spike when the following equation

is satisÞed (the full derivation is given in Appendix A):

Er $ VT

VT

= : % <
gd

ax

gs
m

(2.13)

where Er is the resting membrane potential, VT is the spike threshold, and gs
m

is the leak conductance of the soma. These parameters depend on the somatic

compartment. In our model, %is constant and the only variable in Eq.2.13 is the

axial conductancegd
ax which is determined by Eq.2.7 through the cable diameter

d, its length l, and the speciÞc axial resistancerax deÞned by the membrane

physiology (Rall, 2011). Hence, Eq.2.14 deÞnes a geometrical region where a

dendrite can generate a spike. Following similar reasoning, we identify a second

geometric region where full depolarization of a single dendrite is insufÞcient to

elicit a somatic spike, but the simultaneous activation of two dendrites can:

%

2
<

gd
ax

gs
m

< % (2.14)

The two regions identiÞed by Eq.2.13 and Eq.2.14 are shown in blue in Fig.2.3A

and are referred to asspiking regions.

To test the sensitivity of the Tripod neuron to biophysical constraints, we com-

pared two sets of membrane parameters corresponding to mouse (Dasika, White,

& Colburn, 2007; Koch, 1999) and human (Eyal et al., 2016) layer 2/ 3 pyramidal

cells. The axial conductance was the same across datasets, but the membrane
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Figure 2.3: The functional contribution of dendrites to the somatic response
depends on dendritic geometry
(A) Phase diagram for the axial conductancegd

ax as a function of dendritic diame-
ter and length. Solid black lines show the boundaries imposed by the inequalities
of Equation 2.14. They separate conÞgurations where dendritic depolarization
alone cannot elicit somatic spikes (grey region), only co-active dendritic com-
partments elicit somatic spikes (light blue), or depolarization of a single dendrite
can elicit somatic spikes (dark blue). The geometrical regions for spike-onset
onset are computed assuming the compartments clamped atEGluRs, as described
in AppendixA; because the speciÞc axial conductance is similar for human and
mouse cells, there are no species-speciÞc differences in the geometries that lead
to somatic spikes. Dotted lines mark the boundaries above whichgd

ax > gd
m for

mouse and human pyramidal cells, respectively; the divergence between the two
species is due to the larger membrane resistance of human cells with respect to
mouseÕs cells, cfr. Table2.2.(B) Effective membrane timescale" d

m as a function
of the dendritic length when the diameter is Þxed at 2 µm (thin) or 4 µm (thick).
Colors correspond to panelA and indicate the distinct functional regions of den-
dritic geometry. Thick dendrites inßuence somatic spiking more than thin ones,
regardless of length. Mouse membrane timescale (dotted) converges with length
while human timescales (solid) continue to increase. Throughout this work, we
will use the labels proximal and distal to refer to dendrites 150 µm and 400 µm
long.
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conductance and capacitance differed (Table2.3). To illustrate this difference,

Fig.2.3A shows the boundaries of effective dendrites in the Tripod neuron as a

function of cable geometry. These boundaries correspond to the regions below

which the membrane leakage is larger than the axial conductance, i.e.,gd
ax <

gd
m. Consequently, dendritic currents fail to reach the soma in this case and the

dendrite is rendered ineffective. Within our model constraints, the dendrites of

human pyramidal cells can be substantially longer than those in mice and still

be functionally effective, an observation that is consistent with recent empirical

evidence (Fiüsek & HŠusser, 2020). The functional role of dendrites is also depen-

dent on the diameter of the dendritic compartment. Thin dendrites (2 µm) have

low axial conductance and their contribution to the somatic voltage is small, i.e.,

thin dendrites are in the no-spiking region for most of their lengths. Thick den-

drites (4 µm), on the other hand, place the neuron in the spiking regime for all

the lengths considered.

Human physiology supports longer dendrites

The effective membrane timescale characterizes the dynamics of the dendritic

compartments. When the dendrite is depolarized and the soma is at the resting

potential, the timescale " d
m for the dendritic membrane to return to the resting

potential depends on the physiological parameters. It is modulated by the den-

dritic length and diameter, as deÞned in Eq.2.8. In the condition of effective

dendritic transmission ( gd
ax > gm), the current ßowing out from the dendrites

enters the somatic compartment, and the dendritic timescales together with the

somatic membrane timescale fully determine the integration timescale in the Tri-

pod model. Fig.2.3B shows the integration timescale " d
m for all the considered

dendritic lengths, two diameters (thin 2 µm, thick 4 µm), and the physiological

parameters for human and mouse (solid and dashed lines, respectively). The

membrane potential in longer dendrites decays slower because the axial con-

ductance decreases and the capacitance increases with dendritic length. For a

Þxed diameter, doubling the dendritic length doubles the membrane timescale.

Thin dendrites have a longer timescale because of the reduced membrane leak-

age and axial conductance.

Overall, the differences in membrane physiology and dendritic geometry con-

strain the membraneÕs effective conductance and time constant and, consequently,

the temporal integration properties of the neuron, leading to functionally rele-

vant effects. Longer dendritic cables lead to sustained dendritic potentials, which

affect the kinetics of somatic depolarization. This effect is particularly noticeable
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for human physiology, suggesting that human pyramidal cells can sustain longer

functioning dendrites and that length modulates neuronal responsiveness signif-

icantly. Since the functional contribution of thin dendrites is limited, we focus

on thick dendrites with a diameter equal to 4 µm, consistent with previous stud-

ies (Bono & Clopath, 2017; Dasika et al., 2007; G. R. Yang et al., 2016). In

the remaining work, we will study dendritic lengths in the spiking region of the

phase space, and this corresponds to dendrites in the range of 100µm to 500 µm

(blue and light blue regions in Fig.2.3). For simplicity, we selected two lengths,

150 µm and 400 µm in the two spiking regions that satisfy Eq.2.13 and Eq.2.14.

Following Antic et al. (2010) and Kamondi, Acs‡dy, and Buzs‡ki (1998), we call

a dendrite of 150 µm in length proximal, because it is capable of eliciting somatic

spikes. A longer dendrite of 400µm is referred to as distal and it can elicit so-

matic spikes only if co-activated with another dendrite. The proximal and distal

dendrites described in the following sections are considered as roughly corre-

sponding to the basal or apical oblique regions of pyramidal cells, respectively.

2.3.2 Synaptic integration with segregated dendrites

The previous section investigated how dendritic geometry and membrane phys-

iology determine temporal integration in the Tripod neuron. We now turn to

the characteristics of synaptic transmission and how the existence of segregated

dendritic compartments affects neuronal responses in the model. The synaptic

models used are biophysically motivated and account for relevant physiological

observations.

Due to their voltage-gated component, the dynamics of NMDA receptors (NM-

DRs) mediates the generation of sustained plateau potentials (Major, Polsky,

Denk, Schiller, & Tank, 2008) and supports coincidence detection (Rackham,

Tsaneva-Atanasova, Ganesh, & Mellor, 2010; Tabone & Ramaswami, 2012). It

affects the integration of excitatory input in the dendrites and the soma and

plays a key role in shaping dendritic processing, synaptic plasticity, and the global

input-output behavior of neurons (Doron, Chindemi, Muller, Markram, & Segev,

2017; Smith, Smith, Branco, & HŠusser, 2013). Furthermore, NMDAR expres-

sion is denser in distal regions along the dendrites (Larkum, 2013; J. Schiller et

al., 2000) and this suggests that there is an important relationship between the

geometry and the activation of the voltage-gated receptors.

We Þrst investigated the inßuence of dendritic NMDARs on somatic depolar-

ization and the magnitude of excitatory post-synaptic potentials (EPSPs). As

explained in the Methods, we included NMDAR parametrizations corresponding



48 2 The Tripod neuron

Figure 2.4: Human-like synapses induce NMDA-related supra-linearity in
EPSP peak amplitude
(A) Schematic of the experimental setup. Multiple presynaptic spikes arrive con-
currently at a segregated dendritic compartment with glutamatergic receptors
(GluRs), and the resulting excitatory post-synaptic potential (EPSP) is measured
at the soma (top). The peak amplitude of the EPSP is calculated as the differ-
ence between the membrane potential prior to stimulation and the peak mem-
brane potential after stimulation (middle). Increasing the number of coincident
presynaptic spikes results in larger peak amplitudes and causes NMDA spikes
or somatic spikes (bottom). For an unbiased comparison of NMDARs between
mouse and human parameters, the following simulations are based on human-
like membrane parameters; when tested for mouse-like membrane, the EPSP
response is weaker and sub-linear.(B) Tripod spike responses forhuman (left)
and mouseNMDAR timescales and voltage gating slope (right). Each data point
represents the minimal number of coincident presynaptic spikes necessary to
elicit a somatic spike (diamond) or an NMDA spike (circle) for a given dendritic
length (y-axis) and a speciÞc ratio of NMDA-to-AMPA receptors (NAR, color gra-
dient). Note that NMDA spikes are absent for mouse synaptic physiology. Black
markers show the spike responses for the combination of dendritic timescale
and NAR described in Eyal et al. (2016) (labeled EEA) or Duarte and Morrison
(2019) (labeled DM). (C) Peak amplitude of the EPSP as a function of dendritic
length when the number of coincident presynaptic spikes is Þxed at 60.Human-
like synaptic parameters result in an upswing of the peak EPSP relative to the
increasing dendritic length, which is weaker or absent for mouseparameters.
(D) Peak amplitude of the EPSP as a function of the number of coincident presy-
naptic spikes when the dendritic length is Þxed at 300µm. While somatic spikes
occur for both human and mouse NMDARs, onlyhuman-like synaptic param-
eters cause the supra-linearity in peak EPSP that is indicative of NMDA spikes
(circles).



2 The Tripod neuron 49

to mouse (Avermann, Tomm, Mateo, Gerstner, & Petersen, 2012; Duarte & Mor-

rison, 2019) and humans (Eyal et al., 2018). Compared to mouse ones, human

NMDARs have shorter decay times, a larger NAR, and a steeper voltage depen-

dence$ in the gating mechanism. In contrast, timescales and synaptic strength

of AMPARs are approximately the same for the two species.

The experimental protocol used to test the effect of varying the NMDAR char-

acteristics is shown in Fig.2.4A. One of the segregated dendrites is stimulated

with simultaneous spikes from excitatory presynaptic neurons, and the result-

ing EPSP is measured at the soma. In the synaptic model we used, coincident

spikes corresponded to a single synaptic event whose efÞcacy was given by the

peak conductancegs yn multiplied by the number of input spikes. The peak EPSP

is identiÞed as the difference in membrane potential between the moment of

spike arrival and the maximal potential reached after the spike. The peak EPSP

increases with the number of co-active presynaptic neurons and converges to-

wards a maximum value determined by the axial conductance of the targeted

dendritic compartment.

Segregated dendrites with NMDARs generate a supra-linear response in the so-

matic EPSP which is triggered when the dendritic membrane potential reaches

the threshold of the voltage-gated NMDARs. To track the onset of this supra-

linearity, we computed the second derivative of the EPSP peak amplitude as a

function of the coincident presynaptic spikes and determined its maximum. The

onset is shown in Fig.2.4B as a function of dendritic length and the number of

coincident spikes. We distinguish between somatic spikes (peak amplitude of

EPSP' 30mV, diamond markers) and the NMDAR-related supra-linearity (cir-

cles). Because the opening of NMDARs causes an all-or-none event similar to the

action potential, we also refer to the NMDAR supra-linearity as an NMDA spike.

When glutamatergic synapses were parameterized according to human pyrami-

dal cells (Eyal et al., 2018, Table2.4), the NMDA-related non-linearity occurred

alongside somatic spikes. When parameterized with a lower NAR, faster rise,

and slower decay, corresponding to mouse synaptic physiology (Duarte & Mor-

rison, 2019), the EPSP supra-linearity was absent, regardless of the number of

synaptic inputs (Fig.2.4B).

The onset of NMDA spikes also depended on dendritic length. Fig.2.4C shows

a vertical section of Fig.2.4B where the number of coincident spikes is Þxed at

60 and dendritic length is varied between 100 µm and 500 µm. For mouse-like

NMDARs, with fast rise and slow decay timescales, the peak EPSP decreased

monotonically with the length of the dendrites. For human-like NMDARs, on the
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other hand, dendritic stimulation resulted in an increase of the peak EPSP am-

plitude for dendrites longer than 300 µm when the NAR was high. This indicates

that the slow rise and fast decay timescales of human NMDARs and their higher

voltage sensitivity were crucial in generating NMDA spikes. Fig.2.4D is a hori-

zontal section of Fig.2.4B with dendritic length Þxed at 300 µm. Somatic spikes

occurred for both human and mouse NMDARs, but only human-like synaptic pa-

rameters caused the supra-linearity in peak EPSP that corresponds to an NMDA

spike.

To summarize, the results suggest that a large NAR was not sufÞcient to elicit

NMDA spikes in mouse-like NMDARs, regardless of dendritic length and the

number of coincident presynaptic spikes. Increasing the NAR (Fig.2.4D) raised

the slope of the somatic response, but missed the supra-linear component, which

indicates that the supra-linear integration depends on the NMDAR steepness ($)

and timescales, which also differ between humans and mice (Duarte & Morri-

son, 2019; Eyal et al., 2018). For human-like NMDARs, the occurrence of NMDA

spikes was mainly dependent on the NAR and dendritic length. The length of

the dendritic compartment is a crucial variable for the rise of NMDA spikes; for

the opening of voltage-gated ligands of NMDARs, the membrane potential has

to be sufÞciently depolarized (beyond%$40 mV). Such depolarization can hap-

pen only if the compartment is sufÞciently electrically segregated from the soma

and the other compartments, otherwise, the membrane potential will leak to-

wards the soma through axial currents. The dependence on the dendritic length

of NMDARsÕ non-linearity conÞrms the importance of implementing voltage-

dependent receptors in neuronal models with segregated dendrites

2.3.3 Computation with minimal dendritic structure

The above results indicate that segregated compartments are necessary for the

generation of NMDA spikes. However, models with a single dendritic compart-

ment, usually referred to as ball-and-stick models, might not be sufÞcient to

express important dendritic computations. For instance, several dendritic phe-

nomena depend on the interaction among synapses and therefore on their spatial

arrangement on the dendrites (London & HŠusser, 2005; Payeur et al., 2019),

and a cascade of synapses activated from distal to proximal sites elicits a stronger

response than the reverse protocol (Branco & HŠusser, 2010). Hence, the ques-

tion is how many compartments are needed to express these computations? We

argue that a minimal model requires two dendritic compartments because it can

express a minimal form of dendritic branching and it captures dendritic compu-
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tations where the location of synaptic input matters. In a Y-branched dendritic

tree, synaptic inputs can target the sameor different dendritic branches, and

the synaptic location becomes an important spatial variable of neuronal inte-

gration. This argument is in agreement with several in-vitro and in-vivo studies

which have shown that two compartments are already sufÞcient to reproduce

most of the observed processing complexity (Ujfalussy et al., 2018; Wybo et al.,

2021-01-26, 2021). In the next sections, we consider the Tripod neuron in three

dendritic conÞgurations, two symmetric (distalÐdistal and proximalÐproximal)

and one asymmetric (distal-proximal). We show that in the Tripod neuron the

somatic response depends on the spatial location of the inputs and that two Y-

branched dendrites are sufÞcient to express coincidence detection (Mel, 1992),

inhibition-driven pathway selection (G. R. Yang et al., 2016) logical operations

(CazŽ, Humphries, & Gutkin, 2013). In addition, we introduce the concept of

dendritic memorywhich is the neuronÕs capacity to track previous activity in the

voltage plateaus of distal dendrites. We show that dendritic memory can be

utilized to integrate sequences of spatially distributed information and detect

variations in the input stream.

Coincidence detection

The conductance-based mechanism that transforms presynaptic events into cur-

rents and membrane depolarization determines the EPSP response to gluta-

matergic inputs that occur close in time. When two excitatory synapses Þre

together on the same dendritic branch, the combined effect can differ from two

synapses Þring on separate branches. For AMPA synapses, whose receptors are

not voltage-dependent, synaptic inputs across spatially segregated dendrites are

known to increase the somatic EPSP response, while clustered excitation on the

same dendritic branch results in weaker EPSPs (Dasika et al., 2007; Li et al.,

2019). The difference between clustered and spread inputs is caused by the in-

teraction of conductance-based synapses with the compartment voltage (Koch,

1999). An increase in synaptic conductance produces weaker depolarizing cur-

rents if the compartment is already depolarized than if the compartment is close

to the resting potential. A formal derivation of this interaction is provided in Ap-

pendix B. However, as demonstrated by Mel (1992), the expression of dendritic

NMDARs can yield the opposite effect. For these receptors, clustered excitation

can result in larger somatic EPSPs than spread excitation, which can be inter-

preted as a dendritic mechanism for coincidence detection.
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To test whether the Tripod neuron can reproduce these clustering effects, we

compared the EPSPs generated at the soma in two conditions, clustered and

spread synaptic input, and tested how the spatial distribution of the input af-

fected somatic EPSP responses. The Tripod model is investigated here with two

symmetric dendritic compartments, labeled A and B. We used dendritic lengths

of 150 µm and 400 µm which are representative of compartments with weak and

strong segregation from the soma. These two conÞgurations are referred to as

proximalÐproximaland distalÐdistalconÞgurations.

We measured the difference# EPSP between the somatic EPSPs resulting from

excitatory input that was spread over the two compartments (EPSPAB) or clus-

tered on one compartment (EPSPAA) as shown in Fig.2.5A. Negative values for

# EPSP indicate that the global synaptic current was reduced for clustered input

relative to spread input, whereas positive values indicate that the somatic peak

depolarization was stronger for clustered input relative to spread input. # EPSP

was measured for 200 simulations, with a random number of co-active synapses

drawn uniformly from the interval [1, 50] for each branch A and B in order to

simulate different input intensities. The results are shown in Fig.2.5A where the

x-axis shows the total number of co-active synapses on the two branches. There

was no difference between proximal dendrites that expressed NMDARs or AM-

PARs only. In both cases, input spread across dendritic branches generated a

larger somatic EPSP than clustered input, and this was also the case for distal

dendrites with AMPARs only. However, for distal dendrites that also expressed

NMDARs, clustered input caused a larger EPSP when the total synaptic input

was strong, as indicated by the positive# EPSP (orange data points) in Fig.2.5A

(bottom left). Thus, the Tripod neuron reproduces the AMPA spread effect and

the NMDA clustering effect described in the literature (Dasika et al., 2007; Mel,

1992).

To disentangle the effects of physiology and geometry, we attempted to esti-

mate the non-linearity of the EPSP response based on the second-order model

proposed by Li et al. (2019). The original model introduced a di-synaptic ma-

trix &i j that determines the difference in synaptic current with respect to two

synapses Þring independently. The values of&i j depend on the efÞcacy and

the location of the synapses that are active simultaneously. They are small for

synapses on different branches and negative for synapses on the same branch. To

demonstrate that this second-order model is not sufÞcient to explain the synaptic

interaction in the presence of voltage-dependent receptors in segregated den-
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Figure 2.5: NMDA receptors enhance somatic response in clustered condi-
tion
(A) Excitatory input was applied on one dendritic branch only (clustered, AA),
or on both dendritic branches (spread, AB), and the elicited EPSPs were mea-
sured at the soma. The difference between EPSPs in the two conditions is de-
noted # EPSP (top panel). The two dendritic branches had the same length
and were either distal or proximal. Synapses on the two branches expressed
NMDA and AMPA receptors (orange), or AMPARs only (blue). The bottom panel
shows the peak# EPSP as a function of the number of coincident input spikes
in the four conditions. For proximalÐproximal dendrites, spread input resulted
in stronger EPSPs for both AMPARs only and combined AMPARs/ NMDARs. For
distalÐdistal dendrites, the expression of NMDARs produced stronger responses
in the clustered condition which showed a supra-linear response when the total
synaptic input was sufÞciently strong to activate the NMDARs (> 60 co-active
synapses).(B) The magnitude of synaptic interaction was obtained by compar-
ing di-synaptic conditions (X X= AA, AB) to input spikes on single compartments
(X = A, B). The top panel shows the stimulation protocol used to compute EPSPA
and EPSPB. # EPSPAA and # EPSPAB summarize the interaction for the clustered
and spread conditions. The# EPSPs in conditions AA and AB are Þt with linear
regression over the global synaptic inputs and the lower panels show the slope
and the mean squared residuals (MSR) of the linear Þt. Di-synaptic interaction
reduced somatic depolarization (negative slope of# EPSPAA, AB) for all input con-
ditions, receptor types, and Tripod conÞgurations except for clustered inputs AA
on distalÐdistal compartments with NMDARs (third column). This conÞguration
generated high MSRs, indicating that the interaction could not be expressed with
linear di-synaptic interactions. For all conditions, the Þt was computed by draw-
ing 200 co-active synapses in the range (1,35).
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dritic compartments, we stimulated the Tripod with clustered and distributed

inputs and subtracted the EPSP of independent synaptic events on each branch.

# EPSPX X = EPSPX X $ 2EPSPX (2.15)

where the X subscript refers to the branches A or B. Note that EPSPA is the same

as EPSPB because dendrites were symmetric. # EPSPAX was computed for dif-

ferent numbers of co-active synapses between 1 and 50, as before. The simu-

lation was run for 8 conditions, i.e., with and without NMDARs, with two dis-

tinct geometries, and in both the distributed AB and clustered AA conÞgurations.

Following the original model, we asked whether a second-order function of the

synaptic input was sufÞcient to explain# EPSPAB. Hence, we Þt# EPSPAB via the

product of the synaptic conductancesg1
e ág2

e and obtained the results in Fig.2.5B.

The two panels show the slope of the interaction corresponding to&i j in Eq.2.23

and the residuals of the linear Þt (right).

In the absence of NMDARs, we observed a strong attenuation of somatic EP-

SPs and the residuals of the linear Þt were small. This effect was larger when

synapses clustered on the same compartment compared to the distributed con-

dition and this was due to the segregation of voltages in the different compart-

ments. The EPSP attenuation effect was also stronger when dendrites were

shorter (proximalÐproximal conÞguration, yellow bars in Fig.2.5B). It is worth

noting that the residuals of the linear Þt were small for most of the conÞgura-

tions, suggesting that the model of Li et al. (2019) was also applicable to the

Tripod neuron when only AMPA receptors were present. However, in agreement

with previous results (Mel, 1992), the expression of dendritic NMDARs yielded

different functional behavior and resulted in the ampliÞcation of somatic EPSPs

in the clustered condition AA. This effect was dependent on dendritic length.

The di-synaptic interaction still resulted in EPSP attenuation (negative) in the

proximalÐproximal conÞguration due to the reduced NMDAR contribution for

proximal dendrites. For longer dendritic branches (distalÐdistal conÞgurations

in Fig.2.5A), when excitatory inputs were clustered on the same compartment,

the interaction initially reduced somatic EPSP amplitudes. As the number of co-

active synapses increased to around 60, however, the EPSP began to increase

in a non-linear fashion. Thus, segregated dendritic compartments with voltage-

dependent NMDA receptors introduce synaptic interactions that go beyond the

second-order model of Li et al. (2019). These interactions cause larger EP-

SPs when synaptic inputs are clustered, in agreement with previous simulations
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(Mel, 1992; Ujfalussy & Makara, 2019), and the magnitude of this clustering

effect is strongly mediated by dendritic length.

On-path shunting inhibition

Depending on the location of synaptic contact, inhibitory GABAergic inputs,

whose ionotropic receptors have an equilibrium potential close to the resting po-

tential, can effectively offset excitatory drive onto neighboring synapses (Koch,

Poggio, & Torre, 1983). Inhibitory conÞgurations that veto neuronal responses

are referred to as shunting inhibition and play an important functional role.

Shunting inhibition depends on the spatial distribution, the composition of in-

hibitory synapses, and the relative timing between excitatory and inhibitory

presynaptic events. The Tripod neuron with two dendritic and one somatic com-

partment provides the simplest structure to study this type of inhibition.

Figure 2.6: Dendritic inhibition and shunting
(A) Location and timing of inhibitory spikes determine the somatic response.
The upper panel describes the experimental protocol. An inhibitory spike is de-
livered to the soma at an interval # t from the excitatory one. Then the F-factor
is computed. The two panels show the EPSP attenuation for three inhibitory
conditions, on-path (red), off-path (yellow), and on-soma (blue), scheme in the
lower panel. In the upper panel, the dendritic GABAA receptors are parame-
terized with long timescales, as in Miles et al. (1996). (B) Average membrane
potentials (upper panel) and axial currents (lower panel) for varying inhibitory
input rates. The orange dendrite receives 1.5 kHz Poisson distributed excitatory
input, while the neuron also receives variable inhibitory inputs at different lo-
cations (from the left: off-path, on-soma, on-path). Both dendrites are 300 µm
long. Inhibition off-path has a negligible effect on the somatic membrane (black
line) compared to on-path and on-soma inhibition.

We investigated different inhibitory conÞgurations by stimulating one of the

dendritic compartments with a single excitatory spike followed by an inhibitory
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spike within a Þxed time interval that was delivered to one of three input loca-

tions; the same dendritic compartment (on-path), the other dendritic compart-

ment (off-path), or the soma (Fig.2.6A). To measure the effectiveness of inhibi-

tion, we compared the somatic EPSP in the presence or absence of GABAergic

inputs. Attenuation caused by inhibition was measured as the ratio between the

EPSP peaks in the two protocols (excitation versus excitation plus inhibition):

F =
EPSPexc

EPSPexc+ inh

(2.16)

The larger this F-factor, the more effective the inhibitory signal was.

Results in Fig.2.6A show that the impact of inhibition is determined by the

relative timing of the excitatory and inhibitory inputs and it is highly location-

speciÞc. Suppose dendritic GABAergic transmission in the same compartment of

excitation, on path. In that case, its depressing effect on the EPSP is extended in

time, and it peaks when inhibitory spikes arrive around 10 ms before excitation

(red line). If, on the other hand, inhibition is located on the soma, hence me-

diated by fast GABAA receptors, then inhibition is maximally effective when in-

hibitory and excitatory inputs arrive simultaneously. In this condition, inhibitory

spikes that arrived more than 10 ms before excitation are ineffective. When in-

hibition is off-path its effect on the somatic EPSP is negligible. Notice that the

GABAB receptors are active only in the dendrites, and their effect is small in the

setup of Fig.2.6A because a single inhibitory spike is insufÞcient to engage these

receptors.

The Tripod neuron received an excitatory Poisson input at a Þxed rate of 1kHz

on a single dendritic compartment and a variable rate inhibitory input on dif-

ferent compartments (off-path, on soma, on-path). In the absence of inhibitory

input, the soma was in a depolarized state ((vsoma
m ) * $ 60mV). Fig.2.6B shows

the mean value of the membrane potential of each compartment and the current

ßowing between the compartments, both averaged over a 10 s interval. When

the off-path compartment was targeted by inhibitory inputs (leftmost panel in

Fig.2.6B), the soma reached an equilibrium between a weak hyperpolarizing

current coming from the inhibited dendrite and the depolarizing current from

the excited compartment. In this condition, the soma remained depolarized, re-

gardless of the magnitude of the inhibitory inputs. When inhibition targeted the

somatic compartment (middle panels in Fig.2.6B), the soma received a depolar-

izing current from the excited dendrite and a competing hyperpolarizing current

from the GABAergic synapses on the soma membrane. Because the synaptic cur-
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rent depended on the somatic potential, it had a balancing effect on the com-

partment potential. When the inhibitory input was sufÞciently strong, the soma

approached the resting membrane potential. In this condition, inhibition had a

divisive effect on the somatic potential. In both cases, the stimulated dendrite

remained depolarized but beneÞtted from the NMDA boost, resulting in a large

axial current. On the other hand, when the inhibition was on-path, that is, lo-

calized to the same compartment as excitation, inhibition pulled the dendritic

potential below the NMDA threshold, and thus hyperpolarized the stimulated

dendritic compartment. In this conÞguration, the soma remained depolarized

as long as the dendritic balance of excitation and inhibition was maintained.

When the inhibition overcomes excitation (around 2 kHz for this setup), the neu-

ron was shut down, and all the compartments went to resting potential, with no

axial currents ßowing. Hence, somatic depolarization is more dependent on the

spatial distribution of the inhibitory spikes than on the actual inhibitory input

received. Furthermore, this experiment suggests that considering the somatic

membrane potential alone may not be sufÞcient to characterize the state of the

cell; in Fig.2.6B the membrane potential of on somaand on path conditions is

similar, although the cell is in two different states and will respond differently

to further stimuli. For example, for a Þxed inhibitory input, increased excitation

on the stimulated dendrite will only depolarize the soma if inhibition is on path,

while it will be less effective in the on somacondition

Logical operators

Logical operators deÞne a natural class of computations. Single-compartment

neurons, which integrate inputs with a monotonic transfer function, can per-

form linearly separable computations but fail on non-separable ones. In con-

trast, theoretical and experimental work has shown that active dendrites can

solve non-separable problems (CazŽ et al., 2013; Gidon et al., 2020). If we

consider the dendrites as independent input pathways and treat the Tripod as a

binary logical gate, then the previous experiments on coincidence detection have

already demonstrated that the Tripod can perform non-separable computations,

matching the theoretical results in (CazŽ et al., 2013).

Another possibility is to consider the neuronÕs dynamics explicitly. In this con-

Þguration, the input is drawn from a set of binary stimuli, e.g., A = 0, B =

1, and mapped to the input spike rates on the respective compartment, e.g., 0

= E/ I balanced inactive state, 1= E/ I balanced active state (further details in

Appendix C). The cellÕs response also has to be represented over time and cal-
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culated, for example, on the output Þring rate. Under this encoding, both a

single-compartment neuron and the Tripod model can reproduce the truth ta-

ble of multiplication (AND, true for inputs (1, 1)) and summation (OR, true for

inputs (0, 1), (1, 0), (1, 1)). However, there are no mechanisms that enable

single neurons to implement operators such as exclusive OR (XOR, true for (1,

0) and (0, 1) but false for (1, 1) and (0, 0)) or material implication (MI, true

for (0, 1) but false for (1, 0)). Unfortunately, the same holds for dendrites with

NMDA spikes; if one active dendrite is sufÞcient to trigger somatic spikes, two

active dendrites can only increase the somatic Þring rate, making it impossible

to solve the XOR problem. These limitations are due to the coding scheme for

the output. To avoid this, we investigated if the neuron could make the com-

putation separable for an external linear readout. Therefore, we analyzed the

sub-threshold dynamics of the somatic membrane potential (van den Broek et

al., 2017) to evaluate the neural computations.

Figure 2.7: Asymmetric dendrites enhance the separability of logical oper-
ations
(A) CohenÕs kappa-score accuracy of linear readout classiÞers on logical opera-
tors for symmetric, asymmetric and soma-only models. The dendritic conÞgura-
tions are proximalÐproximal and distalÐdistal (blue), proximalÐdistal (orange)
and soma-only (black). (B) Shade of red indicates the average predicted truth
value for each input condition (y-axis), operator (x-axis), and dendritic conÞgu-
ration (top and left panels). The black and white table (bottom-right) indicates
the expected truth values. E.g., the AND operator for symmetric dendrites shows
dark red (true) for condition A = 1, B = 1, and white for all the remaining con-
ditions, corresponding to the target truth-values.

For this purpose, we stimulated the dendrites with a random sequence of four

possible input conÞgurations: (A = 0, B = 0), (A = 1, B = 0), (A = 0, B = 1)

and (A = 1, B = 1). A set of seven external logistic regression readouts were

used to map the neuronsÕ somatic dynamics to the truth table of seven different

operators (IdA, IdB, A + B, A , B, A - B, A . B, B . A) As mentioned above,

the symbols A and B refer to the stimulated dendritic compartment and each
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input is presented for a period of 200ms. The membrane dynamics was read-

out during the last 50 ms of the stimulus presentation; the readout had access

to 5 points for the membrane potential and 5 points for the adaptive current,

each spaced by 10 ms. After training, we injected a random sequence of inputs

(A, B, AB, or none) and tested if the trained readout could use the informa-

tion in the membrane of the soma to reproduce the correct truth table. We ex-

amined four different geometries, two symmetric one with proximalÐproximal

(150 µm) or distalÐdistal (400 µm) dendrites, one with asymmetric structure

(400 µm-150 µm) and a single-compartment model. When a dendritic path-

way was inactive (e.g., A = 0), the respective dendrite received a 3 kHz train

of excitatory Poisson spikes, and a balanced inhibitory input. For the baseline

condition (soma-only), the spikes were injected into the somatic compartment

via two independent synapses, as above, the excitatory input rate was doubled

for the active input condition.

After testing all the models, we measured the CohehÕs kappa-score of the read-

out on each operator, see Fig.2.7A; we chose this metric to account for asymme-

tries in the classesÕ statistics, e.g., A. B has three True and one False. Symmetric

conÞgurations performed better on symmetric operators (blue bars in AND, OR

and XOR operators). Conversely, asymmetric operators (red bar inIdB, A . B)

are best recognized with asymmetric dendrites. In the distal-proximal conÞgu-

ration, the activity in each dendrite is different, and input to the short dendrites

is easily distinguished. The soma-only conÞguration scores lower than each Tri-

pod conÞguration. To elucidate the computations performed, we analyzed the

predicted truth value for each operator and condition (Fig.2.7 B). As expected,

the symmetric conÞguration (proximalÐproximal, distalÐdistal, and soma-only)

makes the same prediction concerning inputs (1, 0) and (0, 1); for asymmet-

ric operators, this is also the case, because the readout cannot distinguish which

input-pathway is activated. This is not the case for the proximalÐdistal condition,

and the input (0, 1) is treated differently from (1, 0). In almost all conditions the

Tripod neuron performed better than the single-compartment model, indicating

that the inclusion of the dendritic structure was beneÞcial. These results show

that the membrane dynamics of asymmetric Tripod models depend on the input

pathway, and the neuron can act as an asymmetric logical operator.

Dendritic memory

When excitatory synaptic input is sufÞciently strong to drive the postsynaptic

voltage above the NMDA gating threshold, the ionic current ßowing through the
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NMDAR keeps the dendritic compartment depolarized and generates a tempo-

rally extended plateau potential (Fig.2.8A).

The time course of the plateau potential depends on the number of coinci-

dent presynaptic spikes, even though the dendritic potential reaches the NM-

DAR reversal potential (Fig.2.8A top-right panel). To quantify the duration of

the voltage plateau, we set an arbitrary threshold at$ 60 mV and monitored how

long the somatic membrane potential remained above this value (Fig.2.8B). In

the presence of NMDARs withhuman timescales, NAR, and$, long distal den-

drites reached a voltage plateau whose duration increased with the number of

coincident inputs and could last up to 100 ms. When dendritic length was short

enough to trigger somatic spikes (Eq.2.13) the duration of the plateau poten-

tial was limited by the somatic after-spike reset potential. Because of the large

conductance between proximal and somatic compartments the brief duration

(1 ms) of the hyperpolarized reset potential is sufÞcient to prevent the continua-

tion of the plateau-potential by pulling the dendritic potential below the NMDAR

threshold. Conversely, this is not the case for distal dendrites that can sustain

the plateau potential during somatic Þring. Further details on dendritic mem-

brane dynamics during and after somatic spikes are discussed in Appendix C.

When the NAR was set to mouse synapses (0.25), the dendritic and somatic

potentials showed a weaker, sub-linear dependence on the number of presynap-

tic inputs. The depolarization caused by 50 synapses was similar in extent to

the depolarization caused by four times as many co-active synapses (Fig.2.8A,

left panel). The reason why the EPSP response saturates is because the incoming

synaptic current depends on the difference between the membrane potential and

the synaptic reversal potential. For the remainder of this article, the dendritic

parameters were set to correspond to human physiology.

We investigated whether the plateau potential generated by NMDA spikes in

distal dendrites could be used as a short-term processing memory. We tested this

by encoding a memory trace into distal dendrites through synaptic activity. The

spike rate of the encoding signal was the critical variable and corresponded to the

number of co-active synapses in the previous experiment. Then, we attempted to

retrieve this memory by injecting a 1 kHz spike train on the proximal dendrite

after an interval of time # t (illustrations in Fig.2.8 C). The retrieval cue was

weak and without previous distal inputs, the soma Þred the Þrst spike on average

50 ms after the onset of the proximal input. Note that the proximal input lasted

longer than the 50 ms considered for retrieval. Thus, we considered retrieval of

an encoded memory to be successful if the Þrst somatic spike occurred earlier
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Figure 2.8: Plateau potentials due to NMDA spikes support dendritic mem-
ory
(A) Magnitude and kinetics of spike-induced EPSPs in the dendrites (upper pan-
els) and soma (lower). Dendritic synapses are endowed with mouse (left panels)
or human (right) NMDARs; AMPARs are identical for both. Input spikes arrive
on a distal dendrite (400 µm), color codes for the number of coincident input
spikes. For mouse-like synapses, an increase in the number of inputs did not
lead to longer dendritic depolarization. Dendrites with human NMDARs show
extended depolarization when the input triggers NMDA spikes. (B) Duration of
sustained somatic depolarization (EPSP curve is above -60 mV) for simulations
with human-like NMDARs. Color codes for dendritic length. Long dendrites re-
sult in a somatic depolarization that lasts for + 100 ms, referred to as plateau
potential. For long dendrites, the duration of the plateau potential increases
monotonically with the number of simultaneous synaptic inputs. When the tar-
geted dendrite is short enough to cause somatic spikes (diamond markers), the
relation between the total presynaptic input and the duration of the depolar-
ized state is interrupted because the somatic after-spike depolarization forces
the dendrite below the activation threshold of the NMDARs. Somatic spikes
do not affect the plateau potential in long dendrites because of the low axial
conductance. (C) Input conÞguration for memory encoding. Memories are en-
coded via excitation of the distal dendrite. After an interval # t without input,
the proximal compartment is activated and the average Þrst-spike-time (FST) is
measured. Figure caption continues on the next page.
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Figure 2.8: (D) Mean FST for varying excitation strength and# t (upper-right).
Shorter FSTs (e.g., dark red, 10 ms) indicate successful memory retrieval. Lower
panels show FSTs for dendritic (upper) or somatic (lower) inhibition, measured
while varying the strength of excitation and inhibition during the encoding
phase. Retrieval is attempted after three intervals # t ! { 0, 25,50} ms. (E)
Comparison of memory traces in two inhibitory conÞgurations. Colors code for
the difference between FSTs in the somatic versus dendritic inhibition condition.
For short # t , inhibition on dendrites elicits faster somatic spikes (shorter FST).
For longer # t , inhibition on dendrites is more detrimental to retrieval than in-
hibition on soma.

than 40 ms after the retrieval cue was injected. This measure of retrieval was

called the Þrst-spike-time (FST) and averaged over 300 independent trials in

the experiment. The somatic compartment was also exposed to noisy excitatory

inputs that caused random spikes during the stimulation protocol. This was not

necessary for encoding and retrieval but was intended to test the robustness

of plateau potentials in the presence of somatic spikes. The top-right panel in

Fig.2.8D shows that memories encoded into long dendrites could be retrieved

within about a hundred milliseconds, which was approximately the duration of

the plateau potential. The lifetime of memory traces increased with the input

rate that was used to encode these memories (y-axes). However, higher input

rates during encoding did not correspond to shorter FSTs.

So far, only glutamatergic synapses have been considered. We further inves-

tigated dendritic memory in the presence of inhibition by activating GABAergic

synapses during and right after the encoding phase. Inhibition was present in

both somatic and distal compartments. We tested memory retrieval by monitor-

ing the FST at three different times, separated by 25 ms each, after the encoding

phase. Fig.2.8D shows the effect of inhibition on the distal dendrite and on the

soma. When excitatory inputs on the distal dendrite were matched by dendritic

inhibition, retrieval depended on the ratio between excitation and inhibition, as

demonstrated by the linear separation between successful and failed retrieval.

The retrieval protocol cannot distinguish between the exact amount of inhibition

received during the encoding phase when memory was successfully encoded; the

upper panels in Fig.2.8D show nearly identical success rates in memory access

for the three delay intervals. This changed when inhibitory synapses Þred on

the soma; at Þrst, memories were not retrievable but they became accessible

when inhibitory activity ceased. Within 50 ms, there was virtually no trace of

the somatic inhibition. In this condition, the magnitude of the inhibitory input

modulated the retrieval success rate in a graded manner.
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The difference between the two inhibitory input pathways is shown in Fig.2.8E.

Immediately after distal activity ( # t = 0 ms), inhibition on the soma prevented

spiking and memory retrieval (FST with dendritic inhibition was smaller than

FST with somatic inhibition, dark red). After 50 ms, the relation between so-

matic and dendritic inhibition reversed and memories that were encoded during

somatic inhibition were now accessible. Dendritic inhibition limited the life-span

of the encoded memories and the ratio between excitation and inhibition during

the encoding phase determined retrieval success. This shows that the minimal

dendritic tree of the Tripod model maintained short-lived memories. Retrieval

of these memories depended on the location, the input strength, and the relative

timing of their encoding.

Transition detection and sequence recognition

Dendritic memory endows the Tripod model with two segregated memory slots,

which can potentially be used to combine or discriminate incoming information

over time. Here we tested whether this memory mechanism could be used to

solve spatio-temporal tasks.

Excitatory and inhibitory Poissonian inputs were injected into the neuron at a

constant rate. The active dendrite was set in the E/ I balanced active state, the

other dendrite in the inactive state (further details in Appendix C). The input

targeted dendrite A or dendrite B and it was switched from one compartment to

the other regularly, with frequencies in the range of 1 Hz to 100 Hz. A schematic

of the input protocol is shown in Fig.2.9 A. We Þrst measured dendritic and so-

matic potentials during a sequence of switches at 4 Hz. The membrane dynam-

ics of the three compartments are shown in Fig.2.9B, for models with symmetric

dendrites (distalÐdistal) asymmetric ones (distalÐproximal). The sequence of

excitatory and inhibitory input spikes was the same for the two models. After

a switch, the potential of distal dendrites decayed slowly while the potential at

the newly stimulated dendrite started to rise. As a consequence, the depolarizing

axial currents towards the soma reached their maximum right after the switch.

To measure the effect of the increased axial currents we computed the average

somatic potential for 300 trials with similar input statistics (Fig.2.9 B). The so-

matic response to a switch differed between the two dendritic conÞgurations.

For distalÐdistal dendrites the response was maximal right after the switch and

it was the same for the two dendrites. For distalÐproximal dendrites, the so-

matic response was stronger during stimulation of the proximal dendrite than

the distal dendrite, resulting in somatic bursts.
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To further explore the TripodÕs response to spatio-temporal sequences, we

tested four dendritic conÞgurations, distalÐdistal, proximalÐproximal, distal-proximal

and soma-only. For a fair comparison with the soma-only model, the switching

was achieved by implementing two independent synapses that were targeted by

one of the two input streams. This corresponds to a model with zero-length den-

drites. We repeated the previous experiment with two input signals, one with

regular switching times as above, and one where switching times were drawn

from an exponential distribution with a rate equal to the switching frequency.

We recorded somatic Þring and averaged the output spikes over 300 trials with

identical statistical realizations of the input spike train. Therefore, the reported

Þring rates indicate the average instantaneous somatic Þring. The Þring rate in

response to the two input signals is shown in the left panels of Fig.2.9C and D.

Somatic Þring on single trials was not synchronized with the switch times (black

dots), but across multiple trials it was. To quantify the dependence of output Þr-

ing on the input switch, we convolved the switch times with an alpha-function

(with rise and decay timescales of 10 ms) and then computed the correlation

between the average Þring rate and the distribution of switch times (referred

to a signal/ spikes correlation in the top right panels of Fig.2.9C and Fig.2.9D).

Overall, the Tripod responses were correlated to the spatial switches in the in-

put stream, for both regular and irregular switching times. As expected, the

distalÐdistal model showed the strongest correlation with the input switch, and

the peak Þring rate of a Tripod with asymmetric dendrites was less synchro-

nized. For regular switch intervals, the Tripod model lost track of signals os-

cillating faster than 30 Hz, although the response to non-regular signals stayed

synchronized for higher frequencies. For both input conditions, the soma-only

model showed zero correlation with the switching times. As suggested by the

delays between the switch times and the maximal somatic response in Fig.2.9B,

we hypothesized that the correlation might be higher at different time points.

Hence, we measured the correlation backward and forward in time with delays

in the range of $ 200 ms to 200 ms. The correlation with the signal was max-

imal when the Þring response was correlated backward in time as the somatic

response lagged behind the input signal. The optimal delay depended on the

model, and it was shorter for shorter dendrites. The bottom panels of (Fig.2.9C

and D bottom panels) show the correlation for different delays and an input sig-

nal with 6 Hz switch frequency. The delay with the highest correlation was the

same across all the switch frequencies tested (data not shown), indicating that
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the optimal delay depended only on the time span necessary to depolarize the

dendritic compartment, which in turn depended on dendritic length.

Figure 2.9: Sensitivity to serial order
(A) Excitatory and inhibitory inputs are delivered to the neuron by switching be-
tween the two dendrites periodically after a Þxed interval. (B) DistalÐdistal and
distalÐproximal Tripod neurons receive the input described in (A). Each dendrite
depolarizes during its stimulation interval. For distal dendrites, decay to rest is
slow and the depolarized state overlaps in time with the rise in the potential
of the other compartment. This overlap of the two depolarized dendritic states
maximally depolarizes the soma, as shown in the average membrane potential
of the somatic compartment (lower panels). For asymmetric dendrites, somatic
depolarization is strong when the proximal compartment is stimulated. Input
to the two dendrites switches at 4 Hz and the average over 300 trials is shown.
Figure caption continues on the next page.
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Figure 2.9: (C) Left panel shows the average Þring rate in response to a signal
switching between dendrites at (6 Hz) for three Tripod conÞgurations (colors)
and a single-compartment model (black) that implements switching on two in-
dependent synaptic conductances. Black dots show spike times on one of the 300
trials used to compute the Þring rate (solid lines). The top-right panel shows the
correlation between Þring rate and switches in the input signal as a function of
switch frequency. To compute the correlation, the switch times were convolved
with an alpha function. The bottom-right panel shows the correlation when the
Þring response is shifted in time (backward or forward) for inputs with 6 Hz
switch frequency. The correlation is maximal after a delay for all the models
because the soma lags behind the dendritic depolarization. Values shown in the
top panel correspond to the maximal correlation obtained across all the response
delays that were tested. Negative delays are due to the convolution function that
maps spikes to rates. Peaks at± 150 ms are due to the oscillatory nature of the
input. (D) As in (C) for a signal whose switch times are drawn from an expo-
nential distribution of rate equal to the switching frequency. (E) Two sequences
are played to the dendrites A and B of the neuron, AB' or BA' , where ' is a
silent pause. Dendrites receive feedback inhibition proportional to somatic ac-
tivity. One of the dendrites receivesµ times the feedback inhibition of the other
dendrite. (F) With µ /= 1, the spike statistics (Þring rate and CVISI) depend on
both the sequence order (blue or orange) and the neuronÕs geometric proper-
ties (marker shapes). Each data point corresponds to 1 s of simulation time and
the switching frequency was 6 Hz. (G) Sequence classiÞcation accuracy based
on the somatic spike statistics in (F) as a function of inhibitory feedback ra-
tio µ and switch frequency. Neuron conÞgurations with dendrites outperform
a soma-only model. Only the asymmetric conÞguration succeeded on the task
when inhibitory feedback was identical on both dendrites ( µ = 1).

These results show that the Tripod neuron with symmetric dendrites was sen-

sitive to transitions in the location of synaptic input. We further investigated

whether the switching direction could be detected as well. Two input sequences

were created where input was injected into dendrite A, then dendrite B, or the

other way around, followed by an inputless pause ' (see Fig.2.9E), resulting

in two sequencesAB' and BA' . The switched intervals were regular and we

used the switching frequency to indicate the rate for rotating over the elements

of the sequence (A, B,' ). As before, the input spike trains targeting each den-

drite were statistically the same. In a preliminary analysis, we measured the

somatic potential during the presentation of the two sequences and veriÞed that

for symmetric models it was impossible to determine which of the two was pre-

sented. When the model had asymmetric dendrites, the order of the input on

the dendrites (proximalÐdistal-' vs. distal-proximal-' ), changed the somatic re-

sponse. To break the symmetry between the two compartments in the distalÐ

distal and proximalÐproximal conÞgurations, we added an external inhibitory
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input on both dendritic compartments. The strength of this input was propor-

tional to the somatic activity (mimicking cortical feedback inhibition) and the

input was injected by means of a conductance-based synapse, following Bono

and Clopath (2017). The conductance was a double-exponential Þlter of the

Tripod output spikes, with decay timescale of 50 ms, rise timescale of 2 ms, and

peak conductance of 5 pS. The symmetry was broken by different strength feed-

back on the two dendrites. The B dendrite had a feedback peak-conductance that

was µ times the baseline value, up toµ = 20, resulting in a peak conductance

of 100 pS.

We tested whether the additional inhibitory feedback would make it possible

to determine which of the two sequences was presented to the Tripod, AB' or

BA' . We also compared the three dendritic conÞgurations of the Tripod with a

soma-only model. To distinguish the neural responses we calculated the average

Þring rate and the coefÞcient of variation of the inter-spike intervals (CVISI) that

can be used to detect burstiness. These spike statistics were computed during a

period of 1 s, for 100 trials, in each of the four conÞgurations. An example of

the Þring rate and CVISI for a switching frequency of 6 Hz and µ = 5 is shown in

Fig.2.9F for the two sequences (orange and blue). We used logistic regression

to quantify whether the two sequences could be distinguished. The outcome of

a grid search overµ in the range 0 to 20 and switching frequencies of 1 Hz to

1000 Hz is shown in Fig.2.9G. ClassiÞcation accuracy was high for all dendritic

conÞgurations at switching frequencies below 100 Hz and at chance level for the

soma-only neuron. These Þndings were robust to variations in inhibitory feed-

back asymmetry (µ) and switching frequency. For the distalÐdistal model, large

dendritic feedback inhibition reduced accuracy, likely because the Tripod did

not spike enough to compute reliable statistics. For both symmetric conÞgura-

tions, accuracy was close to chance levels when feedback was the same on both

dendrites ( µ = 1). The proximalÐdistal model could recognize the sequences

also when feedback was symmetric. This shows that sequence classiÞcation can

be achieved reliably when neurons are equipped with dendritic compartments,

whereas a single-compartment model (in its present instantiation) fails. Consis-

tent with the previous results on switching, sequential order in the input could

be distinguished based on the somatic spike response. The experiment used a

Þxed input rate and a Þxed number of co-active synapses for both dendrites. It

is to be expected that variability in rates and the number of input channels will

increase the range of dendritic input patterns that can be decoded at the soma.
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In conclusion, the Tripod model shows that neurons with dendrites have com-

putational capabilities that single-compartment models lack. Cortical neurons,

which receive thousands of spikes per second, can potentially use differences in

the spatial location of the input to discriminate sequential information. Den-

dritic integration might be able to detect this variation and transfer the result of

these local computations to the soma for downstream processing.

2.4 Discussion

This paper has explored the computational implications of integrating dendritic

compartments and voltage-gated receptors (NMDARs) into biological models of

pyramidal neurons. We investigated the functional role of a simple dendritic

structure in shaping the somatic response and analyzed two classes of passive

dendritic compartments, proximal and distal. The present work makes three

main contributions. First, we have partitioned the space of dendritic morphol-

ogy, connecting the emergence and dynamics of supra-linear integration to a

small number of explainable geometric and physiological parameters. Secondly,

our reduced neuron model performs dendritic computations that are usually

reproduced only with more complex models.And third, we have outlined how

dendrites contribute to structured computation, including logic operations, fre-

quency detection, and sequence recognition. In summary, the relatively simple

Tripod neuron proposes a reduced model of dendritic structure whose function-

ality transcends single-compartment models. The Julia implementation of the

model can be readily used in large-scale spiking neural network simulations.

In the Þrst sections, we decomposed the model in minimal terms and investi-

gated the contribution of various physiological and geometric factors in shaping

the somatic and dendritic membrane dynamics. The comparison of human and

mouse-like dendrites suggests that the former have longer integration timescales

and are more excitable than their mouse counterparts, in agreement with exper-

imental Þndings regarding the unique integrative properties of human dendrites

(Beaulieu-Laroche et al., 2021, 2018; Fiüsek & HŠusser, 2020). Our results con-

Þrm that human dendrites can be longer without losing the incoming current

through membrane leakage; hence elongated geometries (distal thick) are pos-

sible, under our modelÕs constraints, with human but not with mouse parame-

ters. The maximal length obtained for the mouse is in agreement with basal and

apical-oblique dendritic lengths in this species (Mohan et al., 2015). Later, we

showed that independent of species-speciÞc physiology, there is a geometric con-
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straint that distinguishes between dendrites with a strong agency on the soma

(100 µm to 300 µm) and those with a slow and indirect action on it (300 µm to

500 µm). The theoretical distinction between distal and proximal dendrites in

terms of the maximal elicited depolarization of the soma is consistent with pre-

vious experimental and computational work (Bono & Clopath, 2017; Eyal et al.,

2018; Kamondi et al., 1998; Major et al., 2008) and it refers to the electronic

distance between the dendritic compartment from the soma. Overall, dendritic

lengths in the range of 100µm to 500 µm correspond to dendrites in the basal

and apical-oblique region of human pyramidal cells (Spruston, 2008). Passive

dendrites and cable transmission are insufÞcient in modeling longer dendrites

(e.g., apical-tuft of layer 2 / 3 and 5), suggesting that active, self-regenerative

mechanisms such as calcium spikes (Larkum, 2013; Larkum, Waters, Sakmann,

& Helmchen, 2007) are required to transmit signals from distant dendritic input

locations to the axon hillock. We associate the Tripod model to pyramidal cells

rather than other types of cortical neurons for two main reasons. First, the phys-

iological parameters adopted for both human and mouse cells and for both the

membrane properties (Dasika et al., 2007; Eyal et al., 2016; Koch, 1999) and

the NMDAR kinetics (Duarte & Morrison, 2019; Eyal et al., 2018) are obtained

from electro-physiological studies on cortical pyramidal cells; While the inter-

actions between dendritic integration and NMDAR non-linearity reported in the

present paper could be valid for non-pyramidal cells, the different properties of

NMDARs in spiny and non-spiny cells (Augustinaite, Kuhn, Helm, & Heggelund,

2014; Booker & Wyllie, 2021; Fleidervish, Binshtok, & Gutnick, 1998) may re-

quire ad-hoc model adjustments. Second, the dendritic lengths considered in the

present work exceed those of other non-pyramidal cortical cells, such as layer

IV spiny stellate cells (Meyer, Gonz‡lez-Hern‡ndez, & Ferres-Torres, 1989) and

aspiny cells (Maxwell, Belle, Cheunsuang, Stewart, & Morris, 2007).

We also presented a detailed analysis of the somatic excitatory post-synaptic

potentials (EPSPs) when inputs are received on distal and proximal dendrites

and investigated synaptic efÞcacy and timescales with parameters obtained from

human (Eyal et al., 2018) and mouse (Avermann et al., 2012; Duarte & Morri-

son, 2019) in-vitro experiments. Our results suggest that human-like voltage-

dependent receptors (NMDARs) on distal dendrites affect dendritic integration.

If dendritic compartments are sufÞciently segregated electrically (distal), then

co-activation of neighboring synapses produces NMDA spikes and, consequently,

EPSPs with a supra-linear dependence on the number of synaptic inputs. These

results are in agreement with in-vitro empirical Þndings (Bono & Clopath, 2017;
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Branco & HŠusser, 2011; Eyal et al., 2018; Kumar et al., 2018; Polsky, Mel, &

Schiller, 2004). Both electrophysiology and detailed computational models have

shown that dendritic NMDA spikes can also be triggered in proximal synapses

(Major et al., 2008; Mel, 1992). NMDA spikes in proximal dendrites result in

larger somatic depolarization than distal ones. A few proximal NMDA spikes can

drive the neuron to spike, while several distal NMDA spikes are required. Since

the Tripod has only two compartments, the axial conductance to both proximal

and distal synapses has to be larger than in multi-compartment models with

several dendritic branches to impact the somatic membrane potential. With the

present parameters, the axial conductance between the proximal and somatic

compartment is large enough to trigger somatic spikes with a single depolarized

proximal compartment. Therefore, our model accounts only for NMDA-induced

plateau in distal dendrites because the proximal compartment can never reach

the NMDA voltage-gating non-linearity without triggering a bursty response in

the soma; however, this does not result in a loss of generality for our model

because the amplitude of somatic depolarization remains graded with respect

to the dendritic length and it is weaker for longer dendrites, as measured ex-

perimentally in-vitro (Major et al., 2008). Because there are only two dendritic

branches in the Tripod model, we have to interpret the axial currents, the NMDA

spikes, and the plateaus of the dendritic TripodÕs compartments as an effective

model of simultaneous depolarization in several dendritic branches of a pyrami-

dal cell; crucially, recent evidence in-vivo has shown that the depolarization of a

single hemi-tree of a pyramidal apical tuft, in contrast to both hemi-trees, have

consequences in the behavioral scale Otor et al. (2022).

In the current literature, there is considerable variability in the parameters

used to replicate NMDA spikes, in particular in the choice of the NAR, which spec-

iÞes the relative difference between the peak conductances of NMDA and AMPA

receptors. For example, the NAR was set to 0.25 in Duarte and Morrison (2019),

1 in Bono and Clopath (2017), 1.2 in Ujfalussy and Makara (2019), 2 (Jadi, Pol-

sky, Schiller, & Mel, 2012), and 9 in Mel (1992). Empirical evidence, obtained

mostly through indirect measurements, does report a similar level of variability.

For example, NAR was found to be* 0.25 and constant throughout the dendritic

tree for mice hippocampal pyramidal neurons (Strube, Gacki•re, Saliba, Tell, &

Kessler, 2017), roughly constant across different areas of the mouse neocortex

(Myme, Sugino, Turrigiano, & Nelson, 2003), and NAR was * 1.8 for human

neocortical L2/ 3 pyramidal cells (Eyal et al., 2018). In this same spirit, we can

interpret the discrepancy between the absence of NMDA spikes in mouse-like
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Tripod models and the experimental evidence of NMDA-related dendritic non-

linearity in mice neurons Antic et al. (2010); Larkum et al. (2022); J. Schiller et

al. (2000). Rather than postulating qualitative differences between mouse and

human cells, we take it as an indication of minimal requirements for the emer-

gence of NMDA spikes in terms of timescales and steepness of NMDARs. In this

respect, the variability in NMDA timescales of reduced models used in previous

experiments dwarfed the difference in the NAR (50 ms (Bono & Clopath, 2017)

18.8 ms Jadi et al. (2012) 100 ms (Duarte & Morrison, 2019)). Our model iden-

tiÞes minimal geometric and NMDAR conditions for the occurrence of NMDA

spikes and emphasizes that merely implementing NMDA receptors is not sufÞ-

cient for their emergence.

Previous computational models have found that somatic EPSPs are enhanced

when inputs target different, independent dendrites (Dasika et al., 2007; Li et al.,

2019), in an apparent conßict with experimental and computational evidence on

synaptic clustering (Bono & Clopath, 2017; Kastellakis et al., 2016; Winnubst,

Cheyne, Niculescu, & Lohmann, 2015). This raises the question of whether re-

duced models with passive dendritic compartments are sufÞciently expressive

to capture dendritic integration. Our results suggest that coincidence detection

can be observed under certain conditions related to the location of synaptic input

and synaptic physiology. The term coincidence-detection is used to characterize

several dendritic phenomena (Spruston, 2008), e.g., the generation of a spike,

or an activity burst, following simultaneous excitatory inputs. In particular, it is

used for both the somatic depolarization resulting from simultaneous spikes on

two segregated dendrites (Dasika et al., 2007), and for the non-linear response

resulting from co-activation of neighboring synapses (Mel, 1992; Ujfalussy &

Makara, 2019). Our model can express both forms of dendritic coincidence de-

tection in terms of a single variable, i.e., dendritic length. The fundamental role

of dendritic length has been discussed in Jadi, Behabadi, Poleg-Polsky, Schiller,

and Mel (2014) and was included in their two-layer network model of dendritic

integration. However, the model only accounted for neuronal Þring rates and

did not model sub-threshold membrane dynamics. In addition, we explored

the differences between inhibitory input onto the somatic and dendritic com-

partments. We associated dendritic inhibition with the activity of somatostatin

interneurons (SST), and somatic inhibition to parvalbumin interneurons (PV)

(Huang & Paul, 2019; Tremblay, Lee, & Rudy, 2016). From our Þt on guinea

pig pyramidal neurons (Miles et al., 1996), the GABAAreceptors on the dendritic

membrane had longer timescales and their maximal conductance was smaller
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than their somatic counterparts. We tested the differences between these two

types of inhibition by comparing their efÞcacy in attenuating the somatic EPSP

and showed that inhibition on the soma was effective in preventing spiking ac-

tivity for a short period of time. In contrast, dendritic inhibition could silence the

neuron for longer durations when applied on the same dendritic branch as ex-

citation, but its maximal effect on the soma was limited and delayed, consistent

with the current understanding of somatic and dendritic inhibition. The fast-

spiking PV interneurons acting on the soma are associated with feed-forward,

time-precise inhibition, while the slower action of SST cells regulates the den-

dritic potential via feedback inhibition (Kee, Sanda, Gupta, Stopfer, & Bazhenov,

2015; Tepper, Wilson, & Ko—s, 2008; Tremblay et al., 2016). In computational

terms, localized inhibition allows for external gating of the dendritic stimulus

by selecting which dendritic pathway is allowed to integrate the signal, and to

communicate with the soma. Pathway selection has been proposed as a cortical

mechanism for ßexible routing of sensory stimuli (G. R. Yang et al., 2016; Zaj-

zon et al., 2019) and, more recently, it has been demonstrated that networks that

leverage dendritic gating support efÞcient, durable, and fast learning (Sezener

et al., 2021).

The Tripod succeeds in expressing coincidence-detection and pathway-selection

because of two fundamental properties of its reduced dendritic tree: non-linear

integration and electronic segregation of dendritic compartments. Our princi-

pled dendritic reduction aligns well with results from data-driven reductions

that have been used to distill dendritic computations in the simplest architec-

ture that could explain the data (Beniaguev, Segev, & London, 2021; Ujfalussy

et al., 2018; Wybo et al., 2021-01-26, 2021); in particular with the work by

Ujfalussy et al. (2018) which shows how two compartments with non-linear in-

tegration and different timescales are sufÞcient to predict with high accuracy

neural response underin-vivo stimuli conditions. However, dendritic simpliÞca-

tion comes at a cost, synapses have no spatial resolution in the dendritic com-

partments but are all lumped together. Conversely, real dendrites are spatially

extended and host spines, receptors, and ionic channels throughout the entirety

of the dendritic cable. The interaction between synapses is determined by their

relative distance and their spatial organization governs homeostatic mechanisms

and heterosynaptic plasticity (Kirchner & Gjorgjieva, 2021; Oh, Parajuli, & Zito,

2015; Triesch, Vo, & Hafner, 2018; Wu, Hengen, Turrigiano, & Gjorgjieva, 2020).

The continuous spatial distribution along the dendritic cable also has important

implications for signal integration: single-branch synaptic activation that fol-
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lows the dromic direction - from the tip towards the soma - results in stronger

somatic depolarization than activation in antidromic directions (Branco et al.,

2010). Such distinctions are impossible under the constraints of our model, as

we neglect spatial interactions along elongated dendrites comprising multiple

compartments. In addition, considering only two compartments limits the com-

putations available to each Tripod model to the dendritic conÞguration instanti-

ated in the model, e.g. symmetrical or asymmetrical. In the brain, each cell has

hundreds of dendritic branches with a broad distribution of lengths, spatial ar-

rangements and membrane physiology. Overall, the Tripod has to be considered

as a compromise between accurate modeling of dendritic processes and imple-

menting them in large-scale cortical circuits. As such, it provides a step forward

from point-neuron models.

Dendritic NMDA spikes cause a long-lasting depolarization in the somatic com-

partment of the Tripod neuron. The duration of the depolarized state depends

on dendritic length and the strength of synaptic events and it could last on the or-

der of 100 ms, in agreement with experimental results (Branco & HŠusser, 2011;

Major et al., 2008; Milojkovic, Radojicic, & Antic, 2005; J. Schiller et al., 2000).

This dendritic ÒUP-stateÓ is governed by a self-regenerative process triggered by

co-active synapses and has a timescale that is two to three times longer than

the membraneÕs. This allows the UP-state to encode information about recent

activity and the maintenance of this information can support an activity-silent

processing memory at the neuronal level (Fitz et al., 2020; Stokes, 2015). Den-

dritic memory is similar to priming in the sense that the neuron responds faster

and more strongly to a retrieval cue when the encoding signal occurs close in

time. In contrast to short-lived synaptic memory (Mongillo, Barak, & Tsodyks,

2008), dendritic memory is more effective when the retrieval cue follows a dif-

ferent synaptic pathway than information encoding. The plateau potentials that

support dendritic memory have been considered a candidate mechanism for link-

ing neuronal to behavioral timescales (Augusto & Gambino, 2019; Bittner et al.,

2015; Bittner, Milstein, Grienberger, Romani, & Magee, 2017). Dendritic mem-

ory can bind information over time, and our results suggest that it can play a

role in temporal processing that is beyond single-compartment models.

Since the introduction of the NEURON simulator in 1989 (Hines, 1989), the

tools for modeling dendrites have come a long way (Poirazi & Papoutsi, 2020)

and the introduction of dendritic integration in cortical circuits is becoming in-

creasingly accessible to computational research. Examples of these advances

are Dendrify (Pagkalos, Chavlis, & Poirazi, 2022) and NESTML Plotnikov et al.
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(2016), which allow for simulating neurons with dendrites in cortical circuits

in Brian2 and NEST. The Tripod model can be easily replicated within these

frameworks. In addition, recent technical advances in neuromorphic comput-

ing have successfully implemented passive dendritic compartmentalization in

hardware (Kaiser et al., 2022; S. Yang et al., 2021), boosting the applicability

of dendritic computation in machine-learning contexts (Guerguiev, Lillicrap, &

Richards, 2017; Sezener et al., 2021). The work presented here can guide this

line of implementational research as it provides a simple, scalable model that

captures important computational primitives at the single neuron level beyond

the point neuron.

Tables

Table 2.1: Parameters for the axosomatic compartment of the Tripod neuron.
Values corresponds to those proposed in Brette and Gerstner (2005), except for
the somatic leak conductance which is set to 40 nS, as in Bono and Clopath
(2017).

Symbol Description Value Unit
gL Membrane leak conductance 40 nS
Cm Membrane capacitance 281 pF
Vr Resting membrane potential -70.6 mV
VT Threshold potential -50.4 mV
uth Spike onset threshold 0 mV
ur Reset potential -70.6 mV
# T Slope factor 2 mV
" w Spike-triggered adaptation time scale 144 ms
a Subthreshold adaptation conductance 4 nS
b Spike-triggered adaptation increment 80.5 pA

tup Spike width (soma clamped at 20 mV) 1 ms
t re f Refractory period 2 ms

Table 2.2: Dendritic physiology parameterized for human and mouse, following
Koch (1999) and Eyal et al. (2016).

Symbol Description Human Mouse Unit
rm Membrane resistance 39 1.7 k" cm2

rax Intracellular resistance 200 200 " cm
cm Membrane capacitance 0.5 1 µF/ cm2

Vr Resting potential -70.6 -70.6 mV
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Table 2.3: Parameters for dendritic compartments computed from the physio-
logical speciÞcs in Table2.2.

Symbol Description Human Mouse Unit
distal proximal distal proximal

l Dendritic length 400 150 400 150 µm
d Dendritic diameter 4 4 4 4 µm
gm Leak conductance 1.29 0.32 29.57 7.39 nS
" d Membrane timescale 1.48 0.22 1.11 0.36 ms
gax Axial conductance 15.71 62.83 15.71 62.83 nS
Cm Membrane capacitance 25.13 6.28 50.27 12.57 pF

Table 2.4: Parameters for mouse (Duarte & Morrison, 2019) and human (Eyal
et al., 2018) excitatory synapses. Inhibitory synapse parameters derived from
Miles et al. (1996).

Symbol Description Human Mouse Unit
Excitatory AMPA NMDA AMPA NMDA

Er Reversal potential 0 0 0 0 mV
" r Rise time constant 0.26 8 0.26 1 ms
" d Decay time constant 2 35 2 100 ms

øgs yn Peak conductance 0.73 1.31 0.73 0.159 nS
$ Voltage-gating slope Ñ 0.075 Ñ 0.062 mV$ 1

Symbol Description Soma Dendrites Unit
Inhibitory GABAA GABAA GABAB

Er Reversal potential Vr Vr -90 mV
" r Rise time constant 0.5 4.8 30 ms
" d Decay time constant 15 29 400 ms

gs yn Peak conductance 0.38 0.27 0.006 nS

2.5 Appendix

Appendix A: Minimal axial conductance

In order to simplify the analytical treatment, we consider the Þxed point of the

LIF equation, removing the exponential and the spike non-linearity. Because the

slope of the AdEx nullcline is monotonous after Vs > VT, there is no qualitative

difference in the presence of stationary input. Additionally, we consider a neuron

driven solely by excitatory inputs. With two dendrites ( i = 1,2), the reduced

tripod circuit is described by the following system of equations:
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Cs
dVs

d t
= $ gs

m(Vs $ Er ) + Id (2.17)

Ci
d

dVi
d

d t
= $ gi

m(Vd $ Er ) $ I i
d $ gi

e(Vi
d $ EGluRs) (2.18)

I i
d = $ gi

ax(Vs $ Vi
d ) (2.19)

The system can be solved algebrically and, forEGluRs = 0, results in:

Vs = Er

*

1 $
G2 g1

e g1
ax + G1 g2

e g2
ax

+ 1,2
i ( gi

axGi+ 1)( Gi $ gi
ax) + G1G2 gs

m

,

where Gi = gi
e + gi

m + gi
ax. If the conductance between one of the dendrites and

the soma is zero (neuron with single dendrite), the equation reduces to:

Vs = Er

-

1 $
gd

e gd
ax

gd
e (gd

ax + gs
m) + gs

m(gd
m + 2gd

ax)

.

In the limit of very large excitatory conductances ( ge 0 gm + gax), the neuron

is a simple voltage divider and the somatic potential is given by:

Vs = Er

-

1 $
gd

ax

gd
ax + gs

m

.

(2.20)

This situation corresponds to a neuron with a single dendrite and maximally

excited in the d-th dendritic compartment. Hence, the condition for the neuron

to reach the spike threshold is:

gd
ax >

Er $ VT

VT

gs
m = %gs

m (2.21)

where VT is the Þring threshold of the somatic compartment. Eq.2.13 deÞnes

the minimal condition for the dendritic compartment to elicit somatic spikes.

When the axial conductance gax > %gs
m, a full depolarization of the dendrites

sufÞces to generate spikes in the soma.

Within the constraints of the Tripod model, some relevant parameters are Þxed

by the axo-somatic model used, namely the somatic leak conductancegs
m, the

resting membrane potential Er , and the spike thresholdVT, which are all deÞned

by the AdEx model Brette and Gerstner (2005). The remaining parameter for the

axial conductance gd
ax is determined entirely by the cable geometry (diameter
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d and length l) (Rall, 2011) along with the dendritic membrane physiology as

expressed in Eqs. 2.5 2.6, 2.7. Once the physiological details are deÞned (Dasika

et al., 2007; Eyal et al., 2016), we can distinguish between geometries that elicit

spikes and geometries that do not.

Appendix B: Excitatory synaptic interactions in the passive

cable

Dasika et al. (2007) shows that a model neuron with stationary conductance de-

polarizes more when the inputs are distributed than when synapses are localized

on a single branch. This can be demonstrated by determining the equivalence

between a circuit with two active synapses on different branches (G1 and G2)

and a circuit with one single active conductance Gs (G1 = Gs and G2 = 0). The

following equivalence holds:

Gs =
G1 + G2 + 2G1G2

1
gd

axágm

1 $ G1G2

%
1

gd
axágd

m

& (2.22)

where gax and gm are the axial and the leak conductances of the passive mem-

brane patch (the dendritic compartments), respectively. The equation shows

that, in the presence of segregated dendritic compartments (gax < 1 ), Gs is al-

ways greater thanG1+ G2. The interaction has been further simpliÞed in (Li et al.,

2019). The authors reduce the interaction between synapses in a second-order

approximation where the total current, in case of simultaneous Þring synapses,

is given by:

Is yn =
#

gi
e(Ee $ v) + # I

# I =
#

i

#

j

&i , j g
i
egj

e(Ee $ v) (2.23)

where the Ee states the receptor reverse potential. The interaction has been

approximated to a binary function where the second-order synaptic contribution

&i, j is almost zero for synapses on different branches and negative for synapses

on the same branch.
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Appendix C: Membrane dynamics across experiments

Balanced inputs condition

To study the model in naturalistic conditions we stimulated the Tripod with ex-

citatory and inhibitory spike trains. We deÞned a balanced condition such that

the somatic compartment is depolarized and both glutamatergic and gabaergic

conductances are large; this input conÞguration ensures that the dendritic com-

putations investigated are not artifacts of the unrealistic setup. The balance is

obtained by Þxing the excitatory Þring rate to 3 kHz and varying the correspond-

ing inhibitory rates. This procedure results in inhibitory Þring rates of 3 kHz for

distal dendrites (400 µm); 4.8 kHz for proximal dendrites (150 µm); and 1 kHz

for the soma only model. With these inputs, the neuron (almost) never Þres and

the somatic compartment rests around$ 67 mV for the three dendritic conÞgura-

tions, distal-distal, distal-proximal, and proximal-proximal. Following the pro-

tocols presented in the Results section, each dendrite was activated by doubling

the excitatory input; when this happens, the dendrite depolarizes and causes

the neuron to Þre. When both dendrites are activated the neuronÕs Þring rate is

approximately 30 Hz, with little variations between different dendritic conÞgu-

rations. In experiments Fig.2.7, Fig.2.8, Fig.2.9 additional excitatory noise was

injected in the somatic compartment to ensure Þring activity when one single

dendrite was activated.

The soma onlybalanced conÞguration was also deÞned on a similar basis, al-

though the soma compartment needs to be more depolarized$ 60 mV to initiate

spikes when one of the input pathways is activated. Fig.2.1 illustrates these ef-

fects and shows the three Tripod conÞgurations and the soma-only condition in

the inactive (A) and active (B) states.

An important outcome of the balanced conÞguration is to avoid artifacts of

the AdEx model, as discussed in G—rski, Depannemaecker, and Destexhe (2021).

When the AdEx is strongly excited, for example with strong GluRs stimulation

or injected currents, the neuron starts Þring and the adaptive current rapidly

rises. If the stimulation terminates abruptly, the adaptive current pulls down the

membrane voltage, generating unnatural hyper-polarization. In Fig.2.2, Fig.2.3,

Fig.2.4 we show that, due to our balance condition, these artifacts are not ob-

served in the Tripod model and realistic membrane dynamics can be observed.
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SI Figure 2.1: Membrane dynamics of Tripod models
(A) Model activity in the inactive condition, with 3 kHz excitatory inputs and
dendritic-length-speciÞc values for inhibition (see main text). ( B) Membrane
dynamics in the active mode with doubled excitatory input rates.
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