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We introduce a dual formulation of group field theories as a type of noncommutative field theories,

making their simplicial geometry manifest. For Ooguri-type models, the Feynman amplitudes are

simplicial path integrals for BF theories. We give a new definition of the Barrett-Crane model for gravity

by imposing the simplicity constraints directly at the level of the group field theory action.
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Group field theories [1] (GFTs) are developing into
a promising formalism for quantum gravity, combining
elements from several approaches [2]. They are a higher-
dimensional generalization of matrix models for 2D grav-
ity and build up on the achievements of loop quantum
gravity [3] and spin foam models [4]. Loop quantum
gravity describes quantum space in terms of spin networks;
spin foam models define its dynamics in a covariant lan-
guage. GFTs subsume this dynamics, as every spin foam
model can be interpreted as a GFT Feynman amplitude.

Several results in spin foam models, and the historic
roots in matrix models, suggest a close relation between
GFTs and simplicial gravity path integrals, as used in other
discrete approaches [5]. The spin foam quantization is
based on the geometric quantization of simplicial geometry
[4,6], and there are close relations between simplicial and
loop gravity canonical data [7]. The resulting amplitudes
contain the Regge action in a semiclassical limit [8] and
can be analyzed from a path integral perspective [9].
However, much remains to be understood, and GFTs,
which already realize a duality between spin foam models
and lattice path integrals in connection variables, seem a
convenient setting to do so.

In parallel, interesting connections between GFT and
spin foam models and noncommutative geometry have
been discovered. Noncommutative matter field theories,
interesting for quantum gravity phenomenology [10], can
be derived either from coupling particles to spin foam
amplitudes [11] or from GFT actions, as perturbations
around classical GFT solutions [12]. These results suggest
that noncommutative structures lie hidden at the very
foundations of the GFT formalism.

In this Letter, we recast GFTs as nonlocal, noncommu-
tative field theories on Lie algebras, which we relate to the
B variables of simplicial BF theory. We prove that the
Feynman amplitudes for arbitrary diagram are simplicial
BF path integrals. This new representation of GFTs gives
an explicit duality between spin foam models and simpli-
cial gravity path integrals and clarifies the encoding of
simplicial geometry in the action. We illustrate this by
giving a new GFT definition of the Barrett-Crane model.

Noncommutative representation of 3D GFT.—3D GFTs
are defined [13] in terms of fields ’123 :¼ ’ðg1; g2; g3Þ on
SOð3Þ3 satisfying the invariance

’ðg1; g2; g3Þ ¼ ’ðhg1; hg2; hg3Þ (1)

8 h 2 SOð3Þ. The dynamics is governed by the action

S ¼ 1

2

Z
½dg�3’2

123 �
�

4!

Z
½dg�6’123’345’526’641: (2)

The Feynman graphs generated by this theory are two-
complexes dual to 3D triangulations: The combinatorics of
the field arguments in the interaction vertex is that of a
tetrahedron, while the kinetic term dictates the gluing rule
for tetrahedra along triangles. The Peter-Weyl theorem
gives an expansion of ’ in terms of functions on irreduc-
ible representations ji 2 N of SO(3). In such a represen-
tation, the field is pictured as a 3-valent spin network
vertex and interpreted as a quantized triangle; a generic
Feynman amplitude gives the well-known Ponzano-Regge
spin foam model [13].
We now introduce an alternative formulation of the

model, obtained by a ‘‘group Fourier transform’’ [11,14]
mapping functions on a group G to (noncommutative)
functions on its Lie algebra g. The transform is based on

plane waves egðxÞ ¼ ei ~pg� ~x, labeled by g 2 G, as functions

on g� Rn, depending on a choice of coordinates ~pg on the

group manifold. In what follows, we will identify functions
of SO(3) with functions of SU(2) invariant under g ! �g.
We choose the coordinates ~pg ¼ Trðjgj ~�Þ, where jgj :¼

sgnðTrgÞg, ~� are i times the Pauli matrices, and ‘‘Tr’’ is the
trace in the fundamental representation. For x ¼ ~x � ~� and

g ¼ e� ~n� ~�, we thus have

egðxÞ ¼ ei TrðxjgjÞ ¼ e�2i sin� ~n� ~x: (3)

The Fourier transform of functions f on SU(2) is
defined by

f̂ðxÞ ¼
Z

dgfðgÞegðxÞ; (4)

where dg is the normalized Haar measure.
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The image of the Fourier transform inherits an algebra
structure from the convolution product on the group, given
by the ? product defined on plane waves as

eg1 ? eg2 ¼ eg1g2 : (5)

On functions of SO(3), the Fourier is invertible:

fðgÞ ¼ 1

�

Z
d3xðf̂ ? eg�1ÞðxÞ: (6)

With a bit more work, the above construction is extended to
an invertible SU(2) Fourier transform [14].

The Fourier transform and ? product extend to functions
of several variables like the Boulatov field as

’̂ 123 :¼ ’̂ðx1; x2; x3Þ
¼

Z
½dg�3’123eg1ðx1Þeg2ðx2Þeg3ðx3Þ: (7)

The first feature of the dual formulation is that the con-
straint (1) acts on dual fields as a ‘‘closure constraint’’ for
the variables xj. Indeed, given the projector P’123 :¼R
dh’ðhg1; hg2; hg3Þ onto gauge invariant fields, a simple

calculation gives

P̂’ ¼ Ĉ ? ’̂; Ĉðx1; x2; x3Þ ¼ �0ðx1 þ x2 þ x3Þ;
(8)

where �0 is the element x ¼ 0 of the family of functions:

�xðyÞ :¼ 1

�

Z
SOð3Þ

dheh�1ðxÞehðyÞ: (9)

These play the role of Dirac distributions in the noncom-
mutative setting, in the sense that

Z
d3yð�x ? fÞðyÞ ¼

Z
d3yðf ? �xÞðyÞ ¼ fðxÞ: (10)

We may thus interpret the variables of the Boulatov dual
field as the edge vectors of a triangle in R3 and the dual
fields themselves as (noncommutative) triangles.

Since the ? product is dual to group convolution, the
combinatorial structure of the action in terms of the dual
field matches the one in (2). We may thus show that

S ¼ 1

2

Z
½dx�3’̂123 ? ’̂123 � �

4!

Z
½dx�6’̂123 ? ’̂345

? ’̂526 ? ’̂641; (11)

where it is understood that ? products relate repeated
indices as �i ? �i :¼ ð� ? ��ÞðxiÞ, with ��ðxÞ :¼
�ð�xÞ. The structure of this action is best visualized in
terms of diagrams. Thus, kinetic and interaction terms
identify a propagator and a vertex given by

Z
dht

Y3
i¼1

ð��xi ? ehtÞðyiÞ;

Z Y
t

dht�
Y6
i¼1

ð��xi ? ehtt0 ÞðyiÞ;
(13)

with htt0 :¼ ht�h�t0 . We have used ‘‘t’’ for triangle and ‘‘�’’
for tetrahedron. The group variables ht and ht� arise from
gauge invariance (1).
The integrands in (13) factorize into a product of func-

tions associated to strands (one for each field argument),
with a clear geometrical meaning. Just like in the standard
group representation [1], the group elements ht and ht� are
interpreted as parallel transports through the triangle t and
from the center of the tetrahedron � to triangle t, respec-
tively. The pair of variables (xi and yi) associated to the
same edge i corresponds to the edges vectors seen from the
frames associated to the two triangles t and t0 sharing it.
The vertex functions state that the two variables are iden-
tified, up to parallel transport htt0 and up to a sign labeling
the two opposite edge orientations inherited by the tri-
angles t and t0. The propagator encodes a similar gluing
condition, allowing for the possibility of a further mis-
match between the reference frames associated to the
same triangle in different tetrahedra.
Feynman amplitudes as simplicial path integrals.—In

building up a closed Feynman graph, propagator and vertex
strands are joined to one another by using the ? product,
keeping track of the ordering of functions associated to the
various building blocks of the graph. Each loop of strands
bound a face of the two-complex, which is dual to an edge
of the triangulation.
Under the integration over the group variables ht and

ht�, the amplitude factorizes into a product of face ampli-
tudes. Let fe be a face of the two-complex, dual to an edge
e in the triangulation, and consider the loop of strands that
bound it. The choice of an orientation and a reference
vertex defines an ordered sequence f�jg0�j�N of vertices

on the loop (equivalently, an ordered set of tetrahedra
around e). By using (10), each vertex �j, after contraction

with the propagator tj joining �j and �jþ1, contributes with

(�xj ? ehjjþ1
) (xjþ1) to the face amplitude, where hjjþ1 ¼

h�jtjhtjhtj�jþ1
parallel transports j to jþ 1.

The face amplitude Afe½h� is then the cyclic ? product of

all these contributions:
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Afe½h� ¼
Z YN

j¼0

d3xj ~w
Nþ1

j¼0
ð�xj ? ehjjþ1

Þðxjþ1Þ; (14)

where xNþ1 :¼ x0. This amplitude encodes the identifica-
tion, up to parallel transport, of the metric variables asso-
ciated to e in different tetrahedron frames. Integrating over
all metric variables xj in Afe½h�, except for that of the

reference frame, we obtain the Feynman amplitude:

Zð�Þ ¼ 1

�jej
Z Y

t

dht
Y
e

d3xee
i
P
e

TrxeHe

; (15)

where ht is the parallel transport between the two tetrahe-
dra sharing t, He is the holonomy around the boundary of
fe, computed from a given tetrahedron, and jej is the
number of edges of the triangulation.

Equation (15) is the usual expression for the simplicial
path integral of first order 3D gravity. The Lie algebra
variables xe, one per edge of the simplicial complex, play
the role of discrete triad; the group elements ht, one per
triangle or link of the dual two-complex, play the role of
discrete connection, defining the discrete curvature He

through holonomy around the faces dual to the edges of
the simplicial complex.

Open GFT Feynman amplitudes have fixed boundary
simplicial data. The one-vertex contribution to the 4-point
functions, for example, is the function of 12 metric varia-

bles xi and x0i obtained by acting with a closure operator Ĉ
(propagator) on each external 3-stranded leg of the vertex
diagram in (12), building up four triangles. The amplitude
is the ? product of functions ��x0iðxiÞ of the boundary

metric with the BF action ei
P

i
Trxihi for a single simplex,

where hi ¼ ht�h�t0 is the parallel transport between the two
triangles sharing i. The amplitude of generic open graphs is
then given by a path integral for the BF action augmented
by the appropriate boundary terms. Note that the BF action
for a single simplex is already explicitly present in the GFT
action. This can be useful to study the link with semiclas-
sical or continuum gravity at the GFT level.

These results show an exact duality between spin foam
models and simplicial gravity path integrals, stemming
from two equivalent representations of the GFT field: as

a function �j
mn of representation labels, obtained by har-

monic analysis, and as a noncommutative function ’̂ of Lie
algebra variables, interpreted as metric variables:

Towards 4D gravity models.—4D GFTs for SO(4) BF
theory are defined in terms of fields ’1234 ¼R
dh’ðhg1; hg2; hg3; hg4Þ by the action

S¼1

2

Z
’2

1234�
�

5!

Z
’1234’4567’7389’96210’10851: (16)

The Feynman graphs are two-complexes dual to 4D sim-
plicial complexes: The combinatorics of the interaction
term is that of a four-simplex; the kinetic terms dictates
the gluing rules for four-simplices along tetrahedra. By
using harmonic analysis on SO(4), the Feynman ampli-
tudes take the form of the Ooguri state sum model.
The SO(3) group Fourier transform naturally extends to

a Fourier transform on SOð4Þ ’ SUð2Þ � SUð2Þ=Z2, which
is invertible on even functions fðgÞ ¼ fð�gÞ. In what
follows, we assume the further invariance of the Ooguri
field under gi ! �gi in each of the variables.
The dual Ooguri field is a function of four soð4Þ Lie

algebra elements, or bivectors, associated to the four tri-
angles of each tetrahedron. Gauge invariance translates
into a closure constraint for the bivectors, meaning that
the four triangles close to form a tetrahedron. Kinetic and
vertex terms encode the identification, up to parallel trans-
port, of the bivectors associated to the same triangle in
different tetrahedral frames. As in 3D, Feynman ampli-
tudes are simplicial path integrals for BF theory.
The new representation of the Ooguri model provides a

convenient starting point for imposing in a geometrically
transparent manner the discrete simplicity constraint that
turn BF theory into 4D simplicial gravity [6]. Using the
decomposition of x 2 soð4Þ into self-dual xþ and anti-
self-dual x� suð2Þ components, we impose that the four
bivectors in each tetrahedron are orthogonal to the same
vector k 2 S3 � SUð2Þ normal to the tetrahedron, by
means of the constraint projector

Ŝ kðx�j ; xþj Þ ¼
Y4
j¼1

��kx�j k
�1ðxþj Þ; (17)

where the � functions are given by (9). One can show that

Ŝk acts dually as the projector onto fields on the homoge-
neous space S3 � SOð4Þ=SOð3Þk, where SOð3Þk is the
stabilizer of k. The case k ¼ 1 reproduces the standard
Barrett-Crane projector.

By combining the simplicity projector Ŝ :¼ Ŝ1 with

closure, one may build up the field �̂: ¼ Ŝ ? Ĉ ? ’̂ of
the standard GFT formulation of the Barrett-Crane model.
More precisely, combining the interaction term

�

5!

Z
�̂1234 ? �̂4567 ? �̂7389 ? �̂96210 ? �̂10851 (18)

with the possible kinetic terms

1

2

Z
�̂?2

1234;
1

2

Z
ðĈ ? ’̂Þ?21234; or

1

2

Z
’̂?2

1234 (19)

gives the versions of the Barrett-Crane model derived in
Refs. [9,15,16], respectively. The origin of these different
versions can be understood geometrically, thanks to the
new GFT representation. Given h 2 SOð4Þ, one has
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ðeh ? ŜkÞðxÞ ¼ ðŜhxk ? ehÞðxÞ; (20)

with hxk :¼ hþkðh�Þ�1. This expresses the fact that, after
rotation by h, simple bivectors with respect to the normal k
become simple with respect to the rotated normal hxk.
Therefore closure and simplicity constraints do not com-
mute. Moreover, whereas the model couples correctly the
bivector variables x across simplices, the integration over
holonomies effectively decorrelates the normal vectors k
associated to the same tetrahedron in different four-
simplices. This implies a missing geometric condition on
connection variables h��. Work on a GFT model where
simplicity constraints are imposed covariantly is currently
in progress.

A simplicial path integral formulation of the Barrett-
Crane model, in, say, its version [9], is obtained by using
the Feynman rules for the propagator and vertex:

Y4
i¼1

ð��xiÞðyiÞ;
Z Y

t

dh��
Y10
i¼1

ð��xi ? Ŝ?eh��0 ÞðyiÞ: (21)

The amplitude of a graph dual to a triangulation� takes the
form of the ? evaluation of a noncommutative observable
in BF theory:

ZBCð�Þ ¼
Z Y

��

dh��
Z Y

t

d6xtðOt ? eHt
ÞðxtÞ; (22)

where the functions OtðxtÞ implement simplicity
��h�

0j
�1x�t h�0j

(hþ0j
�1xþt hþ0j) of the bivectors xt in each of

the four-simplex frames j ¼ 0 . . .N around t:

O t ¼ w
N

j¼0
��h�0j

�1x�j h
�
0j
ðhþ0j�1xþj hþ0jÞ: (23)

Conclusions and perspectives.—The new noncommuta-
tive representation of GFTs introduced in this Letter, based
on the group Fourier transform, realizes an explicit GFT
duality between spin foam models and simplicial gravity
path integrals. It also makes explicit how simplicial ge-
ometry is encoded in the GFT formalism.

The interpretation of GFTs as a 2nd quantization of spin
networks suggests to apply the group Fourier transform to
generic loop quantum gravity states. This should give a flux
representation of the theory, usually assumed to be intrac-
table precisely because of the noncommutativity of flux
operators.

The new representation should also help the identifica-
tion of spacetime symmetries (e.g., diffeomorphisms)
which act on the B variables, at the level of the GFTaction.
Understanding the role of diffeomorphisms can then guide
the study of the relation between GFTs and continuum
general relativity.

Obviously, the goal is the construction of a satisfactory
GFT model for quantum gravity in 4 dimensions. In the new
GFTrepresentation, guided by themanifest geometricmean-
ing of variables and amplitudes, simplicity constraints on the
B variables, with and without an Immirzi parameter, can be
imposed in a natural way. This is work in progress and can

lead either to a new spin foammodel for 4D quantum gravity
or to a geometrically clear GFT formulation of the recently
proposed ones. It can also, in one stroke, give a reformulation
of these models as simplicial path integrals.
The new representation may help also the study of GFT

renormalization [17,18] and that of their phase structure
and continuum approximation [19]. It can also be used for
the introduction of scales by reexpressing the star product
in terms of differential operators [14].
Finally, it should reinforce the links between the GFT

formalism and noncommutative geometry, as well as the
approach to quantum gravity phenomenology [10] based
on effective noncommutative matter field theories.
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