

 1

Chapter 9

Automatic online writing support for L2 learners of German

through output monitoring

by a natural-language paraphrase generator

Karin Harbusch and Gerard Kempen

Students who are learning to write in a foreign language, often want feedback on the

grammatical quality of the sentences they produce. The usual NLP approach to this prob-

lem is based on parsing student-generated text. Here, we propose a generation-based ap-

proach aiming at preventing errors (“scaffolding”). In our ICALL system, the student

constructs sentences by composing syntactic trees out of lexically anchored “treelets” via

a graphical drag & drop user interface. A natural-language generator computes all possi-

ble grammatically well-formed sentences entailed by the student-composed tree. It pro-

vides positive feedback if the student-composed tree belongs to the well-formed set, and

negative feedback otherwise. If so requested by the student, it can substantiate the posi-

tive or negative feedback based on a comparison between the student-composed tree and

its own trees (informative feedback on demand). In case of negative feedback, the system

refuses to build the structure attempted by the student. Frequently occurring errors are

handled in terms of “malrules.” The system we describe is a prototype (implemented in

JAVA and C++) which can be parameterized with respect to L1 and L2, the size of the

lexicon, and the level of detail of the visually presented grammatical structures.

Motivation and preview

Many foreign-language learners, especially students at the level of secondary or tertiary

education who are learning to write in the target language, want feedback on the grammatical

quality of the sentences they produce. This raises the question how ICALL systems (Intelligent

Computer-Assisted Language Learning) can provide feedback on the grammatical structure of

their L2 sentences—for instance, in essay writing exercises. The usual NLP (Natural Language

 2

Processing) approach to this problem is based on parsing. After the student has typed a sentence,

the parser evaluates it and provides feedback on the grammatical quality. However, the more er-

rors a sentence contains, the less accurate the feedback tends to be: A parser working with a large

lexicon and a rich grammar usually finds many correction options but has no criteria to select the

option that fits the message the student wishes to express. A related problem is caused by ambi-

guity. Hardly any sentence can be parsed unambiguously (cf. the proverbial Time flies like an

arrow, for which Wikipedia lists no less than seven different interpretations). Hence, it is noto-

riously difficult to produce highly reliable feedback based on the parsing results.

We propose a generation-based approach aiming at the prevention of errors (“scaffold-

ing”). Students construct sentences incrementally, and the ICALL system intervenes immediately

when they try to build an ill-formed structure. We use a natural-language sentence and para-

phrase generator—briefly called paraphraser—with a graphical drag & drop user interface. In

our system, the student drags words into a workspace where their grammatical properties are

displayed in the form of syntactic “treelets” as defined in the lexicalized Performance Grammar

formalism (PG; Kempen & Harbusch, 2002, 2003; Harbusch & Kempen, 2002). The treelet(s)

associated with a word express(es) conditions on the syntactic environment(s) in which the word

can occur (subcategorization restrictions). In the workspace, the student can combine treelets by

moving the root of one treelet to a foot (i.e., a non-lexical leaf) of another treelet. In the genera-

tor, this triggers a unification process that evaluates the quality of the intended structure. If the

latter is licensed by the generator’s syntax, the tree grows and a larger tree is displayed. In case

of licensing failure, the generator informs the student about the reason(s). This feedback follows

directly from the unification requirements. The level of detail of the feedback can be parameter-

ized with respect to the assumed proficiency level of the student. At any point in time, the stu-

 3

dent can issue a request for grammatical information—not only about syntactic rules, but also

about the structure under assembly: informative feedback on demand.

The system presented here monitors the process of combining words and word groups

into clauses and sentences (including coordinate and subordinate structures). The current proto-

type focuses on constituent order in German as L2 and checks correctness of attempted order-

ings. Feedback is based on the correctly applied L2 ordering rules. The paraphrase generator can

provide the student with the correct ordering(s) on demand. Additionally, typical errors due to

intrusions from L1 (currently English) are handled by malrules.

The chapter is organized as follows. First, we outline the state of the art in ICALL sys-

tems for essay writing based on NLP techniques. In subsequent sections, we sketch the Perform-

ance Grammar (PG) formalism, illustrate how it represents contrasts between well-formed and

ill-formed structures, and describe the prototype of our generation-based L2-learning system

called COMPASS-II:1 the generator that monitors the sentence construction process, the user

interface, and various types of feedback. In the final section, we take stock and discuss desiderata

for future work.

ICALL writing tools: state of the art

Computer-supported learning of how to write grammatically correctly in L1 and L2 fig-

ures prominently in the ICALL literature. Here, we cursorily review systems based on natu-

ral-language processing (NLP) techniques that provide students with online support in writing

novel sentences that are grammatically well-formed.

1 COMPASS-II (see also Harbusch, Kempen & Vosse, 2008) is an acronym for COMbinatorial and Paraphrastic Assembly of

Sentence Structure, version II. It is an improved version, implemented in JAVA and C++, of the COMPASS system described

by Harbusch, Kempen, van Breugel & Koch (2006).

 4

Virtually the entire literature on NLP applications to the syntactic aspects of first- and

second-language teaching is based on parsing technology (Heift & Schulze, 2003). A parser

computes the syntactic structure of input sentences, possibly in combination with their semantic

content (provided that all words in the sentence are in the vocabulary, that the grammar available

to the system covers all constructions mastered by the student, and that the input does not contain

any errors). However, as indicated above, these systems struggle with ungrammatical input and

need special measures preventing the parsing quality from getting unacceptably poor. For exam-

ple, in the FreeText system (L’haire & Vandeventer Faltin, 2003), the syntactic–semantic analy-

sis is supplemented with constraint relaxation and sentence comparison. Other systems invoke

matches with corpus texts (Granger, 2004). Yet another option is the addition of malrules to

cover frequent errors (Fortmann & Forst, 2004).

Probably the first generator-based2 software tool capable of evaluating the grammatical

quality of student output was developed by Zamorano Mansilla (2004), who applied a sentence

generator (KPML; Bateman, 1997) to the recognition and diagnosis of writing errors

(“fill-in-the-blank” exercises). Zock & Quint (2004) converted an electronic dictionary into a

drill tutor. Exercises were produced by a goal-driven, template-based sentence generator, with

Japanese as the target language. More recently, Harbusch, Itsova, Koch & Kühner (2008, 2009)

developed the “Sentence Fairy”—an interactive tutoring system for German-speaking elemen-

2 A generator produces a sentence or a set of paraphrases from an abstract representation of the content, often called logical form

(see Reiter & Dale, 2000, for an authoritative overview of sentence and text generation technology). In the case of paraphrase

generation, the generator delivers all possible ways of linguistically realizing the input logical form, given the lexicon and the

grammar rules. Virtually all recent natural language generation systems work in a best-first manner, i.e., produce only one

output sentence rather than the set of all paraphrases. As it is not easy to change the control structure of such a system, the

choice of generators is very limited. The paraphrase generator deployed in COMPASS-II does not take logical forms as input

but a set of “lexical treelets” as defined in PG, which are connected via dependency links. It delivers all possible sentences

licensed by the grammar (see next section).

 5

tary schoolers who are about 10 years old, which supports writing little stories in L1. The pupils

perform limited tasks such as combining simple clauses into compound or complex sentences. A

sentence generator (described in Harbusch, Kempen, van Breugel & Koch, 2006; see also next

section) calculates all correct paraphrases, and an avatar (the Sentence Fairy) provides feedback.

Both the Sentence Fairy and the COMPASS-II system presuppose a minimum level of

explicit grammatical knowledge in the student. Without it, the feedback information provided by

the systems would be incomprehensible. Hence, systems of this type—but also parsing-based

systems that are able to elucidate the parse trees they deliver—can only be used in the context of

courses where the necessary grammatical concepts, structures and rules have been, or are being,

explained. Although this requirement entails a restriction on the range of potential users, in view

of the increasing grammatical awareness in present-day language instruction (cf. Levy, 1997;

Roehr, 2007), we believe this drawback is a minor one.

Performance Grammar

The Performance Grammar (PG) formalism distinguishes three aspects of the structure of

sentences: dependency relations, constituent structure, and linear order. The dependency rela-

tions and the constituent structure together form the hierarchical (or dominance) structure. The

dependency relations include functional relations (subject, direct and indirect object, head, com-

plement, determiner, modifier, etc.). The constituent structure comprises word categories (parts

of speech) and word groups (the various types of phrases and clauses). As (a subset of) these

concepts and structures are taught in many grammar courses, PG structures are relatively easy to

apprehend—easier than the structures defined in many other formalisms. This advantage is en-

hanced by the fact that PG does not make use of movement transformations. Where certain other

formalisms invoke such transformations, PG uses word order rules that assign constituents to

 6

their final positions in one go. PG’s hierarchical structures can be visualized as rather flat unor-

dered trees. The application of linear order rules may give rise to structures that can be depicted

as ordered trees with crossing branches (graphs). Taken together, given the fact that PG’s theo-

retical apparatus is rather close to what the students learn in pedagogical grammars, and that the

structures it generates can be visualized in a transparent manner, we believe that PG is attractive

as an ICALL formalism.

We now turn to some key technical aspects. PG’s key operation is Typed Feature Unifi-

cation—widely used in theoretical and computational linguistics (e.g. in HPSG; Sag, Wasow &

Bender, 2003). Moreover, PG is lexicalized, i.e. every constituency rule is associated with a

lexical anchor consisting of at least one word (form).

Figure 9.1 (a) illustrates an elementary treelet (also called lexical frame) for the German

word form Junge ‘boy’. The rightmost branch specifies the lexical anchor of the treelet: Junge is

a n[oun] functioning as the h[ea]d of a N[oun]P[hrase]. The second layer of nodes represents

grammatical functions: det[erminer], q[uantifier], mod[ifier], etc. The third layer consists of

phrasal nodes that specify which types of constituents are allowed to fulfill the function above

them (the slash ‘/’ separates alternative options). For example, the modifier role can be played by

a P[repositional]P[hrase], an A[djectival]P[hrase], or a S[entence] (more precisely, a relative

clause). One node in the third layer specifies the word category of the head, i.e. the lexical an-

chor (here n[oun]).

 7

Every node of a lexical treelet has associated with it a set of morphosyntactic features.

They are specified in the lexicon of word forms3. A feature is a combination of a property and a

value specification. The latter may be a single term (which holds for the features of the noun

Junge, with the feature-value pairs: wordform=Junge, lemma=Junge, gender=masculine, per-

son=3rd, case=nominative, and number=singular) but it may also be a disjunctive set of alterna-

tive value options. For instance, the word form Jungen (for ‘boy’ or ‘boys’) has the same treelet

associated with it, except for the leaf node Jungen. However, the feature structure for the noun

Jungen expresses the fact that Jungen can have genitive or dative or accusative case if and only

if its number is singular whereas it can have nominative, genitive, dative or accusative case if

and only if its number is plural. In disjunctive feature structures, the alternative value options are

enumerated within curly brackets (the logical inclusive OR), and square brackets enclose an

AND enumeration. The feature specification for the word form Jungen at node n[oun] now looks

as follows:

[wordform=Jungen AND

lemma=Junge AND

gender=masculine AND

person=3rd AND

{[case={gen OR dat OR acc} AND number=singular] OR

[case={nom OR gen OR dat OR acc} AND number=plural]}]

3 Word forms are members of an inflectional paradigm. For instance, Junge and Jungen both belong to the same

paradigm: the paradigm of the “lemma” Junge. Lemmas are referred to by one member of the paradigm—here the

wordform Junge.

 8

Phrasal leaf nodes (foot nodes) can be expanded by an appropriate treelet whose root

node carries the same label, thus forming more complex phrases. This operation (technically

called unification) merges a foot node of one treelet with the root node of another treelet. In Fig-

ure 9.1 (b), the D[eterminer]P[hrase] foot node has been expanded by the DP root node domi-

nating the appropriate masculine definite article der, and the ADJ[ective]P[hrase] root node

dominating the word form kleine ‘small’ expands the foot node of a mod[ifier]4 branch. Whether

a root and a foot node can be merged (“unified”) or not, depends not only on their label but also

on the associated features. The feature specifications are used by the unification operation to se-

lect legal expansions. For instance, the fact that S-type modifiers within NPs should be relative

clauses (rather than, say, main clauses) is controlled by features. Similarly, other features control

the selection of the inflected word form kleine instead of the uninflected klein. For details of the

unification process, in particular on how it deals with phenomena of grammatical agreement, we

refer to the papers quoted above.

Associated with every treelet is a topology. Topologies serve to assign a linear order to

the branches of lexical frames. Here, we only illustrate the topologies associated with lexical

frames for verbs (“clausal treelets”). A topology is a left-to-right sequence of slots which can be

occupied by one or more constituents. In the current PG grammar for German, clausal topologies

comprise nine slots, grouped into three “fields”: one slot in the Forefield (slot F1), six slots in the

Midfield (slots M1 through M6), and two Endfield slots (E1 and E2) The terminology derives

from the Topologische Felder in German structural linguistics. Every grammatical function

4 Except for modifiers, every grammatical function in an elementary treelet occurs there at most once. Some of them are

obligatory, like subjects of finite verbs and direct objects of transitive verbs, whereas others are optional (e.g., many indirect

objects). To allow more than one modifier, when a branch of this type is expanded by a unification partner, another exemplar is

added immediately.

 9

(subject, head, direct object, complement, etc.) has a small number of placement options (slots)

in the topology associated with its “own” clause, i.e. within the verb’s lexical frame. Here are

some of the slot fillers:5

F1: Subject, topic or focus in a declarative main clause (one constituent only); a

wh-constituent (a phrase including an interrogative pronoun) in an interrogative

main clause; a wh-constituent in a complement clause

M1: Finite verb in a main clause; the complementizer dass ‘that’ of a complement clause

M2-M5: Non-wh subject, direct object, indirect object, non-finite complement clause

M6: Finite verb, possibly preceded by particle and pre-infinitival zu ‘to’, in a subordinate

clause

E1-E2: Nonfinite complement preceding finite complement

Example sentence (1) shows PG’s linear order system at work. The hierarchical structure

is depicted in Figure 9.1 (c). The root S-node of the verb treelet associated with the word form

sage ‘say’ in the complement clause has been unified with the complement (cmp) S-node of the

word form will ‘wants’ of the verb in the main clause.

(1) Was will der kleine Junge dass ich sage?

 what wants the little boy that I say

 ‘What does the little boy want me to say?’

Each of the verbs instantiates its own topology. Constituents fulfilling a “major” gram-

matical function (i.e., a function immediately dominated by an S-node) receive a position in

accordance with the above slot assignment rules (cf. Figure 9.1 (d)). In the main clause, the

subject (which is neither a focused nor a wh-constituent) goes to M2; the verb is assigned M1,

5 The description in this paper conflates the individual slot positions M2–M5 and E1–E2, respectively. The more differentiated

PG rules allow simple but finegrained word order specifications. For instance, an indirect object in the form of a personal

pronoun is allowed to precede a full (i.e. non-personal-pronoun) subject NP.

 10

(which is neither a focused nor a wh-constituent) goes to M2; the verb is assigned M1, and the

entire complement clause ends up in E1–E2. At the subordinate clause level, the direct object—a

wh-constituent—goes to F1, the subordinating conjunction dass ‘that’ goes to M1, the subject to

M2, and the verb to M6, as prescribed by the rule for subordinate clauses.

How is the direct object NP was ‘what’ “extracted” from the complement clause and

“promoted” into the main clause? “Movement” of phrases between clauses is due to lateral to-

pology sharing. If a sentence contains more than one verb, each lexical frame instantiates its own

topology. In certain syntactic configurations (not to be defined here; but see Harbusch & Kem-

pen, 2002), the topologies of two verbs are allowed to share one or more identically labeled lat-

eral (i.e. left- and/or right-peripheral) slots. Sentence (1) embodies such a configuration. After

two slots have been shared, they are no longer distinct; in fact, they are unified and become to-

ken-identical. In (1), the embedded topology shares its F1 slot with the F1 slot of the matrix

clause. This is indicated by the dashed borders of the lower F1 slot of Figure 9.1 (d). Sharing the

F1 slots effectively causes the embedded direct object was to be preposed into the main clause

(black dot in F1 above the single arrow in Figure 9.1 (d)). The dot in slot E1–E2 in the main

clause topology above the double arrow marks the position selected by the remainders of the

finite complement clause.

Figure 9.1 (e) shows the linearly ordered structure after slot assignment. It also includes details

concerning the linear order assignment to nodes within nonclausal constituents. For, not only

clauses but in fact all constituents have—usually very simple—topologies associated with them.

For instance, NP topologies have five slots, labeled NP1 through NP5, for determiner, quantifier,

prenominal modifier, head, and postnominal modifier, respectively. The line connecting the

S-node below “E2:cmp” and the node labeled “F1:dobj” represents the promotion of the

 11

wh-constituent was ‘what’ from the subordinate clause into the main clause (see also the F1 slots

in Figure 9.1 (d)): The promoted element fulfills a function in the subordinate clause but surfaces

in the main clause.

 “Scaffolded” sentence construction based on natural-language generation

In this section, we describe how COMPASS-II lets students compose sentences in PG

format while the generator is monitoring this process and provides online feedback. This is fol-

lowed by a sketch of the user interface and its parameterization options.

Student actions and feedback by the system

The student drags word forms one-by-one from an online lexicon into a workspace. The

dragging actions are continually monitored by the generator. Each time a word form is entered

into the workspace, the system reacts by depicting the lexical treelet associated with that word.

As soon as the workspace is populated by more than one word, the student can combine them by

dragging the root of one treelet over one foot of another treelet.6 The system then checks

whether root and foot node can be unified, and if so, pretty-prints the resulting larger tree (hier-

archical structure) in the workspace. Furthermore, it provides a positive feedback message. If

unification fails, negative feedback is provided (see next subsection). By pressing a button at the

bottom of the workspace, the student can undo any action even after the system has accepted

them (unrestricted undo). No constraints are imposed on the order in which the student performs

6 The mouse handling need not be very precise. The root of a tree(let) gets selected by a mouse click anywhere within the

tree(let). In order to connect the root node of the currently selected tree to a foot node of another tree(let), the student only

needs to drag the former tree toward the targeted foot node of the latter. The nearest foot node calculated by the system is

highlighted. Releasing the mouse triggers a unification attempt for the root and foot nodes involved. If the student made a

mistake and initiates an undo action, the system returns to the previous state of the workspace.

 12

Figure 9.1. (a) Elementary treelet for the noun Junge. (b) Junge treelet unified with a de-

terminer and an adjective. (c) Hierarchical structure of example (1), with arbitrary word order.

(d) Topology slot assignments of the major constituents of main and subordinate clause of sen-

tence (1). (e) Linearly ordered tree spelling out the final topological slot positions of the major

constituents of sentence (1).

 13

the actions. For instance, all noun phrases can be built prior to selecting a verb; and all NPs can

be assigned a grammatical function without spelling out their linear order. Clauses can be com-

bined into more complex sentences by linking them via coordinating or subordinating conjunc-

tions. We call this way of composing sentences “scaffolded writing” as it prevents the students

from constructing wrong sentences. At any point in time during the sentence composition proc-

ess, the student can query the system by clicking on any node of a tree(let) in the workspace. In

response, the system provides informative feedback by displaying the morphosyntactic features

of that node (or a subset thereof).

The student actions described so far lead to the construction of hierarchical structures for

partial or complete sentences. In order to specify a possible linear order for the branches of a hi-

erarchical structure, the student can drag nodes (and the subtrees they dominate) to a position left

or right of one of its siblings. When the node is released, the workspace is updated and the sys-

tem pretty-prints the branches in the new left-to-right order. Because several drag & drop actions

may be needed before the student is satisfied with the tentative linear order of constituents, the

systems checks well-formedness of the current order only when explicitly requested to do so.

When during a linear order check the generator notices that an obligatory constituent is missing

(e.g., the subject of a finite verb or the direct object of a transitive verb), the system asks the stu-

dent to expand the obligatory node before word order checking takes place. This is necessary

because the generator needs the focus and wh-features of that constituent in order to determine

its slot position.

Importantly, the positive or negative feedback supplied by the system in response to

composition actions is not just a “correct” or “incorrect” signal. Positive feedback is accompa-

nied by a summary of the linguistic action just performed, and its effect. Negative feedback in-

 14

cludes a statement of the reason(s) why the unification or ordering attempt failed. Notice that the

content of such feedback is conceived by the generator itself, in response to concrete unification

or ordering attempts by the student.

The user interface and its parameterization options

When starting up, COMPASS-II initializes four windows: to the left a window where the

lexicon is displayed; to the right a window for feedback messages; in the upper central region of

the screen a window for linear order manipulations on word strings; and in the lower central re-

gion a large window serving as workspace. Special push buttons at the bottom of the workspace

enable the following system actions: get word order in selected tree, erase optional branches in

selected tree, delete selected tree, and undo last tree manipulation, respectively. The upper cen-

tral region includes a button labeled “Check word order.”

All windows allow manipulation by the student, except for the right-hand window which

is reserved for system feedback. The student can select word forms from the left-hand window.

The upper central window can display the terminal leaves of a tree selected in the workspace; to

this purpose, the student can push the button labeled “Get word order in selected tree” (see next

section).7

The user interface of COMPASS-II can be parameterized in the following respects:

1. Size of the lexicon

2. Level of detail concerning the visible hierarchical structure and associated features

3. Level of detail concerning the feedback

4. L1-specific malrules.

7For a guided tour through the system, see http://www.uni-koblenz.de/~harbusch/COMPASSII-guided-tour.html.

 15

Ad (1) The size of the lexicon can be tailored to a specific task, i.e. to the limited vocabu-

lary addressed in a lesson. However, the full range of CELEX word forms (Baayen, Piepenbrock

& Gulikers, 1995) is available to the paraphraser; hence, in another parameterization, advanced

students can freely formulate and check the sentences they want to write in L2. New lemmas and

their word forms can be added by hand.

Ad (2) The student drags words into the workspace in order to build a phrase or a sen-

tence. This action is monitored online by the paraphraser. How many grammatical details known

to the paraphraser become visible to the student, is a matter of parameterization. Showing treelets

and feature structures in PG notation is the default parameterization. The grammatical terminol-

ogy used in the feedback messages can be tailored to the vocabulary the learner is familiar with

(e.g., L1 terms for elementary school children vs. international terms for advanced learners).

However, the system requires a lower bound on the level of visualized grammatical detail. Se-

lected word forms are often ambiguous, i.e. have several readings, of which the student might

not be aware. By displaying all alternative readings, the system forces the student to select the

reading to be used in the construction process. Such confrontations with syntactic facts can serve

to raise the student’s grammatical awareness.

Ad (3) The level of detail of the feedback messages is determined as follows. As outlined

earlier, every system action is associated with a feedback message. Actually, this message has

the form of a template with placeholders in PG terminology. The placeholders get automatically

instantiated as terms in the student’s grammatical vocabulary. Moreover, the set of templates can

be adapted to teacher preferences (e.g., as was done in the Sentence Fairy system; see Harbusch

et al., 2008/2009).

How often syntactic nodes are queried, is completely in the student’s hands. Simply

 16

moving the mouse over a node of a tree in the workspace triggers the presentation of the mor-

phosyntactic features of that node. Thus, students can verify their guesses as regards the features

of the selected word form, or simply learn which features characterize a word form they have not

used before. In the example of NP den kleinen Jungen, they might be insecure about its number

and case features (as mentioned earlier, Jungen can be singular or plural). By checking these fea-

tures, they can predict whether a desired unification action will work properly (e.g., moving the

treelet to the direct or indirect object NP foot node of a verb will yield a successful unification

whereas the subject option causes unification failure). At any point in time, the student can query

other nodes or resume the sentence construction task.

While performing the sentence construction task, every composition action is commented

in terms of positive or negative feedback as indicated at the end of the previous section. When

the student attempts to merge the root node of one treelet with a foot node of another treelet, this

triggers a unification process that evaluates the well-formedness of the intended structure. If the

unification is licensed by the paraphraser’s syntax, the feedback window flashes in green and

displays a text saying that the node labels and the feature structures match (the student needs not

pay attention to the text; the green color is a signal to go on).

In case of unification failure, the background of the feedback window turns red, inform-

ing the students that the intended unification is not executed, and inviting them to read the ex-

planatory text. In addition to the reason(s) of unification failure, this text may provide small hints

on how to continue, e.g. a list of other word forms belonging to the same inflectional paradigm

as the offending word.

Ad (4) The paraphraser can run malrules that derive from typical errors users make in L2,

given their L1. For instance, the erroneous string der kleiner Junge is “accepted” by the system

 17

but triggers a negative feedback message (the correct string is der kleine Junge; the confusion

may arise from the correct ein kleiner Junge ‘a little boy’). In COMPASS-II, the malrules can be

parameterized for different L1s.

Constructing a sentence in COMPASS-II

The following example illustrates how students can construct sentences in their person-

ally preferred manner. Let us assume a student wants to compose sentence (2).

(2) Heute baut Anja eine Rakete weil ihr Freund morgen zum Mond fliegen will

 Today builds Anja a rocket because her friend tomorrow to-the moon fly wants-to

 ‘Today Anja builds a rocket because tomorrow her friend wants to fly to the moon’

She is allowed to perform the various subtasks in any order. For instance, main and subordinate

clauses may be constructed, inclusive of their internal linear order, before they get combined.

Alternatively, she may first concentrate on the overall structure of the sentence as a whole. Any-

way, only during the final steps can she determine the ultimately correct word order based on her

(implicit or explicit) knowledge of the L2 linear order rules.

Suppose the student moves the determiner einenACC,MASC ‘a’ to the foot node of the

det[erminer] branch of the feminine noun Rakete ‘rocket’. The feedback window now turns red

and requires the student to pay attention to the gender mismatch. The two trees snap back to their

original positions and the system refuses to perform the erroneous action. The student may now

inspect the features in detail (by querying some nodes) in order to pick up ideas for further ac-

tions. Suppose the student now decides to erase the treelet for einen by pushing the “Erase se-

lected tree” button and to select the word form eine (in response to a hint in the feedback win-

dow). Moving the determiner eine ‘a’ to the foot of the det[erminer] branch of the Rakete

‘rocket’ treelet elicits positive feedback. The feedback window turns green and the two treelets

 18

merge to form one overall dominance structure. The feedback text summarizes the individual

steps taken by the paraphraser on its way to the tree structure displayed in the workspace.8

The remainder of the example illustrates how our student can determine word order. Or-

derings of lexical leaves of any hierarchical structure can be changed by dragging subtrees

horizontally and releasing them to the left or right of sister subtrees, whereupon the resulting tree

is pretty-printed. The paraphraser does not immediately check whether the resulting linear order

of words (lexical leaves) is grammatically well-formed; instead, it waits until the student issues

an “order check”. This check is executed in two steps. A press on the “Get word order in selected

tree” button below the workspace causes the system to copy the lexical leaves of a selected tree

into the word order window above the workspace. Then, when the button “Check word order” is

pressed, the paraphraser determines whether the copied leaf string (i.e., the word group or sen-

tence) is in the list of well-formed linear orders, and provides feedback accordingly. Addition-

ally, or alternatively, the student can reorder the words of the sentence in a cut & paste manner,

followed by an order checking request. In case of positive feedback, the system shows the hier-

archical structure with topology slot assignments (as illustrated in Figure 9.1 (e)). In case of

negative feedback (e.g., caused by the ill-formed string *heute Anja baut eine Rakete.), the sys-

tem shows a list of correct orderings in the feedback panel. This list can be queried by selecting

one of the alternative orders, whereupon the system shows the corresponding tree with slot as-

signments (informative feedback).

In order to demonstrate the effect of malrules, we show how COMPASS-II reacts to two

8 Furthermore, the PG grammar specifies which branches are optional or obligatory in terms of a feature on

grammatical function nodes. The student can remove any optional branch by selecting a tree, and then pressing the

button labeled “Remove optional branches in selected tree” at the bottom of the workspace.

 19

typical word order errors by L2 learners of German whose L1 is English. In German subordinate

clauses, the finite verb goes to a clause-final position whereas in main clauses it is

“verb-second”. Let us assume that our student has violated both rules and has already produced

sentence (3).

(3) *Heute Anja baut eine Rakete weil morgen ihr Freund will zum Mond fliegen

A malrule is a special grammar rule that “allows” the paraphraser to build ungrammatical

structures but simultaneously triggers an error message. When analyzing the main clause of (3),

where the finite verb is verb-third rather than verb-second, the paraphraser “accepts” the sub-

string heute Anja baut but immediately provides negative feedback and prints the content of the

malrule. Another malrule reacts to the incorrect verb-second position of the finite verb will

‘wants’ in the subordinate clause introduced by the subordinating conjunction weil ‘because’;

here, the finite verb should occupy a position at the end of the midfield (cf. the above topology

rules). Additionally, the system lists all correct orderings in the default feedback mode. They can

be queried as yet another piece of informative feedback.

Discussion

We view the current version of the COMPASS-II as the prototype of an “engine” that can

drive the automatic evaluation and diagnosis of sentences produced by L2 students of German.

The system is far from complete and not yet usable in the classroom. Several software aspects

are in need of improvement, in particular the robustness of the system and the way feedback in-

formation is couched in nontechnical terms. We hope, however, that the foregoing description

rouses the interest of the (I)CALL community in the great potential of generator-based systems

as providers of online L2 writing support to students whose knowledge and understanding of

 20

sentence grammar is at high-school or beginning-university level.

Profitable deployment a COMPASS-II-type tool in the classroom requires embedding it

in a tutoring system tailored to the requirements imposed by specific student populations and by

specific L2 courses and exercise types. The resulting system should be evaluated with real stu-

dents under realistic conditions. Of particular interest will be empirical studies that pit a genera-

tor-based writing support tool like COMPASS-II against a parser-based or a traditional (tem-

plate-based) tool.

In the absence of pertinent supporting empirical data, we speculate that an important asset

of systems like COMPASS-II is the fact that they do not impose upon the student any specific

learning strategy (exploration, trial and error, drill and practice). Via the embedding tutoring

system, they can be adapted to the strategy preferred by student or teacher. Another advantage

—emphasized in the above sections—is the prospect of enabling effective feedback: feedback

that, in line with the notion of scaffolding, is immediate, reactive and assistive.

We are keenly aware that COMPASS-II makes heavier demands on the student’s explicit

grammatical knowledge than many another writing support tool. However, in quite a few lan-

guages, rules for spelling and other aspects of writing presuppose that the writer is able to explic-

itly recognize detailed syntactic properties of the sentence under construction. Well-known ex-

amples are morphosyntactic distinctions that got lost in pronunciation but are maintained in

spelling—e.g., the distinction between dass (subordinating conjunction) and das (determiner or

pronoun) in German, and numerous inflectional suffixes in French and Dutch. We suggest that

COMPASS-II-type tools can be employed fruitfully in integrated courses writing and grammar

courses.

A particularly useful approach to teaching grammar and writing in an integrated fash-

 21

ion—one that is relatively easy to implement in COMPASS-II—is to focus on an interrelated set

of syntactic constructions and the rules controlling their shape. An example concerns coordinate

structures and their elliptical forms: forward conjunction reduction, gapping, right node raising,

etc. Recently, we have laid the PG-oriented linguistic and computational groundwork for these

constructions, which have very high usage frequencies (Kempen, 2009; Harbusch & Kempen,

2006, 2007). One of the topics we might address in the near future is to build a COMPASS-II

application based on this groundwork.

Acknowledgement

We are indebted to Theo Vosse for his collaboration in general, and in particular for

making available his C++ software for word order checking.

References

Baayen, R.H., Piepenbrock, R., & Gulikers, L. (1995). The CELEX lexical database (release 2.5,

CD-ROM). Linguistic Data Consortium: University of Pennsylvania, PA.

Bateman, J.A. (1997). Enabling technology for multilingual natural language generation. Natural

Language Engineering, 3, 5–55.

Delmonte, R., Delcloque, P., & Tonelli, S. (Eds.) (2004). Proceedings. of the InSTIL/ICALL2004

Symposium, Venice (Italy). Retrieved from http://www.isca-speech.org/archive/.

Granger, S. (2004). Computer learner corpus research: Current status and future prospects. In

Connor, U., & Upton, T. (Eds.). Applied Corpus Linguistics: A Multidimensional Per-

spective (pp. 123–145). Amsterdam: Rodopi.

Fortmann, C., & Forst, M. (2004). An LFG Grammar Checker for CALL. In Delmonte et al.,

2004 (pp. 59–61).

 22

Harbusch, K., Itsova, G., Koch, U., & Kühner, C. (2008). The Sentence Fairy: A natu-

ral-language generation system to support children's essay writing. Computer Assisted

Language Learning, 21, 339–352.

Harbusch, K., Itsova, G., Koch, U., & Kühner, C. (2009). Computing accurate grammatical

feedback in a virtual writing conference for German-speaking elementary-school chil-

dren: An approach based on natural language generation. CALICO Journal, 20, 626–643.

Harbusch, K., & Kempen, G. (2002). A quantitative model of word order and movement in Eng-

lish, Dutch and German complement constructions. In Tseng, S.-C. (Ed.), Proceedings of

the 19th COLING, Taipei, ROC (pp. 328–334). San Francisco, CA: Morgan Kaufmann.

Retrieved from http://www.aclweb.org/anthology/C/C02.

Harbusch, K., & Kempen, G. (2006). ELLEIPO: A module that computes coordinative ellipsis

for language generators that don't. In Proceedings of the 11 th EACL, Trento, Italy, (pp.

115–118). East Stroudsburg, PA: ACL. Retrieved from

http://www.aclweb.org/anthology/E/E06/#2000.

Harbusch, K., & Kempen, G. (2007). Clausal coordinate ellipsis in German. In Nivre, J., Kaalep,

H.-J., Muischnek, K., & Koit, M. (Eds.), Proceedings of the 16th NODALIDA, Tartu, Es-

tonia (pp. 81–88). Retrieved from http://dspace.utlib.ee/dspace/handle/10062/2683.

Harbusch, K., Kempen, G., van Breugel, C., & Koch, U. (2006). A generation-oriented work-

bench for Performance Grammar. In Colineau, N., Paris, C., Wan, P., & Dale, R. (Eds.),

Proceedings of the 4th INGL, Sydney, Australia (pp. 9–11). Retrieved from

http://www.aclweb.org/anthology/W/W06/W06-14.pdf.

Harbusch, K., Kempen, G., & Vosse, T. (2008). A natural-language paraphrase generator for

on-line monitoring and commenting incremental sentence construction by L2 learners of

 23

German. In Koyama, T., Noguchi, J., Yoshinari, Y., & Iwasaki, A. (Eds.), Proceedings of

WORLDCALL, Fukuoka, Japan (pp. 190–193). Retrieved from

http://www.j-let.org/~wcf/proceedings/proceedings.pdf.

Heift, T., & Schulze, M. (Eds.) (2003). Error diagnosis and error correction in CALL. CALICO

Journal, 20(3).

Kempen, G. (2009). Clausal coordination and coordinate ellipsis in a model of the speaker. Lin-

guistics, 47, 653–696.

Kempen, G., & Harbusch, K. (2002). Performance Grammar: A declarative definition. In The-

une, M., Nijholt, A., & Hondorp, H. (Eds.), Computational Linguistics in the Netherlands

2001 (pp. 146–162). Amsterdam: Rodopi.

Kempen, G., & Harbusch, K. (2003). Dutch and German verb constructions in Performance

Grammar. In Seuren, P.A.M., & Kempen, G. (Eds.), Verb Constructions in German and

Dutch (pp. 185–222). Amsterdam: Benjamins.

Levy, M. (1997). CALL: context and conceptualization. Oxford: Oxford University Press.

L’haire, S., & Vandeventer Faltin, M. (2003). Error diagnosis in the FreeText project. CALICO

Journal, 20(3), 481–496.

Reiter, E., & Dale, R. (2000). Building applied natural language generation systems. New York:

Cambridge University Press.

Roehr, K. (2007). Metalinguistic knowledge and language ability in university-level L2 learners.

Applied Linguistics, 29, 173–199.

Sag, I.A, Wasow, T., & Bender, E. (2003). Syntactic Theory: A Formal Introduction (Second

edition). Stanford, CA: CSLI Publications.

 24

Zamorano Mansilla, J.R. (2004). Text generators, error analysis and feedback. In Delmonte et

al., 2004, pp. 87–90.

Zock, M., & Quint, J. (2004). Converting an Electronic Dictionary into a Drill Tutor. In Del-

monte et al., 2004 (pp. 41–44).

