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Nectar is a rich source of sugars that 
serves the attraction of pollinators 

(floral nectar) or predatory arthropods 
(extrafloral nectar). We just begin to 
understand the similarities and differ-
ences that underlie the secretory con-
trol of these two important types of 
plant secretions. Jasmonates are phyto-
hormones, which are well documented 
to be involved in plant developmental 
processes and plant defence responses 
against herbivores, including the secre-
tion of extrafloral nectar. Recently, jas-
monates have also been implicated in 
the regulation of floral nectar secretion 
in Brassica napus. Due to a trade-off 
between reproduction and defence, how-
ever, plants need to functionally separate 
the regulation of these two secretory pro-
cesses. In line with this prediction, exter-
nally applying jasmonates to leaves did 
indeed not affect floral nectar secretion. 
Here we compare the current knowledge 
on the regulation of floral and extraflo-
ral nectar secretion to understand simi-
larities and dissimilarities between these 
two secretory processes and highlight 
future research directions in this context.

Jasmonic acid (JA) and other JA-derived 
compounds (jasmonates) control both 
plant developmental processes such as 
flowering1,2 and anther dehiscence3 and 
activate plant defence responses against 
herbivores.4 For example, JA induces 
extrafloral nectar (EFN) secretion in vari-
ous plant species from different families.5-7 
Recently, jasmonates have also been impli-
cated in the secretion process of floral 
nectar (FN).8 Floral nectar and extrafloral 

nectar share many chemical and func-
tional properties9 and apparently there is 
some similarity in the regulation of EFN 
and FN secretion. Here we compare the 
current knowledge on the regulation of 
these two processes (Table 1) and high-
light future research directions.

Extrafloral nectar is an indirect defence 
trait that is used by many plant species to 
attract and nourish predatory arthropods, 
especially ants, which serve the nectar-
secreting plants as ‘bodyguards’10 by effec-
tively reducing the herbivore pressure on 
the EFN-secreting plant.11,12 External 
application of JA induces EFN secretion 
in many plant species, including Phaseolus 
lunatus,12 Macaranga tanarius5 and several 
Acacia species13—an effect that is similar 
to the induction caused by herbivore feed-
ing.5 Blocking JA biosynthesis with phe-
nidone, an inhibitor that reduces the fatty 
acid hydroperoxide formed by the lipoxy-
genase catalyzing the first step in the octa-
decanoid signalling pathway,14 reduces 
EFN secretion.5,13 While EFN serves 
defensive functions, floral nectar attracts 
plant pollinators and therefore signifi-
cantly contributes to a plant’s reproductive 
success.15,16 The adaptive significance of 
floral nectar for mediating plant-pollina-
tor interactions has been well studied.17,18 
Besides very few studies, however, that 
investigated the effect of various growth 
regulators on FN secretion, our under-
standing of the physiological processes that 
regulate this trait remains rather poor.19 
Recently, it was discovered that exog-
enous application of JA can increase FN 
secretion in oilseed rape (Brassica napus).8 
Further, blocking JA biosynthesis with 
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another indirect defence strategy: volatile 
organic compounds (VOCs),32 which are 
released upon herbivore attack or exog-
enous JA treatment.33 Besides their role 
in the attraction of predatory arthropods 
to herbivore-damaged plants, VOCs also 
function as a signal that is externally 
transmitted via the gas-phase and that 
systemically induces the EFN secretion of 
both the emitting plant34 and of different, 
neighboring plant individuals.35 Whether 
VOCs also affect the secretion rate of FN, 
however, remains to be studied.

In addition to JA, coronatine,36 a phyto-
toxin isolated from the pathogenic bacte-
rium Pseudomonas syringae, triggers VOC 
emission in many plant species.36 Although 
coronatine and its structural mimic cor-
onalon37 induce VOC emission22 and FN 
secretion,8 it is not known to date whether 
these compounds also induce EFN secre-
tion. Floral herbivory (florivory) has been 
reported to reduce floral nectar and the 
number of pollinator visits.38 However, 
its effect on EFN secretion has not been 
studied to date. Also floral volatiles, which 
are attractive to pollinators, are altered 
qualitatively and quantitatively by floriv-
ory in Pastinaca sativa.39 Similarly, those 
herbivore-induced volatiles that induce 
EFN, could likely also affect FN secretion 
(Table 1) but no empirical studies appear 
to exist in that context.

Although many gaps in our knowledge 
remain to be filled, it becomes appar-
ent that—despite the different ecological 
functions of FN and EFN—there exist 
some similarities in their regulation (Table 
1). Deepening our understanding on the 
regulatory role of jasmonates and other 
phytohormones for both FN and EFN 
secretion and elucidating how these path-
ways are interconnected, yet functionally 
separated, will provide interesting insights 
into the physiological basis of these pro-
cesses and ultimately into the evolution-
ary constraints and trade-offs that shaped 
this regulatory separation. In particular, 
future work should address the following 
questions: (1) How do plants achieve and 
maintain the regulatory separation of FN 
and EFN secretion, although these two 
pathways obviously share some signalling 
molecules? (2) Do other phytohormones 
(JA-Ile, IAA, GA3, etc.,) also affect EFN 

in this context is scattered and compara-
tive studies that consider FN and EFN 
would be required to obtain a more com-
plete picture. Exogenous application of 
auxin can strongly reduce floral nectar 
secretion in Euphorbia pulcherrima and 
Antirrhinum majus.26,27 In another study, 
a similar reduction of FN production has 
been reported from snapdragon flowers 
upon indole acetic acid (IAA) treatment.28 
In the same study, the distribution of (14C) 
sucrose in flowers and nectar suggested 
that IAA acts on the secretory process 
in the nectary cells, rather than on the 
mobilization of sugars to the nectary.28 
Recently, it was shown in Arabidopsis 
thaliana that IAA blocks FN secretion 
until the onset of anthesis.29 Moreover, 
exogenous application of gibberellic acid 
(GA3), naphthalene acetic acid (NAA), 
indole butyric acid (IBA) and IAA to 
Brassica campestris and Brassica oleracea 
resulted in an induction of floral nectar, 
among which GA3 showed the strongest 
inducing effect in terms of nectar amount, 
sugar content and pollinators attracted.30 
In A. thaliana, an extracellular invertase 
has been reported to be causally involved 
in the mobilization of starch deposits and 
thus, floral nectar secretion,31 but the hor-
monal control of this enzyme remains to 
be studied.

JA and its derivatives not only induce 
FN and EFN secretion but also can elicit 

phenidone effectively reduced FN secre-
tion, an effect that could be restored by 
an additional JA treatment.8 Thus, major 
regulatory mechanisms appear to control 
the secretion of both, FN and EFN. How 
similar are the two mechanisms, and how 
can the plant physiologically separate the 
secretion of EFN and FN? Both types of 
secretion function in ecologically very dif-
ferent contexts and, thus, clearly need to 
be controlled independently.

One option would be the involvement of 
other jasmonates. Although JA is an impor-
tant signal on its own, around 20 different 
JA-derived metabolites are also known to 
be involved in defence signalling.20,21 Even 
metabolic precursors of JA may elicit dif-
ferent defensive phenotypes,22,23 which 
opens interesting possibilities for a fine-
tuning of jasmonate-dependent responses. 
In particular, the JA-amino acid conjugate 
jasmonoyl isoleucine (JA-Ile) has recently 
been discovered as functioning as the cen-
tral signalling molecule of the jasmonate 
pathway.23-25 Both JA-Ile and its structural 
mimic, coronalon, induced FN synthesis 
when applied to Brassica napus flowers.8 
The role of JA-Ile in EFN secretion, how-
ever, has yet to be studied.

Based on the current empirical evi-
dence we conclude that jasmonates play 
similar roles in the regulation of the secre-
tion of both, FN and EFN. What about 
other triggers? Unfortunately, information 

Table 1. triggers of floral and extrafloral nectar production

Floral nectar Extrafloral nectar

Function Pollinator attraction43 indirect defence12,44,45

Consumers Birds, insects and other pollinators46 arthropods,  especially ants11,46

Elicitor/inhibitor

Jasmonic acid increases secretion8 increases secretion5

Jasmonoyl isoleucine increases secretion8 not known

coronalone increases secretion8 not known

Phenidone1 reduces secretion8 reduces secretion5

Gibberillic acid increases secretion30 not known

indole acetic acid decreases secretion26,27 not known

ethylene not known not known

Herbivory no effect8/decreases secretion47 increases secretion5,11

Florivory decreases secretion38 not known

Plant volatiles:

Herbivore induced not known increases secretion34,35

Florally emitted not known not known
1inhibits Ja biosynthesis.
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production? (3) Do herbivore-induced 
VOCs elicit FN secretion?

Answering these questions requires 
a combination of different, yet comple-
mentary methodologies: Labelling experi-
ments, for example with 13C, would allow 
to investigate whether or not the func-
tional separation of FN and EFN secre-
tion is achieved by a strictly tissue-specific 
production of the responsible jasmonates. 
This spatial separation of the sites of syn-
thesis would, however, have to be accom-
panied by a barrier that limits the transport 
of leaf-derived jasmonates into flowers and 
vice-versa. Moreover, gaining a deeper 
understanding requires also a combina-
tion of the widely used external applica-
tion of using well-characterized, specific 
inhibitors40 of phytohormones with analy-
ses of the transcriptome, proteome and 
metabolome of the various plant tissues 
and organs. Finally, using mutants that 
lack certain key genes, for example those 
that are involved in the JA signalling cas-
cade such as coi1 (coronatine insensitive 1; 
defective in all JA-related responses41) or 
jar1 ( jasmonic acid resistant 1; impaired in 
the biosynthesis of JA-Ile42) will provide 
mechanistic insight into the regulation of 
nectar secretion.
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