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Abstract

An explicit three-dimensional Riemannian metric is constructed which can be
interpreted as the (conformal) sum of two Kerr black holes with aligned angular
momenta. When the separation distance between them is large we prove that
this metric has a positive Ricci scalar and hence a positive Yamabe invariant.
This metric can be used to construct axially symmetric initial data for two Kerr
black holes with large total angular momentum.

PACS numbers: 04.20.Ex, 04.25.dg, 04.70.Bw

1. Introduction

The numerical study of the binary black hole problem has recently made significant progress
[1, 6, 21]. It is now possible to calculate the evolution of a wide variety of astrophysical
scenarios. In order to do this, appropriate initial data for the Einstein equations are necessary,
such that they describe the initial conditions of these systems.

A natural physical requirement for binary black hole initial data is that in the limit of large
separation each of the black holes approximates a stationary, isolated, black hole (in vacuum,
this implies that the black hole approximates the Kerr black hole). Otherwise, the data will
contain spurious radiation which can in principle contaminate the final waveform (see [17]).

The nonlinearity of the constraint equations makes the problem of constructing initial data
satisfying such a far limit a nontrivial one. In [11] such data for two Kerr black holes with
a far limit has been constructed. The procedure uses the conformal method for solving the
constraint equations (see the review article [2] and references therein). In this construction,
one starts with a superposition of two conformal Kerr metrics to get a new conformal metric,
which is then used as a ‘seed’ metric for the conformal method. Then, a conformal factor
is calculated such that the corresponding rescaled metric satisfies the constraint equations.
The existence and uniqueness of that conformal factor can be proved provided the ‘seed’
metric satisfies an important requirement: its Yamabe invariant must be positive (see [2] for
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a discussion about the Yamabe invariant in the context of the constraint equations). In order
to ensure this condition in [11], it has been assumed that the individual angular momentum
parameters of the black holes are small with respect to the masses.

This assumption is, of course, an undesirable restriction. Highly spinning black holes are
relevant in many astrophysical situations. Remarkable examples of these are the large merger
recoil kicks (see [5, 7, 15, 16, 18, 19]).

The purpose of this paper is to overcome this restriction for the axially symmetric case.
We provide an explicit metric, having three ‘ends’, which is constructed as a superposition
of two Kerr black hole metrics with aligned or anti-aligned angular momenta. When the
mass parameters of one black hole is zero, the metric reduces exactly to a Kerr metric. The
important property of this metric is that when the separation distance between the black holes
is large enough its Ricci scalar is positive. The parameters of the individual Kerr black holes
are only restricted by the Kerr inequality |a| � m, where a is the angular momentum per
mass unit and m is the mass of the individual black hole. That is, the angular momentum
is not assumed to be small. Instead, we assumed the physical reasonable condition that the
separation distance between them is large. In this sense, we say that the metric satisfies the
far limit. This constitutes the main result of the paper.

When the three ‘ends’ are asymptotically flat (the non-extreme cases) the positivity of
the Ricci scalar implies the positivity of the corresponding Yamabe invariant. And hence the
metric can be used as a seed metric for the construction mentioned above. In this way axially
symmetric initial data can be constructed for two Kerr-like black holes with large angular
momentum. However, we emphasize that our result also covers the extreme limit |a| = m of
any of the black holes. We believe that this can be used to construct (the still unknown) initial
data for two extreme Kerr black holes.

2. Main result

Consider the Kerr black hole (i.e. the Kerr metric such that |a| � m) in Boyer–Lindquist
coordinates. Take any constant t slice in these coordinates and denote by h̃ij the intrinsic
three-dimensional metric of the slice. There exist spatial coordinates (ρ, z, φ) on the slice
such that the metric h̃ij has the following form:

h̃ij = (1 + u)4hij , (1)

where

hij = e2q(dρ2 + dz2) + ρ2 dφ2, (2)

and the functions q and u (which do not depend on the coordinate φ) are explicitly given by
equations (A.1) in the appendix. The slice is a three-dimensional manifold M which has the
topology M = R

3\{0}, where {0} denotes the origin in the coordinates (ρ, z, φ). For the
results presented here a relevant property of the Kerr metric is that u � 0 (see lemma 3.1).

We construct a new manifold S by removing two points from R
3 denoted by s1 and s2,

namely S = R
3\{s1, s2}. Let (ρ, z, φ) be cylindrical coordinates on S such that the two points

s1 and s2 are located at the axis ρ = 0, separated by coordinate distance d. This requirement
does not completely fix the coordinate system, since there still exists a translation freedom in
the z-coordinate z → z + c, where c is any arbitrary constant. Later on we will make use of
this freedom to simplify the computations. However, for the formulation of the results there
is no loss of generality if we chose the coordinate system such that s1 is located at d/2 and s2

at −d/2 on the z-coordinate axis.
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Given the functions q(ρ, z;m1, a1) and u(ρ, z;m1, a1) of the Kerr initial data, with
parameters (a1,m1), we define the new functions (q1, u1) by

q1 = q(ρ, z − d/2;m1, a1), u1 = u(ρ, z − d/2;m1, a1). (3)

In the same way, for functions q(ρ, z,m2, a2) and u(ρ, z,m2, a2) we define (q2, u2) by

q2 = q(ρ, z + d/2;m2, a2), u2 = u(ρ, z + d/2;m2, a2). (4)

With this set of functions constructed from the Kerr metric, we define a metric on S,
depending on the parameters (d,m1, a1,m2, a2), by

H̃ij = (1 + u1 + u2)
4Hij , (5)

where

Hij = e2(q1+q2)(dρ2 + dz2) + ρ2 dφ2. (6)

Since ui and u2 are positive functions, and furthermore q1 and q2 are bounded, H̃ij is well
defined as a metric on S for any choice of the parameter d.

For the non-extreme case (i.e. |a1| < m2, |a2| < m2) one can check that the metric
H̃ij is asymptotically flat with three asymptotic ends. These ends are denoted by s∞, which
corresponds to the limit r → ∞, where r =

√
ρ2 + z2 and s1, s2, which correspond to the limits

r1 → 0 and r2 → 0 respectively, where r1 =
√

ρ2 + (z − d/2)2 and r2 =
√

ρ2 + (z + d/2)2.
The total mass of the metric (5) at the end s∞ is given by m1 + m2.

If one of the ends is extreme (that is |a1| = m1 or |a2| = m2), then the metric will still be
asymptotically flat at the end s∞ but will not be asymptotically flat at the extreme end.

Denote by RH̃ the Ricci scalar of the metric (5). The following theorem constitutes the
main result of this paper.

Theorem 2.1. There exists a constant dc such that if d � dc then RH̃ � 0 on S. Moreover, if
a1 or a2 is different from zero, then RH̃ > 0 on S.

For a1 = a2 = 0 we have RH̃ = 0. In this limit the metric reduces to the Brill–
Lindquist metric [4]. If we set to zero the mass of one of the black holes (this implies
that the corresponding angular momentum is also zero) then the metric (5) reduces to the
Kerr metric (1).

Consider the Yamabe invariant defined on the manifold S for the metric H̃ij

λ = inf
ϕ∈C∞

c (S),ϕ �≡0

∫
S
(8|Dϕ|2 + RH̃ϕ2) dμ

(
∫
S
|ϕ|6dμ)1/3

, (7)

where C∞
c (S) denotes the set of smooth functions with compact support in S, |Dϕ|2 =

H̃ ij ∂iϕ∂jϕ, dμ is the volume element with respect to H̃ij , and ϕ �≡ 0 means that ϕ cannot be
identically zero everywhere.

For the non-extreme cases, theorem 2.1 implies that λ > 0 (it is obvious that λ � 0; for
proving that it is strictly positive we use lemma 4.1 in [8]).

The main application of theorem 2.1 is the construction of two (non-extreme) Kerr black
holes data. The results proved so far assumed that the angular momentum parameter a is
small with respect to the mass (see [11]). Theorem 2.1 allows us to generalize these results
for any a such that |a| < m, but only for the axially symmetric case (that is, when the angular
momentum of the black holes are aligned or anti-aligned). Using the conformal method and
the metric (5) as a ‘seed’ conformal metric the complete data can be obtained as follows.
Since this procedure involves standard applications of known results we only sketch the proof.
First we superpose two extrinsic curvatures from two Kerr initial data. This can be done in
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general (see [11]), however in axial symmetry the procedure is much simpler and can be done
explicitly (see, for example, [10, 14]). Then, we use existence theorems for the Lichnerowicz
equation (see for example, [9, 11, 20]) to prove that there exists a new conformal factor such
that a conformal rescaling of the metric H̃ij satisfies the vacuum constraint equations with
the above constructed second fundamental form (see [11] for details). It is in this last step
when theorem 2.1 plays an important role. In order to apply these existence theorems we
need to ensure that the conformal metric has positive Yamabe invariant. Using theorem 2.1
we only require that the separation distance between the black holes is large. We also note
that although this procedure is identical to that proposed in [11], the ‘seed’ conformal metric
is different.

There is no unique way of constructing the ‘sum’ of two Kerr metrics. In particular, the
metric used in [11] is not in the same conformal class as that used here (that is, they are not
related by a conformal factor). Theorem 2.1 suggests that the conformal metric (6) is more
natural than that used in [10], at least for the axially symmetric case.

The above construction applies to the non-extreme case. Remarkably, theorem 2.1 is also
valid for the extreme case |a| = m. It is very likely that this theorem can also be used to
construct a superposition of two extreme Kerr black holes. But this remains to be seen. The
existence results for the Lichnerowicz equations proved so far in the literature applies only to
asymptotically flat manifolds and not to manifolds with cylindrical ends like extreme Kerr.

3. Properties of Kerr initial data

In this section we establish the three key properties of Kerr intrinsic metric which allow us to
prove theorem 2.1 in the following section. These properties are collected in lemmas 3.1–3.3.

We consider the Kerr metric h̃ij given by (1), on the manifold M = R
3\{0}, where the

functions u and q are given by (A.1). The Ricci scalar of h̃ij is denoted by R̃ and the Ricci
scalar of the conformal metric hij (defined by (2)) is denoted by R. We emphasize that all the
functions involved are smooth on M.

Lemma 3.1. Assume |a| � m and m �= 0. Then, we have that u > 0 everywhere on M.

Proof. We prove this by explicitly showing that ψ > 1 if m �= 0, where ψ = 1 + u. Using
(A.1) and (A.4) we obtain

ψ4 � r̃2

r2
. (8)

We use equation (A.5) for r̃ to obtain

r̃

r
= 1 +

m

r
+

m2 − a2

4r2
� 1 +

m

r
. (9)

Using (8) and (9) we get our final inequality

ψ �
√

1 +
m

r
. (10)

�

We also mention the following upper bound for ψ that can be obtained from
equation (A.3)

ψ2 � r̃

r

(
1 +

a2

r̃2

)
, (11)
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for the extreme case |a| = m this reduces to

ψ2 �
(

1 +
m

r

) (
1 +

m2

(r + m)2

)
. (12)

These bounds are sharp at infinity, in the sense that the right-hand side of (11) and (12) goes
to 1 as r → ∞.

Lemma 3.2. Assume |a| � m and a �= 0. Then, R̃ � 0 on M, and R̃ = 0 only at ρ = 0.

Proof. The first statement is immediate if one considers the Hamiltonian constraint equation in
the given slice and the fact that these slices are maximal (i.e. the trace of the second fundamental
form is zero). In effect, since K̃ = K̃ij h̃

ij = 0 (where K̃ij is the second fundamental form of
the slice) the Hamiltonian constraint is given by

R̃ = K̃ij K̃
ij � 0. (13)

To prove the second part of the theorem we compute the right-hand side of (13). The Kerr
second fundamental form K̃ij can be expressed in terms of derivatives of a potential ω (see,
for example, [12, 13]). In particular, for the square of K̃ij we have

K̃ij K̃
ij = e−2q |∂ω|2

2ψ4X2
. (14)

The explicit expression for ω is given in equation (A.6). We calculate

|∂ω|2 = 4m2a2ρ6

r8	4
F, (15)

where

F = (4
a4r̃2(sin(2θ))2 + (3r̃4 + a2r̃2 + a2(r̃2 − a2) cos2 θ)2). (16)

We have

F � 9r̃8. (17)

Using (14) and (15) and the explicit expressions (A.1) we obtain the following lower bound:

R̃ � 18m2a2r̃8 sin2 θ

(r̃2 + a2)7
, (18)

which proves the theorem because r̃ � m. Note that for the extreme case this bound reduces
to

R̃ � 18m4(r + m)8 sin2 θ

((r + m)2 + m2)7
. (19)

As a side remark we point out that the bounds (18) and (19) are sharp in the limit r → 0 and
r → ∞. �

For the following lemma we define the function R− to be the negative part of R

R− = min{0, R}. (20)

Lemma 3.3. Assume |a| < m. Then the function R− has compact support in M. Moreover,
the support of R− does not intersect the ρ = 0 axis (see figure 1).

Proof. Take a small ball centered at the origin. The leading-order term in the asymptotic
expansion of R for r → 0 (see equation (A.11)) is positive. Hence, there exists a constant r−
such that the function R is positive in small ball of radius r− centered at the origin. We also
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ρ

z

Ωρ0

r+

r−

Figure 1. Non-extreme case: the region � contains the support of R− (shaded region).

have that R is positive evaluated at the axis ρ = 0 (see equation (A.29)). Then, there exists a
small cylinder of radius ρ0 such that R is positive outside this cylinder.

In a similar fashion, the leading-order term in the asymptotic expansion of R for r → ∞
(see equation (A.10)) is positive. Hence, there exists a constant r+ such that R is positive
outside a ball of radius r+. Bringing these together, we conclude that the support of R− is
contained in the region � given by

� = {r− < r < r+ ∩ ρ0 < ρ}. (21)

The region � is showed in figure 1, where we also show how the actual support of R− looks
like when obtained by explicit computation for some values of a and m. �

The region � defined above will be used in the following section in the following way.
One point, lets say s1, is located at the origin of �. The other point s2 is chosen to be outside
�, that is d > r+. Let ψ2 be the conformal factor of a Kerr metric with respect to s2. Then,
the upper bounds (11) and (12) imply that ψ2 is bounded in � (note that ψ2 is not bounded
at s2). For points in the interior of � we have

r2 � d − r � d − r+, (22)

and then the upper bound (11) in � gives the following bound which depends only on d
and r+:

ψ2
2 �

(
1 +

1

(d − r+)
+

m2 − a2

4(d − r+)2

) (
1 +

a2

(d − r+ + m)2

)
. (23)

For the extreme case this bound reduces to

ψ2
2 �

(
1 +

1

(d − r+)

) (
1 +

m2

(d − r+ + m)2

)
. (24)

The important point is that in the limit d → ∞ we have ψ2 → 1 in � (and hence u2 → 0
in �).

The statement of lemma 3.3 is false for the extreme case |a| = m. The reason for this is
that R has a different behavior at the origin in that case (see equation (A.14)), which reflects
the change in this limit from an asymptotically flat end to a cylindrical one. In figure 2 we
show the support of R− in the extreme case. We see that the support of R− ‘touches’ the
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ρ

z

Ωρ0

r+

r−

Figure 2. Extreme case: the support of R− (shaded region) is not contained in the region �.

origin and hence lies outside of the region �. This is the main technical difficulty to prove
theorem 2.1 in the extreme limit. To analyze that case we compute the following formula
for R.

Lemma 3.4. Let |a| = m. Then, the scalar curvature R is given by

R = e−2q

(
−3|∂ω|2

2X2
+

8|∂ψ |2
ψ2

)
. (25)

Proof. Define σ by ψ4 = eσ . The metrics h̃ij and hij are related by the conformal
transformation h̃ij = eσhij , hence the relation between the corresponding scalars curvatures
R̃ and R is given by

R = R̃eσ + 2e−2q
̂σ + 1
2e−2q |∂σ |2, (26)

where 
̂ is the flat Laplacian in three dimensions. The important step is that the Kerr metric
satisfies the stationary and axially symmetric equations. For the extreme case, these equations
imply (see [13])


̂σ = −|∂ω|2
X2

. (27)

We emphasize that in our coordinates equation (27) is valid only for the extreme case (see the
discussion in [13]).

Combining (26), (27) and the expression for R̃ which comes from the Hamiltonian
constraint equations (13) and (14) the result follows. �

4. Proof of the main result

The important feature of the metric (5) is that its Ricci scalar has a simple decomposition in
terms of the Ricci scalars of each individual Kerr metric, namely

RH̃ = ψ5
1 e−2q2

�5

(
R̃1 +

R1

ψ5
1

u2

)
+

ψ5
2 e−2q1

�5

(
R̃2 +

R2

ψ5
2

u1

)
, (28)
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where � = 1 + u1 + u2, ψ1 = 1 + u1 and ψ2 = 1 + u2. Note that the two terms in (28) are
symmetric with respect to the points labels 1 and 2.

For the non-extreme case formula (28), together with previous lemmas, gives the desired
result.

Theorem 4.1 (non-extreme case). Assume that |a1| < m1, |a2| < m2. Then there exists a
constant dc such that if d > dc, then RH̃ � 0. Moreover, if a1 or a2 is different from zero then
we have RH > 0 on S for d > dc.

Proof. To analyze the sign of RH̃ we study each of the two terms in (28) separately. Since
they are symmetric in 1 and 2 it is enough to analyze only one of them. If a1 = a2 = 0 we
have RH̃ = 0 (see equation (A.7)) and then the conclusion of the theorem follows. Hence,
in the following we will assume that either a1 or a2 is different from zero. Without loss of
generality we take a1 �= 0 and analyze the first term in (28).

By lemma 3.1 the factor which multiplies the parentheses on that term is positive definite.
Then, we only need to analyze the sign of

K1 := R̃1 +
R1

ψ5
1

u2. (29)

Take a fixed coordinate system (ρ, z, φ) centered at the point s1. In these coordinates we have
s2 located at z = −d. Note that, in these coordinates, the only function in (29) which depends
on d is u2.

Using lemmas 3.1 and 3.2 we know that the only function which is not positive in the
definition of K1 is R1. Let � be the region defined in lemma 3.3 centered at s1, with constants
(ρ0, r−, r+). Take d such that d > r+. That is, the point s2 is not in �. Since R1 is positive
outside �, it follows that K1 is positive outside �. Note that the constants (ρ0, r−, r+) in (21)
do not depend on d.

We now turn our attention to the interior of �. By lemma 3.2 we know that R̃1 is strictly
positive in �. We use the upper bound (23) for u2 in the interior of �. We have that u2 → 0
in � as d → ∞. Since R̃1 and R1 do not depend on d it follows that there exists a constant d1

such that K1 is positive in the interior of � for all d > d1.
For K2 we repeat this analysis to obtain a constant d2 such that K2 > 0 is positive for all

d > d2. We chose dc to be the maximum between d1 and d2, from which the conclusion of
the theorem follows. �

The proof in the extreme case is more delicate because lemma 3.2 is no longer valid.
However, a more detailed analysis of the asymptotic expansion at the origin of the function
K1, using lemma 3.4, allows the desired extension.

Theorem 4.2 (extreme case). Assume that either |a1| = m1, |a2| < m2 or |a2| = m2, |a1| <

m1 or |a1| = m1, |a2| = m2. Then there exists a constant dc such that if d > dc then RH � 0
everywhere on S. Moreover, if a1 or a2 are different from zero, then RH > 0 on S for d > dc.

Proof. If a1 = a2 = 0 then the result is trivial since RH̃ = 0 in that case. We assume that
|a1| = m1 and a1 �= 0. We make no restriction on the parameter a2, that is 0 � |a2| � m2. By
the symmetry in 1 and 2 of (28) this assumption will cover all cases. As in the non-extreme
case, we use a coordinate system centered at s1.

We analyze K1 directly. We have that R1 is positive outside some balls of large radius r+

(because the leading term in the asymptotic expansion (A.14) is positive). As in the previous
theorem we chose d such that d > r+. From equation (29) it follows that K1 is positive outside
the ball B of radius r+ centered at s1. To analyze the behavior of K1 in the interior of B we use
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the explicit expression for R1 given by lemma 3.4 and the explicit form of R̃1 given by (13)
and (14) to obtain

K1 = e−2q1

ψ4
1

( |∂ω1|2
2X2

1

(
1 − 3u2

ψ1

)
+

8|∂ψ1|2
ψ2

1

u2

ψ1

)
. (30)

This expression is clearly positive if

u2

ψ1
<

1

3
. (31)

By (24) we have that u2 is bounded in B and it goes to zero as d → ∞. Then, condition
(31) can always be achieved for sufficiently large d. Note that using the upper bound (24)
the constant dc can be explicitly calculated. We have proved that K1 � 0. To prove that it is
strictly positive, we use that |∂ω|2 only vanishes at the axis (see equations (15)–(17)) and at
the axis we can explicitly compute the term |∂ψ1|2 to see that it is strictly positive. �

5. Final comments

We have constructed our metric as a sum of two Kerr black hole metrics. It is straightforward
to generalize this result to include more than two black holes, that is to superpose more uk and
qk in the definition of the conformal metric (5).

We have assumed that the conformal metric is axially symmetric. Due to the particular
simpler expression of the scalar curvature of this metric (see equation (28)), this assumption
represents a major simplification with respect to the case where the spins point in arbitrary
directions. We expect that a result similar to theorem 2.1 remains true in the general case.
However, proving such a result requires estimations for many new terms in the scalar curvature
and it is not clear how to do this in an efficient way.

Even in the axially symmetric case, it is interesting to see what kinds of properties of
the individual metrics are necessary to make the superposition. We have provided sufficient
conditions which are satisfied by the Kerr metric. We do not know if these properties are also
necessary. Our first attempt was to consider the superposition of two arbitrary Brill metrics
(i.e. metrics of the form (2)) with positive Yamabe invariant. But we were unable to prove that
an analog of theorem 2.1 holds under these weak assumptions. Inspired by the Kerr data, our
next attempt was to impose that the negative part of the Ricci scalar R− has compact support.
This seems to be a natural assumption, because the support of R− seems to play the role of
the ‘body’ and the separation can be taken as the distance between these sets. Furthermore,
for Brill metrics the support of R− is always nontrivial because the integral of the Ricci scalar
over R

3 is zero (see [3]). However, for the proof we have also used another particular property
of the Kerr metric, namely u > 0. It is not clear to us whether this condition is actually
necessary.

Acknowledgments

It is a pleasure to thank Robert Geroch for discussions. SD is supported by CONICET
(Argentina). GA was partially supported by a ‘Conciencias’ fellowship, from the Agencia
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Appendix A. Asymptotic expansions for Kerr initial data

In this section we study the behavior of Kerr initial data (with parameters m and a) in the limits
r → 0, r → ∞ and ρ → 0.

The explicit expressions for the functions q and u, which characterize the Kerr intrinsic
metric (for Boyer–Lindquist slices) h̃ij , in terms of the coordinates (ρ, z, φ) are given by
(see, for example, [13])

ψ4 = X

ρ2
, e2q = 	 sin2 θ

X
, u = ψ − 1, (A.1)

where


 = r̃2 + a2 − 2mr̃, 	 = r̃2 + a2 cos2 θ, (A.2)

and

X =
[
(r̃2 + a2)2 − 
a2 sin2 θ

	

]
sin2 θ, (A.3)

=
(

r̃2 + a2 +
2mr̃a2 sin2 θ

	

)
sin2 θ, (A.4)

where we have defined ρ = r sin θ, z = r cos θ and

r̃ = r + m +
m2 − a2

4r
. (A.5)

The potential ω which characterizes the Kerr second fundamental form K̃ij is given by
(see, for example, [13])

ω = 2ma(cos3 θ − 3 cos θ) − 2ma3 cos θ sin4 θ

	
. (A.6)

In the following R̃ denotes the Ricci scalar of h̃ij and R the Ricci scalar of the conformal
metric hij defined by (2).

In the limit a = 0 we have Schwarzschild data

ψ = 1 +
m

2r
, q = 0, R = 0, R̃ = 0. (A.7)

In the following, we assume a �= 0. We analyze first the non-extreme case |a| < m. In
this case, u has the following asymptotic behavior:

u = m

2r
+ O(r−2) as r → ∞, (A.8)

u =
√

m2 − a2

2r
+ O(1) as r → 0. (A.9)

The scalar curvature R satisfies

R = 2a2

r4
+ O(r−5) as r → ∞, (A.10)

R = 2

(
4a

m2 − a2

)2

+ O(r2) as r → 0. (A.11)

10
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For the extreme case |a| = m we have that at infinity u has the same behavior as in the
non-extreme case, but at the origin this changes to

u =
√

2m√
r(1 + cos2 θ)1/4

+ O(1) as r → 0. (A.12)

The behavior of the scalar curvature R and R̃ in this case is given by

R = 2m2

r4
+ O(r−5) as r → ∞, (A.13)

R = 16

[
3 cos2 θ − 1

(1 + cos2 θ)4

]
1

r2
+ O(r−1) as r → 0 (A.14)

and

R̃ = 2 sin2(θ)

m2(1 + cos2(θ))
+ O(r) as r → 0. (A.15)

Finally, we analyze the behavior of R near the axis ρ = 0. For a Brill metric like (2), the
Ricci scalar is given by [3]

R = −2e−2q
̄q, (A.16)

where 
̄ is the flat Laplacian in two dimensions, which in coordinates (r, θ) is given by


̄ = 1

r
∂r(r∂r) +

1

r2
∂2
θ . (A.17)

The function q defined by (A.1) vanishes at the axis

q(ρ = 0, z) = 0. (A.18)

This can be of course explicitly seen from (A.1). It is also a consequence of the regularity
of the metric (2) at the axis (see [3]). As a consequence of (A.18), we have that the radial
derivatives of q evaluated at ρ = 0 (which are equivalent to z derivatives evaluated at ρ = 0,
and hence tangential to the axis where q is constant) vanish. Then, in order to calculate R at the
axis using formula (A.16) we need to compute only the derivatives in θ . To calculate them, it is
convenient to make the change of variable ε = 2θ . We have ∂2

θ = 4∂2
ε and 2 cos2 θ = 1+cos ε.

Then we obtain

A := e2q = γ
(α + cos ε)2

(β + cos ε)
, (A.19)

where γ , α and β are functions of r̃ given by

α := 2
r̃2

a2
+ 1, (A.20)

β := 2
(r̃2 + a2)2

a2

− 1, (A.21)

γ := a2

2

. (A.22)

Calculating the required derivatives we get

1

A

∂A

∂ε
= − sin ε

[
2

α + cos ε
− 1

α + cos ε

]
(A.23)

11
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and

1

A

∂2A

∂ε2
= −cos ε

[
2

α + cos ε
− 1

α + cos ε

]
+ sin2 ε

[
2

α + cos ε
− 1

α + cos ε

]2

− sin2 ε

[
2

(α + cos ε)2
− 1

(α + cos ε)2

]2

. (A.24)

Using (A.24) we finally obtain

∂2q

∂ε2
= −

[
1 + α cos ε

(α + cos ε)2

]
+

[
1 + β cos ε

(β + cos ε)2

]
. (A.25)

Using (A.16) and (A.25) evaluating at the axis ε = 0 we get

R(ρ = 0) = −4

r2

[
1

1 + β
− 2

1 + α

]
. (A.26)

To prove that this expression is positive, consider the following inequality:

β = 2(r̃2 + a2)2

a2(r̃2 + a2 − 2mr̃)
− 1 > 2

r̃2

a2
+ 1 = α, (A.27)

obtained by replacing the denominator (r̃2 + a2 − 2mr̃) by (r̃2 + a2). Note that we assume
m > 0 in order to get the strict inequality. This inequality implies

1

1 + β
− 2

1 + α
< 0, (A.28)

and therefore we get our final result

R(ρ = 0) > 0, on M. (A.29)

We emphasize that (A.29) is valid for both the non-extreme and extreme cases.
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