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Building on the well-known Unruh-Davies effect, we examine the effects of projective measurements and
quantum communications between accelerated and stationary observers. We find that the projective measure-
ment by a uniformly accelerated observer can excite real particles from the vacuum in the inertial frame, even
if no additional particles are created by the measurement process in the accelerating frame. Furthermore, we
show that the particles created by this accelerating measurement can be highly entangled in the inertial frame,
and it is also possible to use this process to generate even maximally entangled two-qubit states by a certain
arrangement of measurements. As a by-product of our analysis, we also show that a single qubit of information
can be perfectly transmitted from the accelerating observer to the inertial one. In principle, such an effect could
be exploited in designing an entangled-state generator for quantum communication.
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I. INTRODUCTION

It has become well known in the 30 years since the dis-
covery of the Unruh-Davies effect that the concept of par-
ticle is dependent on an observer’s state of motion �1�, some-
what analogous to the way in which distance and time
become dependent on an observer’s state of motion, with the
introduction of special relativity. In the Unruh-Davies effect,
unitarily evolving particle detectors will respond to the same
inertial quantum vacuum state in very different ways, de-
pending on the acceleration of the detectors. Following this
surprising result, a great deal has been written regarding its
implications for quantum field theory in particular and phys-
ics in general �2–4�, with the debates sometimes centering on
what is meant by the reality of the Unruh particles, or invok-
ing different starting assumptions and arguments that lead to
similar results �5–7�.

The Unruh-Davies effect itself is a statement about the
unitary transformation of the quantum vacuum between in-
dependent observers and does not take into account the ef-
fects of communication between stationary and accelerated
observers or the effects of nonunitary projective measure-
ments occurring between the reference frames. These might
seem to be important concepts for comparing the different
experiences of the different quantum observers. Recently,
however, some interesting ideas have begun to emerge in the
field of relativistic quantum information and quantum en-
tanglement studying well-known staples such as quantum
teleportation in the context of accelerating observers �8–11�.

Here we continue to develop this approach and analyze
the effects of projective measurement on Unruh particles in
an accelerating frame, combined with the communication of
the result �via a purely quantum communication channel� to
an inertial observer. Remarkably, we find that such projective
measurements in the accelerating frame can create real par-
ticles in the inertial frame—even if no additional particles
are created by the measurement process in the accelerating
frame. By this, we explicitly mean the following: if we have

two independent observers in the vacuum, one at rest and the
other in uniform acceleration, the projective measurements
made by the accelerating observer will create particles de-
tectable by the inertial observer—she effectively gains ac-
cess to real particles via measurements on what was initially
nothing. Furthermore, if some certain projective measure-
ments are chosen by the accelerated observer �e.g., measur-
ing the particle number�, we have found that the inertial
frame particles generated by accelerated measurement are
always highly entangled, representing a generator for en-
tanglement resources—all available simply by measuring the
vacuum �12�.

II. ENTANGLEMENT GENERATED FROM MINKOWSKI
VACUUM BY ACCELERATED MEASUREMENT

In the following analysis, we consider the linear-optical
case and neglect the photon polarization, so that we are ef-
fectively concentrating our discussion on a massless scalar
field. However, all of our discussions and results can be
straightforwardly applied to the the case of photons with
polarization. Before jumping into the details of the calcula-
tion, we first outline the physical process involved.

The processes we propose can be set up by two observers
together with their associated detectors. One observer �Alice�
is inertial while the other one �Bob� is uniformly accelerating
with acceleration a. The Fock spaces associated with each of
them are denoted by FA and FB, respectively. The initial
state is the vacuum state of standard quantum field theory,
�0�A�FA, where Alice sits. Then Bob makes a standard von
Neumann projective measurement1 on the photon number of
any single mode �1 and gets an activation of his detector via
the Unruh-Davies effect. From the collapse of quantum state,

1Practically, the standard von Newmann measurement can be re-
alized by the so-called quantum nondemolition �QND� measure-
ment �13�.
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Alice will see photon creation in her frame and we will show
that the photons created in the inertial frame are always en-
tangled between certain different modes.

We analyze the effect in �3+1�-dimensional Minkowski
spacetime �see Fig. 1� and proceed along the line of �4�. First
of all, the world line of Bob in the right wedge �region I� is
generated by the timelike vector field

�a = a�X� �

�T
	a

+ T� �

�X
	a
 ,

where a is the acceleration and �T ,X� are global inertial co-
ordinates. Hence we can construct a quantum field theory in
region I using �a as the time translation vector and also in
region II by using −�a since �a is past directed in region II.
Then we have the well-known Bogoliubov transformation
�4,14,15�

Va�
I V−1 = �1 − e−2��/a�1/2�b� + e−��/ab��

†� ,

Va�
IIV−1 = �1 − e−2��/a�1/2�b�� + e−��/ab�

† � , �1�

where the operator V :FB→FA is the S-matrix connecting
the bosonic Fock space of Bob to the bosonic Fock space of
Alice. Then a�

I �a�
II� operating on FB is the annihilation op-

erator associated with the solution ��
I ���

II� to the Klein-

Gordon equation, which vanishes in region II �region I� and
oscillates harmonically with frequency ��0 with respect to
the accelerating time translation. Rigorously speaking, ��

I

and ��
II are a basis of normalized wave packets of positive-

frequency solutions, whose frequencies are peaked sharply
about � �see, e.g., Refs. �16,17��. The annihilation operators
b� and b�� on FA are not associated with an ordinary
Minkowski mode, but associated with the one-photon states
defined by

�� = �1 − e−2��/a�1/2���
I + e−��/a�

�

II*� ,

��� = �1 − e−2��/a�1/2���
II + e−��/a�

�

I*� ,

respectively.
Following the derivation of the Unruh-Davies effect, we

can express the standard Minkowski vacuum state �0�A
�FA as a quantum state in FB, which can be detected by
Bob �4,18�,

V−1�0�A = �
�
� �

n�=0

�
1

n�!
�e−��/aa�

I†a�
II†�n�
�0�B

= �

n��

�
�
� 1

n�!
�e−��/aa�

I†a�
II†�n�
�0�B, �2�

where �0�B is the vacuum state in the accelerating frame.
Note that the expression of the state, Eq. �2�, is formal in the
sense that the two Fock spaces FA and FB are actually not
unitarily equivalent �recall that the Stone–von Neumann
theorem for quantum mechanics does not apply to field
theory since it has an infinite number of degree of freedom�
�4�. For a rigorous definition of the thermal state of Bob in
region I, one has to employ an algebraic formulation of
quantum field theory and define the notion of the KMS con-
dition �see Ref. �3� for details�, which is beyond the scope of
the present paper. However, here we keep using the formal
unnormalized expression �2� and interpret different terms in
Eq. �2� as relative probability amplitudes with respect to dif-
ferent �. In the following, we neglect the normalization fac-
tor in front of each formula even when the state is normal-
izable.

Suppose that Bob in region I measures the photon number
on an arbitrary frequency �1 and obtains the number m. Then
the state will be projected onto the component which has the
photon number distribution n�1

=m on the frequency �1,
since the experimental results in regions I and II are corre-
lated in the sense of Eq. �2�. The resultant state after his
measurement is denoted by �	�B with the expression

�	�B = �

n���1

�
� 1

m!
�e−��1/aa�1

I† a�1

II†�m �
���1

� 1

n�!
�e−��/aa�

I†a�
II†�n�
�0�B�

=
1

m!
�e−��1/aa�1

I† a�1

II†�m �
���1

� �
n�=0

�
1

n�!
�e−��/aa�

I†a�
II†�n�
�0�B. �3�

FIG. 1. Alice and Bob in Minkowski spacetime.
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Then we switch back to the inertial frame to figure out
what Alice obtains. Recall that the S matrix V makes the
connection between the Fock spaces of Bob and Alice, so
after Bob finishes his work, Alice should have the state
V�	�B. Since the terms in Eq. �3�, with respect to the fre-
quency �1 and other frequencies, are factorized, one can see
from Eq. �2� that all the components with respect to the
frequencies ���1 will be transformed back to be the
vacuum state. After some calculations for the Bogoliubov
transformation, we obtain

V�	�B = �b�1

† + e−��1/ab�1
� �m�b�1

�† + e−��1/ab�1
�m


�
n=0

�
1

n!
�− e−��1/ab�1

† b�1
�†�n�0�A

= �
l=0

�

�
q=0

m

�− 1�lKql
m��1��q + l;q + l�A, �4�

where

Kql
m��� = �q,0e−l��/a for m = 0,

Kql
m��� =

m!

q!�m − q�!�i=1

m

�l + i�e−��m−q+l�/a��� otherwise,

and the number state �i ; j�A means that there are i and j
inertial frame photons in the modes ��1

and ��1
� , respec-

tively. Therefore, we can see that Alice obtains real photons,
since Bob’s projective measurements have modified the
original state. A simple way to view this effect can be given
as follows. In the standard Unruh-Davies effect the inertial
vacuum is unitarily transformed into a thermal bath, Eq. �2�,
for the accelerating observer. Since any unitary transforma-
tion is uniquely invertible, only a thermal bath in the accel-
erated frame transforms back to an inertial vacuum. Once the
accelerating observer makes a measurement, he destroys the
purely thermal nature of the field. Hence, it should not be
surprising that when the collapsed thermal field is trans-
formed back, the inertial observer no longer sees the
vacuum. Furthermore, one can check the nonseparability of
the state, Eq. �4�, between the modes ��1

and ��1
� via the

positive partial transpose �PPT� criterion �19,20�. The partial
transposed density matrix �PT is obtained from �
ªV�	�BB�	�V† by A�i ; j��PT�k ; l�A= A�k ; j���i ; l�A, so it can be
expressed as

�PT = �
l,l�=0

�

�
q,q�=0

m

�− 1�l+l�Kql
mKq�l�

m �q� + l�;q + l�AA�q + l;q� + l��

up to a normalization constant. It can be checked straightfor-
wardly by definition that the operator �PT is not nonnegative;
i.e., ����PT��� fails to be non-negative for all ��� in its Fock
space, so �PT must have a negative eigenvalue. Thus, by the
PPT criterion, the photon state, Eq. �4�, is nonseparable be-
tween the two modes ��1

and ��1
� —i.e., cannot be written

as a tensor product of two Fock states with respect to each of
the two modes ��1

and ��1
� . Therefore Bell’s inequality

should be violated since it is a pure state. So the inertial

frame photons generated by the accelerating measurement
are in an entangled state. The entanglement is between the
photon numbers in the modes ��1

and ��1
� .

Before finishing this section, we would like to point out
that the result we obtain so far can be trivially generalized to
the case that Bob measures the photon numbers of arbitrarily
many, say, n frequencies, for which Alice will obtain an mul-
timode entangled n-fold tensor product of Eq. �4� with re-
spect to n different frequencies.

III. USEFUL EXAMPLE: PRODUCING AN ALMOST
MAXIMALLY ENTANGLED TWO-QUBIT STATE

If we suitably arrange the projective measurements and
properly design a quantum communication protocol, it is
even possible for us to obtain an almost maximally entangled
two-qubit state �Einstein-Podolsky-Rosen �EPR� state� in the
inertial frame, which is suitable for use in quantum cryptog-
raphy �21�. First let us recall the accelerating projective mea-
surement made by Bob. However, instead of measuring a
single frequency as before, we let Bob measure the photon
numbers for two different frequencies �1 and �2 and obtain
m1 and m2, respectively. Then the corresponding projected
state �	�B changes to

�	��B =
1

m1!
�e−��1/aa�1

I† a�1

II†�m1
1

m2!
�e−��2/aa�2

I† a�2

II†�m2


 �
���1,�2

� �
n�=0

�
1

n�!
�e−��/aa�

I†a�
II†�n�
�0�B.

When we switch back to Alice’s frame, it is also clear that
Alice’s vacuum is excited and the photons in the inertial
frame are created by Bob’s accelerating measurement. The
expression for the inertial frame photon state is obtained via
the Bogoliubov transformation in the same way as before:

V�	��B = �b�1

† + e−��1/ab�1
� �m1�b�1

�† + e−��1/ab�1
�m1


�b�2

† + e−��2/ab�2
� �m2�b�2

�† + e−��2/ab�2
�m2


 �
i=1,2

�
ni=0

�
1

ni!
�− e−��i/ab�i

† b�i
�†�ni�0�A. �5�

Since the terms with respect to �1 and �2 are completely
factorized, Eq. �5� essentially is a tensor product of two ver-
sions of Eq. �4� with different modes. So our previous obser-
vation of entanglement is also applied to the photon state,
Eq. �5�, in which the entanglement not only takes place be-
tween the modes ��1

and ��1
� , but also between ��2

and
��2

� . On the other hand, one can rewrite the expression of
Eq. �5� to be a linear combination of the photon number
basis:
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V�	��B = �
l,l�=0

�

�
q=0

m1

�
q�=0

m2

�− 1�l+l�Kql
m1��1�Kq�l�

m2 ��2�


�q + l,q� + l�;q + l,q� + l��A, �6�

where the number state �i , j ;k , l�A means that there are i pho-
tons in the mode ��1

, j photons in the mode ��2
, k photons

in the mode ��1
� , and l photons in the mode ��2

� .
Given the initial photon state generated by the accelerat-

ing measurement, one may perform some selections on it to
obtain some more interesting quantum states. For example,
we let Alice make one more projective measurement on the
total photon number. If the result of the measurement is 2,
Eq. �6� is projected onto its two-photon component, which is
a two-qubit entangled state:

�
�A = �K10
m1 − K01

m1���1�K00
m2��2��1,0;1,0�A

+ �K10
m2 − K01

m2���2�K00
m1��1��0,1;0,1�A, �7�

which are nonseparable and entangled as is easily shown
from the PPT criterion. In addition, one may notice that the
coefficients in the above state are different only up to a
simple switch of labels between 1 and 2. Therefore, Eq. �7� is
almost a maximally entangled EPR state when the following
two conditions are satisfied.

�i� Bob detects the same number m=m1=m2 for the two
different frequencies �1 and �2.2

�ii� The difference between �1 and �2 is sufficiently
small, or effectively, Bob’s acceleration a is sufficiently
large.

However, in the above processes of generating entangled
two photonic qubits, Alice may need to clarify the degree of
entanglement for the resultant state �
�A in order to properly
use them. Then she should know from Bob his acceleration,
the value of the frequencies, and how many photons in each
frequency. So a channel of information flow from Bob to
Alice is necessary in the application. Such a one-way infor-
mation flow can be realized by signal photons created from
Bob in his frame on the background of thermal spectrum, Eq.
�2�, because a qubit of information can always be perfectly
transferred from Bob to Alice via a signal photon with fre-
quency �0��1 ,�2—i.e., when Bob creates a signal photon
in his frame—by the transformation

Va�0

I† V−1�0�A = �1 − e−2��0/a�1/2b�0

† �0�A.

Alice always receives the signal without any degradation due
to the thermal spectrum of photons in the accelerating frame
�8�. And the qubit of information carried by the signal photon
is invariant under the Bogoliubov transformation between
the two reference frames.

IV. CONCLUSION AND DISCUSSION

At last, we conclude our discussion by noting a few inter-
esting implications of our effect.

�i� Since the particle interpretation depends on the observ-
er’s state of motion, our above effect suggests that the inter-
pretation of a projective measurement on a particle should
also depend on the observer’s state of motion. Although it
seems counterintuitive that particle creation should be a re-
sult of making a projective measurement of particle number,
the analysis above is exactly a demonstration of such a phe-
nomenon. The detector does not create any new particles in
its own reference frame �it simply measures particles already
present�, but it does create particles in another reference
frame, and the observers in the other frame are perfectly free
to detect and use them in every real sense.

�ii� It should be noted that after the projective measure-
ments made by the accelerating observer, we not only have
physical photons in the inertial frame, but we also obtain a
nonzero energy-momentum tensor of the quantum field, in
contrast to the vanishing energy-momentum tensor of the
original vacuum state. Thus one can see that the accelerated
projective measurement is really a process of emitting energy
and momentum—and thus the act of measurement requires
an additional input of energy from the accelerating agent.

�iii� What is even more interesting is that, whenever an
accelerating observer detects the photons in his frame, the
inertial photons generated by his accelerated measurement
are always highly entangled. Such an effect does not depend
on the details of the accelerated detection—e.g., no matter
which modes are measured and what kind of photon distri-
bution in the measurement are obtained. Furthermore, in the
inertial frame, the inertial observer can obtain an almost
maximally entangled EPR state if we suitable arrange the
projective measurements. Thus our scheme for the accelerat-
ing measurements serves as a generator of highly entangled
resources in the inertial frame.

�iv� It is also remarkable that the proposed quantum-
optical-signal communication can perfectly transmit a qubit
of information from the accelerating observer to the inertial
observer simply by creating a single-photon qubit over the
thermal background of Unruh particles, Eq. �2�. However,
the reverse qubit transmission from the inertial observer to
the accelerating observer is not a satisfactory means of com-
munication, since the accelerating detector can be activated
even when no qubits have been sent by the inertial observer
�8�. This was not a problem for our analysis, of course, be-
cause we only consider a one-way flow of information from
the accelerating frame to the inertial frame.
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2The successful probability for this �i=1,2e−2m��i/a�1−e−2��i/a�
may be read from Eq. �2�.
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