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ANALYSIS OF A MATHEMATICAL MODEL FOR
INTERACTIONS BETWEEN T CELLS AND MACROPHAGES

ALAN D. RENDALL

Abstract. The aim of this article is to carry out a mathematical analysis of
a system of ordinary differential equations introduced by Lev Bar-Or to model

the interactions between T cells and macrophages. Under certain restrictions
on the parameters of the model, theorems are proved about the number of

stationary solutions and their stability. In some cases the existence of periodic

solutions or heteroclinic cycles is ruled out. Evidence is presented that the
same biological phenomena could be equally well described by a simpler model.

1. Introduction

Autoimmune diseases result in a great deal of suffering for affected individuals
and huge costs for society. Notable examples are multiple sclerosis, rheumatoid
arthritis and type I diabetes. In these diseases the ability of the immune system
to distinguish between self and non-self is compromised, with the result that host
tissues are attacked and damaged. It is important to get a better understanding of
the processes involved and one way to do so is to introduce theoretical models of
the immune system, in particular mathematical models.

There has been a lot of work on mathematical modelling of interactions of the
immune system with pathogens. See for instance [13] and the book of Nowak
and May [11] which concentrate on the case of HIV and present various models.
Some deeper mathematical analysis of these models can be found in [1], [5] and [2].
Autoimmune diseases do not need to involve any pathogens, although pathogens
might contribute to them indirectly, for instance by molecular mimicry [12]. For
this reason it would be interesting to have models for the intrinsic workings of the
immune system where non-self antigens play no direct role, in the sense that they
are not included among the dynamical variables. Apparently few models of this
type exist in the literature. One example is introduced in a paper of Lev Bar-Or [8].
It is a system of four ordinary differential equations which describes the interactions
of T cells and macrophages by means of the cytokines they produce. The aim of
this paper is to investigate what can be said about the properties of the solutions
of this system on the level of mathematical proofs.

Some relevant concepts from immunology will now be introduced. For a com-
prehensive introduction to the subject see [10]. T cells are white blood cells which
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mature in the thymus. One type of T cell, the T helper cell, helps to direct the
activity of other immune cells. These cells are also known as CD4+ since they
carry the surface molecule CD4. T cells communicate with other cells by secret-
ing soluble substances known as cytokines. Another important type of blood cell
is the macrophage which ingests pathogens and cell debris through phagocytosis.
Macrophages also secrete cytokines. Both T cells and macrophages react in various
ways to the cytokines which are present in their surroundings. The list of known
cytokines is long and each of them has its own characteristics in terms of which
types of cells secrete it and what effects it has on cells which detect its presence.
An idea of the complexity of this signalling system can be obtained from [8].

It is common to distinguish between two types of T helper cells, known as Th1
and Th2, according to the cytokines they produce. There may be overlaps but
roughly speaking it may be supposed that there is one set of cytokines (e.g. inter-
feron γ) which are called type 1 and are produced by Th1 cells and another (e.g.
interleukin 4) called type 2 which are produced by Th2 cells. Macrophages produce
cytokines of both types. The basic quantities in the equations of [8] are average
concentrations corresponding to type 1 and type 2 cytokines produced by T cells
and macrophages. These four concentrations are denoted by CT

1 , CT
2 , CM

1 and CM
2 .

The populations of different cell types do not occur directly in the system. The
quantities which have a chance of being measured directly are C1 = 1

2 (CT
1 + CM

1 )
and C2 = 1

2 (CT
2 + CM

2 ).
There are cases where the immune response is dominated by either Th1 or Th2

cells. This may be important in order to effectively combat a particular pathogen.
For instance a sufficiently strong Th1 response is necessary for containing or elim-
inating a tuberculosis infection [15], [9]. An inappropriate balance between these
two states can also contribute to autoimmune disorders. It has, for instance, been
suggested that multiple sclerosis is associated with an immune response which is
biased towards Th1. See [7] for a critical review of this idea. In the context of
the model it is said that there is Th1 or Th2 dominance if C1 > C2 or C2 > C1,
respectively.

Another important function of macrophages which plays a role in the model of
[8] is the presentation of antigens. Small peptides which result from the digestion
of material taken up by a macrophage are presented on its surface in conjunction
with MHC II molecules. (Major histocompatibility complex of class II.) This can
stimulate T cells which come into contact with the macrophage.

It has not been possible to give a complete analysis of the dynamics of the
system of [8]. A certain inequality on the parameters of the system gives rise to a
regime where there is a unique stationary solution which acts as an attractor for
all solutions as t → ∞. This is proved in Theorem 2.1. For a more restricted set
of parameters it is possible to show (Theorem 2.2) that each solution converges to
a stationary solution which in general depends on the solution considered. With
further restrictions on the parameters it is shown that there are between one and
three stationary solutions and the subsets of parameters for which different numbers
of stationary solutions occur are described. This is the content of Theorem 2.3. In
Theorems 2.2 and 2.3 the coefficients describing antigen presentation are set to
zero. One situation where information can be obtained on the dynamics including
antigen presentation is analysed in Theorem 2.4.
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The analysis which has been done has uncovered no evidence that the inclusion of
the effect of macrophages makes an essential difference to the behaviour of solutions.
The types of qualitative behaviour which have been proved to occur in this paper
and those which are shown in the figures in [8] can be found in a truncated system
which only includes the effect of T cells. This is discussed in section 3.

2. Analysis of the dynamical system

In what follows it will be convenient to use a notation which is more concise
than that of [8]. Let x1, x2, x3, x4, z1 and z2 denote CT

1 , CT
2 , CM

1 , CM
2 , x1 + x3

and x2 + x4 respectively. The basic dynamical system is:

dxi

dt
= −dixi + g(hi); i = 1, 2, 3, 4. (2.1)

The di are positive constants. The function g is given by

g(x) =
1
2
(1 + tanh(x− θ)) (2.2)

where θ is a constant. It satisfies the relations g(x + θ) + g(−x + θ) = 1 and
g′(x) = 2g(x)(1 − g(x)). Hence g(θ) = 1/2 and g′(θ) = 1/2. The functions hi are
defined by hi =

∑
j aijxj for some constants aij . The coefficients in (2.1) satisfy

the following conditions

(1) aij = bij + cij , i = 1, 2, for some coefficients bij and cij

(2) b1j = −b2j for all j.
(3) b11 > 0, b13 > 0, b12 < 0 and b14 < 0
(4) The ratio c2j/c1j is independent of j and positive.
(5) c11 > 0 and c13 > 0
(6) a3j = −a4j for all j
(7) a31 > 0, a33 > 0, a32 < 0, a34 < 0

The sign conditions encode the fact that the effect of type 1 cytokines on cells is
to increase their production of type 1 cytokines and to decrease their production of
type 2 cytokines, while the effect of type 2 cytokines is exactly the opposite. The
coefficients cij encode the effects of antigen presentation. This is the only role of
antigens in the model and the intensity of stimulus due to antigen is not a dynamical
degree of freedom in the model. No assumption is made on the signs of c12 and
c14. There are eighteen parameters in the model which are only constrained by
some positivity conditions. The quantities z1 and z2 represent total concentrations
of type 1 and type 2 cytokines. The biologically relevant region B is that where
all the xi are non-negative. The function g is strictly positive. Hence if one of the
variables xi vanishes at some time its derivative at that time is strictly positive. It
follows that B is positively invariant under the evolution defined by the system. If
some xi is greater than or equal to d−1

i on some time interval then xi is decreasing
at a uniform rate during that time. It follows that all solutions exist globally to
the future and enter the region B1 defined by the inequalities xi ≤ d−1

i after finite
time. Thus in order to study the late-time behaviour of any solution starting in
B it is enough to consider solutions starting in B1. In fact any solution enters the
interior of B1 after finite time.
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Theorem 2.1. For any value of the parameters the system (2.1) has at least one
stationary solution. If

sup
i

∑
j

|aij | < 2 inf
i

di. (2.3)

then there is only one stationary solution and all solutions converge to it as t →∞.

Proof. That the system always has at least one stationary solution follows from the
Brouwer fixed point theorem, cf. [3, Theorem I.8.2]. A stationary solution of the
system satisfies

xi = d−1
i g(hi). (2.4)

To prove the second part of the theorem consider the estimate

|d−1
i g(hi(y))− d−1

i g(hi(x))| ≤ (2di)−1|hi(y)− hi(x)|

≤ (2di)−1
∑

j

|aij ||yj − xj |. (2.5)

The first of these inequalities uses the mean value theorem and the fact the de-
rivative of g is nowhere greater than one half. If (2.3) holds then the mapping
{xi} 7→ {d−1

i g(hi)} maps B1 to itself and is a contraction in the maximum norm.
Hence it has a unique fixed point. It follows that when the coefficients of the system
satisfy the restriction (2.3) the system has exactly one stationary solution. If x(t)
and y(t) are two solutions then under the assumption (2.3) it can be shown that
|x − y| decays exponentially as t → ∞. Thus all solutions converge to the unique
stationary solution as t → ∞. A related statement is that if x∗ is the unique
stationary solution then |x− x∗|2 is a Lyapunov function. �

A limiting case of (2.1) is that where all cij vanish. This will be called the zero
MHC system. The pattern of signs in the coefficients in the zero MHC system is
such that the change of variables x̃i = (−1)i+1xi leads to a system dx̃i

dt = f(x̃j)
satisfying ∂fi

∂x̃j
> 0 for all i 6= j. This means that the dynamical system for the x̃i is

cooperative [4]. This pattern of signs corresponds to what is referred to as a ‘com-
munity with limited competition’ or ‘competing subcommunities of mutualists’ in
[14]. It implies, using the Perron-Frobenius theorem, that the linearization at any
point of the vector field defining (2.1) has a real eigenvalue of multiplicity one which
is greater than the modulus of any other eigenvalue. Notice that in the special case
of the zero MHC system where all di are equal to d the linearization has two eigen-
values equal to −d. As a consequence all the eigenvalues of the linearization must
be real in this case. It is not clear how these facts about the eigenvalue structure
can be used to help to understand the dynamics. The condition on the coefficients
di, which says that the rate of degradation of different cytokines is exactly equal,
would not be true with biologically motivated parameters. Nevertheless it is not
unreasonable to assume that these coefficients are approximately equal and that
the model with equal coefficients is not a bad approximation to the situation to be
modelled. An assumption of this type is made in the model of [9].

Call the system obtained by assuming cij = 0, d1 = d2, d3 = d4 and θ = 0 in
(2.1) System 2 while (2.1) itself is System 1. The condition θ = 0 implies that
g(x) + g(−x) = 1. Adding the equations for i = 1 and i = 2 then gives

d

dt
(x1 + x2) = −d1(x1 + x2) + 1. (2.6)
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Similarly
d

dt
(x3 + x4) = −d3(x3 + x4) + 1. (2.7)

These equations can easily be analysed. An invariant manifold S1 is defined by
x1 + x2 = d−1

1 and x3 + x4 = d−1
3 . Substituting this back into the full system gives

a two-dimensional system written out below which will be called System 3. The
ω-limit set of any solution of System 2 is contained in the invariant manifold S1.
Passing from System 1 to System 3 means setting some parameters to zero and
then restricting to a two-dimensional invariant manifold of the resulting system.
System 3 may not include all the most interesting dynamics exhibited by solutions
of the system of [8] but can be perturbed to get information about cases where the
effect of the MHC is small but non-zero. The phase portrait of System 2 follows
immediately from that of System 3. The explicit form of System 3 is

dx1

dt
= −d1x1 + g((a11 − a12)x1 + (a13 − a14)x3 + a12d

−1
1 + a14d

−1
3 ) (2.8)

dx3

dt
= −d3x3 + g((a31 − a32)x1 + (a33 − a34)x3 + a32d

−1
1 + a34d

−1
3 ) (2.9)

Note that the coefficients of x1 and x3 in these equations which are linear com-
binations of the aij are all positive. The constant terms are negative. This is a
cooperative system. This fact together with the fact that the dimension of the
system is two implies that each solution converges to a limit as t →∞ [4]. In other
words the ω-limit set of each solution is a single point. Furthermore, there are no
homoclinic orbits or heteroclinic cycles. What is not clear in general is how many
stationary solutions there are. Some of the conclusions of the above discussion can
be summarized as follows.

Theorem 2.2. If cij = 0 for all i, j, d1 = d2, d3 = d4 and θ = 0 then every
solution of (2.1) converges to a stationary solution satisfying x1 + x2 = d−1

1 and
x3 + x4 = d−1

3 as t →∞. There are no homoclinic orbits or heteroclinic cycles.

Consider now the special case of System 3 obtained by setting a1j = a3j for
all j and d1 = d3. Call it System 4. This corresponds to the assumptions that
the T cells and macrophages have identical properties with respect to their death
rate and their interactions with cytokines. This system consists of two copies of a
single equation. The quantity x1−x3 decays exponentially. The further assumption
x1 = x3 on the initial data, which means that there are equal numbers of T cells
and macrophages, gives rise to a single ODE, call it the toy model. It is the same
equation which occurs twice in System 4. It is of the form

dx

dt
= −d1x + g(ax− b) (2.10)

where a = a11 − a12 + a13 − a14 and b = −(a12 + a14)d−1
1 . Note that a and b are

positive. Here the zero MHC condition has been used. This can be simplified by
defining x′ = d1x, t′ = d1t and a′ = a/d1. Suppressing the primes leads to

dx

dt
= −x + g(ax− b) (2.11)

Denote the right hand side of (2.11) by h(x), suppressing the parameter dependence.
Stationary solutions of the toy model are given by solutions of the equation

g(ax− b) = x. (2.12)
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Since 0 < g < 1 all solutions of this equation are contained in the interval (0, 1).
The right hand side of this equation takes the value zero at x = 0 and the value one
at x = 1. Thus by the intermediate value theorem (2.12) has at least one solution
on the interval of interest. Now

d

dx
(g(ax− b)− x) = 2ag(ax− b)[1− g(ax− b)]− 1. (2.13)

The first term on the right hand side of (2.13) is symmetric about x = b
a where

it attains its maximum value a
2 . Thus this derivative vanishes at zero, one or two

points of the real line according to whether a < 2, a = 2 or a > 2. For a > 2
call the zeroes of the derivative x1 and x2 with x1 < x2. It can be concluded that
for any value of a there are at most three solutions of (2.12). All these solutions
must be within the interval of interest. If there are exactly two solutions then one
of them must correspond to a point where the right hand side of (2.11) and its
derivative vanish simultaneously. For otherwise the value of this function at one
would be negative for large x, a contradiction. For a given value of a > 2 there is
precisely one value of b for which the equation −x1 + g(ax1 − b) = 0 holds. Call
it b1(a). Define b2(a) similarly, replacing x1 by x2. Then b1(a) and b2(a) are the
only values of b for which there is a simultaneous solution of g(ax − b) = x and
ag′(ax − b) = 1. For all a > 2 the inequality b1(a) < b2(a) holds. As a → 2 both
tend to one. The union of the graphs of b1 and b2 divides the (a, b)-plane into
two regions. On each of these the number of stationary solutions is constant and
equal to one or three. On the region including points with a < 2 it is obviously
one. Considering points where b = 1/2 and a slightly larger than two makes makes
it clear that it is three on the other region. Information can also be obtained by
simple geometric considerations on the position of the stationary points. If a < 2
and b < a/2 then the stationary point has x < 1/2 while for b > a/2 it satisfies
x > 1/2. If a > 2 and there are three stationary points then the central (unstable)
one satisfies x < 1/2 for b < a/2 and x > 1/2 for b > a/2.

When there is only one solution it is a hyperbolic sink. When there are three
solutions the two outermost are hyperbolic sinks while the intermediate one is a
hyperbolic source. If the parameter b is held fixed at some value less than one and
a is varied then at the value of a where b1(a) = b there is a fold bifurcation. To see
this note that

∂h

∂x
= −1 + ag′(ax− b) (2.14)

∂h

∂a
= xg′(ax− b) = 2xg(ax− b)(1− g(ax− b)) (2.15)

∂2h

∂x2
= a2g′′(ax− b) = 4a2g′(ax− b)(1− 2g(ax− b)) (2.16)

From the first equation it follows that at a critical point x the quanitity ag′(ax− b)
must be equal to one. Hence the derivative with respect to a does not vanish there.
The second derivative with respect to x can only vanish there if g(ax − b) = 1/2,
which implies that x = b

a , x = 1/2 and b = 1. The situation for b > 1 is similar to
that for b < 1. To understand the case b = 1 note that there is a cusp bifurcation
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in (a, b) at the point (2, 1). This can be shown using the facts that

∂h

∂b
= −g′(ax− b), (2.17)

∂2h

∂x∂b
= −ag′′(ax− b), (2.18)

∂2h

∂x∂a
= axg′′(ax− b) + g′(ax− b), (2.19)

∂3h

∂x3
= g′′′(ax− b)

= 4a3g′′(ax− b)(1− 2g(ax− b))− 8a3(g′(ax− b))2.
(2.20)

Hence ∂3h
∂x3 and ∂h

∂a
∂2h
∂x∂b −

∂h
∂b

∂2h
∂x∂a are both non-vanishing and [6, Theorem 8.1]

applies.
If we remove the condition x1 = x3 then x1 − x3 decays exponentially. The

qualitative nature of the dynamics of System 4 with the given restrictions on the
parameters is then clear. This in turn gives information about the phase portrait
of System 2 with these values of the parameters. Converting back to the original
variables has the effect of replacing a by a/di in these criteria. Some of these results
are summarized in the following theorem.

Theorem 2.3. If in Theorem 2.2 it is additionally assumed that a1j = a3j for all
j and d1 = d3 then the number of stationary solutions of (2.1) is between one and
three for any values of the parameters. It is one whenever a11−a12 +a13−a14 ≤ 2.
There is a non-empty open set where it is three. The set where it is two is a union
of two smoothly embedded curves which is the boundary between the sets where it is
one and three.

Consider a choice of parameter set for (2.1) for which there are three hyperbolic
stationary points. It follows by a simple stability argument that there is an open
neighbourhood of this parameter set in parameter space such that for all parameters
in this neighbourhood there are precisely three hyperbolic stationary points. If the
original set of stationary points consists of two sinks and one saddle then there is
an open neighbourhood where this property persists.

In the context of this theorem the question of Th1 or Th2 dominance can be
examined for stationary solutions. It is of interest to know whether changing the
parameters in the system can cause a switch from one type of dominance to the
other. If this happens there must be some values of the parameters for which there
is a stationary solution with z1 = z2. Under the hypotheses of the Theorem 2.2,
x2 = d−1

1 −x1 and x4 = d−1
1 −x3 for any stationary solution. Hence z2 = 2d−1

1 −z1.
If z1 = z2 then this implies that z1 = d−1

1 and x1 = 1
2d−1

1 . In terms of the new
variable introduced in (2.11) this means that x = 1/2. The above discussion gives
information about Th1 or Th2 dominance for various parameter values satisfying
the restrictions in the statement of Theorem 2.3. What is of most interest for the
applications is the position of the stable stationary points. In particular it is clear
that there exist parameter values where there are stationary solutions with both
types of dominance.

Now another set of simplified versions of the system will be studied. The phase
portraits given in Fig. 2 in [8] relate to one special case of this kind. In the notation
used here it is defined by the following restrictions on the parameters: di = 1 for



8 A. D. RENDALL EJDE-2010/115

all i, θ = 0, all coefficients bij with j = 1 or j = 3 are equal, all coefficients aij with
j = 2 or j = 4 are equal, the coefficients cij are equal for all i and j. This reduces
the number of free parameters to three. To simplify the notation let A = b11,
B = −b12, C = c11. These are all positive constants. For Fig. 2 in [8] two sets of
values for the coefficients are considered. In both cases C = 0.5. In Fig. 2a A = 0.4
and B = 0.5 while in Fig. 2b A = 0.6 and B = 0.65. With these assumptions
System 1 becomes:

dx1

dt
= −x1 + g((A + C)(x1 + x3) + (−B + C)(x2 + x4)) (2.21)

dx2

dt
= −x2 + g((−A + C)(x1 + x3) + (B + C)(x2 + x4)) (2.22)

dx3

dt
= −x3 + g(A(x1 + x3)−B(x2 + x4)) (2.23)

dx4

dt
= −x4 + g(−A(x1 + x3) + B(x2 + x4)) (2.24)

Call this System 5. If A + B + 2C < 1 then there is at most one stationary point
of this system. This can be proved in the same way as Theorem 2.1. Adding the
equations in pairs leads to a closed system for the two experimentally accessible
quantities z1 and z2. These are the variables which are plotted in Fig. 2 of [8].

dz1

dt
= −z1 + g((A + C)z1 + (−B + C)z2) + g(Az1 −Bz2) (2.25)

dz2

dt
= −z2 + g((−A + C)z1 + (B + C)z2) + g(−Az1 + Bz2) (2.26)

Call this System 6. Denote the right hand sides of (2.25) and (2.26) by f1(z1, z2)
and f2(z1, z2) respectively. For this system uniqueness of the stationary solution
follows from the assumption that the coefficients satisfy A + B + C < 1. If in
addition the coefficient C is assumed to vanish then this reduces to

dz1

dt
= −z1 + 2g(Az1 −Bz2) (2.27)

dz2

dt
= −z2 + 2g(−Az1 + Bz2) (2.28)

Call this System 7. Note that the system obtained by setting C = 0 in System 5 is
equivalent to a special case of System 2 and that Theorems 2.2 and 2.3 apply to it.
The parameters are related by a = 2(A + B), b = 2B. The special cases in [8, Fig.
2] correspond to a = 1.8, b = 1 and a = 2.5, b = 1.3. It follows from (2.27) and
(2.28) that d

dt (z1 + z2) = −(z1 + z2) + 2 and that z1 + z2 tends to two as t → ∞.
Thus the dynamics is controlled by that on the invariant manifold z1 = 2 − z2.
With the choices which have been made it coincides with the invariant manifold S1

introduced earlier.
Now consider what happens when C 6= 0. Provided C ≤ min{A,B} the system

consisting of (2.25) and (2.26) is competitive. Thus each solution (z1, z2) must
converge to a stationary solution as t → ∞ [4]. It can be concluded that the
corresponding solution (x1, x2, x3, x4) tends to a stationary solution. Information
about stationary points of the system can be obtained by stability considerations,
as was mentioned following Theorem 2.3. This discussion is summed up in the
following theorem.
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Theorem 2.4. Any solution xi (i = 1, 2, 3, 4) of (2.21)-(2.24) with parameter
values satisfying C ≤ min{A,B} converges to a stationary solution as t → ∞.
For fixed values of A and B and C sufficiently small the system has at most three
stationary solutions and at most two stable stationary solutions.

The results which have been obtained are unfortunately not sufficient to give a
rigorous confirmation of the qualitative behaviour shown in Fig. 2a and Fig. 2b of
[8]. The condition C < min{A,B} is not satisfied by the parameter values in Fig.
2a. It is satisfied in the case of Fig. 2b of [8] but no information is obtained about
the number of solutions.

3. Dynamics in the absence of macrophages

In this section it will be shown that all the dynamical behaviour which has been
shown to occur in system (2.1) also occurs in a truncated model where the influence
of macrophages is ignored. The system has two unknowns x1 and x2 with the same
interpretation as before. The effect of the macrophages is turned off by setting
aij = 0 when i is one or two and j is three or four. This leads to the following
closed system for x1 and x2:

dx1

dt
= −d1x1 + g(a11x1 − a22x2) (3.1)

dx2

dt
= −d2x2 + g(−a11x1 + a22x2) (3.2)

All the coefficients d1, d2, a11 and a22 are assumed positive, as before. Restricting
further to the case that d1 = d2 = d and θ = 0 allows the analysis of the dynamics
to be reduced to that of a scalar equation as in the previous section. The scalar
equation is

dx1

dt
= −dx1 + g((a11 + a22)x1 − d−1a22). (3.3)

This is essentially the equation (2.11) analysed before and so all the phenomena
found previously occur here also.

4. Further remarks

In this paper it has been possible to give a rigorous analysis of the asymptotics
of solutions of the system of Lev Bar-Or [8] for some values of the parameters.
Unfortunately there are large ranges of the parameters for which no conclusions were
obtained or for which those conclusions are incomplete. The latter statement even
includes the two cases for which numerical plots were included in [8]. The following
questions have not been answered for the system (2.1) with general parameters.

• Are there periodic solutions?
• Are there homoclinic orbits?
• Are there heteroclinic cycles?
• Are there strange attractors?

It should be emphasized that there is no evidence, analytical or numerical, that
the answer to any of these questions is yes in the general case. We are left with a
picture of a dynamical system where the long-time behaviour seems to be simple
but it is quite unclear how to prove it except for a restricted set of values of the
parameters.
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It is consistent with everything which has been found here that the system of
four equations with eighteen parameters produces no qualitatively new phenomena
in comparison with a reduced two-dimensional system with three parameters. No
effects were found which are specifically dependent on the inclusion of the presen-
tation of antigen by macrophages. The interactions between Th1 and Th2 cells
appear to be sufficient. It is seen that under some circumstances the model with
T cells and cytokines alone predicts a situation of bistability where either a Th1 or
Th2 dominated state can be approached, depending on the initial data.
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