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REGULAR ARTICLE

Indexing prediction error during syntactic priming via pupillometry
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ABSTRACT  
Prediction is argued to be a key feature of human cognition, including in syntactic processing. 
Prediction error has been linked to dynamic changes in syntactic representations in theoretical 
models of language processing. This mechanism is termed error-based learning. Evidence from 
syntactic priming research supports error-based learning accounts; however, measuring 
prediction error itself has not been a research focus. Here we present a study exploring the use 
of pupillometry as a measure of prediction error during syntactic priming. We found a larger 
pupil response to the more complex and less expected passive structure. In addition, the pupil 
response predicted priming while being weakly dependent on changes in expectations over the 
experiment. We conclude that the pupil response is not only sensitive to syntactic complexity in 
comprehension, but there is some evidence that its magnitude is related to the adjustment of 
dynamic mental representations for syntax that lead to syntactic priming.
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Introduction

One of the biggest challenges in psycholinguistic 
research is identifying the mechanisms by which 
humans acquire and process language. Early theoretical 
approaches were dominated by domain-specific propo
sals hypothesising language-specific mechanisms (fol
lowing arguments made by Chomsky, 1959, 1965; and 
others, Fodor, 1983). However, the nature of language 
as a human skill instantiated in neural structures that 
evolved and were co-opted for language and communi
cation implies that neurally plausible domain-general 
learning mechanisms at least play some determining 
role (Christiansen & Chater, 2008). In the current paper 
we consider one such mechanism: learning via prediction 
error. Predictive processing is argued to confer adaptive 
advantages by allowing the brain to develop, store, and 
use complex models of the environment rather than 
simple associations between sensory input and internal 
states (Clark, 2013). Learning via prediction error is plau
sibly instantiated in neural networks via recurrent con
nections and the backpropagation of error (Elman, 
1990). That is, sensory input can be compared to pre
vious predictive output and any mismatch converted 
to an error signal that adjusts the predictive model.

Prediction error plays a central role in neural network 
models of language, which typically learn via backpropa
gation of error (Rumelhart et al., 1986). Here we focus on 
one prominent computational model of language: 
Chang et al.’s (2006) proposed dual-path connectionist 
model of language production and syntax acquisition. 
The model comprises a meaning system, which 
encodes concepts and their roles within a message, 
and a separate sequencing system, which is a simple 
recurrent network that learns syntactic representations 
that allow it to correctly sequence words. The model 
makes next-word predictions during sentence compre
hension and compares its predictions to the input. In 
the case of a mismatch, prediction error backpropagates 
through the system, and weights within the network are 
adjusted to reduce the likelihood of the error in future 
predictions, thus updating the model’s syntactic rep
resentations. These same syntactic representations are 
used during sentence production, wherein the predic
tion mechanisms are used to incrementally output 
words to produce a grammatical sentence that accu
rately communicates the intended meaning. Therefore, 
the theory explains the acquisition of syntax through 
error-based learning and syntactic processing in the 
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services of production. Importantly, the theory connects 
language acquisition to adult language use: the error- 
based learning mechanism responsible for the learning 
of syntactic knowledge continues to operate in adult
hood, albeit with a lower learning rate, suggesting 
that language use continues to modify syntactic rep
resentations across the lifespan via implicit learning 
(Dell & Chang, 2014).

Error-based learning in syntactic priming

Error-based learning has been invoked to explain syntac
tic priming – the tendency to persist in the use of a struc
ture after previously hearing or using it (Bock, 1986). For 
example, hearing a passive prime, the swimmer was 
eaten by the crocodile, increases the likelihood of later 
describing a target using a passive, the cyclist was 
swooped by the magpie, rather than an active, the 
magpie swooped the cyclist. Priming independent of 
shared lexical content (both content words: Bock, 1986, 
and functional words: Bock, 1989; Ferreira, 2003; Hartsui
ker et al., 1999), thematic structure (Bock et al., 1992), and 
prosody (Bock & Loebell, 1990) suggests that priming 
occurs at the level of representation of abstract syntactic 
structure (but see Ziegler et al., 2019). Evidence that 
priming reflects learning comes from observations of 
priming effects that endure beyond intervals that might 
otherwise be attributable to more transient activation 
mechanisms (Bock & Griffin, 2000; Kaschak et al., 2011).

In Chang et al.’s (2006) model, next-word prediction 
occurs during prime sentences. One layer of the model 
receives both the previously predicted word and per
ceived word, with the difference between them compris
ing the error signal. For example, hearing “the cyclist 
was … ” may preference predictions such as riding to 
work or avoiding the magpie based on the sequence 
of words so far and the model’s experience with Eng
lish’s canonical agent-first word order (Roland et al., 
2007). Hearing a past rather than a present participle 
indicates that the sentence is the less frequent passive 
structure (the cyclist was swooped by the magpie). The 
network uses the error signal to adjust network 
weights, increasing the likelihood that a passive will be 
used in the future, thus leading to priming.

Therefore, a key prediction of error-based learning 
accounts, such as Chang et al. (2006), is that more sur
prising input produces greater prediction error and 
therefore greater adjustment of syntactic represen
tations. Syntactic priming research provides evidence 
for this proposal. For example, priming effects are 
larger for less frequent structures than more frequent 
ones. Of the prepositional dative and double-object 
dative, whichever is less frequent is primed more 

strongly (the double object in Dutch: Bernolet & Hartsui
ker, 2010; and the prepositional object in English: 
Jaeger & Snider, 2013; Kaschak et al., 2011). This 
inverse-frequency effect extends to the active-passive 
alternation (Bock, 1986), the mention or omission of 
the that complementiser (Ferreira, 2003), and relative 
clause attachment (Scheepers, 2003). Another way of 
manipulating the predictability of primes is by lever
aging verb biases. Hearing Bob threw Wendy a ball 
should be more surprising than hearing Bob gave 
Wendy a present because throw occurs more frequently 
in the prepositional-object dative whilst give prefers 
the double object dative. Accordingly, researchers 
have observed prime-surprisal effects: stronger priming 
effects when the structure of a prime mismatches with 
the structure preferred by the verb in the prime sen
tence (Bernolet & Hartsuiker, 2010; Jaeger & Snider, 
2013; Peter et al., 2015; see also Fazekas et al., 2020).

Inverse frequency and prime-surprisal effects provide 
strong but indirect evidence for the role of prediction 
error in syntactic processing. They rely on the assump
tion that participants’ language input closely matches 
the input sampled in corpora from which surprisal and 
frequency are calculated. A key challenge is getting mea
surable indices of cognitive processes like surprisal at the 
level of the individual (Kidd et al., 2018), which demon
strate that participants do experience the prediction 
error that experiments aim to induce. More direct evi
dence would consist of manipulating prime surprisal to 
demonstrate effects on an index of prediction error 
and linking that measure of prediction error to 
priming. To our knowledge, only two studies have 
attempted to do so. Arai and Chang (2024) investigated 
priming of the active/passive alternation in Japanese. 
They utilised the ambiguous case-marker ni, which 
marks both dative case in a sentence like the boy 
talked to his friend and the oblique argument in a 
passive: the boy was hit by his friend. Since Japanese is 
a verb-final language, the ambiguity is not resolved 
until the verb. The words boy-NOM friend-ni could be 
interpreted as either the boy to his friend __ or the boy 
was by his friend __ until the verb is encountered. The 
authors manipulated participants’ expectations of 
encountering a passive through the content of fillers, 
which either biased the interpretation of preverbal argu
ments towards a dative case-marked noun (to his friend) 
or not. Participants who were biased to a dative 
interpretation showed longer reading times on the 
verb in passive primes than those who were not, an indi
cator that they experienced greater prediction error. 
However, although priming was also larger when pas
sives were less expected, longer reading time on 
passive prime verbs only numerically predicted 
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participant’s priming on the target and, surprisingly, 
longer reading time on active primes appeared to 
predict passive priming. In a re-analysis of a comprehen
sion priming study of reduced relative clause 
structures (Tooley, 2020), Tooley and Brehm (2025) 
investigated whether reading time on the prime sen
tence predicted reading time on the target sentence. 
They found that shorter reading times on the prime sen
tence predicted shorter reading time on the target sen
tence. Assuming surprisal on the prime sentence results 
in a longer reading time, these results do not support an 
error-based learning account of priming.

One problem with using reading time as a measure of 
prediction error is that it is likely to involve many inter
acting processes that may obscure reliable measure
ment of prediction error at the level of the individual 
(Frinsel & Christiansen, 2024; Staub, 2021). Additionally, 
reading times typically speed up over the course of 
experiments (Prasad & Linzen, 2021), which could serve 
as a confound when using reading time as a predictor. 
In this study we explore a promising potential measure 
of prediction error that is more implicit and does not 
require deliberative action on behalf of the participant: 
pupil diameter.

Pupillometry

Pupil diameter is strongly associated with ambient light 
levels but also shows small but detectable changes due 
to cognitive processing (Sirois & Brisson, 2014). Specifi
cally, pupil diameter can index emotional arousal, 
mental effort, top-down processes, and surprisal 
(Hepach & Westermann, 2016). Accordingly, pupillome
try has been applied to a variety of questions concern
ing linguistic processing. Research on word recognition 
under different levels of noise, speech intelligibility, 
and speech rates has found that larger pupil size 
indexes cognitive effort under different listening con
ditions (Koch & Janse, 2016; Kramer et al., 2013; 
Kuchinsky et al., 2013; Zekveld et al., 2010). During sen
tence processing, cognitive effort induced by both 
ambiguity of reference (Vogelzang et al., 2016) and 
low semantic predictability (Winn, 2016) increases the 
pupil dilation response. Pupil dilation is also greater 
when the prosody of a sentence is incongruent with 
its information focus or syntactic structure (Engelhardt 
et al., 2010; Zellin et al., 2011; but see Aydın, 2023 for 
contradictory results) or when a word is semantically 
incongruent (Demberg & Sayeed, 2016; Häuser et al., 
2018). In syntactic processing, pupil dilation has been 
observed in response to syntactic violations such as 
case marking (Aydın, 2023) and gender agreement 
(Demberg & Sayeed, 2016), but also to variations in 

syntactic complexity. Schluroff (1982) ranked a range 
of structures in English based on their Yngve depth 
(degree of left-branching; Yngve, 1960) and found that 
the magnitude of pupil dilation correlated with their 
syntactic complexity. Similarly, Stanners et al. (1972) 
found a complexity effect for structures with the same 
surface structure but which differed in thematic role 
assignment (they are eager to please vs. they are easy 
to please). Additionally, complexity effects have been 
found for several structures, including subject vs. 
object relative clauses in both written (Demberg & 
Sayeed, 2016; Just & Carpenter, 1993) and auditory com
prehension (Demberg & Sayeed, 2016; Piquado et al., 
2010), wh-phrases vs whether clauses (Just & Carpenter, 
1993), affirmative and active sentences vs. negative 
and passive (Beatty, 1982), and SVO vs. OSV word 
order in Danish (Wendt et al., 2016).

Thus far, research in language processing has typi
cally interpreted the pupillary response as a measure 
of cognitive load or mental effort. However, many 
findings could also be interpreted as pupil size indexing 
prediction error or surprisal. Incongruencies between a 
sentences’s syntax or semantics and its prosody (Engel
hardt et al., 2010; Zellin et al., 2011) and in the semantic 
fit of a word within a sentence (Demberg & Sayeed, 
2016; Häuser et al., 2018) represent violations of expec
tations. The same is true for syntactic violations. In 
Aydın (2023), Turkish speakers were presented with 
SVO transitive sentences (the boy-NOM painted the 
desk), in which the sentence-final object noun phrase 
occurred in either the grammatical accusative case 
(desk-ACC) or the unexpected and ungrammatical 
dative case (desk-DAT). Similarly, Demberg and Sayeed 
(2016) presented German speakers with sentences 
where the final noun was expected given the gender 
marking of the previous determiner and adjective 
(Simone had a-MASC horrible-MASC dream-MASC) or 
unexpected and mismatching (Simone had a-FEM horri
ble-FEM dream-MASC). In studies of complexity effects 
for syntactic structures, participants’ accumulated syn
tactic knowledge would lead them to predict canonical 
or more frequent word orders over noncanonical ones. 
For instance, since Danish is an SVO language, speakers 
presumably expect this more frequent pattern in com
parison to OSV (Wendt et al., 2016). For relative 
clauses, the well documented subject advantage 
means that English speakers expect a subject RC over 
an object RC (Just & Carpenter, 1993; MacDonald, 
2013; Piquado et al., 2010). Relatedly, semantic knowl
edge would lead to high context sentences (Bill stirred 
his coffee with a … spoon) being more predictable 
than low context ones (Jamie thought about a …  
spoon; Winn, 2016). The suggestion is that pupil dilation 
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may be an automated and implicit index of prediction 
error during language processing.

While this link has not been made explicitly in psy
cholinguistic research, outside of the field the sugges
tion that pupil dilation implicitly indexes prediction 
error is theoretically and empirically well-established. 
Theoretically, there is a neurobiological explanation for 
the link between pupil dilation and prediction error. 
Alongside the P3 event-related potential (ERP), the 
pupil dilation response is argued to reflect transient 
(phasic) noradrenergic activity in the locus coeruleus 
(LC; Gilzenrat et al., 2010; Murphy et al., 2011; Nieuwen
huis et al., 2005). Noradrenaline (NE) has neuromodu
latory effects, increasing the responsivity of neurons to 
their inputs, and the LC projects to cortical processing 
areas (Aston-Jones & Cohen, 2005). Therefore, the pro
minent adaptive gain theory of LC-NE activity proposes 
that its function is to optimise behavioural responses 
to motivationally significant stimuli by increasing neur
onal gain in relevant subsequent processing areas 
(Aston-Jones & Cohen, 2005). A similar and complemen
tary argument applies to unexpected or infrequent 
stimuli: surprisal indicates the need for updating an 
internal model of the environment, with the phasic 
LC-NE response supporting this updating through 
enhanced neuronal gain in relevant processing areas 
(Dayan & Yu, 2006; Nieuwenhuis, 2011).

Empirically, an inverse association between the mag
nitude of the pupil response and the probability of 
stimuli has long been known (Friedman et al., 1973; 
Qiyuan et al., 1985). Further, the pupil response is contin
gent on participants’ expectations: pupil dilation is 
greater when an expected reward or loss does not 
occur in a gambling task (Lavin et al., 2014; Preuschoff 
et al., 2011), when participants perform well on a 
difficult task or poorly on an easy one (Braem et al., 
2015), and when an object moves counter to its 
expected trajectory or appears in an unexpected 
location (Harris et al., 2022; O’Reilly et al., 2013). In 
studies of sequence or cue learning, the probabilistic 
rules that govern participants’ expectations are learnt 
during the task. Both less frequent transitions between 
stimuli (Alamia et al., 2019; Rutar et al., 2023) and omis
sions of expected stimuli following cues (Zhang et al., 
2019) are associated with larger pupil responses. 
O’Reilly et al. (2013) note that prediction error and 
model-updating are two highly correlated, often exper
imentally confounded, but distinct cognitive events. 
Nassar et al. (2012) were able to measure each separately 
using a predictive inference task where participants pre
dicted a series of numbers whose mean changed at 
random intervals throughout the experiment. They 
demonstrated that the magnitude of pupil size 

correlated with the difference between the predicted 
and presented number (i.e. prediction error), but also 
with the degree of change in participants’ predictions 
for the next trial (i.e. model updating).

Cumulative effects in syntactic priming

Overall, the non-linguistic research explicitly links the 
pupil response to prediction error. In the present study, 
we combine pupillometry with syntactic priming. Under 
the assumption that priming is the outcome of the updat
ing of syntactic representations driven by prediction 
error, we expect larger pupil dilation during prime trials 
to predict priming. However, this prediction must be 
qualified by the fact that such an effect is likely to be 
dynamic; that is, it may be moderated by cumulative 
effects across the course of the experiment. This is 
because, in syntactic priming studies, infrequent struc
tures (e.g. the passive) are presented at a much higher 
probability than in natural language. If syntactic priming 
reflects implicit learning involving model updating, the 
effects of primes should accumulate, with additional 
encounters with a syntactic structure resulting in com
pounding updates in expectations and representations. 
That is, participants’ expectations are not static, but 
change based on input.

Evidence supporting this assertion comes from com
prehension and production priming studies. Several 
studies of syntactic priming in comprehension have 
observed expectation adaptation, where processing 
deficits associated with temporarily ambiguous struc
tures (garden-path sentences) diminish as a function of 
the number of structures previously encountered 
(Farmer et al., 2014; Fine et al., 2013; Fine & Jaeger, 
2016). Whilst not all studies have found that ambiguity 
effects change over the course of the experiment 
(Dempsey et al., 2020; Harrington Stack et al., 2018; 
Tooley et al., 2014), that may be a methodological limit
ation, as expectation adaptation studies have relied on 
self-paced reading. Prasad and Linzen (2021) suggest 
this method may be unsuitable for investigating adap
tation effects because differences in reading times 
between structures become more difficult to detect as 
participants get faster at the task overall. In production 
priming, the “current run”, or uninterrupted number of 
a structure (e.g. passive) in a row, including both 
primes encountered and targets produced, predicts 
priming (Jaeger & Snider, 2013; Kaschak et al., 2011). 
However, when using the total accumulated exposure 
to the structure across the experiment, the effect on 
priming depends on the structure investigated and 
whether the number of encounters or productions is 
used (Bernolet et al., 2016).
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There are two points to consider in the observation of 
cumulative effects between comprehension and pro
duction. Firstly, implicit learning processes may affect 
production and comprehension measures differently. 
Prediction error will be highest at the beginning of the 
experiment, decreasing as more instances of the target 
structure are encountered. In comprehension, measures 
of processing difficulty due to reanalysis, such as reading 
time, or of prediction error, such as pupil dilation, should 
therefore decrease over time. However, although lower 
prediction error should result in smaller model updates 
at the end of an experiment, these are unlikely to corre
late with decreased production of the structure. As 
updates to the baseline frequency of a structure are 
cumulative, the probability of producing the target 
structure should instead remain elevated or increase. 
Overall, this means that cumulative exposure to the 
target structure may weaken the association between 
comprehension measures and the probability of produ
cing the target structure. Both previous studies investi
gating the influence of prime processing on target 
processing in syntactic priming may have been 
impacted by cumulative effects. They did not find that 
longer prime reading times were associated with facili
tated target comprehension (Tooley & Brehm, 2025) or 
production (Arai & Chang, 2024). Arai and Chang 
(2024) point out that this could be because both 
shorter reading times and higher target production are 
expected later rather than earlier in the experiment 
given cumulative input. Unfortunately, their analyses 
involving trial were unable to converge to confirm this 
possibility.

A second issue is that comprehension and production 
priming studies have typically examined different types 
of structures: reduced relative clauses and main verb 
structures vs the dative and active/passive alternations 
(Arai et al., 2007; Tooley, 2023; Tooley & Bock, 2014). 
The present study addresses both of these consider
ations by including both a measure of production and 
a measure of prediction error associated with compre
hension of the same active and passive structures. This 
allows the investigation of the time course of syntactic 
priming effects in both comprehension and production 
simultaneously.

The current study

The present study aimed to determine whether predic
tion error in syntactic processing can be directly 
measured by combining the syntactic priming and 
pupillometric methodologies. We test this using the 
active/passive alternation in English. The English 
passive is low in frequency compared to the active: 

there are 1.3–3.2 occurrences of the passive per 1000 
words in spoken English, while actives are about 10 
times more frequent (Roland et al., 2007; Xiao et al., 
2006). Full passives including a by-phrase are even less 
frequent, making up only 2.5–5% of passives in spoken 
English (Xiao et al., 2006). The passive’s patient-verb- 
agent thematic role order is non-canonical: in spoken 
English, patients occur before their verbs at most 5% 
of the time (Roland et al., 2007). Experimentally, this 
word order is even less likely for events with two 
animate arguments, as in our experimental materials, 
rather than events with an animacy contrast (Ferreira, 
1994). All these features serve to make the passive, par
ticularly as presented in our experiment, a highly unex
pected structure compared to the active and an ideal 
test-case for our study.

Participants were presented with primes in the active or 
passive structure followed by a target picture of a transi
tive action to describe. We measured pupil diameter 
during prime sentences and recorded participants’ pro
ductions in target sentences. We expected that passive 
primes would be associated with both a larger pupil 
response (in line with syntactic complexity effects, e.g. 
Just & Carpenter, 1993) and with greater production of 
passives (in line with syntactic priming effects, e.g. Bock, 
1986). Crucially, we tested whether greater prediction 
error (i.e. the expected pupil dilation difference between 
actives and passives) increased participants’ likelihood of 
being primed, as predicted by error-based learning 
accounts of syntactic processing (Chang et al., 2006). We 
also investigated cumulative effects in both the compre
hension and production of passives. We tested whether 
there were changes in the magnitude of prediction error, 
syntactic priming, and the relation between them over 
the course of the experiment. We expected that the 
pupil response to passive primes would reduce over the 
course of the experiment as participants adapt their 
expectations to their higher frequency in the task (Fine 
et al., 2013). On the other hand, production of passives 
may increase over the task with greater cumulative 
exposure to passives (Kaschak et al., 2011). As such, 
passive production may become less tied to the surprisal 
induced by primes as participants increase their overall 
expected baseline frequency of passives.

Methods

Participants

Eighty individuals who spoke Australian English as a first 
language, were aged 18–35, with no history of develop
mental or acquired language disorder, and normal or 
corrected-to-normal vision were recruited from the 

LANGUAGE, COGNITION AND NEUROSCIENCE 5



Australian National University community. An additional 
three participants were tested but were not included 
because they did not meet the eligibility criteria. Partici
pants received a 1-hour course credit or AUD$15 as com
pensation for their participation. The study was 
approved by the ANU Science and Medicine Delegated 
Ethical Review Committee (reference: 2022/710). The 
final sample (N = 80: F = 53, M = 23, NB = 3, undisclosed  
= 1) ranged in age from 18 to 33 years (M = 22.55, SD  
= 4.29). All participants used English for the majority of 
their interactions in an average week (M = 98.1%, SD =  
5.6), with 33 reporting knowing or using a language 
other than English. Sample size was estimated according 
to Mahowald et al.’s (2016) power analysis for syntactic 
priming effects. A sample of 80 participants and 32 items 
has sufficient power (>80%) to detect a large interaction 
effect (of the size of the lexical boost effect).1.

Materials and design

Materials consisted of 32 prime pictures based on 8 tran
sitive verbs (bite, catch, carry, kick, pinch, push, kiss, lick) 
and 32 target pictures based on a different set of 8 tran
sitive verbs (chase, drag, hit, prick, punch, shoot, tickle, 
feed; see Figure 1 for example pictures). To control for 
animacy effects, both the agent and patient in each 
picture were drawn from a pool of 16 animate characters 
(bear, cat, chicken, cow, dog, duck, elephant, frog, goat, 
horse, lion, monkey, mouse, pig, rabbit, turtle), with each 
character occurring as agent and patient equally often. 
In addition, there were 128 filler pictures, depicting 
objects that could be described by a noun phrase 
(a red apple), more complex scenes that could be 
described using spatial prepositions (the cups are on 
the chair), single participant events that could be 
described by an intransitive construction (the cow is 
sleeping; the dog is strong), and three participant 
events that could be described by a dative construction 
(the cow gives the chicken a present). Most pictures were 

taken from Garcia et al. (2021, 2023), with some 
additional pictures drawn by the same artist to fulfil 
the requirements of this study. Experimental pictures 
were 800 × 450 pixels. All pictures were resized to 
1920 × 1200 by padding them with white background. 
Experimental pictures were standardised to a mean 
luminance of 249.38 in the HSV colourspace (scale 0– 
255) using the lumMatch function from the SHINE_color 
MATLAB toolbox (Dal Ben, 2021; Willenbockel et al., 
2010). We recorded audio descriptions of each prime 
and half the filler pictures by a female native speaker 
of Australian English. For experimental items both an 
active (the pig is catching the cat) and a passive descrip
tion (the cat is being caught by the pig) were recorded. 
These descriptions were recorded in the present pro
gressive form to avoid an adjectival interpretation. The 
recorded description did not match the picture for 19 
filler items (e.g. the fork is on the table for a picture 
depicting the scissors are in the box).

The task consisted of 32 prime-target pairs, with 
prime (active or passive structure) manipulated within 
subjects. Prime and target contained no open class 
lexical overlap. No more than two primes of the same 
structure occurred in a row. Between 2 and 6 filler 
items intervened between each prime-target pair. Half 
the fillers were prime trials and half were target trials, 
with pseudorandom ordering of trials such that no 
more than three trials of the same type occurred in a 
row. The purpose of variable trial type and spacing of 
prime-target pairs was to mask the aims of the study 
from participants. We constructed 16 experimental lists 
counterbalancing the verb pairings in prime-target 
pairs, prime structure, and the direction of the action 
in prime and target pictures (LR or RL).

Apparatus

Stimuli were presented using Tobii Pro Lab (version 
1.207.44884) software on the T60 eyetracker, which 

Figure 1. Structure of trials in the experiment.
Notes: This figure depicts the time course of a prime-target pair in the experiment. Participants viewed a 2000 ms fixation symbol accompanied by a 250 ms 
beep to indicate the type of trial. The prime picture appeared for 500 ms before the onset of the prime sentence and stayed on screen for 2500 ms after 
sentence offset. A question symbol appeared until participants indicated whether the picture matched the sentence audio with a keypress. This initiated 
the fixation symbol for a target sentence which was followed by a target picture that stayed on screen until the participant had described it and the exper
imenter progressed the task to the next trial.
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measured pupil diameter in mm at 60 Hz. Participants 
completed a 9-point calibration and validation pro
cedure at the beginning of each of the three blocks of 
trials (mean validation accuracy 0.51 degrees). A Zoom 
H2n audio recording device was connected to the com
puter so the Tobii software automatically audio- 
recorded the task.

Procedure

Participants were seated in a dimly lit room (30 lux) and 
first completed a demographics questionnaire. They 
were then introduced to the three fixation symbols for 
listening, answering questions, and speaking (see 
Figure 1) and instructed to respond accordingly. On 
seeing the listening symbol, they were instructed to 
listen carefully to the upcoming sentence and pay atten
tion to whether it matched the accompanying picture. 
When the question symbol appeared, participants 
responded with whether the picture matched (green 
button) or didn’t match (red button) on a keypad. On 
seeing the speaking symbol, they were instructed to 
describe the upcoming picture. The instructions encour
aged participants to respond with full sentences where 
possible and to remember the button locations rather 
than looking down to respond. There were six practice 
items, then three blocks of trials.

Figure 1 depicts the time course of a prime-target pair 
in the experiment. Both prime and target trials were pre
ceded by a 2000 ms fixation symbol accompanied by a 
250 ms beep, indicating to participants the start of a 
new trial and the type of trial. This also allowed extra 
time for the pupil to return to baseline following the pre
vious trial (Mathôt & Vilotijević, 2022). The picture then 
appeared on screen.

In prime trials, we presented the picture for 500 ms 
before sentence onset to allow event apprehension to 
occur (Griffin & Bock, 2000). Therefore, participants 
could identify the event as transitive and form an expec
tation that the agent would occur first. We expected pre
diction error for passive primes to be induced in the very 
first part of the sentence, on hearing the first noun 
phrase. The peak pupil dilation typically occurs 1-1.5s 
from the point of difficulty (Just & Carpenter, 1993; 
Tromp et al., 2016). Recorded sentences varied from 
1414 to 2147 ms in duration and were followed by 
2500 ms of silence, which allowed sufficient time for 
the pupillary response to be observed. The picture 
remained on screen during this time so that the pupil 
response could be measured without changes in lumi
nance caused by switching to a fixation symbol. 
Because the pupil response is typically task-evoked 
(see Zellin et al., 2011, p. 136), we introduced a 

picture-verification task on each prime trial. When a 
question symbol appeared after picture offset, partici
pants responded by pressing a green button if the 
picture and audio description matched and a red 
button if they did not. The task automatically proceeded 
to the next trial after the participant responded. As par
ticipants needed to wait until the question symbol 
appeared to make a response, we minimised any cogni
tive processing associated with actually making the 
response (e.g. motor planning etc.) during the measure
ment of pupil diameter. About 20% of filler prime trials 
had mismatching audio descriptions to maintain atten
tion to the task. On average, participants answered 
these attention check items correctly 97% of the time 
(M = 0.97, SD = 0.06, range: 0.68–1.00).

Target trials more closely resembled typical syntactic 
priming experiments. The picture appeared after the 
fixation symbol and remained on screen until the partici
pant had described it and the experimenter progressed 
the task to the next trial.

Transcription and coding

Participants’ responses were transcribed from the audio 
recording and scored as active, passive or other. Thirty 
trials were excluded due to recording equipment 
failure. If participants produced more than one sentence, 
only the first complete sentence was coded. If partici
pants corrected themselves before producing a full sen
tence, the corrected form of the utterance was scored. 
Responses were scored as active if they contained an 
agent in the subject position, an appropriate transitive 
verb, and a patient in the object position and could be 
expressed in the alternate passive structure (e.g. the ele
phant feeds the lion). Passive responses needed to 
contain a patient in the subject position, an auxiliary 
verb (was, got) and appropriate transitive main verb, 
an agent in a by-phrase and be expressible in the alter
nate active structure (e.g. the goat is being chased by the 
horse). Transitive responses where the participant 
repeated the verb or a noun contained in the prime sen
tence were excluded. Other responses consisted of all 
other sentence forms, including datives (the horse is 
feeding the duck some food), intransitives (the goat and 
the horse are walking), and irreversible phrasal verbs (a 
mouse running away from a chicken). Overall, 90.2% of 
participants’ sentences could be coded as Active or 
Passive.

Pupil data preprocessing

We performed data preprocessing and our analyses in R 
(version 4.2.1; R Core Team, 2022). The Tobii T60 
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eyetracker measures pupil size for both eyes. As rec
ommended by Sirois and Brisson (2014), pupil size was 
regressed from each eye onto the other, thus imputing 
values missing from only one eye. Then, average pupil 
size across both eyes was calculated. Average pupil 
size was passed through an 11 sample Hanning filter 
using the filter_data function from the PupillometryR 
package (version 0.0.5; Forbes, 2020) to provide a 
smooth signal for blink detection. Blinks were detected 
using a velocity filter similar to the method described 
by Mathôt (2013). Due to the slower 60 Hz sampling fre
quency, our data typically showed a fast negative vel
ocity before blinks but not the expected rapid increase 
in velocity following blinks. Therefore, we counted 
blinks as any velocity larger than – 0.02 mm change in 
the filtered data preceding a period of track loss. Blinks 
were extended to 50 ms on either side of the gap with 
no imputation of missing values (since generalised addi
tive mixed models can handle missing data: van Rij et al., 
2019). Filtered data was used for deciding which 
samples to remove during blink detection but we 
returned to the raw data for further preprocessing and 
analysis. We applied a velocity filter using a cut off of 
0.15 mm change in pupil size between each sample, 
removing one sample on either side as well. Visual 
inspection of each trial for each participant showed 
that obvious outliers were removed without the exclu
sion of steep curves that made up the pupil response. 
Any samples where gaze position was outside the area 
of the screen were removed. After removing blinks, vel
ocity outliers and gaze position outliers, we excluded 
trials with more than 25% of data removed in preproces
sing and/or missing due to track loss. Baseline pupil size 
was calculated as the average pupil size in the 250 ms 
preceding sentence onset (i.e. 250–500 ms after picture 
onset). Trials where the baseline could not be calculated 
were excluded, as were trials where the baseline was 
more than two standard deviations away from the par
ticipant’s mean baseline. The baseline was subtracted 
from pupil size to calculate baseline-corrected pupil 
diameter. Trials were cut to 3767 ms, the length of the 
shortest trial. In total 78.8% of trials (N = 2016) were 
included after excluding trials due to recording failure 
(N = 9), high percentage of missing or removed data 
(N = 416), and missing or improbable baseline values 
(N = 119).

Results

Syntactic complexity effect

Our main aim was to see whether prediction error, as 
indexed by pupil dilation, predicts priming. Therefore, 

we first analysed the time course of pupil dilation for 
active primes and passive primes. We hypothesised 
that passives should induce a greater pupil response 
than actives due to their low frequency, especially for 
the types of events depicted in our stimuli.

Following recent recommendations, we fit a general
ised additive mixed model to our pupillometric data 
(GAMM; van Rij et al., 2019; Wieling, 2018; Wood, 
2017). This analysis approach confers several benefits 
in analysing time series data with high variability 
between trials (van Rij et al., 2019). Firstly, GAMMs 
allow the modelling of non-linear relationships, such as 
that between time and pupil size. In contrast, extracting 
features of the pupil response, such as peak or latency, 
simplifies the analysis of the non-linear pupil response 
but results in the exclusion of trials where there is no 
clear peak. Secondly, GAMMs make it possible to 
control for autocorrelation between samples in time 
series data, therefore decreasing the likelihood of Type 
1 error due to autocorrelated errors. Finally, the inclusion 
of random effects for items and subjects accounts for 
variability within and between subjects. We ran our ana
lyses using the mgcv (version 1.9.1; Wood, 2011) and 
itsadug (version 2.4.1; van Rij et al., 2022) R packages 
and closely followed the procedures outlined by van 
Rij et al. (2019).

GAMMs fit non-linear regression lines (smooths) over 
a continuous predictor. When including a factor variable, 
the model estimates as many smooths as levels of the 
factor (e.g. one for each condition in the experiment). 
For a detailed comparison of approaches to coding 
factor variables in GAMMs see Wieling (2018). Briefly, 
factor variables can be coded such that a smooth is esti
mated for each condition (factor coding) or such that a 
reference smooth and difference smooth are estimated. 
The advantage of the latter approach is that because 
model estimates indicate whether smooths are signifi
cantly different from 0, the difference smooth indicates 
whether the difference between conditions is significant. 
Under this approach, the smooths can be non-centred 
(binary difference coding), therefore including the inter
cept difference between conditions in the difference 
smooth, or centred (ordered factor coding), which 
allows the difference to be attributed to either an inter
cept difference or non-linear difference, or both. We 
chose ordered factor coding as it is the most informative 
given our design.

Our GAMM modelled pupil size over time, estimating 
the effect of prime condition (active: 0 or passive: 1) as an 
ordered factor. The effect of condition was modelled 
with two parametric terms: an intercept term, and an 
intercept difference term (Condition); and two non- 
linear terms: a reference smooth (for the active 
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condition; Time) and a difference smooth (for the passive 
compared to active condition; Time:Condition). The angle 
of the eye at different gaze positions can systematically 
distort the measurement of pupil size (pupil foreshorten
ing error: Brisson et al., 2013). Therefore, we controlled 
for gaze position by including a non-linear interaction 
between the X and Y coordinates of gaze position 
(GazeX.GazeY).

For a detailed discussion of random effects structures 
in GAMMs, we refer readers to van Rij et al. (2019). A full 
random effects structure includes a random smooth 
(non-linear regression line) for each “event” (i.e. each 
item for each participant; we use the term event 
instead of trial to avoid later confusion with trial 
number). We could not include random smooths for 

each event (N = 2016) due to the high computational 
demands of doing so. We instead included random 
slopes and intercepts for each event, and random 
smooths by participant and item nested in verb (as rec
ommended by van Rij et al., 2019). We performed model 
diagnostics using the gam.check function and an auto
correlation function (ACF) plot. Based on these, we 
increased the number of basis dimensions for smooths 
(k) as necessary, fit the model with a scaled-t distribution 
to meet the assumption of normally distributed 
residuals, and added an AR-1 model to account for auto
correlation of residuals using the lag 1 correlation value 
of ρ = .939 (van Rij et al., 2019).

The model showed that the pupil response was sig
nificantly larger following passive prime than active 

Figure 2. Model-fitted effects on pupillary time course including (a) fitted effects for active and passive primes and (b) fitted difference 
smooth between conditions.
Notes: Coloured lines and shading representing standard error in (a) reflect observed pupil diameter and black lines reflect model fitted pupil diameter. Shading 
in (b) represents 95% confidence interval around the model-estimated difference in pupil diameter between conditions. Model-fitted effects are estimated at 
the median of other predictors in the model (i.e. gaze position) and excluding the contribution of random effects. 
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prime sentences. Interpreting significance in GAMMs 
requires a combination of visualisation and interpreting 
model summary statistics. Figure 2(a) plots the observed 
and model fitted baselined pupil diameter for active and 
passive prime sentences. The pupil response appears 
larger following passive than active primes, a finding 
that is statistically confirmed in the model summary 
(Table 1) and model-fitted difference curve (Figure 
2(b)). The intercept difference (parametric effect for Con
dition) shows that pupil size is significantly higher in 
passive than active sentences, β = 0.03, t = 4.44, p  
< .001. For smooths, the estimated degrees of freedom 
(edf) indicates how wiggly the regression line is, with 
lower edfs indicating a smoother line. The reference 
degrees of freedom (Ref.df) indicates the degrees of 
freedom associated with the F-test of significance. A sig
nificant p-value indicates that the regression line is sig
nificantly different from zero. Because we explicitly 
modelled the difference between conditions (Time:Con
dition), we can conclude that the time course of the 
pupil response is significantly different between active 
and passive sentences, F = 7.78, Ref.df = 19.79, p < .001. 
Although both terms indicate a significant difference 
between conditions, they do not indicate the time 
period when this difference occurs. Figure 2(b) plots 
the model-fitted difference between passive and active 
primes, combining the intercept and non-linear differ
ences between conditions. The pupillary response to 
passive sentences is significantly larger than the 
response to active sentences from about 900 ms after 
sentence-onset onwards, as indicated by the confidence 
interval excluding 0.

Cumulative effects on pupil response

Our first analysis established that, as expected, the pupil 
response was larger when participants heard passive 
rather than active prime sentences. This finding is in 
line with our hypothesis that pupil size can index 

prediction error for infrequent and surprising structures. 
Our second aim was to investigate cumulative effects in 
both the comprehension and production of passives 
during syntactic priming. Here we investigate cumulat
ive effects on the comprehension of passives as 
measured by the pupil response.

We added several terms to our original analysis of the 
pupil response in order to include the effect of trial 
number (coded 1–32). These were: a reference smooth 
for trial (for the active condition; Trial), a difference 
smooth for trial (for the passive compared to active con
dition; Trial:Condition), a reference tensor product inter
action between time and trial (for the active condition; 
Time:Trial), and a difference tensor product interaction 
(for the passive compared to active condition; Time: 
Trial:Condition). This implements separate main and 
interaction effects within a GAMM as well as directly 
modelling whether the interaction effect differed 
between active and passive primes (i.e. the three-way 
interaction effect). We also added a random smooth 
for trial by participant but not by item because each 
item only occurred at four trial positions across the 
lists. It was again necessary to increase the basis dimen
sions for smooths (k) above the default, fit the model 
with a scaled-t distribution, and include an AR-1 
model. Table 2 reports the summary of the final model 
and Figure 3 visualises the pupil response over the 
course of the experiment. The plots on the left are 
contour plots mapping the difference in pupil size 
between passive and active primes along the scales 
of time after sentence onset (x-axis) by trial number 
(y-axis). The dotted white line indicates the trial 
number at which model-predicted active and passive 
pupil responses are plotted on the right-hand side. The 
reference and difference smooths for time remain 

Table 1. Summary of GAMM modelling pupillary response.
β SE t p

Parametric coefficients
Intercept 0.10 0.01 7.88 <.001
Condition 0.03 0.01 4.44 <.001

edf Ref.df F p

Smooth terms (fixed effects)
Time 27.17 32.68 8.60 <.001
Time:Condition 15.14 19.79 7.78 <.001
GazeX,GazeY 170.62 192.57 8.70 <.001
Smooth terms (random effects)
Time, Participant 660.23 719.00 1022.86 <.001
Time, Item 248.60 287.00 387.32 <.001
Event 1405.17 2014.00 88.07 <.001
Time, Event 1724.57 2014.00 126.01 <.001

Table 2. Model summary of GAMM modelling impact of trial on 
pupillary response.

β SE t p

Parametric coefficients
Intercept 0.10 0.01 7.98 <.001
Condition 0.03 0.01 4.45 <.001

edf Ref.df F p

Smooth terms (fixed effects)
Time 26.93 32.45 8.66 <.001
Time:Condition 15.80 20.59 7.75 <.001
Trial 1.70 1.75 12.57 <.001
Trial:Condition 1.56 1.59 0.19 0.73
Time:Trial 11.52 13.12 12.93 <.001
Time:Trial:Condition 11.73 13.61 2.59 <.001
GazeX,GazeY 170.62 192.57 8.70 <.001
Smooth terms (random effects)
Time, Participant 623.24 719.00 84.01 <.001
Time, Item 247.93 287.00 270.37 <.001
Trial, Participant 98.89 700.00 8.99 <.01
Event 1358.75 2012.00 63.31 <.001
Time, Event 1717.48 2012.00 93.22 <.001
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significant, again indicating a significant pupil response 
that differs between active and passive primes. The 
contour plots illustrate that the largest difference 
between conditions occurs between 2500 and 
3000 ms. The reference and difference smooths for trial 
indicate a near linear main effect of trial (edf close to 
1), which does not differ between active and passive 
primes. Since pupil size is baselined, this reflects an 

overall decrease in the size of the pupil response (not 
size) over the course of the experiment, as shown in 
the right-hand side plots in Figure 3. Finally, there is a 
significant interaction between time and trial, which sig
nificantly differs between conditions. The difference 
between passive and active primes is strongest at the 
very earliest trials, as indicated by the areas of white 
(large difference) at the bottom of the contour plots. 

Figure 3. Pupillary response over time and trials.
Notes: Model-fitted effects are estimated at the median of other predictors in the model (i.e. gaze position) and excluding the contribution of random effects.
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The difference between conditions is evident across the 
pupil response at earlier and later trials but focused 
between 2500-3000 ms in middle trials.

Predicting syntactic priming using pupillometry

The GAMM analyses confirmed that there was a larger 
pupil response for passive than active primes, a differ
ence which attenuates as more passives are encoun
tered over the course of the experiment. Assuming our 
linking hypothesis that the pupil response indexes pre
diction error, this pattern of results suggests that the 
infrequent passive elicits greater prediction error that 
attenuates with cumulative exposure across the exper
iment. We now turn from participants’ comprehension 
of passives during syntactic priming to their production. 
Our key hypothesis was that prediction error in proces
sing the prime, as indexed by pupillometry, would 
predict participants’ production of passives after 
passive primes. A secondary hypothesis was that 
changed expectations due to cumulative input may 
moderate the production and priming of passives and 
the influence of prediction error. In this analysis we 
tested both these hypotheses.

Operationalising prediction error from the pupil 
dilation response
The pupil response has typically been investigated as a 
dependent variable rather than as a predictor (but see 
Contier et al., 2024). We originally operationalised pre
diction error as the average model-predicted pupil size 
across the whole prime sentence, using model predic
tions from our first GAMM analysis. We chose to use 
model-predicted rather than measured pupil size 
because the model controls for gaze position. At the 
request of an anonymous reviewer, we investigated 
alternative operationalisations. Contier et al. (2024) 
used cluster-based permutation to determine an 
approximate period during which pupil size differs 
between conditions and averaged pupil size only 
during that window. We did the same, however we 
used our first GAMM to estimate the period of signifi
cance. GAMMs can estimate the onset and offset of 
effects whilst cluster-based permutation should not be 
used to do so (Ito & Knoeferle, 2022; Sassenhagen & 
Draschkow, 2019). Similarly to Contier et al. (2024), this 
time window was fairly long: from 888 ms onwards 
(see Figure 2(b)). Contier et al. (2024) conducted an 
exploratory analysis further restricting the time 
window for averaging pupil size to 500 ms around the 
peak of the pupil dilation response. Similarly, we calcu
lated the peak of the difference between conditions 
(2817 ms, see Figure 2(b)) and calculated another 

measure of prediction error averaging pupil size in the 
500 ms window around this. In addition, we calculated 
the average pupil size for these three windows – 
whole sentence, period of significance only, 500 ms 
window – for the preprocessed measured pupil size as 
well as for the model-predicted pupil size. Plots compar
ing the model estimates for all 6 measures of prediction 
error are available in the Appendix and the full analyses 
are available in our online materials. Unlike Contier et al. 
(2024), who found that the 500 ms window around the 
peak better predicted their effect of interest, we found 
negligible differences between model estimates for the 
three time windows. The pattern of results was also 
the same regardless of whether model-predicted or 
measured (but preprocessed) pupil size was used. We 
therefore retained our original model using average 
model-predicted pupil size across the whole prime sen
tence as our operationalisation of prediction error.

Final model
Table 3 summarises the proportion of active, passive and 
other responses that participants produced in each 
experimental condition. Other responses were excluded 
from our analyses. We ran a Bayesian mixed effects logis
tic model to predict participants’ production of passives 
using the brms R package (version 2.20.4; Bürkner, 2017). 
Bayesian models are more likely to converge with 
complex random effects structures than frequentist 
ones (Eager & Roy, 2017). The model included prime 
(effect coded: active: – 0.5, passive: 0.5), the z-scored 
measure of prediction error, trial (coded 0-31, i.e. 
shifted so that trial 1 is the reference point), and their 
interactions as predictors. We included the full random 
effects structure, with an intercept and slopes for 
prime, prediction error, trial and their interactions by 
participants, and an intercept and slopes for prime, pre
diction error, and their interaction by items nested in 
verbs. The model was run with 3000 iterations, 1000 of 
them warm-up, and 10 chains using weakly informative 
priors (for all fixed coefficients on the logit scale we 
chose a normal distribution with a mean of 0 and stan
dard deviation of 2). The value of adapt_delta, which 
decreases the step sizes taken by the model, was 
increased to 0.95 to prevent divergent transitions. 

Table 3. Number and proportion of active, passive and other 
responses in each condition.

Prime Active Passive Other

N % N % N %

Active 1119 88.5 41 3.2 105 8.3
Passive 1009 79.8 141 11.1 115 9.1

Note: Trials that were excluded due to recording failure are not included in 
this table (15 per condition).
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Convergence diagnostics indicated reliable convergence 
and estimates of posteriors: the maximum Rhat was 1.01, 
the minimum bulk effective sample size (BESS) was 2247 
and the minimum tail effective sample size (TESS) was 
5003. A posterior predictive check showed good model 
fit.

Table 4 reports the model summary statistics. The 
credible interval indicates the range of values within 
which the effect has a 95% chance of falling given the 
data. The posterior probability indicates the chance 
that an effect falls above or below zero given the data. 
We interpret a posterior probability of >.95 as strong evi
dence for an effect given the data, of >.85 as weak evi
dence for an effect, and of close to .5 as no evidence 
for an effect (see Engelmann et al., 2019). When inter
actions are included in the model, effects must be inter
preted at the reference level (0) of other variables. We 
made trial 1 the reference point so that non-cumulative 
effects establish whether an effect is present at the 
beginning of the experiment (i.e. trial coded 0–31).

Confirming that we replicated the syntactic priming 
effect, the effect of prime had strong evidence at the 

beginning of the experiment for an average level of sur
prisal (average pupil size z-score = 0). There was also 
strong evidence for the interaction between prime and 
prediction error, indicating support for our key hypoth
esis at trial 1. An examination of conditional effects 
showed that larger prediction error increased the likeli
hood of producing a passive after a passive prime (β =  
0.41 [−0.08, 0.90], posterior prob. = .917) but decreased 
the likelihood of producing a passive after an active 
prime (β = −0.59 [−1.36, 0.16], posterior prob. = .902). 
In sum, the more surprising participants found the 
prime, the more likely they were to reuse its structure 
(i.e. be primed).

We now turn to the model terms involving trial, that 
is, cumulative effects over the course of the experiment. 
There was weak evidence for the main effect of trial, indi
cating that on average passive production is estimated 
to slightly decrease over the course of the experiment, 
if we hold prediction error at its average value (pupil 
size z-score = 0). There was no evidence for the prime 
by trial interaction effect, suggesting that the priming 
effect was stable over the experiment, again at the 
average value of prediction error. Both these effects 
should be interpreted in light of the three-way inter
action effect, which received weak evidence. Figure 4
plots the model-predicted production of passives at 
various values of prediction error following active and 
passive primes at trials 1, 11, and 25 (the same trials 
plotted in Figure 3). The first panel (trial 1) reflects the 
prime by prediction error interaction term in our 
model. At the beginning of the experiment, greater 
pupil dilation induced by the prime corresponded to a 
stronger priming effect. Larger prediction errors follow
ing an active prime were associated with higher pro
duction of actives (i.e. in Figure 4, greater values of 

Figure 4. Model predicted interaction between prime and measure of prediction error over the course of the experiment.
Notes: Model-fitted effects are estimated at the median of other predictors in the model (i.e. gaze position) and excluding the contribution of random effects.

Table 4. Model summary of model predicting syntactic priming 
with prediction error and trial number.

Effect Estimate
95% credible 

interval
Posterior 

probability

Intercept −3.43 −4.13 | – 2.77 >.999
Prime 1.59 0.61 | 2.59 .995
Prediction error −0.09 −0.56 | 0.37 .623
Trial −0.03 −0.06 | 0.01 .889
Prime*Prediction error 1.00 0.14 | 1.88 .971
Prime*Trial −0.01 −0.04 | 0.06 .400
Prediction error*Trial −0.00 −0.03 | 0.02 .442
Prime*Prediction 

error*Trial
−0.04 −0.09 | 0.00 .934

Note: The posterior probability that an effect is smaller or larger than zero is 
calculated in a directional (one-tailed) hypothesis test.
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pupil size lead to a decreased likelihood of passive pro
duction). Conversely, greater prediction error after a 
passive prime was linked to a higher passive production. 
However, the effect decreased as the experiment pro
gressed. This was evident when we used a different 
rescaled trial predictor in the model, estimating other 
effects at the mid-point of the experiment – trial 16. 
The interaction effect between prime and prediction 
error went from strong to weak, β = 0.38 [−0.19, 0.93], 
posterior prob. = .871 (see online materials for full 
model).

Discussion

In this paper we aimed to index prediction error using 
pupillometry to predict syntactic priming, and in doing 
so directly tested the suggestion that priming is driven 
by error-based learning (Chang et al., 2006). We found 
that the pupillary response was larger during passive 
than active primes, replicating syntactic complexity 
effects (Beatty, 1982; Demberg & Sayeed, 2016; Just & 
Carpenter, 1993; Piquado et al., 2010). We also replicated 
the syntactic priming effect (Mahowald et al., 2016), with 
participants producing more passive responses after 
passive than active primes. Using mean model-predicted 
pupil size during prime presentation as a measure, we 
found evidence that prediction error predicted syntactic 
priming, which varied across the experiment. Investi
gating cumulative effects showed that the difference 
in pupil dilation between active and passive primes 
was largest at the beginning of the experiment, and it 
was here where pupil dilation was strongly linked to 
priming. As the experiment progressed, the difference 
in pupil dilation across conditions reduced, and there 
was weak evidence that the relationship between it 
and priming weakened, as participants continued to 
produce passives at a similar rate.

Our first hypothesis was that syntactic priming is 
driven by prediction error which can be indexed by 
pupillometry. Chang et al. (2006) propose that an 
error-based learning mechanism underlies syntactic 
priming. During prime comprehension, the model 
makes next-word predictions and compares them to 
the actual input. The active-passive alternation provides 
a test case for this mechanism given contrasts between 
the structures in terms of frequency and canonical word 
order (Roland et al., 2007; Xiao et al., 2006). In an active 
sentence (the elephant is biting the frog), the sequence of 
word classes and syntactic categories is associated with 
minimal prediction error, whereas a large error signal is 
produced for passives when participants hear a second 
auxiliary and past participle (the frog is being bitten by 
the elephant), since a present participle (corresponding 

to an active) is more expected. This error backpropa
gates through the system, which adjusts the network 
weights that comprise syntactic representations and 
increases the likelihood of a passive structure (i.e. 
priming). The greater the prediction error, the greater 
adjustment in network weights and therefore increase 
in passive production. To test this proposition, we oper
ationalised prediction error as pupil dilation, drawing 
upon arguments outside of psycholinguistics (e.g. Pre
uschoff et al., 2011). If this is a reasonable assumption, 
the error-based learning account predicts that a larger 
pupil response to a prime sentence will predict syntactic 
priming. Since we replicated both the syntactic com
plexity effect and the syntactic priming effect, we 
could test this key hypothesis.

Overall, we found evidence in support of this hypoth
esis. At the beginning of the experiment, there was 
strong evidence for a relationship between average 
pupil size during prime presentation and participants’ 
likelihood of being primed. The more prediction error 
participants experienced, the more likely they were to 
repeat the structure used in the prime sentence. The 
effect received strong evidence in all but one variation 
of prediction error measures (these reflected possible 
choices of time window and the use of measured vs. 
model-predicted pupil size). The strength of this effect 
was potentially influenced by cumulative effects, which 
we discuss below. Thus, we take our result as promising 
evidence that pupil size indexes trial-by-trial prediction 
error. This result aligns with findings from other 
domains where researchers have directly manipulated 
participants’ expectations and found that the pupil 
response is proportional to the magnitude of prediction 
error (e.g. O’Reilly et al., 2013; Preuschoff et al., 2011). In 
these studies, participants’ expectations can be manipu
lated directly by creating stimuli based on known distri
butions (e.g. probability of a random number between 1 
and 10 being higher or lower than a previous number; 
Preuschoff et al., 2011) or defined probabilistic rules 
(e.g. transitional probabilities between stimuli; Alamia 
et al., 2019). However, in the linguistic domain we 
draw upon participants’ lifelong experience with linguis
tic structures, which vary along parameters other than 
frequency (e.g. structural complexity). Our study 
suggests that pupil dilation as a measure of prediction 
error can be extended to accumulated syntactic 
knowledge.

The second major aim of our study was to investigate 
cumulative effects in comprehension and production 
during syntactic priming. The evidence for these 
effects was less conclusive but still suggestive of the 
effects of adapting to cumulative input. Under Chang 
et al.’s (2006) error-based learning account, 
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representations and expectations of syntactic structures 
are dynamic and affected by each encounter with a syn
tactic structure. The account predicts that as a structure 
becomes more expected, it induces less prediction error 
and is produced at a higher rate. To investigate cumulat
ive effects in our study, we incorporated trial number as 
a predictor in our analyses. The difference between pre
diction error for active and passive primes as measured 
by pupil dilation was greatest in the first five trials 
(Figure 3). After that point, the difference was smaller. 
In terms of production measures, there was weak evi
dence for a slight reduction in passive production over 
the course of the experiment but no evidence for a 
change in the syntactic priming effect. The slight 
reduction in passive production over the experiment 
can be explained by a particularly high production of 
passives in the first few trials when participants found 
passives particularly surprising.

This pattern of findings is consistent with participants 
rapidly adapting to the context of the experimental task 
where passives are far more frequent than in everyday 
speech (Roland et al., 2007; Xiao et al., 2006). Instead 
of the influence of passive primes accumulating over 
the course of the experiment and demonstrating 
greater priming in the second half, participants 
appeared to quickly change their expectations and pro
ductions of passives. After the initial phase of surprisal 
and boost in passive production, they settled into an 
expectation for a higher baseline of passives than in 
everyday speech. This pattern of results aligns with pro
posals that for predictive processing to be efficient, rapid 
adaptation to variation in syntactic preferences by 
speakers and contexts must be possible (Fine et al., 
2013). Since syntactic priming in one context does not 
always transfer to other contexts (Heyselaar & Segaert, 
2022 vs Kaschak et al., 2014), an outstanding question 
for error-based learning accounts is how to reconcile 
longer term incremental changes in syntactic represen
tations with dynamic context-specific adaptations.

The ability to observe cumulative effects somewhat 
varied between comprehension (i.e. pupil size during 
prime trails) and production (passive production during 
target trials). If pupil dilation indexes prediction error, 
then production of passives during target trials rep
resents the outcome of model updating. This can make 
cumulative effects in production measures difficult to 
observe: if baseline frequency is updated rapidly, later 
productions of a structure will reflect this higher baseline, 
with minimal influence from surprisal and model updat
ing following the immediately previous prime. Effec
tively, in the context of our experiment, a passive prime 
may become less surprising because of adaptation, 
which could then maintain higher rates of passive use.

This explanation accounts for an effect we found sug
gestive evidence for: the strong association between 
prediction error and syntactic priming early in our exper
iment, which decoupled later on. There was weak evi
dence for this effect in our model, supported by the 
interaction between prime and prediction error going 
from strong to weak evidence when estimated at the 
mid-point vs beginning of the experiment. There have 
been some efforts to distinguish prediction error and 
model-updating experimentally. O’Reilly et al. (2013) 
presented coloured dots that occurred in runs of a 
similar location, with a change in location signalled by 
change in dot colour (model update trial), interspersed 
with grey dots that could occur anywhere but did not 
provide predictive value (surprise alone trials). They 
were able to distinguish the involvement of different 
brain areas in the two processes. Nassar et al. (2012) 
showed that at change points in the mean of a series 
of presented numbers, surprisal as measured by pupil 
dilation was larger and predicted the magnitude of 
change in participants’ predictions of the next number 
(model updating). In syntactic priming, we cannot 
measure the magnitude of model updating on a particu
lar trial, only whether or not the primed structure was 
produced. Instead, it may be possible to compare cumu
lative effects for structures with different baseline fre
quencies, which are likely to produce different 
magnitudes of model updating. For example, passives 
are so infrequent (1–3 in every 1000 words; Roland 
et al., 2007; Xiao et al., 2006) that encountering several 
in a short period may result in rapid adaptation, 
whereas the distribution between double object and 
prepositional object datives is more balanced and 
could result in more incremental changes. Bernolet 
et al.’s (2016) finding that the number of primes encoun
tered marginally predicted dative production but not 
passive production provides some preliminary support 
for this assertion.

Connections with the adaptive gain theory

Under the adaptive gain theory, phasic LC-NE activity 
was initially linked to the P3 ERP (Nieuwenhuis et al., 
2005) and then to task-evoked pupil dilation (Murphy 
et al., 2011). The release of NE is thought to enhance 
neuronal gain and therefore optimise behavioural 
responses to motivationally significant stimuli (Aston- 
Jones & Cohen, 2005) and to support learning following 
novel or unexpected stimuli (Nieuwenhuis, 2011). We 
found that the pupil response was larger when listening 
to a less predictable passive sentence than active sen
tence, and predicted the likelihood of being primed in 
line with error-based learning accounts of syntactic 
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priming. Our study therefore contributes evidence that 
pupil dilation can index prediction error even from 
implicit predictive processing of stimuli that are not 
task-relevant (i.e. motivationally significant). For 
example, Alamia et al. (2019) found that stimuli 
needed to be attended to in order to observe a pupil 
response to infrequent stimuli transitions, but that 
these statistical regularities did not need to be task-rel
evant or reach conscious awareness. Similarly, Damsma 
and Van Rijn (2017) found that Dutch university stu
dents’ pupils dilated in response to salient omissions 
in standard Western drum beats even when they were 
instructed to ignore the audio to focus on an alternative 
task. In our study, participants were required to indicate 
whether the picture matched the sentence audio, which 
acted as a cover task and a way to maintain attention on 
the stimuli. However, tracking the frequency of active 
and passive stimuli (within filler stimuli of different struc
tures) was not task-relevant.

An implication stemming from the adaptive gain 
theory is the integration of electroencephalography 
(EEG) and pupillometry effects. In language processing, 
the P600 is argued to be equivalent to the P3 (Sassenha
gen et al., 2014; Sassenhagen & Fiebach, 2019). It follows 
that similar effects should be observed between the 
P600 and pupil dilation. Indeed, like the pupil response, 
the P600 is observed in response to syntactic violations 
(e.g. Hagoort et al., 1993). However, a recent study 
measuring both responses following syntactic violations 
did not find conclusive evidence that the two were cor
related (Contier et al., 2024). Further, another language- 
related ERP, the N400, is also argued to reflect prediction 
error (Bornkessel-Schlesewsky & Schlesewsky, 2019; 
Rabovsky et al., 2018) and has been found to correlate 
with pupil dilation (Kuipers & Thierry, 2011). Some 
researchers characterise the N400 as a prediction error 
signal and the P600 as reflecting the behavioural conse
quences of predictive processing (Bornkessel-Schle
sewsky & Schlesewsky, 2019), whilst others argue they 
both reflect error signals but at different levels of linguis
tic representation (Fitz & Chang, 2019). Syntactic priming 
offers a context where the link between the P600, N400, 
and pupil dilation effects could be further investigated. 
Studies investigating syntactic priming in comprehen
sion using ERPs have generally found that both the 
N400 and P600 are reduced following a prime of the 
same structure (Chen et al., 2013; Ledoux et al., 2007; 
Tooley et al., 2014). However, this attenuation has only 
been found when prime and target share a verb (Chen 
et al., 2013; Tooley et al., 2009), with only one structure, 
reduced relative clauses, investigated. Rather than 
observing their attenuation from comprehended prime 
to comprehended target, the magnitude of these ERPs 

following a prime could be linked to the likelihood of 
production of the primed structure as we did here 
with pupil size (Tooley, 2023). Links between the 
responses could also be investigated if pupil size is mon
itored alongside EEG, as in Contier et al. (2024).

Future directions

This study found that pupil dilation is a promising 
measure of prediction error during syntactic priming. 
Pupillometry offers several advantages for syntactic 
priming research. Firstly, it is an alternative receptive 
measure of language processing. Comprehension 
priming studies have often relied on self-paced 
reading, a method with known disadvantages (Frinsel 
& Christiansen, 2024; Prasad & Linzen, 2021). Secondly, 
it is a non-invasive measure that can easily be integrated 
into production priming tasks. Tooley has recently 
pointed out that investigating how prime processing 
influences target processing in syntactic priming offers 
opportunities for a deeper mechanistic understanding 
of language processing (Tooley, 2023; Tooley & Brehm, 
2025). Finally, we suggest that pupil dilation is an auto
mated and implicit index of prediction error rooted in a 
neurobiological response. Corpus-based estimates of 
surprisal rely on the language input sampled being 
representative of the varied experience of individual par
ticipants. Pending further research, pupillometry could 
offer an approach to measuring individualised responses 
to input. We outline some specific potential applications 
below.

We chose a structural alternation which reliably pro
duces large priming effects as a test case, but a variety 
of manipulations of prime content that are intended to 
increase prediction error increase syntactic priming 
and could be adopted by future studies using pupillo
metry (e.g. manipulating expectations: Arai & Chang, 
2024; verb-bias effects: Bernolet & Hartsuiker, 2010; 
inverse frequency effects: Jaeger & Snider, 2013). For 
example, the dative alternation enables cross-linguistic 
investigations where the frequency of different dative 
forms are in complementary distribution, in addition to 
the investigation of verb-biases. The double object 
dative is less frequent in Dutch, whilst the prepositional 
object dative is less frequent in English (cf., Bernolet & 
Hartsuiker, 2010; Jaeger & Snider, 2013). If the pupillary 
response to primes of the same structure varies accord
ing to the structure’s distribution within the language, 
this could more definitively tie pupil size to prediction 
error. The same reasoning applies if the pupil response 
to primes of the same dative structure differs for verbs 
biased towards or against the structure. Chang et al.’s 
(2006) error-based learning account is a theory of 
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acquisition as well as processing. Another prediction of 
the account is that syntactic priming is larger for those 
who are subject to greater prediction error because 
their syntactic representations are still developing 
(Kumarage et al., 2022; Rowland et al., 2012).

We also found some evidence for dynamic changes 
to expectations and syntactic representations during 
the experiment. This issue could be further investigated 
by manipulating the distribution of input over the 
course of an experiment. Pupil dilation increases at 
change points in non-linguistic input (Nassar et al., 
2012) and could be compared at points in the exper
iment where prediction error is expected to be larger 
and smaller and correlated with syntactic priming at 
these times. For example, Jaeger and Snider (2013) 
compared comprehension priming when participants 
encountered primes in block order (e.g. all double 
object datives then all prepositional object datives) 
and alternating order. In the blocked condition, predic
tion error should show attenuation over the first block, 
then a sharp increase and attenuation again over the 
second block.

Finally, future research may also address the limit
ations of this study. One limitation was the uncertainty 
in deciding on how to operationalise prediction error 
from the pupil response. While GAMMs allow sophisti
cated modelling of the time course of the pupil 
response, it is less clear how to extract an equally soph
isticated trial-by-trial measure of prediction error from 
that model. Average pupil size during the prime sen
tence, or a restricted period of that sentence, is a reason
able but coarse operationalisation. We did not have the 
computational power to include random smooths for 
each trial for each participant. Extracting these random 
effects from a model that did include them is one 
option for a more precise measure.

Conclusion

In conclusion, we found a larger pupil response elicited 
by passive when compared to active sentences, in line 
with previous syntactic complexity effects (e.g. Just & 
Carpenter, 1993), and replicated the widely reported 
syntactic priming effect (Mahowald et al., 2016). 
Overall, pupil size strongly predicted syntactic priming 
at the beginning of the experiment. However, investi
gating cumulative effects showed weak evidence that 
participants rapidly adjusted their baseline expectations 
and productions of the passive, in line with rapid adap
tation to linguistic context (Fine et al., 2013). These 
results are consistent with Chang et al.’s (2006) error- 
based learning account of syntactic processing and 
acquisition. In light of the difficulty of measuring and 

operationalising cognitive processes, our findings open 
a range of possible applications within research that 
investigates error-based learning and the links 
between expectations, frequencies, and prediction 
error in studies of syntactic processing.

Note

1. We note that we used Bayesian rather than frequentist 
statistics as in Mahowald et al.’s (2016) power simu
lations. Bayesian and frequentist models do typically 
produce very similar results unless using informative 
priors. We used weakly informative priors but our 
results did not change when using uninformative 
priors. Sample sizes that result in low power in frequen
tist model will result in wide credible intervals in Baye
sian models, which can be interpreted similarly.
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