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ABSTRACT

We have shown elsewhere that gravitational

radiation leads to an instability to nonaxisymmetric

perturbations in stars that are rotating rapidly enough to be secularly unstable in Newtonian theory,
and we explore here some astrophysical consequences. Neutron stars are unstable when (Q) exceeds
103-10* s7! and lose their excess angular momentum in seconds. Unstable white dwarfs spin down to
stability or to collapse in times that vary from weeks to 10° years. All stars with ergoregions are un-
stable; this fact imposes stringent upper limits on the rotation of relativistic configurations.

Subject headings: neutron stars — relativity —

I. INTRODUCTION

Gravitational radiation induces a generic instability
in rapidly rotating stars: a configuration with too much
rotational energy will radiate away its excess angular
momentum (or perhaps fission) until a stable configura-
tion is attained. In the special case of uniform-density,
uniformly rotating Maclaurin spheroids, the behavior
was first described by Chandrasekhar (1970); we
recently generalized his result to arbitrary relativistic
stars and obtained a minimum principle for the onset
of instability along a sequence of equilibrium configura-
tions (Friedman and Schutz 1975). Like the general-
relativistic pulsational instability, the rotational insta-
bility can play a decisive role even in nearly Newtonian
stars (e.g., in ruling out rapidly rotating white dwarfs);
here the minimum principle locates the point of New-
tonian secular stability. For highly relativistic con-
figurations, an apparently more stringent limit on

ation is set by a related fact that stars with ergo-
®Foions are unstable. We will discuss below circum-
stances in which the gravitational radiation instability
will be important, the associated growth rates of un-
stable modes, and—in the more relativistic regime—
the ergoregion instability.

II. NEWTONIAN CONFIGURATIONS

In the nearly Newtonian domain our work implies
that Newtonian stars which are secularly unstable by
the Lynden-Bell-Ostriker (1967) minimum principle
(see also Chandrasekhar and Lebovitz 1973) are in
fact unstable in the presence of gravitational radiation.
The point at which secular instability sets in along a
sequence of rotating stars characterized (say) by in-
creasing angular momentum is the first point at which
an energy integral can be made to vanish for some trial
function representing the perturbation. Stable stars
minimize their total energy, whereas the secularly un-
stable stars adjoin lower-energy nonaxisymmetric con-
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white dwarf stars

figurations. In the absence of dissipation, conservation
of angular momentum and of vorticity make the lower
energy states dynamically inaccessible; but because
gravitational radiation can carry off angular momen-
tum, it excites the nonaxisymmetric instability.

The question of when a Newtonian star is secularly
stable has been elucidated in a series of papers by
Ostriker, Tassoul, and Bodenheimer; we will briefly
sketch their work and clear up a misconception con-
cerning the validity of their “tensor virial” method. An
ingenious paper by Ostriker and Tassoul (1968) applied
the tensor virial formalism developed in earlier work
by Chandrasekhar and Lebovitz (see Chandrasekhar
1969) to differentially rotating, compressible stars. In
the subsequent papers, Ostriker, Tassoul, and Boden-
heimer found that the ratio { = T/|W| of the kinetic
to potential energy at the point of secular instability
was always about 0.14 and was remarkably insensitive
to the rotation law or the (polytropic) equation of state.
It was further claimed that in locating the secular point
(the point along a sequence of rotating stars at which
a lower-energy nonaxisymmetric sequence first bifur-
cates) the tensor virial theorem was exact; this, how-
ever, is not the case. Instead, the tensor virial method
is equivalent to choosing a trial function linear in the
coordinates in evaluating the Newtonian energy inte-
gral. But the physical perturbation is not in general
linear at the bifurcation point,! and the tensor virial
criterion is correspondingly only a sufficient condition
for instability. Of course, the rule of thumb that
axisymmetric configurations are unstable when ¢ > 0.14
is approximate in any case and remains valid.

The gravitational radiation instability can be im-
portant for a rapidly rotating star only when its growth

'In fact, stationary nonaxisymmetric deformations of differ-
entially rotating polytropes cannot arise from displacements linear
in the Cartesian coordinates: the fluid velocity v of a linearly de-
formed barotropic configuration will fail to satisfy the consistency
requirement for equilibrium, v X (v-vv) = O, unless the un-
perturbed configuration rotates uniformly.

L157




L158 FRIEDMAN AND SCHUTZ

time is shorter than the star’s lifetime. To estimate the
growth time, we will use the e-folding time obtained by
Chandrasekhar (1970) in his study of secularly unstable
Maclaurin spheroids, namely,

-6
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where . is the critical value of ¢ at which secular insta-
bility sets in. The angular velocity can be obtained
from

T 1 R¥Q)?

t=|VV!=§—& GM ’ (2)

where the parameter a is of order unity, ranging from
0.6 for uniform spheres with slow rotation to 2 for
centrally condensed objects in rapid differential rota-
tion. Then, defining the gravitational radius

s = 2GM/c?, 3)
i have
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and M /RN ’
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For the neutron stars modeled by Baym, Pethick,
and Sutherland (1971) we find the following results:
the maximum stable angular velocities (corresponding
to t = 0.14) range from

(Qmax) = 8 X 10*°s™t  when M= M,
to
(Qmax) = 1 X 10857 when M = 0.15M, ;
the growth rates are
r=10s when M =My, (=0.15,
7= 10"%*s when M =M,, {=02%;
7= 10"s when M =0.13M,, ¢t=0.15,

r=10"'s when M =0.15M,, t=024.
Thus any neutron star whose angular velocity is
appreciably above the critical value will spin down in a
matter of seconds or less.

Growth times of white dwarf instabilities are also
short; for the Ostriker-Bodenheimer (1968) models, the
times given by equation (5) vary from a few weeks to
10° years. For example, model 8 (M = 1.81M,, t =
0.160, a = 1.70) had 7 = 300 years; model 12 (the
most massive one, with M = 4.07TM, t = 0.184, o =
199) had 7 = 2 weeks. These numbers in fact over-
estimate the times because the angular velocity defined
by equation (4) turned out always to approximate the
surface angular velocity at the equator of the Ostriker-
Bodenheimer models, whereas an angular velocity such
as that at the half mass point (which could be a factor of
3 larger) would presumably be more appropriate. It
therefore appears that any secularly unstable white
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dwarf is likely to spin down within a few thousand
years or less.

As a result, the extent to which rapid differential
rotation might raise the maximum mass of degenerate
stars is sharply limited. Astrophysical models involving
massive white dwarfs (such as the suggestion that the
compact components of binary X-ray sources may be
rapidly rotating dwarfs; Lamb and Van Horn 1973;
Brecher and Morrison 1973) can be realized only if they
are secularly stable; and when M > 3M,, stable
configurations are probably nonexistent. In fact, if
high-mass, rapidly rotating dwarfs or neutron stars can
form, they are more likely to provide a pathway to
black holes than an alternative state. That is, if the
initial star spins rapidly enough, its mass may exceed
the allowed limit for stable configurations, in which
case spin-down will lead to collapse.?

III. RELATIVISTIC CONFIGURATIONS

For self-gravitating fluids in general relativity there
is a minimum principle governing stability analogous
to that in the Newtonian theory. On a spacelike hyper-
surface one chooses arbitrary time-independent trial
functions satisfying the perturbed initial value equa-
tions and in a gauge regular at infinity. An integral
representing the total energy of the perturbation can
then be evaluated; and if at some point along a sequence
of relativistic configurations, the minimum value of the
integral for all trial functions passes through zero, the
sequence is unstable beyond that point. A related
result is that instability in any mode sets in when its
frequency vanishes; that is, in the absence of a horizon,
there can be no nonzero real frequency modes.

As we stated above, the Newtonian limit of the
stability criterion is just the condition for secular
instability, an instability excited by gravitational radia-
tion. In general relativity the criterion locates the
dynamical instability. Relativistic stellar models have
not vet been tested for stability and it remains unclear
how’ general relativity will modify the ¢ > 0.14 rule. In
fact, in general relativity there is no unique partition of
energy into kinetic energy of rotation and gravitational
potential energy.

In the ultrarelativistic regime, however, the theory is
simplified by the fact that every star with an ergo-
region® is unstable (Friedman 1975); there are always
trial functions which make the energy integral negative.
Heuristically, the instability reflects the fact that within
the ergoregion one can always choose an initial perturba-

* We do not mean to suggest here that dwarfs or neutron stars
rotating so rapidly as to be unstable or nearly unstable arise
astrophysically; there is no evidence that they do. Moreover,
differential rotation may be preciuded in neutron stars, in which
case the equilibrium sequence would terminate (by rotational
shedding) prior to the point of instability. It is nevertheless useful
to elucidate constraints on equilibrium configurations that are
independent of the detailed stellar structure or evolution.

3 The ergoregion is that part of space in which no physical object
can remain at rest with respect to an observer at infinity: the drag-
ging of inertial frames is so extreme that all timelike world lines
rotate with the star. Technically, it is the region in which the
asymptotically timelike Killing vector becomes spacelike.
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tion having negative energy with respect to an observer
at infinity. Because only positive energy can be radiated
at infinity, a time-dependent nonaxisymmetric pertur-

bation with initial negative energy finds its energy

growing increasingly negative; unless it can settle
down to a stationary nonaxisymmetric state (which
would then represent a point of marginal instability),
the energy will decrease without bound and the ampli-
tude of the linear perturbation will therefore grow with-
out bound within the ergoregion. Unlike the Newtonian
instability which corresponds to a perturbation with
angular dependence e*¢, the ergoregion instability
appears to set in as a limit m — « of modes with
angular dependence ¢*¢; in other words, modes with
the highest values of m become unstable first. Butter-
worth and Ipser (1975) have recently calculated nu-
merical models of differentially rotating highly relativ-
istic stars in which ergoregions occur for eccentricities as
--mall as e¢ = 0.25 and angular velocities Q2/7Gp =
~_ ).26. Because these values are well below those corre-
sponding to Newtonian secular instability, the ergo-
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region instability is likely to be the exact limit on
rotation for ultrarelativistic cenfigurations.

The ergoregion instability also implies that in any
sequence of models approaching as a limit a rotating
black hole (e.g., Bardeen and Wagoner 1971), the last
part of the sequence must be unstable. This is comple-
mentary to Buchdahl’s (1959) theorem that no spherical
star (perfect fluid) can have a radius less than 9/8 of its
Schwarzschild radius. Black holes are thus isolated
from other stable equilibria, and cannot form quasi-
statically. Moreover, because the ergoregion appears at
low values of a/M (where a = ¢J/GM is the angular
momentum per unit mass in gravitational units), black
holes may generally form with angular momenta well
below the limit ¢ = M.
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ERRATUM

The Letter, “Gravitational Radiation Instability in Rotating Stars,” (4 p. J. [Letters], 199, L157-L159 [1973]) by
John L. Friedman and Bernard F. Schutz underestimated the growth time of the instability by a factor of 10%. Equa-
tion (1) should read

—6
7~ 10 if-(ﬂ = 1),

4

and all time scales should likewise be changed. Thus, white dwarf spin-down times range from 10° vears to 10 vears,
while for neutron stars the times are between 1 second and 3 years. These are, as pointed out in the Letler, very
uncertain and are likely to be overestimates. These changes do not affect our conclusions; in particular, a massive
white dwarf at the center of the Cyg X-1 accretion disk should still collapse within 10? years.
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