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ABSTRACT
The concept of brain age (BA) describes an integrative imaging marker of brain health, often suggested to reflect aging processes. 
However, the degree to which cross- sectional MRI features, including BA, reflect past, ongoing, and future brain changes across 
different tissue types from macro-  to microstructure remains controversial. Here, we use multimodal imaging data of 39,325 
UK Biobank participants, aged 44–82 years at baseline and 2,520 follow- ups within 1.12–6.90 years to examine BA changes and 
their relationship to anatomical brain changes. We find insufficient evidence to conclude that BA reflects the rate of brain aging. 
However, modality- specific differences in brain ages reflect the state of the brain, highlighting diffusion and multimodal MRI 
brain age as potentially useful cross- sectional markers.

1   |   Introduction

Biomarkers which successfully characterize aging still need 
to be established. An emerging candidate for such a marker is 
the concept of biological brain age (BA). Algorithms that pre-
dict BA provide insight into the differences between imaging 
metrics of healthy populations and independent target popu-
lations, for example, presenting a certain pathology. BA can 
be predicted from different types of imaging data, such as dif-
ferent modalities or brain regions (Korbmacher et al. 2024a). 
The difference between BA and chronological age, called 
the brain age gap (BAG), has been used as a proxy for brain 
health. Previous studies identified the largest group- level 

differences in BAG between healthy controls and individuals 
with neurodegenerative disorders (Franke and Gaser  2019; 
Kaufmann et al.  2019) which makes BAG particularly inter-
esting in the context of aging; both healthy and pathological. 
Despite their cross- sectional design, brain age studies often 
claim to examine aging processes. Conclusions about aging 
processes however require longitudinal study designs. As 
most brain age studies are cross- sectional, the value of BAG 
in prognostics is unknown. To increase the clinical utility of 
BAG metrics, it is hence necessary to understand the degree 
to which cross- sectional BAG can predict brain aging later 
in life. The need of a closer examination of the relationship 
between cross- sectional BAG and longitudinal processes has 
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also recently been highlighted by a lack of explanatory power 
of brain age of longitudinal processes when estimated based 
on T1- weighted magnetic resonance imaging (MRI) (Vidal- 
Pineiro et  al.  2021; Korbmacher et  al.  2023a). Although ra-
diomic features extracted from diffusion MRI and multimodal 
MRI have been shown to accurately predict age (Korbmacher 
et  al.  2024a; Franke and Gaser  2019; De Lange et  al.  2020), 
and potentially more accurately than T1- weighted MRI- 
derived features (Korbmacher et al. 2024a), the value of such 
brain ages for longitudinal predictions has not been tested. 
Here, we capitalized on the largest accessible multimodal 
MRI dataset featuring T1- weighted and diffusion MRI from 
the UK Biobank including thousands of healthily aging par-
ticipants. We tested the basic question to which extent BAs, 
trained on all available features of different MRI modalities 

or multimodal MRI, reflect longitudinal changes in brain age 
and brain features (i.e., brain aging). We attempted to focus on 
aging effects not influenced by specific pathologies or disor-
der to establish a baseline understanding of expectable aging 
effects and relationships to brain age. Our results present a 
weak correspondence between cross- sectional brain age and 
longitudinal measures.

2   |   Results

Despite the short inter- scan interval (ISI), we could observe 
tissue maturation indicated by significant time- point differ-
ences in MRI- derived regional brain features (cortical thick-
ness, surface area, cortical volume and diffusion metrics across 

FIGURE 1    |    Training and test sample had similar characteristics and brain age was predicted with high accuracy in training and each test data 
time point individually. (a) Sample age distribution at each visit, separating the cross- sectional training data from the longitudinal test data. (b) Model 
Performance for the training set, and the two test points for each MRI modality. Uncorrected estimates are presented, which were overlaid with a cu-
bic spline with k = 4 knots. (c) Time point differences for age and both crude and age- bias corrected BAs for each MRI modality indicated by Cohen's 
d (d). Distribution of effect sizes indicating the change in anatomical features of diffusion MRI (dMRI) and T1- weighted MRI (T1w). For additional 
associations between centercepts (i.e., averages between time points) and rate- of- change values see Table S6.
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brain- regions, Figure  1d). Paired- samples t- test indicated that 
more than 90% of the T1- weighted, and more than 78% of the 
diffusion- derived features changed significantly between 
time points ( ∣dT1w ∣ = 0.26, ∣ddMRI ∣ = 0.15; Figure  1d), with 
larger magnitude of these changes observed for T1- weighted 
(∣ d ∣ = 0.20 − 0.30; Figure  S5) compared to diffusion metrics 
(∣ d ∣ = 0.12 − 0.16; see Figure  S6 metric- level changes). The 
features that showed significant change (p < 0.05, NT1w

 = 202, 
NdMRI = 1618) between baseline and follow- up were then used to 
compute principal components of the averages (PC) and the an-
nual rate of change of these features (ΔPC; Figures S1 and S3).

Figure 1 demonstrates that BA trained on cross- sectional data 
can be applied in longitudinal data. Training and test sample 
characteristics were similar (Figure 1a, Table S1). BA predictions 
in the test sample were strongly associated with chronological 
age (runcorrectedBA > 0.47, rcorrectedBA > 0.78; Figure  1b, Table  S2) 
and correlated between time points (r > 0.91; Table  S2). The 
resulting BAGs were also strongly correlated between time 
points (r > 0.80), reflecting the feature correlations between 
time points (rT1w > 0.85, rdMRI > 0.76), and BAGs increased sig-
nificantly over time (𝛽std > 0.32 years, p < 2 × 10−10; Figure 1c, 
Table S3), indicating accelerated brain aging.

Figure  2 illustrates that baseline (cross- sectional) BAG, repre-
sented by the average of the BAGs (BAG), is limited in predicting 
longitudinal brain changes. For illustration, Figure  2 presents 
crude correlations—none of which were significant and positive 
when considering relationships between cross- sectional and lon-
gitudinal measures. Focussing on the planned analyzes, using 
adjusted associations, within modalities, only the T1- weighted 
based corrected BAG was significantly and positively associated 
with the annual rate of BAG change (ΔBAG; �std = 0.028 ± 0.148; 
Figure 2a) and the principal component of longitudinal feature 
changes ΔPC (�std = 0.054 ± 0.015; Figure 2b, Table S4a).

Yet, these relationships were not significant when controlling 
for interaction of ISI and BAG (Table  S4b). Only T1- weighted 
BAG was associated with its principal component of change ΔPC 
(�std = 0.077 ± 0.022). Cross- sectional principal components 
(PC) were limited in predicting principal components of lon-
gitudinal feature changes ΔPC (all associations were negative: 
∣ 𝛽std ∣ < 0.063; Table S4a,b). Finally, Figure 2 highlights the im-
portance of age- bias correction: corrected BAGs were stronger 
related to ΔPCs and ΔBAGs than uncorrected BAGs. The associa-
tions between (longitudinal and cross- sectional) measures were 
similarly weak across modalities (Figure 2b). Yet, the change in 
a larger number of T1- weighted features was significantly related 
to both T1- weighted ΔBAG (83%) and BAG (18%; Figure 2c).

As a higher BAG can be expected at higher ages and potentially 
also the rate of change in BAG to accelerate, we show that our 
analyzes are independent of both, by correcting for the age bias 
(see Materials and methods), and by showing that BAG can pre-
dict future changes in BAG, independent of ISI, between baseline 
and follow- up. This was indicated by the effect of the interac-
tion between the ISI and BAG on ΔBAG being non- significant 
(p > 0.05; Table  S5, Figure  S2) when using either a linear or 
cubic interaction term, with the exception of uncorrected dMRI 
BAG (p = 0.028). This indicates that the observed associations 
between cross- sectional BAG and ΔBAG were independent of 

the ISI in the current study, and hence not just an artifact of 
study design, age or aging.

BAG was limited in reflecting sub- clinical health character-
istics. Our sample was selected to not contain neurological or 
psychiatric disorders and showed relatively stable health based 
on various health indicators. These health indicators were lim-
ited in reflecting BAG. Health characteristics were evaluated 
by examining different risk factors for age- related diseases and 
mortality, including cardiometabolics, depression, neuroticism, 
and polygenic risk scores (PGRS) of different disorders. Small 
associations were found between both BAGs and ΔBAG and 
different cross- sectional health indicators (Figure  S4a,b), in-
cluding PGRS of common psychiatric disorders and Alzheimer's 
disease (∣ 𝛽std ∣ < 0.06, pBonferroni > 0.05), clinically relevant 
state (depression rating) and trait (neuroticism) assessment 
scores (𝛽std < 0.08, pBonferroni > 0.05), with larger group- level 
differences for cardiometabolic factors hypertension and dia-
betes (𝛽std < 0.60, pBonferroni < 0.047). Among the longitudinally 
available phenotypes, only waist- to- hip ratio (WHR), previ-
ously shown to be related to BAG (Korbmacher et  al.  2023b), 
changed significantly between time points at the group level 
( t = 10.36, d = 0.15, p < 2.2 × 10−16, pBonferroni < 2.2 × 10−16 ) . 
However, while WHR showed a small, significant association 
with BAGT1w

 at baseline (𝛽std < 0.10), WHR changes were not 
predicted by BAGs or PCs (p > 0.05; Figure S4a,b). Neuroticism 
(t = 2.83, d = 0.04, p = 0.005, pBonferroni = 0.030) and depression 
(t = 2.13, d = 0.04, p = 0.033, pBonferroni = 0.198) scores decreased 
over time, however, changes in these scores were also not found 
to be predicted by BAGs or PCs of brain feature change or aver-
ages (p > 0.05).

3   |   Discussion

Taken together, our findings indicate that BAG is limited in re-
flecting longitudinal brain changes. Overall, (a) cross- sectional 
BAGs presented small associations with longitudinal brain 
ages across modalities, (b) only BAGs from T1- weighted MRI 
features showed significant but small positive association with 
the respective longitudinal principal components, and (c) BAGs 
explained less than 1% of the variance of the mentioned longitu-
dinal principal components and BAG change.

Yet, dMRI- based cross- sectional BAG correlated significantly 
with the annual change in around 38% of the region- level 
features (at a relatively small average effect of ∣ � ∣ = 0.140). 
Assessing the rate of BAG change, T1- weighted BAG changes 
correlated significantly with the largest portion of regional 
brain change (83%), indicating that brain age reflects the state 
of the brain. Moreover, the cross- sectional T1- weighted BAG 
associated with the largest proportion of change in brain fea-
tures (18%). Hence, despite BAG correlating weakly with fu-
ture change in BAG and future change principal components, 
a single- time- point T1- weighted BAG might allow to capture a 
portion of future changes in brain morphometry on the region 
level, whereas dMRI BAG is more reflective of the brain state. 
Future investigations might focus on constructing explainable 
brain age models which leverage region- level data, and further 
investigate the potential of brain age in datasets with multiple 
follow- ups. Alternatively, other markers which reflect a person's 
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FIGURE 2    |     Legend on next page.
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deviation from a norm defined by the characteristics of a train-
ing dataset, might be of interest.

Brain age allows reducing large amounts of information into 
a single personalized health score. Although brain age can be 
vulnerable to individual differences (Korbmacher et al. 2023a), 
such a single number is intuitive when set in contrast to a per-
son's chronological age and does not require expert knowledge 
to be interpreted: a very high brain age in contrast to the chrono-
logical age might be alarming. Hence, brain age predictions hold 
the promise to provide additional information on routine clini-
cal scans and, for example, support incidental findings. Closer 
examinations of how BAG reflects developmental trajectories 
under different conditions and on different samples offer oppor-
tunities for future research.

The identified increase in BAG over time indicates an accel-
eration of brain aging at a higher age. Such accelerated brain 
aging processes at older ages have also previously been high-
lighted in pathology- free aging of white matter microstructure 
(Korbmacher et al. 2024b). In contrast, BAG during adulthood 
without pathology can be expected to be stable, since tissue 
changes remain small (Korbmacher et al. 2023a).

In the current study, examining adults from midlife to late life 
at two time points, we show significant brain changes as well 
as significant changes in BAG over time. Hence, BAG provides 
an indicator of the brain's morphometric state. Such a state has 
been shown to be influential for the future development of dis-
orders, as indicated by disability accumulation in multiple scle-
rosis (Brier et al. 2023), the long- term cognitive impact of stroke 
(Aamodt et  al.  2023), or changes in dementia ratings (Tseng 
et al. 2022). Despite, for example, one study showing an increase 
in BAG over time in multiple sclerosis (Høgestøl et al. 2019), the 
observed increase in our non- pathological sample casts doubt on 
the interpretation of the increase in the gap. At the same time, 
a study analyzing patient data presented that a faster brain age 
increase after stroke is linked to cognitive decline (Aamodt 
et al. 2023). The predictive utility of brain age in clinical sam-
ples may differ from that observed in the sample presented in 
this study, particularly when considering brain changes asso-
ciated with specific disorders that a model might interpret as 
age- related. This underscores the importance of model config-
uration, which is inherently dependent on the training data, 
including input features, processing pipelines, and potential 
sample biases. While it is possible that certain brain age mod-
eling configurations could accurately reflect specific aging 
processes, current brain age estimations have yet to achieve 
this level of precision. Furthermore, the biological mechanisms 

underlying both increasing gaps in brain age predictions and the 
significance of baseline gaps for future developmental trajecto-
ries remain poorly understood and require further investigation.

We observed considerable modality- dependent differences 
in brain ages. BAGT1w was most predictive of BAG change. 
Modality- dependent differences might originate from the 
attempt to reduce a more complex feature space into single 
scores, such as brain age or principal components. This pro-
cedure might be a general limitation of the current brain age 
approaches, which usually use all available features, poten-
tially losing information about independent groups of brain 
features. Utilizing approaches which maximize variability 
might be more appropriate (Smith et al. 2025). Moreover, the 
reliability of the longitudinal ΔBAG is unknown. Increasing 
the number of sampled time points for each participant might 
help to better characterize individual trajectories, particularly 
keeping measurement noise in mind which limits the possi-
bility to detect subtle individual differences in developmental 
trajectories (Parsons and McCormick 2024). At the same time, 
null effects for T1- weighted BAG were previously presented in 
data with more observations and longer follow- up times, ques-
tioning the utility of further exploration of approaches using 
all available brain features for dMRI and multimodal BAGs. 
On the other hand, the chosen cross- sectional FreeSurfer- 
based data processing pipeline for the T1- weighted MRI de-
rived phenotypes introduces noisy estimates, as presented 
previously when comparing cross- sectional and longitudinal 
FreeSurfer processing pipelines, with longitudinal estimates 
being more stable (Vidal- Piñeiro et al. 2024; Wang et al. 2024). 
An introduction of such noise exacerbates the estimation of 
individual differences in brain change over the examined 
short time period. Hence, the extent of the presented brain 
changes, captured by T1- weighted MRI, remains unclear and 
needs to be interpreted with care, just as the presented annual 
rate of T1- weighted BAG change. Future modeling might focus 
on different spatial scales, such as voxel- level analysis, and 
simultaneously on different biophysical modeling approaches 
to extract meaningful brain metrics. Moreover, as data selec-
tion and processing choices influence both brain age estima-
tion cross- sectionally (Korbmacher et al. 2024a, Korbmacher 
et al. 2024c), as well as longitudinal estimates of brain change 
(Vidal- Piñeiro et al. 2024; Wang et al. 2024), more stringent 
tests are warranted varying different parameters system-
atically. A recent study (Smith et  al.  2025) suggest that the 
feature selection and processing is of particular importance 
when attempting to relate brain age with longitudinal pro-
cesses. This suggests that approaches not using all available 
brain (or other available) features, but rather a selection of 

FIGURE 2    |    BAG is overall limited in reflecting brain change, yet, T1- weighted brain age reflects the strongest regional brain changes. (a) 
Associations between uncorrected BAG and ΔBAG in the top row, and corrected associations in the bottom row. Associations were obtained spe-
cific to each modality: T1- weighted (T1w), diffusion (dMRI), and multimodal MRI. The displayed line fits were cubic splines with k = 4 knots. (b) 
Associations between the averages (proxy for cross- sectional BA measures) of each modality- specific BAG and PCs of both the averages and the 
annual rate of change in brain features. The left two columns present associations of uncorrected BAG estimates, and the right two columns of 
training- sample age- corrected BAG estimates, respectively. The displayed line fits were cubic splines with k = 4 knots. (c) Top row: Distribution of 
associations between corrected BAG and brain features and annual change of brain features (including associations with pFDA < 0.05). Bottom left: 
Absolute mean and standard deviation of the associations between average and rate of change in corrected BAG and annual change of brain features. 
Bottom right: Percentage of significant associations between average and rate of change in corrected BAG and the annual change of brain features 
after Bonferroni- correction.
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variables representing different aging phenomena might be 
more successful in depicting longitudinal processes. This 
might in turn lead to practical applicability of brain age, when 
target phenomena are known. For example, if examining di-
abetes is the goal, a brain age from brain features sensitive 
to cardiometabolics, such as different white matter features 
(Korbmacher et  al.  2024a, Korbmacher et  al.  2025) might 
be useful to predict future brain ages or anatomical states. 
However, these findings need further empirical evaluation. 
Future modeling might also be served by either using more 
recent software versions, for example more recent than the 
legacy FreeSurfer version 5.3. Combining datasets processed 
with different FreeSurfer versions can also aid to increase 
cross- sectional model performance (Korbmacher et al. 2024c). 
Similarly, additional explorations could focus on FreeSurfer 
analysis pipelines, for example, comparing longitudinal and 
cross- sectional processing streams. Open questions on how 
FreeSurfer version differences and processing pipelines in 
general influence the relationship between cross- sectional 
and longitudinal brain age measures provide opportunities 
for further explorations.

While our sample provides relatively large statistical power, 
the generalisability of our findings is still limited by a gen-
eral positive health bias in the UK Biobank. Due to attrition 
effects, survival bias, and other common effects of longitudi-
nal sampling, the positive health bias might be even stronger 
in the examined longitudinal portion of the UK Biobank. We 
examined various brain changes indicating brain aging pro-
cesses. However, it cannot be excluded that these changes are 
differently pronounced in more representative samples or spe-
cific patient samples. As a consequence, this leaves also open 
whether BAG associates differently with changes in the pre-
sented health characteristics when using other similar sam-
ples. There is hence room for numerous potential follow- up 
studies utilizing longitudinal data to explore BAG or other 
brain- based predictive models and manipulating various 
parameters.

Despite the outlined limitations in predicting brain change in 
this study, brain age holds the potential to be a useful clinical 
marker. Different cohort-  and phenomenon- specific configu-
rations of brain age might still prove the marker's prognos-
tic value by predicting future aging processes. Following our 
findings, which present weak links between cross- sectional 
and longitudinal BAGs, the cross- sectional BAG still contains 
useful and simple- to- understand information about a patient's 
brain health. Such information could be automatically com-
puted at the scanner and serve as Supporting Information 
when assessing the scan. However, the score lacks specificity. 
Hence, for clinically meaningful conclusions either brain age 
needs to be evaluated in the context of other variables, or con-
ceptualized differently.

In conclusion, we find that cross- sectional BAG estimates, cur-
rently commonly estimated from all available brain features, are 
limited in reflecting future brain changes. This limits the poten-
tial of such BAG for longitudinal inference and establishing BAG 
as a biomarker. During generally pathology- free aging, BAG is 
not stable but increases, together with morphometric changes, 
potentially due to accelerated aging. Yet, only dMRI- based BAG 

also reflected regional morphometric changes. These findings 
provide new and more pronounced insights into the mechanism 
of BAG. For example, a higher BAG does not automatically indi-
cate the presence of a disorder, which would, however, be crucial 
for diagnostics. Instead, the observed modality dependencies 
suggest that dMRI and multimodal BAGs reflect the morpho-
metric state, which is influenced by early life factors (Vidal- 
Pineiro et  al.  2021). DMRI BAG might reflect regional brain 
changes better than the other approaches. This more nuanced 
understanding of BAG underscores the need for closer exam-
inations of the biological underpinnings of BAG to aid the gen-
eral interpretation of the marker and to increase clarity around 
BAG's clinical utility.

4   |   Materials and Methods

4.1   |   Sample Characteristics

We obtained UKB data (Alfaro- Almagro et  al.  2018) con-
taining dMRI data of N  = 46,637 cross- sectional datasets, of 
which N  = 4,871 entailed data available at two time points, 
and N  = 48,044 T1- weighted MRI datasets of which N  = 4, 
(ref 11/NW/0382) 960 were followed up. Participant data 
were excluded when consent had been withdrawn, or data 
quality deemed to be insufficient based on the YTTRIUM 
method (Maximov et al. 2021) applied to dMRI data, and for 
T1- weighted data based on Euler numbers (Rosen et al. 2018), 
leading to exclusions when three standard deviations from the 
mean were exceeded. Additionally, we excluded participants 
which were diagnosed with any mental and behavioral disor-
der (ICD- 10 category F), disease of the nervous system (ICD- 
10 category G), and disease of the circulatory system (ICD- 10 
category I) from the training sample. The remaining datasets, 
after the exclusions were applied, entailed N  = 36,805 purely 
cross- sectional participants (52.17% females), which were used 
as a training set. The participants in the training sample were 
on average 64.79 ± 7.70 years old (range: 44.57 − 82.75 years), 
with MRI scans obtained at four sites: (1) Cheadle (57.81%), (2) 
Newcastle (25.34%), (3) Reading (16.70%), and Bristol (0.15%). 
The independent testing set, not being a subset of the above 
mentioned training data, consisted of N  = 2,520 participants 
(52.17% females) aged 62.26 ± 7.19 years at baseline (range: 
46.12 − 80.30 years), and at time- point two, the mean age 
was 64.67 ± 7.11 years (range: 49.33 − 82.59 years), indicating 
an average age difference of ΔAge = 2.45 ± 0.75 years (range: 
1.12 − 6.90 years). The test data were collected at three sites: (1) 
in Cheadle (57.36%), (2) Newcastle (37.04%), and (3) Reading 
(5.60%).

4.2   |   MRI Acquisition and Post- Processing

UKB MRI data acquisition procedures and protocols are 
described elsewhere (Alfaro- Almagro et  al.  2018; Miller 
et  al.  2016; Sudlow et  al.  2015) (https:// www. fmrib. ox. ac. 
uk/ ukbio bank/ proto col/ .) Briefly, the diffusion protocol con-
sisted of two b- values (1000 and 2000 s/mm (Franke and 
Gaser  2019)) with 50 non- coplanar diffusion weighting gra-
dients per shell. After access to the raw dMRI data was ob-
tained, we processed the data using an optimized pipeline 
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(Maximov et  al.  2019). The pipeline includes corrections for 
noise (Veraart et al. 2016), Gibbs ringing (Kellner et al. 2016), 
susceptibility- induced and motion distortions, and eddy cur-
rent artifacts (Andersson and Sotiropoulos  2016). Isotropic 
1 mm3 Gaussian smoothing was carried out using FSL's (Smith 
et  al.  2004; Jenkinson et  al.  2012) fslmaths. Employing the 
multi- shell data, Diffusion Tensor Imaging (DTI), Diffusion 
Kurtosis Imaging (DKI) (Jensen et al. 2005) and White Matter 
Tract Integrity (WMTI) (Fieremans et al. 2011) metrics were 
estimated using Matlab 2017b code (https:// gitgub. com/ 
NYU-  Diffu sionM RI/ DESIGNER). Spherical mean technique 
SMT (Kaden et al.  2016a), and multi- compartment spherical 
mean technique (mcSMT) (Kaden et al. 2016b) metrics were 
estimated using original code (https:// github. com/ ekaden/ 
smt) (Kaden et al. 2016a, 2016b). Estimates from the Bayesian 
Rotational Invariant Approach (BRIA) were evaluated by the 
original Matlab code (https:// bitbu cket. org/ reise rt/ baydi ff/ 
src/ master/ ) (Reisert et al. 2017).

T1- weighted images were obtained at 3 T on a Siemens Skyra 
3 T running VD13A SP4 (as of October 2015), with a stan-
dard Siemens 32- channel radio frequency receive head coil 
using a 3D MPRAGE sequence (sagittal, in- plane accelera-
tion iPAT = 2, prescan- normalize) at 1 × 1 × 1 mm3, field- of- 
view: 208 × 256 × 256 matrix, taking approximately 5 min. The 
T1- weighted images were processed using the cross- sectional 
FreeSurfer (version 5.3) (Fischl 2012) automatic recon- all pipe-
line for a cortical reconstruction and subcortical segmentation 
of the T1- weighted images (http:// surfer. nmr. mgh. harva rd. edu/ 
fswiki) (Dale et al. 1999).

In total, we obtained 26 WM metrics from six diffusion ap-
proaches (DTI, DKI, WMTI, SMT, mcSMT, BRIA; see for 
overview Table  S8). In order to normalize all metrics, we 
used Tract- based Spatial Statistics (TBSS) (Smith et al. 2006), 
as part of FSL (Smith et  al.  2004; Jenkinson et  al.  2012). In 
brief, initially all brain- extracted (Smith  2002) fractional 
anisotropy (FA) images were aligned to MNI space using 
non- linear transformation (FNIRT) (Jenkinson et  al.  2012). 
Following, the mean FA image and related mean FA skeleton 
were derived. Each diffusion scalar map was projected onto 
the mean FA skeleton using TBSS. To provide a quantitative 
description of diffusion metrics at a region level, we used 
the John Hopkins University (JHU) atlas (Mori et  al.  2006), 
and obtained 48 white matter regions of interest (ROIs) and 
20 tract averages based on a probabilistic white matter atlas 
(JHU) (Hua et al. 2008) for each of the 26 metrics. Altogether, 
1794 diffusion features were derived per individual [26 met-
rics × (48 ROIs + 20 tracts + 1 global skeleton mean value)]. 
For T1- weighted data, we applied the Desikan- Killiany Atlas 
(Desikan et  al.  2006) to obtain regional estimates of thick-
ness, area, and volume, leading to 208 features [3 metrics × (34 
ROIs + 2 global mean values (left and right hemispheres))]. 
This results in a total of 2002 multimodal MRI features per 
individual.

TBSS has previously been validated as cross- sectionally and 
longitudinally reliable under various different conditions 
such as different age groups or scanner settings (Madhyastha 
et  al.  2014; Merisaari et  al.  2019; Rosberg et  al.  2022; Melzer 
et  al.  2020). Similarly, FreeSurfer estimated T1- weighted 

features show high intra- class correlations (Knussmann 
et  al.  2022; Liem et  al.  2015). Yet, it has been suggested that 
FreeSurfer's more recent longitudinal analysis stream pro-
vides more accurate cortical reconstructions (Vidal- Piñeiro 
et al. 2024; Wang et al. 2024). For consistency between longi-
tudinal and cros- sectional sample processing, but also due to 
limited computational resources, we provide data from the 
cross- sectional FreeSurfer stream only.

4.3   |   Cardiometabolic Risk Factors

We used a selection of cardiometabolic risk factors, which 
have associations with BAG and are relevant to brain aging 
(Korbmacher et  al.  2024a; Mo et  al.  2023; Jagust et  al.  2005; 
Habes et al. 2023; Jochemsen et al. 2013). Smoking, hyperten-
sion, and diabetes were binary and the waist- hip ratio (WHR) is 
a scalar value.

4.4   |   Depression and Neuroticism Scores

Depression scores were computed using the Recent Depressive 
Symptoms (RDS- 4) score (fields 2050, 2060, 2070, 2080), which 
was suggested in a previous investigation using UKB imaging 
data (Dutt et  al.  2022). Neuroticism scores (UKB data- field 
20,127) were derived as a summary score from the Eysenck 
Neuroticism (N- 12) inventory, which includes items describing 
neuroticism traits.

4.5   |   Polygenic Risk Scores (PGRS)

We estimated PGRS for each participant with available ge-
nomic data, using PRSice2 (Choi and O'Reilly  2019) with 
default settings. As input for the PGRS, we used summary sta-
tistics from recent genome- wide association studies of Autism 
Spectrum Disorder (ASD) (Autism Spectrum Disorders Working 
Group of The Psychiatric Genomics Consortium  2017), Major 
Depressive Disorder (MDD) (Wray et  al.  2018), Schizophrenia 
(SCZ) (Trubetskoy et al. 2022), Attention Deficit Hyperactivity 
Disorder (adHD) (Demontis et al. 2019), Bipolar Disorder (BIP) 
(Mullins et  al.  2021), Obsessive Compulsive Disorder (OCD) 
(Arnold et al. 2018), Anxiety Disorder (ANX) (Otowa et al. 2016), 
and Alzheimer's Disease (ad) (Wightman et al. 2021). We used a 
minor allele frequency of 0.05, as the threshold most commonly 
used in PGRS studies of psychiatric disorders.

While psychiatric disorders were p- values thresholded at 
α = 0.05 (Autism Spectrum Disorders Working Group of The 
Psychiatric Genomics Consortium  2017; Wray et  al.  2018; 
Trubetskoy et al. 2022; Demontis et al. 2019; Mullins et al. 2021; 
Arnold et  al.  2018; Otowa et  al.  2016; Wightman et  al.  2021; 
Lambert et  al.  2013), recommendations for AD (� = 1.07−4) 
(Clark et al. 2022) lead to the application of a lower threshold of 
� = 0.0001, with the goal of optimizing signal to noise in com-
parison to previously used � = 0.001 (Euesden et al. 2015). The 
goal of the PGRS estimation was to relate the PGRS to cross- 
sectional and longitudinal BAG and the principal components. 
PGRS data were available for N = 2166 of the longitudinal data-
sets (after exclusions).
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4.6   |   Principal Components (PC) of Brain 
Physiology

We conducted six principal component analyzes, one for the 
averages of the features and one for the annual rate of change 
of features for each modality: (1) T1- weighted, (2) diffusion, and 
(3) multimodal MRI features (as described in the MRI acquisi-
tion and processing section). The first component of each of the 
PC analyzes was selected (rate of change components (ΔPC): 
T1- weighted R2 = 18.5%, dMRI R2 = 23.5%, multimodal R2 = 20.8; 
average components (PC): T1- weighted R2 = 30.5%, dMRI 
R2 = 39.1%, multimodal R2 = 34.6; see Figure S1). For categorical 
feature contributions of the different approaches to the first two 
components per modality see Figure S3, and for the relative con-
tribution by feature type see Figure S7. In brief, contributions of 
feature classes across regions (e.g., forceps fractional anisotropy) 
to PCs were relatively evenly distributed. This suggests that 
there is not a single dominantly contributing feature for dMRI 
and multimodal components. Yet, thickness contributed more 
than volume and surface area for the first T1- weighted MRI com-
ponent (Figures S3, S7).

4.7   |   Statistical Analyzes

All statistical analyzes were carried out using R version (v4.2.0, 
www. r-  proje ct. org), Python (v3.7.1) and FSL (v6.0.2) (Jenkinson 
et  al.  2012). P- values which adjusted for multiple comparison 
using FDR- correction (Benjamini and Hochberg  1995) are 
marked with pFDR, and p- values corrected using the Bonferroni 
method are marked with pBonferroni. Standardised regression co-
efficients are labeled as �std, unstandardized coefficients as �. 
For example, in a regression function ŷ = �0 + �1 × x + ϵ, �1 is 
the slope, with �0 the intercept, and ϵ the modeling error. When 
scaling variables to a standardized value (M = 0, SD = 1), �std 
can be obtained. The proportion of true null effects/p- values 
was estimated using the Storey–Tibshirani method (Storey and 
Tibshirani 2003). An overview of the analysis protocol is given 
in Note S1.

4.7.1   |   Brain Age Prediction

Brain age predictions refer to age predictions from a trained 
model in unseen data based on a set of MRI features, here, 
regional brain metrics representing different gray and white 
matter microstructure characteristics. A higher predicted age 
indicates that the model assumes this person is older, based on 
the presented brain features.

As the goal is to train models which are generalisable, we esti-
mated the power of our model to do so under varying assump-
tions of parameter shrinkage, which quantifies the extent to 
which the model is generalisable. A larger shrinkage indicates 
lower generalisability. With the conservative assumption of a 
large to extremely large parameter shrinkage, for example, of 
30%, 40%, 50%, and 60%, we estimated required training sample 
sizes of 14,826, 19,522, 25,848, and 35,117 participants to train a 
BA model on the selected maximum of 2002 features (the mul-
timodal MRI brain age model), respectively, using the pmsamp-
size package (Riley et al. 2019).

We tested several algorithms, including eXtreme Gradient 
Boosting (XGBoost) (Chen and Guestrin  2016), the least 
absolute shrinkage and selection operator (LASSO) 
(Tibshirani 1996), and simple linear regression models using 
k- fold nested cross- validation with included hyperparamenter 
tuning on five inner and ten outer folds. Across all algorithms 
tested, linear regression models performed best in terms 
of variance explained and correlations of brain age predic-
tions and chronological age and commonly used error met-
rics, including Root Mean Squared Error (RMSE), and Mean 
Absolute Error (MAE) on the training sample and were, there-
fore, used to predict BA (Table S7). The superiority of linear 
models was also underscored by a lower parameter shrinkage 
when predicting in the test data. These predictions are pre-
sented in the main text, whereas the results from the other 
algorithms are presented in the Supplement. Altogether, 2002 
features (i.e., brain regional metrics based on T1- weighted or 
dMRI measures) were used per individual. After the training 
procedure was completed on the participants for which only a 
baseline scan was available, we predicted BA in the remaining 
participants (N  = 2678) with tow available data points for each 
of these two study time points (baseline and follow- up).

We calculated corrected BA estimates by first calculating the in-
tercept (�) and slope (�) of the linear associations between pre-
dicted BA (� train) and chronological age (Ωtrain) in the training 
(baseline) sample (Equation 1):

The calculated intercept (�) and slope (�) from the training 
sample were then used to estimate a corrected BAG (BAGc), as 
previously suggested (de Lange et al. 2022), from the predicted 
age (� test) and chronological age (Ωtest) separately in each of data 
points of the testing (longitudinal) sample:

We present the results for both corrected and uncorrected BAG.

As a control, we randomly split the longitudinal data into 
equal parts, trained models and predicted in NTP1−2 = 1339 at 
each time point within the same individuals (due to the high 
dimensionality of the dMRI and multimodal data in contrast 
to the degrees of freedom, only T1- weighted data were consid-
ered; Tables S9 and S10). These predictions did not only show 
large variability but also contra- indicative trends of decreas-
ing brain age over time. Hence, these values were not consid-
ered for further analyzes.

4.7.2   |   Rate of Change and Averages

In order to investigate how single time point BA predictions re-
late to longitudinal changes in BA and features, we estimated 
the annual rate of change and averages in both features and 
BAs. Averages were used to establish cross- sectional proxies 
(of the BAG, PCs, and brain features) which are statistically 
independent from the annual rate of change. Averages are the 
average of two measures without considering the inter- scan 

(1)�̂ train = � + � × Ωtrain.

(2)BÂGc= � test+
(
Ωtest−

(
�training+� training×Ωtest

))
−Ωtest.
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interval (ISI). The annual rate of change, on the other hand, 
is the difference of the BAG at each time point and has the ISI 
as denominator.

4.7.3   |   Exploratory Analyzes

Time point correlations between brain ages at each time point 
were assessed using uncorrected Pearson's correlations. To as-
sess time point (TP) difference in the (a) corrected and (b) un-
corrected brain age gaps (BAG), we used mixed linear models 
(MLMs) with ID, Site, Age, Sex, and the Age ∗ Sex interaction as 
fixed effects, the subject/ID as random effect (u), and the subject 
residuals (e).

We used paired samples t- tests to assess features changes over 
time. Changing features were included in the principal compo-
nents analyzes.

We evaluated the association of BA average or the annual rate 
of change in BA with (a) the first cross- sectional principal 
component (of the averages of features) and (b) the principal 
component of features' annual rate of change (PC), correcting 
for the ISI.

When assessing how (a) the average of the BAG and (b) the an-
nual rate of change in BAG (BAG) reflect brain features and 
change in brain features (F), to ensure model convergence, we 
used simple linear models.

Finally, we explored the associations between PC, BAG, and 
their annual rates of change BAG,ΔBAG,PC,ΔPC (four out-
come variables), and time- point specific principal components 
PCTP1 and PCTP2 and BAGs BAGTP1 and PCTP2 (another four out-
come variables; all summarized in the formula as PC∕BAG) 
with pheno-  and genotypes (P∕G), including PGRS of psychi-
atric disorders and Alzheimer's, depression and neuroticism 
scores, and cardiometabolic risk factors.

The associations between PGRS and rate of change of PC and 
BAG had the lowest statistical power due to the limited avail-
ability of participant's genetic data (N = 2,160). We conducted 
a power analysis to ensure we would be able to detect mean-
ingful effect sizes. We aimed for a power of 80%, and an �- level 
of 0.05 in simple linear regression models, as described above, 
indicating that effect sizes as small as Cohen's f 2 = 0.006 can be 

detected, corresponding to a Pearson's correlation coefficient of 
r = 0.006 or Cohen's d = 0.012.

4.7.4   |   Confirmatory Analyzes

We tested several preregistered hypotheses (see https:// aspre 
dicted. org/ 7bd4e. pdf)1. First, to test whether there were rela-
tionships between cross- sectional and longitudinal measures 
of the obtained BAGs and PCs, we associated their averages 
(Wainer 2000) and annual rates of change. We ran first MLMs 
predicting the annual rate of BAG changes (BAGΔ) from cross 
sectional BAG (BÂG). We also predicted the longitudinal 
principal component of brain feature changes (PCΔ) from the 
cross- sectional principal component (P̂C) controlling for the 
inter- scan interval (ISI), age, sex, and the age- sex interaction as 
fixed effects, and scanning site as random effect (Equations (7) 
and (8)).

To test the interaction effect of ISI and the respective cross- 
sectional measures (BAGc and PCc) we used generalized addi-
tive models (GAM) taking the same form of Equation  (8), yet 
introducing a spline chaining k = 4 cubic functions s on the in-
teraction of interest:
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BÂG=𝛽0+𝛽1×TP+𝛽2×Age+𝛽3×Age∗Sex

+𝛽4×Sex+𝛽5×Site+uID+e

(4)
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Endnotes

 1 Note: Instead of estimating brain ages for dMRI only, we also used 
T1- weighted and multimodal data as well. For more meaningful re-
sults, we did not conduct a genome- wide association study with brain 
age and used instead polygenic risk scores of psychiatric disorders and 
Alzheimer's disease, as well as cardiometabolics and depression and 
neuroticism scores.
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