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Abstract
Airborne fine particulate matter (PM2.5) is recognized globally as one of the most hazardous air pollutants due to its 
profound impact on human health, contributing to respiratory and cardiovascular diseases, and increasing the risk of 
premature mortality. The World Health Organization (WHO) attributes millions of deaths annually to PM2.5 exposure, 
making it a critical subject of study for both environmental and public health research. In this context, the present study 
aims to predict PM2.5 concentrations across Maharashtra, India, for the year 2023, employing machine learning models 
to improve spatial and temporal air quality assessments. The analysis utilizes daily station-specific datasets, incorporat-
ing PM2.5 concentrations, Fine Aerosol Optical Depth (FAOD), wind components (u and v), relative humidity (RH), and air 
temperature (TEMP) to improve prediction accuracy. Four regression models were applied: Random Forest (RF), Multiple 
Linear Regression (MLR), Linear Regression (LR), and Lasso Regression, using a combination of Fine Aerosol Optical Depth 
(FAOD) with meteorological data from Google Earth Engine and ground-based observations from Central Pollution Con-
trol Board (CPCB) monitoring stations. The study emphasizes the importance of utilizing FAOD as a more refined metric 
for fine-mode aerosol concentration in PM2.5 modeling, compared to conventional AOD. The RF model achieved the 
highest accuracy (R2 = 0.87, RMSE = 12.57 µg/m3, MAE = 6.96 µg/m3), outperforming MLR, LR, and Lasso Regression, which 
showed significantly lower R2 values. This highlights the RF model’s effectiveness in capturing the non-linear relation-
ships between PM2.5 and its environmental factors. This study identified key PM2.5 hotspots in Maharashtra, particularly 
in densely urbanized areas like Mumbai, Thane, and Pune, with annual PM2.5 concentrations reaching 46.34 µg/m3, far 
exceeding the Indian National Ambient Air Quality Standards (NAAQS) of 40 µg/m3. Seasonal analysis revealed significant 
variability, with the highest PM2.5 concentrations observed during the winter months, while levels significantly decreased 
during the monsoon due to higher rainfall and increased atmospheric moisture. The study identifies key PM2.5 hotspots 
in urban areas, offering crucial insights for policymakers and urban planners to implement targeted air quality inter-
ventions. These findings support improved public health and sustainable environmental management in Maharashtra.
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1  Introduction

Airborne fine particulate matter (PM2.5) has many adverse impacts on the environment and public health, especially 
cardiovascular and respiratory diseases [1–4]. PM2.5 pollution in recent years has been widely recognized as the most 
harmful air pollutants, increasing the risk of mortality and morbidity [5, 6]. The study [7], [50] on the impact of outdoor 
air pollution on human health provides valuable insights into the challenges posed by poor air quality, particularly in 
densely populated urban areas, where it presents significant public health risks. PM2.5 pollution results from natural and 
anthropogenic sources including dust particles, emissions from vehicles[7], sea spray aerosols, industries, gas burning, 
and electricity generation [6, 8]. Every year, five million people worldwide die as an effect of prolonged exposure to PM2.5 
particles [6]. The Environmental Protection Agency in India is tasked with regularly assessing and suggesting changes to 
the national ambient air quality standards (NAAQS). In epidemiological study, it is important to understand the spatial and 
temporal properties as well as the distribution of PM2.5 in order to assess the adverse impacts of air pollution on human 
health [3, 9, 42]. The scant and irregular distribution of air quality monitoring stations presently limits the monitoring of 
PM2.5 contamination by ground stations. Therefore, for continuous observation and management of atmospheric PM2.5 
pollution, gathering information at a high temporal resolution spatial distribution of PM2.5 is imperative [3, 10].

Satellite remote sensing can provide complete aerosol optical depth amplitudes on a global scale on a daily basis, 
and to allow predictions of terrestrial particle concentrations, satellite-derived aerosol optical depth (AOD) is routinely 
used to predict terrestrial PM2.5 concentrations, especially aerosol optical depth (AOD) and PM2.5 in areas where ground 
monitoring stations are not available because of its essential relationship [10–12]. Several studies have shown that AOD 
factors—a particulate matter including all of the limiting solar radiation in the atmospheric column—can be effectively 
used to predict PM2.5 concentrations [3, 11, 13]. Numerous studies endorse including additional elements such as atmos-
pheric parameters, land use features [14], and aerosol types into the AOD-PM modeling to enhance the accuracy of 
prediction of PM2.5 based on AOD observations [15–17]. Many researchers around the world have used numerous meth-
ods to characterize the relationship between PM2.5 and AOD, including multiple linear regression [18], satellite remote 
sensing [4, 13], chemical transport models [17], artificial neural networks [15, 19], land-use regression model (LUR) [5], 
geographically weighted regression (GWR) models [20] and geographically and temporarily weighted regression model 
[21]. In recent years, machine learning techniques have gained popularity for modeling the complex, nonlinear relation-
ships between PM2.5 and its various contributing factors, overcoming limitations associated with traditional statistical 
models. [17, 22–24]. Several machine learning models, which include support vector machine [25, 26], random forest 
[27, 28], artificial neural network (ANN) models [11], extreme gradient boosting model (XGBoost) [29], neural networks 
[20, 29], and Bayesian maximum entropy [30], have been utilized to estimate ground-level PM2.5 concentrations. Due to 
several benefits, the Random Forest (RF) model has been effectively utilized in various regions worldwide [30].

Machine learning techniques are increasingly being used to estimate global PM2.5 concentrations by integrating satel-
lite data and ground-based measurements. Several studies have demonstrated the effectiveness of these approaches. For 
instance, studies [27, 35, 36] combined satellite-derived aerosol optical depth (AOD) with simulation data and ground-
based observations to produce highly accurate global PM2.5 estimates. Similarly, [37] utilized remote sensing, meteoro-
logical data, and ground-based observations to train a machine learning model for daily PM2.5 estimation. Other research 
[37, 38] developed techniques using satellite observations and chemical transport models to generate long-term global 
PM2.5 concentration data. Additionally, [39] employed a Random Forest model to refine grid-wise PM2.5 estimations 
using MERRA-2 data and ground measurements, achieving high correlation across daily, monthly, and yearly scales. A 
comparative study [40] assessed the accuracy of six machine learning models, highlighting the superior performance 
of Artificial Neural Networks (ANN). These studies reinforce the potential of machine learning in integrating diverse 
datasets to improve global PM2.5 estimation, which is crucial for environmental health research and policy-making [21]. 
Beyond modeling, research [41] emphasizes the need for stricter emission regulations in industrial and vehicular sectors 
to mitigate PM2.5 pollution. Previous research has also shown that models such as Convolutional Neural Networks (CNN) 
and Random Forest (RF) can achieve high predictive accuracy, with R2 values exceeding 0.97 and RMSE around 16% of 
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the standard deviation [42]. However, these models often rely on specific datasets and may struggle to fully capture the 
complex non-linear relationships between PM2.5 concentrations and environmental factors.

Using satellite data, machine learning methods have effectively estimated PM2.5 concentrations over many places 
in India. Studies show that algorithms like random forest and XGBoost significantly improve estimation accuracy when 
combined with meteorological data. For example, random forest achieved an R2 of 0.86 in reconstructing PM2.5 from 
MERRA-2 data, proving its utility in data-scarce regions like India. Moreover, researchers have applied diverse machine 
learning (ML) techniques to estimate PM2.5 levels [31], including support vector regression, evolutionary adaptive neuro-
fuzzy systems [32], and ensemble methods. Researchers have combined satellite-derived data with chemical transport 
models [33, 34] and multiple predictors to improve accuracy. A comprehensive framework using ensemble averaging 
across four learners achieved a cross-validation R2 of 0.84 for daily PM2.5 estimations at high spatiotemporal resolution 
[35]. These approaches have revealed significant increases in PM2.5 levels across most Indian states since 1980 [36]. Inte-
grating satellite data with advanced machine learning techniques offers a viable pathway for effective PM2.5 monitoring 
and management in India, particularly in regions with limited ground-based monitoring.

Many existing models focus on either short-term or long-term PM2.5 predictions but often struggle to maintain accu-
racy across different time scales. For instance, while the CNN-RF ensemble model enhances prediction accuracy by 
integrating feature extraction and regression techniques, it still faces challenges in adapting to varying environmental 
conditions. Our approach overcomes these limitations by employing a combination of machine learning techniques 
that enhance both flexibility and accuracy across different time intervals [43]. Although earlier research has investigated 
different machine learning methods for predicting PM2.5 levels, there is still an absence of thorough analyses that incor-
porate diverse data sources and account for seasonal changes in air quality. Our study addresses this shortcoming by 
offering a comprehensive assessment of PM2.5 hotspots across Maharashtra, India, while also emphasizing the seasonal 
trends that affect pollution rates.

This study aims to address key research gaps in PM2.5 estimation by leveraging machine learning techniques, to 
predict fine particulate concentrations across Maharashtra at a high spatial resolution (1 km). Unlike previous studies 
that primarily rely on traditional AOD, this research incorporates FAOD, a more refined metric for fine-mode aerosols, 
alongside meteorological parameters to enhance prediction accuracy. The objectives of this study are (1) to develop 
an accurate machine learning-based model for PM2.5 estimation and (2) to analyze seasonal and spatial variations in 
PM2.5 across Maharashtra. By integrating ground-based air quality measurements with satellite-derived data [37], this 
study overcomes the challenge of sparse monitoring stations, providing a comprehensive spatial representation of air 
pollution. However, some limitations exist, such as potential uncertainties in FAOD-derived estimates, reduced model 
accuracy during monsoon due to high humidity affecting aerosol measurements, and the lack of real-time emission 
sources like traffic and industrial activities in the model. Despite these challenges, the findings offer valuable insights for 
policymakers, urban planners, and environmental managers, enabling targeted interventions to mitigate air pollution 
and improve public health in Maharashtra.

2 � Study area

The state of Maharashtra is in the western part of Peninsular India, with latitudinal extends from 15°33′46′′ N to 22° 02′13′′ 
N and 72°38′45′′ E to 80°53′17′′ E longitude (Fig. 1). This Indian state is bordered by several others state boundaries: to 
the north, Gujarat and Madhya Pradesh; to the northwest, the Arabian Sea; to the south, Karnataka and Goa; to the 
southeast, Telangana; and to the east, Chhattisgarh. Spanning a vast area of 3.07 lakh km2, Maharashtra is renowned as 
India’s financial hub and a prominent hub for industry and commerce. According to the 2011 census (http://​www.​censu​
sindia.​gov.​in/), this state is the third most populous in the country, with a population of 1,123,743,333 people.

The population density is 365 persons per square kilometer. Maharashtra is host to numerous notable cities, including 
as Mumbai, Pune, Nagpur, and Nashik. The state has been categorized into coastal Konkan, Western Maharashtra, Marath-
wada, North Maharashtra, and Vidarbha administrative divisions. The five states, including Madhya Pradesh, Chhattisgarh, 
Telangana, Karnataka and Goa, Maharashtra is in physical contact with the study area, along a coastline of 720 kms stretching 
across the Arabian Sea. The geography of Maharashtra is largely characterized by the Deccan Plateau, Sahyadri (the West-
ern Ghats) and Konkan, or the coast of the Sahyadri’s to the west. These physical features contribute to the state’s distinct 
geography and weather patterns. The Western Ghats have an average elevation between 1000–1200 m, with the highest 

http://www.censusindia.gov.in/
http://www.censusindia.gov.in/
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peak being Kalsubai, which reaches 1646 m. The Western Ghats also encompass multiple hill stations, such as Matheran and 
Mahabaleshwar, and are characterized by a series of steep escarpments called ’ghats’, which slope steeply towards the coastal 
zone. The Western Ghats act as a natural barrier, dividing the coastal region of Konkan from the Deccan Plateau. The Konkan 
coastal region represents a narrow strip of land sandwiched between the Western Ghats and the Arabian Sea. The coastal 
belt is approximately 50 km wide, which gradually declines from north to south. Multiple river creeks intersect the shoreline 
and the various Sahyadri branches reach the shoreline. The rivers of the Konkan region such as, the Ulhas, the Savitri, the 
Vashishti, and the Shastri flow quickly into the Arabian Sea.

The southwest monsoon season in Maharashtra, occurring from June to September, constitutes 88.4% of the state’s total 
annual precipitation. The area exhibits a customary tropical monsoonal climate, distinguished by humid summers and arid 
winters. The western slopes of the Ghats have significant rainfall, ranging from 2000 to 4000 mm annually. However, when 
one moves across the Ghats to the east, there is a reduction in rainfall, and the foothills on the eastern side see virtually no 
rainfall due to rain shadow effect. The mean yearly temperature in Maharashtra typically varies between 25 and 30 degrees 
Celsius. The CPCB (Central Pollution Control Board) runs a system of stations for monitoring air quality throughout the state 
of Maharashtra in order to evaluate the magnitude of air pollution. The CPCB oversees the national air quality monitoring 
program (NAMP) through various monitoring agencies. The CPCB monitors various data, such as particulate matter (PM) 
concentrations, real-time data from monitoring stations on air quality, a live air quality index, and other pertinent information. 
The Maharashtra Central Pollution Control Board (CPCB) network monitoring stations are integral components of a com-
prehensive nationwide network of monitoring stations. This network serves as a valuable source of data for many projects, 
including graded response action plans and initiatives aimed at air quality control.

Fig. 1   Study area with air quality monitoring stations
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3 � Materials

3.1 � Ground PM2.5 measurements

The daily average concentrations of PM2.5 were obtained from the portal of the Central Pollution Control Board (CPCB) 
(https://​cpcb.​nic.​in). 90 air quality monitoring stations data in Maharashtra were collected from the official CPCB website 
for the period of January 1st, 2023, to December 31st, 2023 as per availability of the required data. The region’s air quality 
monitoring stations are dispersed unevenly. Due to data limitations, many monitoring stations outside of urban centers 
lacked sufficient corresponding datasets. Consequently, the available ground-truth data are primarily focused in urban 
and industrial regions, hence creating a spatial bias in the dataset. This bias towards urban areas indicates an emphasis 
on infrastructure in places with higher pollution risk, thus neglecting rural and less-industrialized areas in estimations. 
As depicted in Fig. 1, half of the monitoring stations are in Mumbai and Pune, while the remaining stations are spread 
out among other important cities. Ground PM2.5 levels were monitored using beta gauge attenuation monitors (BAM-
1020; Met One Instrument) that provide hourly average concentrations. The monitoring process followed calibration 
and rigorous quality checks by India’s National Ambient Air Quality Standards (NAAQS). In addition, a few stations have 
missing hourly data. We obtained data before and after the observed period to apply as substitute values. The mean value 
of the replaced data was then computed to fill in the missing values. As per a quality-controlled approach, the missing 
data and outliers brought about by incorrect detection and natural variables were eliminated [21].

3.2 � MODIS AOD product

The study employs Fine Aerosol Optical Depth (FAOD) as a critical variable to understand aerosol concentration, specifi-
cally for its relevance in assessing PM2.5 levels. FAOD is a more refined measure compared to the conventional Aerosol 
Optical Depth (AOD) because it specifically focuses on the fine-mode aerosols, which are directly related to particulate 
matter like PM2.5. Fine-mode aerosols, which have a radius of less than 1 micron, are primarily produced by combustion 
processes such as biomass burning and industrial or auto pollution. These particles, often considered anthropogenic 
in origin, are of particular concern due to their potential for deeper penetration into the human respiratory system and 
their larger impact on human health, earth’s radiation budget, cloud processes, and climate (NASA, 2023). The formula 
for FAOD can be expressed as:

where AOD is the total Aerosol Optical Depth and Fine Mode Fraction refers to the proportion of the aerosol load that 
corresponds to fine-mode particles. The FAOD values used in this study were extracted from the MODIS MCD19A2 data-
set, which provides both AOD and Fine Mode Fraction at a global scale. For the study period from January 1, 2023, to 
December 31, 2023, daily FAOD values were extracted for CPCB stations across the region, enabling a detailed temporal 
and spatial analysis. This approach, which emphasizes FAOD over AOD, addresses the previous limitation in the study 
and provides a more accurate reflection of fine particulate matter in the atmosphere, aligning the analysis with current 
research standards and guidelines for PM2.5 modeling.

FAOD is considered a more relevant metric for understanding fine particulate matter because it specifically captures 
the impact of fine-mode aerosols (particles with a radius of less than 1 micron), which have a higher health risk due to 
their ability to penetrate the lungs. This is consistent with the international standard for air quality, where PM2.5 mass, a 
direct result of fine-mode aerosols, is the primary indicator for evaluating air quality and its potential health effects. By 
using FAOD in this study, the research more accurately aligns with current aerosol research methodologies and offers 
better precision in estimating PM2.5 concentrations [43].

3.3 � Meteorological data

The European Centre for medium-range weather forecasting’ ERA5 product offers hourly values of atmospheric param-
eters; it is the fifth-generation atmospheric reanalysis of the global climate dataset. The ERA5 data have seen extensive 
use because to their superior spatial and temporal resolution compared to the National Center for Environmental Predic-
tion. To develop machine learning model for PM2.5 concentration, we sourced meteorological data from the ERA5 dataset 

(1)FAOD = AOD × FineModeFraction

https://cpcb.nic.in
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(Copernicus, https://​cds.​clima​te.​coper​nicus.​eu/), focusing on key variables such as Relative Humidity, Temperature, and 
wind components (U and V). Atmosphere: 0.25° × 0.25° for reanalysis; 0.5° × 0.5° for ensemble products. The dataset was 
processed and extracted using Google Earth Engine platform.

3.3.1 � Relative humidity

To calculate relative humidity (RH), we used air temperature (T) and dewpoint temperature (Td) data from the ERA5-Land 
Hourly dataset provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). Relative humidity, a 
critical parameter for understanding atmospheric moisture content, is calculated using the widely recognized Magnus 
formula. The calculation involves determining the saturation vapor pressure (es) and the actual vapor pressure (e). Satu-
ration vapor pressure was derived using the equation:

while actual vapor pressure was computed using:

where T and Td are in Celsius. Relative humidity is then obtained using the formula:

The air and dewpoint temperatures from the ERA5-Land dataset were converted from Kelvin to Celsius before appli-
cation of these formulas. The dataset was processed in Google Earth Engine, and daily averages of relative humidity for 
specific monitoring locations were extracted and linked with PM2.5 concentration measurements for further analysis. 
The Magnus formula used for this computation is an empirically validated approximation derived from the Clausius–Cla-
peyron equation, as discussed by Sonntag (1990) and further refined by Alduchov and Eskridge (1996). These sources 
confirm the accuracy of the method for meteorological applications, ensuring robust calculations for studies involving 
PM2.5 and related air quality indices [41].

3.3.2 � Temperature

The air temperature (T) data at 2 m above the surface was extracted from the ERA5-Land Hourly dataset provided by 
the European Centre for Medium-Range Weather Forecasts (ECMWF). This dataset offers hourly global coverage with a 
spatial resolution of approximately 11 km. For this analysis, daily mean temperature values were computed by averaging 
hourly data for each day, covering the period from 2023-01-01 to 2023-12-31. Using Google Earth Engine, the data was 
spatially reduced for specific monitoring station locations using the mean temperature for the corresponding grid cells. 
The temperature values, initially in Kelvin, were converted to Celsius to facilitate compatibility with standard climatologi-
cal analyses and subsequent integration with PM2.5 concentration measurements.

3.3.3 � U and V component of wind

The u-component and v-component of wind at 10 m above the surface were extracted from the ERA5-Land Hourly 
dataset provided by ECMWF. These variables represent the east–west (u-component) and north–south (v-component) 
directional components of wind velocity, expressed in meters per second (m/s). The analysis involved calculating daily 
mean values by averaging the hourly data for each day, ensuring temporal consistency with the study period. Data was 
processed for the period 2023-01-01 to 2023-12-31. The data was spatially reduced using Google Earth Engine to compute 
mean values for specific station locations. These components provide essential insights into wind patterns and directions, 

(2)es = 6.112 × exp

[
(17.67 × T )

T + 243.5

]

(3)e = 6.112 × exp

[
17.67 × Td

Td + 243.5

]

(4)RH = 100 ×

(
e

es

)

https://cds.climate.copernicus.eu/
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forming a basis for calculating resultant wind speed and direction, which are critical parameters in atmospheric studies, 
particularly for understanding pollutant dispersion and PM2.5 concentration dynamics.

4 � Methodology

4.1 � Data processing and integration

The study utilized daily ground-based PM2.5 concentration data, satellite-derived Fine Aerosol Optical Depth (FAOD) and 
various meteorological parameters, to model PM2.5 concentrations. The data processing involved extracting daily CPCB 
network monitoring station-specific datasets for PM2.5, FAOD, which was calculated from MODIS Terra AOD gridded Level 2 
product produced daily at 1 km resolution and fine mode fraction, wind components (u and v), relative humidity (RH), and 
air temperature (TEMP) extracted from ERA5 dataset by using google earth engine tools for the year 2023 (from January 1st 
to December 31st). The datasets were merged using Python, aligning the data from multiple sources for each station location 
across the entire study period. This integrated dataset, which represents the spatial and temporal variability of air quality 
and meteorological factors, was subsequently processed for machine learning model development (Fig. 2). The preprocess-
ing steps included handling missing data and outliers, where records were flagged for inconsistencies, particularly when 
discrepancies arose between ground-based PM2.5 measurements and the corresponding satellite or meteorological data. 
These anomalies were addressed to ensure data quality and consistency. After merging the data, the dataset underwent 
scaling, ensuring that every feature has an equal impact on the model’s performance. Scaling aids normalizing meteorologi-
cal data because it might vary greatly in range (for example, temperature in degrees vs. humidity as a percentage), feature 
engineering, and preparation for machine learning models like random forest regressor, multilinear, linear regression and 
lasso regression. The entire workflow was implemented using Python 3.10 for data manipulation and modeling, while spa-
tial analysis and visualization were carried out using ArcGIS Pro. This integrated and cleaned dataset was then used to train 
models to predict PM2.5 concentrations with high temporal and spatial accuracy. Models was trained with 80% dataset from 
the total dataset containing 12563 number of records and remaining 20% dataset were used for testing the model, as shown 
in the methodology section of the study.

4.2 � Model development

4.2.1 � Random forest (RF) model

RF model is an ensemble-based decision tree approach that combines multiple decision trees trained on randomly selected 
subgroup of training samples [6]. Random forest objectively evaluates feature relevance during classification and can handle 
issues associated with a significant volume of missing data. Furthermore, the RF model outperforms the standard models in 
handling large amounts of data without requiring any dimensionality reduction. Classification trees were employed to select 
the most effective trees for predictive purposes. Random forest involves many classification trees, where all variables are 
involved in each tree as independent features for classification. To conduct this study, hyperparameter tuning was conducted 
using Grid Search Cross-Validation, optimizing n_estimators (100), max_depth (20), min_samples_split (5), min_samples_leaf 
(2), and max_features (’sqrt’) for better model performance. The final predictions produced by the RF model have been 
intended to be calculated using the mean of the outcomes from all separate trees.

where fb​(x) is nothing but the output from every tree b.
The standard deviation of predictions from each individual tree can be calculated by Eq. (6) to evaluate prediction uncer-

tainty, especially for regression tasks.

where x′ is the input for which predictions are made, ​  f̂  is the average prediction across all trees.

(5)P̂M2.5 =
1

B

B∑

b=1

fb(x)

(6)� =

�
∑B

b=1
(fb(x�) − f̂ )2

B − 1
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Fig. 2   Methodology flowchart for estimation of PM2.5
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4.2.2 � Multiple linear regression (MLR)

The multiple linear regression model is a statistical method used to examine the correlation between a dependent variable 
and two or more independent variables. The multiple linear regression model is employed to construct a model that explains a 
dependent variable y in terms of numerous independent variables. Determine the estimated value of the dependent variable 
y when the values of the independent variables are given. Multilinear regression does not have traditional hyperparameters 
like decision trees or ensemble methods, but model performance can be improved through feature selection, regularization, 
and interaction terms. The model is commonly estimated using python software, and the results are evaluated by analyzing 
the regression coefficients, their standard errors, and the p-values associated with each coefficient. The model can also be 
utilized to detect and manage confounding variables in the analysis. The model is represented by the following formula:

The dependent variable in this case is PM2.5, which represents the concentration of particulate matter having a diameter 
of 2.5 µg/m3 or smaller. β₀ is the y-intercept, which denotes the PM2.5 value when all independent variables are set to 0. The 
regression coefficients β₁, β₂, β₃, β₄, and β₅ indicate the amount of change in PM2.5 that occurs when there is a one-unit change 
in the corresponding independent variable while keeping all other variables constant. FAOD refers to the Fine mode Aerosol 
Optical Depth, which quantifies the concentration of aerosol particles present in the vertical column of the atmosphere. 
Temperature refers to the degree of hotness or coldness of an object or environment. RH represents the relative humidity.

The objective of this multiple linear regression model is to determine the regression coefficients (β₀, β₁, β₂, …, β5) that 
provide the most accurate fit to the observed data. This will enable the prediction of PM2.5 concentrations based on the 
independent variable values. The model assumes a linear relationship between the dependent variable (PM2.5) and the 
independent variables and that the errors (ε) follow a normal distribution with a mean of 0 and constant variance.

4.2.2.1  Linear regression (LR)  Linear Regression (LR) is a fundamental machine learning algorithm utilized for predictive anal-
ysis. Linear regression is a statistical technique that uses a linear equation to represent the connection between a depend-
ent variable (also known as the target variable) and one or more independent variables (also known as input features). The 
objective of linear regression is to determine the optimal line of best fit that minimizes the discrepancy between the pro-
jected values and the actual values. The linear regression model can be represented as:

where, y is the target variable (PM2.5), β0 is the intercept or constant term, β1 is the coefficient of the input features FAOD, 
ϵ is the error term, which represents the random variation in the data.

4.2.2.2  Lasso regression  Lasso regression (LR) is a variant of linear regression that includes regularization techniques to miti-
gate the problem of overfitting. In this study, hyperparameter tuning focused on optimizing the regularization parameter 
(alpha) to control feature selection and prevent overfitting. The model was trained using alpha = 0.1 with max_iter = 1500, 
ensuring convergence. Lasso regression can be employed to forecast PM2.5 concentrations by identifying the most signifi-
cant input variables and reducing the coefficients of less important variables. This strategy can enhance the model’s perfor-
mance by reducing the influence of noise and extraneous data. Within the realm of air quality modeling, Lasso regression 
proves to be particularly advantageous in pinpointing the pivotal components that impact PM2.5 concentrations.

where, yi​ is the observed value for the i-th observation. ŷi is the predicted value for the ith observation, calculated as:

where, n is the number of observations, p is the number of predictors β0​ is the intercept of the model, βj​ are the coef-
ficients for each predictor xj​, λ (lambda) is a tuning parameter that controls the strength of the penalty. A larger value 
of λ results in more coefficients being pushed towards zero, effectively performing variable selection.

(7)PM2.5 = �0 + �1(FAOD) + �2(Temp) + �3(U −Wind) + �4(V −Wind) + �5(RH) + ∈
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4.3 � Model evaluation

The model’s performance was assessed using some statistical metrics, including the coefficient of determination (R2), 
means absolute errors (MAE), root mean squared error (RMSE), and mean square error (MSE).

(a) Mean square error (MSE)

A model’s predictive accuracy can be evaluated by calculating its mean square error (MSE), where lesser MSE values 
resemble to higher predictive accuracy.

(b) Mean absolute error (MAE)

An array of actual and predicted PM2.5 concentration values are two continuous variables, and the average magnitude 
of errors between them is represented by the Mean Absolute Error (MAE), or simply MAE. Equation (12) is used in its 
computation.

(c) Root Mean Squared Error (RMSE)

The Root Mean Squared Error (RMSE) is the second measure used for comparison. The square root of the average of 
the squared differences between the expected and actual values in a dataset is used to calculate this metric, which is 
represented by the sign RMSE. Equation (13) is used in its computation.

(d) Coefficient of determination (R.2 -score)

The R2 -score, often known as the coefficient of determination or just R2, is the last evaluation criterion that is used. 
Along a random forest regression model, this metric evaluates the proximity of predicted values to matching actual 
values. Equation (14) describes the relationship that is used in its calculation.

where yo is observed values of PM2.5 and yp is predicted value of PM2.5 by random forest regression model. �2
yo
, �2

yp
 are 

variances of observed values of PM2.5 and predicted value of PM2.5 respectively.

5 � Results and discussion

5.1 � Data overview

The descriptive statistics for FAOD, PM2.5 and relevant meteorological parameters utilized in model development are 
shown in Tables 1. The average PM2.5 concentration was 46.22 μg/m3 and the FAOD was 335.50 annually. The seasonal 
averages for PM2.5 and FAOD were as follows: Winter—75.02 μg/m3, 517.09; Summer—43.65 μg/m3, 384.89; Mon-
soon—22.38 μg/m3, 29.26; post-monsoon—62.86 μg/m3, 662.25. Maximum PM2.5 levels were reported in winter, whereas 
the lowermost were detected in the monsoon period. The seasonal changes in (fAOD) and PM2.5, particularly the low 
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concentrations of PM2.5 with lower values of fAOD during the monsoon period, might be associated to the availability 
of water vapor in the atmosphere during the time of the monsoon.

5.2 � Weather parameters and fine particulate matter (PM2.5)

The Pearson’s correlation graph of fine particulate matter (PM2.5) and environmental parameters in Maharashtra, India 
demonstrates the existence of notable statistical relationships. There is a significant negative correlation between PM2.5 
levels and Relative Humidity(RH) (r = − 0.55, p < 0.005), Rainfall(RF)(r = − 0.31, p < 0.005), and Wind Speed(WS) (r = − 0.23, 
p < 0.005) ([38]) based on meteorological parameters in Maharashtra (Fig. 3). Moreover, it has a substantial positive cor-
relation with Wind Direction (WD) (r = 0.42, p < 0.001), as well as temperature (r = 0.19, p < 0.005). The correlation between 
relative humidity and temperature is inversely related to PM2.5 levels, indicating that higher humidity and temperatures 
are related to lower concentrations of PM2.5 ([38]). The investigation uncovered the inverse correlations between PM2.5 
concentrations and both RF and WS. This finding indicates a possible relationship between heightened RF and Wind 
Velocity (WV) in Maharashtra, leading to a successive decrease in PM2.5 levels. The examination authenticates the sub-
stantial effect of atmospheric variables on PM2.5 levels, in line with previous scholarly investigations. [18, 39]. The results 
indicated above support and add to the information previously available from other studies, emphasizing the significance 
of taking geographic variation into account when examining.

5.3 � Models fitting and evaluation

Figure 4 displays an annual scatter plot comparing the measured and estimated PM2.5, illustrating the Random Forest 
(RF) model’s best fit for Maharashtra, India in 2023. The RF model achieved R2, MSE, MAE, and RMSE values of 0.87, 157.91, 
6.96 μg/m3, and 12.57 μg/m3, respectively, demonstrating its accurate approximation of the training set values.

The results shown in Table 2 indicate that the feature selection approaches and algorithmic implementations used 
in this study produced positive effects. The Random Forest (RF) model had superior performance, with an R2 value of 
0.87, indicating that it explained 87% of the variability in the training dataset. The R2 values for the Multilinear regression 
models surpassed 0.41, whereas the Linear Regression (LR) with single variable and lasso regression model exhibited a 
comparatively lower R2 of 0.18 and 0.41, respectively. In general, incorporating the estimates of PM2.5 pollution values 
improved the overall accuracy of the models. The coefficient of determination (R2) was found to be the most effective 
indicator of how well the regression equation fit the data. Therefore, the RF model is considered the most suitable for 
PM2.5 retrieval modeling.

Figure 4 presents the comparative examination of the monitoring data and the findings obtained from best fitting 
the model random forest model. Typically, when the levels of PM2.5 are relatively low, the scatter plot shows a stronger 
correlation with the 1:1 line. Nevertheless, when the concentrations are above 150 µg/m3, the anticipated outcomes from 
the multilinear regression, lasso regression (LR), and Linear Regression (LR) models have a tendency to underestimate the 
observed values. This discovery indicates that these three models do not possess the capability to reliably forecast high 
levels of PM2.5 concentration. Despite the Random Forest (RF) regression model showing improved fitting performance in 
the high-concentration region, Observable changes in R2 and Root Mean Square Error (RMSE) are evident when compar-
ing the four ML models. This phenomenon can be explained by the fact that there is a higher relationship between PM2.5 
values in monitoring stations that are close to each other. This relationship tends to weaken beyond a distance of 100 km.

We evaluated the accuracy and reliability of our model by validating the predicted PM2.5 concentrations against 
observed values from monitoring stations. This validation involved comparing the average predicted PM2.5 levels with 

Table 1   Statistical summary 
of predictor variables of CPCB 
AQI station considered for the 
RF model in year 2023

Parameter Min Max Standard Devia-
tion

Mean Number of Rows

FAOD 0 2794 468.55 335.50 12563
PM2.5 0.53 427 34.98 46.22 12563
RH 18.14 97.91 16.97 67.80 12563
Temp 17.25 36.52 2.66 26.12 12563
U-Wind − 4.17 9.29 2.05 1.15 12563
V-Wind − 5.93 10.44 1.48 − 0.15 12563
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Fig. 3   Correlation analysis 
between the PM2.5 concen-
tration and meteorological 
variables used in the study

Fig. 4   Annual scatter plot 
between the observed and 
predicted pm2.5. by using 
a random forest regressor 
model
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actual measurements across different locations. As shown in Fig. 5, the results indicate a strong correlation between 
predicted and observed values, with data points from each station illustrating how well the model aligns with real-world 
measurements. By using scaled values, we enhanced the clarity of comparisons, allowing for a better assessment of the 
model’s performance across various sites. The findings suggest that the Random Forest model provided highly accurate 
predictions, with many stations showing a close match between estimated and actual values. This validation is crucial 
not only to confirm the effectiveness of our predictive approach but also to identify areas where the model performs 
exceptionally well and where further refinement may be needed. Our results demonstrate the effectiveness of machine 
learning techniques, particularly Random Forest, in accurately predicting PM2.5 concentrations by integrating Fine Aerosol 
Optical Depth (FAOD) data with meteorological parameters.

5.4 � Spatiotemporal variability of predicted PM2.5

We assessed the effect of climatic conditions on the satellite data sets of different pollutants that were processed and 
assessed for four seasons, i.e., winter, summer, and monsoon, and post-monsoon, to analyze the effect of climatic condi-
tions as well on the concentration level over the study area. Google Earth Engine was used to process satellite imagery, 

Table 2   Validation index score 
of different models used in 
the study

Model R2 MSE MAE RMSE

RF 0.87 157.91 6.96 12.57
Multilinear regression 0.41 742.25 17.47 27.24
LR 0.18 1008.36 22.41 31.75
Lasso (LR) 0.40 742.25 17.48 27.24

Fig. 5   Validation of annual mean of estimated PM2.5 concentrations with an annual mean of ground PM2.5 collected from CPCB network 
monitoring stations across Maharashtra, India in 2023
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while ArcGIS 10.3 was used to prepare the maps. The RF model was used to construct a yearly average satellite-derived 
map of PM2.5 for Maharashtra, India shown in Fig. 6. The map has a grid resolution of 1 km. The mean annual PM2.5 con-
centration was computed as 46.22 μg/m3, surpassing the Indian National Ambient Air Quality Standards (NAAQS) limit 
of 40 μg/m3. Spatially, high concentrations of PM2.5 were predominately observed in the western, and moderate in the 
northwestern of study area. In particular, the maximum yearly mean PM2.5 was mainly concentrated in Mumbai, Navi 
Mumbai, and Thane. The dense population and the associated industrial, transportation, and residential emissions in 
the area probably cause high PM2.5 at regional levels.

5.5 � Seasonal model performance and fluctuations of PM2.5

Figure 7 shows scatter plots for each season, showing the comparison between the measured and estimated PM2.5 values 
utilizing the random forest model. The seasons are classified into four discrete categories: winter (December–February), 
summer (March–May), monsoon (June–September), and post-monsoon (October–November). In the winter, the model 
attained the highest levels of accuracy, as indicated by the R2, MAE, MSE and RMSE values of 0.91, 7.76 µg/m3, 126.12 and 
11.23 µg /m3, respectively (Table 3). In contrast, the lowest accuracy was found during the monsoon, with R2, MSE, RMSE, 
and MAE values of 0.75, 59.1, 7.69 µg/m3, and 4.16 µg/m3, respectively. The random forest technique was utilized in 2023 
to create maps at a spatial resolution of 1 km that estimate the concentrations of PM2.5 in Maharashtra for every season 
(Fig. 8). The PM2.5 levels reached their highest point during winter, while they were at their lowest during the monsoon 
season. The elevated levels of PM2.5 pollution witnessed in the winter can be attributed to atmospheric constancy and 
lowest temperatures, which generate conditions that are less favorable for the scattering of PM2.5. The model shows 
strong concordance between the anticipated output and observed values at CPCB sites, both in the summer and winter 
(Table 4). Nevertheless, the model forecasts areas in western Maharashtra during the summer and eastern Maharashtra 
during the post-monsoon season where greater values are expected.

Fig. 6   Annual mean satellite-based pm2.5 estimated map for Maharashtra, India at a 1 km grid resolution by using random forest regression 
model
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During the monsoon season, PM2.5 concentrations are generally lower due to frequent and intense rainfall, which 
effectively removes pollutants from the atmosphere. High humidity and strong winds further aid in pollutant disper-
sion, creating a natural cleansing mechanism that significantly reduces particulate matter buildup across Maharashtra. 
PM2.5 levels rise notably during the post-monsoon season, driven by multiple factors. Festive activities, particularly 
Diwali, contribute to increased pollution from firecracker emissions and heightened vehicular traffic. Additionally, 
weaker winds and reduced precipitation during this period lead to atmospheric stagnation, trapping pollutants near 
the surface and exacerbating air quality issues. The summer season is also characterized by elevated PM2.5 levels, 

Fig. 7   Scatter plots for each season comparing the measured and estimated pm2.5 values using the random forest model. a monsoon 
(June–September), b post-monsoon (October–November), c summer (March–May), and d winter (December–February)

Table 3   RF Model 
performance in each season 
in year 2023

Metrics used Monsoon Post-Monsoon Summer Winter

R2 0.75 0.87 0.83 0.91
MSE 59.1 95.07 128.54 126.12
MAE 4.16 7.26 7.06 7.79
RMSE 7.69 9.75 11.34 11.23
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influenced by dust storms, vehicular emissions, and biomass burning, including agricultural waste disposal. High 
temperatures and dry conditions facilitate the suspension and long-range transport of particulate matter, further 
amplifying pollution levels. Interestingly, contrary to typical seasonal patterns, winter PM2.5 concentrations in this 
study are observed to be lower than in the post-monsoon and summer seasons. While winter is generally associated 
with higher pollution due to atmospheric inversion trapping pollutants, regional factors such as stronger sea breezes 
in coastal areas, occasional rainfall events, or stricter pollution control measures may have contributed to improved 
pollutant dispersion and lower PM2.5 levels in 2023.

The seasonal variation in PM2.5 levels is influenced by a complex interaction of meteorological conditions, human 
activities, and regional factors. Notably, the observed anomalies, such as lower concentrations in winter, underscore 
the need for continuous and localized air quality monitoring to better understand pollution dynamics. These findings 

Fig. 8   Mean seasonal spatial distributions of estimated PM2.5 concentrations across Maharashtra, India in 2023

Table 4   Statistical summary of estimated PM2.5 by RF model and CPCB observed PM2.5 in each season in the year 2023, in bracket, CPCB 
observed value statistics is given, i.e., model predicted PM2.5 statistics (CPCB Observed PM2.5 statistics)

Descriptor Min Max Standard Deviation Mean Number of Rows

PM2.5 4.50 (0.53) 292.84 (427) 29.42 (34.98) 46.34 (46.22) 10050 (12563)
Winter 20.40 (2.27) 292.07 (377) 21.93 (40.18) 44.31 (75.02) 10050 (2628)
Summer 10.79 (5) 271.32 (327) 28.18 (27.83) 74.97 (43.64) 10050 (1982)
Monsoon 4.50 (0.44) 209.71 (290) 11.60 (17.22) 22.60 (22.38) 10050 (5014)
Post-Monsoon 13.57 (5.32) 237.84 (280) 21.38 (27.13) 62.91(62.86) 10050 (2939)
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highlight the importance of integrating climatic, regulatory, and anthropogenic factors into air quality management 
strategies to support informed decision-making and improve environmental outcomes.

As shown in Table 3, the performance of the Random Forest (RF) model varied across seasons. It exhibited the high-
est accuracy in the post-monsoon season (R2 = 0.87; RMSE = 9.75 µg/m3) and the lowest accuracy during the monsoon 
season (R2 = 0.75; RMSE = 7.69 µg/m3). This decline in performance during the monsoon is likely due to the increased 
water vapor content, which affects the FAOD–PM2.5 relationship. The seasonal variation in model performance reflects 
the challenges of predicting PM2.5 concentrations when meteorological parameters such as relative humidity and 
precipitation play a dominant role. During the monsoon, FAOD values tend to be higher due to enhanced light scat-
tering by water vapor, while PM2.5 concentrations decrease significantly, making their relationship less predictable. 
Despite this, the model effectively captures key seasonal trends, even though its accuracy is comparatively lower 
during the monsoon season.

5.6 � Discussions

This study examines the seasonal and spatial variability of PM2.5 concentrations in Maharashtra, India, emphasizing the 
crucial role of meteorological factors in shaping air quality. The analysis reveals that PM2.5 levels peak in winter due to 
atmospheric stability and lower temperatures, whereas they decrease during the monsoon season as rainfall and high 
humidity facilitate the removal of particulates from the air. The strong correlations between PM2.5 and meteorological 
parameters reinforce the importance of incorporating these factors into air quality management strategies.

The Random Forest (RF) model effectively predicted PM2.5 levels, demonstrating strong performance, particularly in 
summer. However, its accuracy declined during the monsoon season due to complex weather interactions that affect 
the FAOD–PM2.5 relationship. The RF model’s ability to capture non-linear relationships among variables makes it well-
suited for air quality predictions. However, while random forest models excel at handling complex datasets, they can 
be less interpretable compared to simpler models like multiple linear regression and linear regression. Additionally, 
we address challenges such as overfitting in more complex models and the assumptions associated with linear regres-
sion methods. High PM2.5 concentrations were observed in western Maharashtra, particularly in densely populated and 
industrialized areas like Mumbai and Pune, where emissions from industries and vehicles worsen pollution levels. Our 
findings show PM2.5 hotspot zones over Mumbai and Pune with higher PM2.5 concentrations. These findings suggest that 
targeted mitigation strategies, particularly during winter, could significantly improve air quality. Furthermore, the study 
underscores the need to account for regional and seasonal variations when developing air quality models. By analyzing 
seasonal PM2.5 trends across Maharashtra, this study provides a comprehensive understanding of air pollution dynamics 
in the region, offering valuable insights for policymakers and environmental management initiatives.

This study demonstrates the effectiveness of machine learning, particularly the Random Forest (RF) model, in accu-
rately predicting PM2.5 concentrations by integrating FAOD, meteorological parameters, and ground-based measure-
ments. The high spatial resolution (1 km) and seasonal analysis provide valuable insights into pollution patterns, sup-
porting targeted interventions. However, limitations include lower model accuracy during the monsoon (R2 = 0.75) due 
to high humidity affecting FAOD, the absence of real-time emission data from traffic and industries, and potential spatial 
biases from unevenly distributed monitoring stations. Additionally, the model’s applicability beyond Maharashtra remains 
untested, and deep learning techniques such as LSTMs and CNNs were not explored. Future improvements should 
integrate real-time emissions, refine monsoon-season predictions, and explore deep learning approaches for enhanced 
accuracy and broader applicability.

The study findings of our research fits in well with other research, especially in terms of the dispersion of PM2.5 over 
India, saw those larger metropolitan areas, especially those with high industrial and transport emissions, consistently 
showed the highest PM2.5 concentrations. Another study in Delhi, India, used machine learning and deep learning to 
develop a model to predict the PM2.5 concentrations in Delhi. This research accentuates the importance of urbanization 
and industrial activity on PM2.5 atmospheric concentrations ([35]). On the other hand, a study in China found that the 
COVID-19 shutdown resulted in a big drop in PM2.5 levels as all industries and transportation came to a halt. The drop 
in PM2.5 during the lockdown period shows the impact of human activity on air quality. A study in India looked at the 
air quality of several cities and found big fluctuations in PM2.5 levels throughout the year. It was found that PM2.5 was 
higher in winter and lower in monsoon season. [4, 36, 40]. Overall, this study provides valuable insights into the interplay 
between meteorology and air pollution in Maharashtra, offering a basis for more effective air quality management and 
future research focused on refining predictive models.
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6 � Conclusion

This study presents a comprehensive analysis of PM2.5 concentration patterns in Maharashtra, India, for the year 2023, 
using a high-resolution (1 km) approach. By integrating data from air quality monitoring stations, MODIS Fine Aerosol 
Optical Depth (FAOD), and meteorological parameters within a Random Forest (RF) machine learning model, we provide 
a more precise and spatially detailed estimation of PM2.5 levels. A key advancement of this research lies in the application 
of FAOD as a refined metric for fine-mode aerosol concentration, improving upon traditional methods that primarily rely 
on AOD. The results indicate persistently high PM2.5 concentrations in western, northwestern, and central Maharashtra, 
with an annual average of 46.22 μg/m3. Seasonal variations were evident, with a significant decline in PM2.5 levels during 
the monsoon and elevated concentrations in winter, largely driven by atmospheric stability and lower temperatures. 
These findings emphasize the importance of considering regional and seasonal variability when developing air quality 
management strategies. Looking ahead, a deeper understanding of the spatiotemporal dynamics of PM2.5 pollution will 
be essential for refining predictive models and implementing effective mitigation strategies. Future research should 
focus on integrating additional environmental and anthropogenic factors to enhance model accuracy and better assess 
the long-term impacts of air pollution. By leveraging advanced modeling techniques, policymakers and environmental 
agencies can develop targeted interventions to reduce the adverse effects of PM2.5 on public health and the environment.

7 � Limitations and future aspects

This study faces limitations such as FAOD-based PM2.5 estimation uncertainties, especially during monsoons, the absence 
of real-time emission data, and lower model accuracy in high-humidity conditions. Spatial biases exist due to uneven 
monitoring station distribution, and the model’s generalizability remains untested beyond Maharashtra. Additionally, 
deep learning methods like LSTMs and CNNs were not explored. Future work should integrate real-time emissions, 
enhance monsoon predictions, expand to other regions, and incorporate advanced deep learning techniques. Develop-
ing a real-time PM2.5 forecasting system and analyzing long-term trends could further support air quality management 
and policy planning. In the future, understanding the spatiotemporal patterns of PM2.5 pollution will help improve model 
performance, enabling more effective mitigation of its impact on public health and the environment. This can be achieved 
through targeted interventions and the incorporation of additional influencing factors.
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