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Heterozygous mutations of the human FOXP2 gene
are implicated in a severe speech and language
disorder. Aetiological mutations of murine Foxp2 yield
abnormal synaptic plasticity and impaired motor-
skill learning in mutant mice, while knockdown of
the avian orthologue in songbirds interferes with
auditory-guided vocal learning. Here, we investigate
influences of two distinct Foxp2 point mutations on
vocalizations of 4-day-old mouse pups (Mus musculus).
The R552H missense mutation is identical to that causing
speech and language deficits in a large well-studied
human family, while the S327X nonsense mutation
represents a null allele that does not produce Foxp2
protein. We ask whether vocalizations, based solely
on innate mechanisms of production, are affected by
these alternative Foxp2 mutations. Sound recordings
were taken in two different situations: isolation and
distress, eliciting a range of call types, including
broadband vocalizations of varying noise content,
ultrasonic whistles and clicks. Sound production rates
and several acoustic parameters showed that, despite
absence of functional Foxp2, homozygous mutants could
vocalize all types of sounds in a normal temporal pattern,
but only at comparably low intensities. We suggest
that altered vocal output of these homozygotes may
be secondary to developmental delays and somatic
weakness. Heterozygous mutants did not differ from
wild-types in any of the measures that we studied
(R552H) or in only a few (8321X), which were in the
range of differences routinely observed for different
mouse strains. Thus, Foxp2 is not essential for the innate
production of emotional vocalizations with largely
normal acoustic properties by mouse pups.
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Heterozygous mutations of human FOXP2 cause severe
speech and language disorders (Lai et al. 2001; MacDermot
et al. 2005) involving deficits in rapid coordinated orofacial
movements and impaired expression and reception of lan-
guage (Watkins et al. 2002). Neuroimaging and behavioural
data suggest changes in frontostriatal and/or frontocerebel-
lar brain circuits mediating learning, planning and execution
of orofacial motor sequences (Vargha-Khadem et al. 2005).
FOXP2 encodes a transcription factor (Vernes et al. 2007)
found in highly similar form and expressed in correspond-
ing brain areas in many vertebrates, including rodents and
birds (Fisher & Scharff 2009). Its involvement in human spo-
ken language may be built on evolutionarily ancient circuits
implicated in sensory—motor functions and motor-skill learn-
ing (Fisher & Marcus 2006). Lentiviral-based knockdown
of FoxP2 expression in a key striatal nucleus of juvenile
zebrafinches during song learning vyields inaccurate and
incomplete vocal imitation (Haesler et al. 2007). Heterozy-
gous mice with disrupted Foxp2 show abnormal synaptic
plasticity in relevant circuits and impaired motor-skill learning
(Groszer et al. 2008). Whether and how their vocalizations
are changed remains to be clarified in view of differences in
data (Fujita et al. 2008; Groszer et al. 2008; Shu et al. 2005).

To understand FOXP2/Foxp2 functions, it is necessary
to distinguish roles in innate versus learned complex
movement patterns. In the present study, we address this by
analysing vocalizations of mouse pups carrying aetiological
Foxp2 mutations. Foxp2-R5562H mutants carry an arginine-
to-histidine substitution in the DNA-binding domain of the
encoded protein, matching a human FOXP2-R553H mutation
which impairs speech and language in a large family (Lai
etal. 2001) and disrupts protein function (Vernes et al.
2006). Here, we significantly extend previous vocalization
analyses of these mutants (Groszer et al. 2008), incorporating
larger numbers of animals and novel sound parameters,
and perform parallel investigations of a second distinct
line with aetiological relevance. Foxp2-S321X mice carry
an early stop codon at position 321 of the protein, close
to a human FOXP2-R328X mutation disturbing speech and
language in another family (MacDermot et al. 2005). The
human/mouse nonsense mutations are likely to represent
null alleles (Groszer etal. 2008; MacDermot et al. 2005;
Vernes et al. 2006).
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Unlike prior investigations of FoxpZ2 disruption on mouse
pup ultrasound emission at 6—10 days of age (Fujita et al.
2008; Shu et al. 2005), we characterize three vocalization
types — ultrasonic whistles, clicks and harmonically struc-
tured calls of various frequency bandwidths containing varied
amounts of noise — which are innately produced by 4-day-old
animals in states of isolation (ultrasounds and clicks) and dis-
tress (harmonic sounds, ultrasounds and clicks) (Ehret 1975;
Haack et al. 1983). Pups are deaf up to the age of 9 days
(Ehret 1976), lacking auditory feedback which may influence
the intensity, pitch and variability of calls (Romand & Ehret
1984). Thus, we establish the influence of Foxp2 mutations
on emotionality and motor coordination of early vocaliza-
tions without intervening auditory feedback and learning.
Compared with data on humans and songbirds, we sepa-
rate possible impacts of Foxp2 mutations on innate motor
coordination from effects on motor-skill learning.

Materials and methods

Animals

Foxp2-R552H and Foxp2-S321X mutant mice were generated via
a gene-driven N-ethyl-N-nitrosourea (ENU) mutagenesis strategy.
As previously described by Groszer etal. (2008), the founders
were crossed onto the C3H/HenNHsd background for up to nine
generations, exploiting marker-assisted backcrossing to accelerate
homogenization of genomic background and elimination of non-
relevant ENU mutations. We then paired heterozygous females of
both Foxp2 mouse lines (R552H and S321X) with heterozygous
males of the same lines. The pairs were housed in plastic cages
(26.5 x 20 x 14 cm) at an average temperature of 23°C and a 12-h
light—dark cycle (light on at 8 h). Wood shavings served as nest
material. Food and water were available ad libitum. To allow both
mating in the postpartum oestrus of the female and an undisturbed
raising of the pups by the female, the male was removed at the
day of birth of the pups. R552H heterozygous females had 3-10
pups and S321X heterozygous females 3-9 pups in their litters. The
tested animals, 12 pups of each genotype (wild-type, heterozygous
and homozygous for the Foxp2-R552H or Foxp2-S321X mutation),
were selected from 10 R552H and 9 S321X litters. Thus, we set out
with recording and analysing vocalizations from 6 x 12 = 72 mouse
pups. In the figures, groups of wild-type animals are indicated by
+/+, of heterozygotes by R552H/+ or S321X/+ and homozygotes
as R552H/R552H or S321X/S321X. Experiments were carried out
in accordance with the European Communities Council Directive
of 24 November 1986 (86/609/EEC) and were approved by the
Regierungsprasidium Tlbingen (Germany).

Genotyping

Mice were genotyped by polymerase chain reaction (PCR) and
restriction digestion of genomic DNA. For the R552H line, the
following primers were used: 5-GTTCCTCTGGACATTTCAAC-3" and
5'-TGTGAGCATGCCTTTAGCTG-3'. PCR conditions were as follows:
94°C for 1 min (1 cycle), 94°C for 30 seconds, 55°C for 30 seconds,
68°C for 1 min (35 cycles) and 72°C for 10 min (1 cycle). The 603
bp PCR products were digested with Hgal which yields fragments
of 372 and 231 bp for the wild-type allele, while the mutant R552H
allele remains undigested.

For S321X, the following primers were used: 5'-ATAGTATGGAAG
ACAACGGCATC-3' and 5-GATGGGGTTAGTGAATGTTCTCA-3". PCR
conditions were as follows: 95°C for 15 min (1 cycle), 94°C for 1 min,
55°C for 1 min, 72°C for 1 min (35 cycles) and 72°C for 10 min
(1cycle). The 468 bp PCR products were digested with Af/ll, which
yields fragments of 332 and 136 bp for the mutant S327X allele,
while the wild-type allele remains undigested.
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Recording of pup vocalizations

Vocalizations of the mouse pups were recorded at day 4 after
birth. We selected this developmental time-point for three important
reasons. First, at this age, the production rate of ultrasounds during
activity periods under isolation conditions becomes maximal (Haack
etal. 1983; Okon 1970). Second, because the pups are still deaf,
their vocalizations reflect innately specified production mechanisms,
without any influence of auditory feedback. Third, the selection
of an early time-point minimizes potential effects of postnatal
developmental delays in mutants, which could act as confounding
factors (Groszer et al. 2008).

The recordings were performed in a soundproof and anechoic
room under dim red light at an average temperature of 23°C. For
recording of ultrasounds in response to isolation (USIs), a pup was
separated from its mother and littermates and placed in a round
and shallow dish (diameter: 14 cm, height: 4.5 cm). Usually, pups
started emitting USlIs shortly after being isolated. Most USIs were
recorded during motor activities (righting, falling over and pivoting)
of aroused pups as described by Haack et al. (1983). After 15 min
of recording possible USls, the pup was lifted and its tail gently
pressed between thumb and index finger for releasing distress calls
(DCs), which were audible to the human observer, for a minimum of
10 seconds. In this situation of DC production, pups also vocalized
ultrasounds (Ehret 1975) that were called ultrasounds under distress
(USDs). Vocalizations were recorded with a calibrated condenser
microphone (Bruel and Kjaer, Model 4135) with preamplifier (Bruel
and Kjaer, Model 2633) positioned about 8 cm away from the pup’s
mouth. The output of the microphone was high-pass filtered (Kemo
VBF 10M, 132 dB/octave, 20 kHz high-pass for USIs, 500 Hz high-
pass for DCs and USDs), amplified (Bruel and Kjaer measuring
amplifier, Model 2636, 40 dB setting for USIs and 70 dB setting
for DCs and USDs) and recorded (Toshiba notebook CPU, 500 kHz
DAQCard-6062E National Instruments, SIGNAL software version 4.1;
Engineering Design, Berkeley, CA, USA) with a gain of 10.0 and
a sampling rate of 357143 Hz. Under these recording conditions,
overload of the equipment or clipping of the recordings did not occur.
After recording of the vocalizations, the pup was weighed, individually
marked for identification and genotyped as described above.

Analyses of the acoustical parameters of the vocalizations were
performed with siGNaL software versions 4.0 and 4.1. In order to
measure sound pressure levels (SPLs) of the recorded vocalizations,
a calibration procedure was necessary. For this, a synthesized tone
of a frequency of 20 kHz was recorded as described above for the
DCs, USDs and USIs. At the same time, the peak SPL of the tone
was read from the display of the measuring amplifier and noted. The
SPLs were adjusted to 60 dB for USIs and 85 dB for DCs and USDs,
respectively, and the rms-voltages of the recordings corresponding
to these SPL values were noted. With this calibration, the voltages
of the recorded pup calls were calculated in dB SPL.

The recordings and analyses of pup calls were carried out by the
experimenters blind for the genotype of the pups.

Analysis of sound parameters

The following parameters of the pup calls were analysed: number of
emitted calls, number of clicks associated with production of USIs
and USDs, number of USIs and USDs with frequency jumps, noise
content of DCs, peak SPL, call duration and duration of inter-call
intervals in series of USIs and DCs.

Statistical analysis

The statistical analyses were carried out with SIGMASTAT software
(version 3.1). Normally distributed data were plotted in the figures
as means =+ standard deviation. The means of two groups were
compared with the t test, of several groups with a one-way analysis of
variance (aNova) followed by the Tukey test for comparisons between
two groups. Where data were not normally distributed (assessed
by Kolmogorov—-Smirnov test), they were plotted in the figures as
medians plus 25%, 75% quartiles and range. Two groups of such data
were compared with the U test and several groups with a one-way
ANOVA on ranks followed by the Dunn'’s test for comparisons between
two groups. If the Dunn's test showed significant differences
(P < 0.05, as indicated in the SIGMASTAT program), then U tests
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were conducted to assess the final significance values between
two groups. These are indicated in the figures. Further, numbers
of alternative events (e.g. numbers of calling or non-calling animals
of different genotypes) were compared with the chi-square test.
All statistical tests were two-tailed, with « < 0.05. Significant
differences, as emerging from the above-mentioned tests, are
indicated in the figures by *P < 0.05, **P < 0.01 and ***P < 0.001.
Table S1 in the supplement provides an overview of the statistical
tests applied to the data shown in the figures together with the
parameters and the obtained results.

Results

General

Consistent with Groszer et al. (2008), homozygous pups of
R552H and S3271X mouse lines displayed developmental
delays and severe motor impairments, surviving only 3-4
weeks after birth. There was evidence of reduced body
weight compared with wild-types and heterozygotes already
at postnatal day 4 (ANOVA on ranks, P < 0.01 for the R5562H
line and P < 0.001 or P < 0.05 for the S321Xline; Fig. 1). All
heterozygotes were fully viable and overtly normal (also see
Groszer et al. 2008).

In the isolation situation, USIs were emitted by all wild-
type and heterozygous animals and by 4 of the 12 S321X
homozygotes. No USIs could be recorded from the R552H
homozygotes. Thus, there were significantly lower numbers
of USIs from homozygotes of both mouse lines compared
with the respective heterozygotes and wild-types (chi-square
test, P < 0.001 in each case), while significantly more S321X
homozygotes produced USIs compared with R552H homozy-
gotes (chi-square test, P = 0.03).

Example spectrograms of USI series are shown in Fig. 2. All
USIs were frequency modulated pure-tone whistles, mostly
in the frequency range between 60 and 80 kHz. Some of the
USIs showed a frequency jump (Fig. 2a,d) mainly at the end
of the USI. USIs often started with a click, which is a short
broadband noise pulse (examples in Fig. 2a,b). Although no
USIs were detected from R552H homozygotes, all animals
produced series of clicks (Fig. 2c).

12 12 12 12 12 12
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3.0

Body weight [g]
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1.51 B body weight of R552H
O body weight of S321X
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Figure 1: Body weight of pups of both FOXP2 mouse lines
(R552H and S321X). Homozygous mutants of both lines
weighed significantly less compared with their wild-type and
heterozygous littermates. The number of animals per group is
shown in the top row of the figure.
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In the distress situation, all animals in all groups vocalized
series of DCs interspersed with USDs and clicks (Fig. 3). Like
USls, USDs were frequency modulated pure-tone whistles,
and many started with a click. In a similar manner to USls,
some USDs showed a frequency jump, mainly at the end of
the call. The DCs were broadband vocalizations covering a
frequency range between about 3 and 120 kHz. To gain more
insight into call structures, we measured the noise content
in spectrograms as spectral energy occurring over periods
of the vocalizations in between or instead of harmonic com-
ponents (Fig. 3). An evaluation of all analysed DCs showed
that the distribution of the number of DCs with different
percentages of noise content split into three classes: the
number of DCs with no noise content (0-5%) was low-
est. Then, the number of DCs with a higher noise content
increased up to a noise content of 20-25% followed by a
sharp decrease in the number of DCs with a noise content
of 26-30%. Then, the number of DCs with a higher noise
content again increased up to a noise content of 55-60%
followed by a sharp decrease in the number of DCs with a
noise content of 60-65%. Finally, there was a high number
of DCs with a noise content up to 80-100%. Therefore, we
defined low-noise DCs as those containing noise for up to
25% of their duration, medium-noise DCs as those contain-
ing noise for 25-60% of their duration and high-noise DCs as
those containing noise for more than 60% of their duration.
Example vocalizations are indicated in Fig. 3. In many of the
high-noise DCs, the harmonic frequency structure of the calls
was replaced by the noise (Fig. 3).

Numbers of vocalizations
In line with our previous analyses of R552H mutants (Groszer
et al. 2008; ANOVA on ranks, P < 0.001; Fig. S1), wild-types
and heterozygotes of the S327X line vocalized significantly
more USIs (ANOvA on ranks, P < 0.001; Fig. 4a) and USDs
(ANOVA, P < 0.001; Fig. 4b) than homozygotes. S327X wild-
types produced significantly more USDs than heterozygotes
(ANOVA, P < 0.01; Fig. 4b). The number of DCs did not differ
among the three genotypes of either mouse line (Fig. 4b,
Fig. S1b), i.e. homozygous S327X and R552H animals vocal-
ized, on average, as many DCs as their respective het-
erozygous and wild-type littermates. Significant differences
between the genotypes occurred, however, with regard to
the distribution of the DCs with different noise content.
Wild-types and heterozygotes of both mouse lines produced
significantly more high-noise DCs than medium- and low-
noise DCs (ANOVA or ANOVA on ranks, P < 0.001 or P < 0.01)
while in the homozygotes, DCs of the three classes occurred
about equally frequently (Fig. 5). Thus, homozygous mutants
consistently produced less high-noise and more low-noise
DCs than the wild-types and heterozygotes (for the R552H
line ANOVA on ranks, P < 0.001; for the S327X line ANOVA on
ranks, with P < 0.001, P < 0.01 or P < 0.05; Fig. 5).
Because ultrasounds may start with a click (Figs 2 and 3),
we compared the percentage of USIs and USDs with clicks
among the genotypes. Wild-type and heterozygous animals
of both mouse lines vocalized similar percentages (20-40%
on average, no statistically significant differences, t test) of
USIs with clicks (Fig. S2); homozygotes produced only a few
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Figure 2: Example spectrograms of series of ultrasounds (USIs) and clicks from isolated pups. The genotype of the vocalizing
pup is indicated below the spectrograms. (a, b) USIs, partly with clicks; (c) clicks without USIs. Some USIs (a, b, d, e) end with a

frequency jump.

or no USIs at all, so they were not considered here. In the
case of USDs, wild-types and heterozygotes of both mouse
lines produced an average of 80—90% of the USDs combined
with clicks, which is a significantly higher proportion than in
the respective homozygous mutants of their own line (ANOVA,
P < 0.01 or P < 0.05 for the R552H line and P < 0.01 for the
S321X line; Fig. 6a). Our earlier investigation suggested that
R552H homozygotes produced clicks at a significantly higher
rate and USDs at a significantly lower rate compared with
wild-types and heterozygotes (Groszer et al. 2008; ANOVA,
P < 0.001 or P < 0.01; Fig. S3). We hypothesized that a click
could signal the attempt to produce an ultrasound; in support

Genes, Brain and Behavior (2010) 9: 390-401

of this, the average sum of USDs and clicks did not differ
between R552H homozygotes, heterozygotes and wild-
types (Groszer et al. 2008; Fig. S3). A corresponding pattern
of results was observed for the S327Xline, i.e. homozygotes
produced significantly more clicks and less USDs than het-
erozygotes and wild-types (ANOVA, P < 0.001) while the sums
of clicks and USDs did not differ between the groups (Fig. 6b).

Vocalization properties

Call duration

Overall, the duration of DCs was similar (average 70-100
milliseconds) for the different genotypes (Fig. 7a,b). Only
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Figure 3: Example spectrograms of DCs alternating with USD and clicks. The genotype of the vocalizing pup is indicated below
the spectrograms. The DCs may show a high-noise content (high-noise DC), a medium-noise content (medium-noise DC) or a low-noise
content (low-noise DC). USDs may start with a click and may end with a frequency jump.

S321X heterozygotes had significantly longer DCs than the
homozygotes of the same type (aNOvA, P < 0.01, Fig. 7b).
With only about 40 milliseconds average duration, USDs of
homozygotes of both mouse lines were significantly shorter
than those of wild-types and heterozygotes of the respective
lines which had an average duration of almost 80 milliseconds
(ANOVA with P < 0.05 for the A552H line and P < 0.001
for the S327X line; Fig. 7a,b). The USIs of wild-type and
heterozygous animals did not differ, with durations of about
40 milliseconds (Fig. 7c).
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Durations of inter-call intervals

All genotypes of both mouse lines produced series of DCs
with similar durations of inter-call intervals (no statistically
significant differences, ANOVA or ANOVA on ranks) most of
which were in the range of 300—400 milliseconds (Fig. 8a,b).
For the S321X line, heterozygotes produced US| series with
durations of inter-call intervals that were significantly longer
than those of wild-types (t test, P < 0.001; Fig. 8c). R552H
heterozygotes did not differ from wild-type littermates in this
respect (Fig. 8c).
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Frequency jumps

Given that ultrasounds may end with a frequency jump
(Figs 2 and 3), we compared the percentage of USIs
and USDs with frequency jumps among the genotypes
(Fig. 9a,b). Ultrasounds (both USIs and USDs) from wild-
type animals of the S327X line had a significantly higher
rate (about twice as high) of frequency jumps (U test,
P < 0.05 or ANOVA on ranks, P < 0.01) than heterozygotes
and homozygotes.

Sound pressure level

For both R652H and S321X, the DCs and USDs of homozy-
gous mutants were significantly softer (by 10 or 20 dB,
respectively) than the calls of wild-types and heterozygotes
(ANOVA, P < 0.001; Fig. 10a,b). USDs of wild-types and het-
erozygotes were significantly (by about 30 dB) louder than

the respective USIs (U test, P < 0.001 or t test, P < 0.001;
Fig. S4). USIs of homozygotes could not be compared
because of insufficient numbers of vocalizations. Peak SPLs
of DCs, USDs (Fig. 10a,b) and USlIs (Fig. S4a,b) did not differ
between wild-types and heterozygotes.

The DCs of the three different noise classes differed in their
SPLs in the wild-types of both lines and heterozygous R552H
animals but not in the other groups of animals (Fig. 11).
Where significant differences occurred (anova, P < 0.01 or
P < 0.001; Fig. 11), high-noise DCs were always louder than
low-noise DCs, with the SPLs of the medium-noise DCs in
between. Further, the DCs of all noise classes emitted by
homozygous S327X animals were significantly softer (ANOvA,
P < 0.001, P < 0.01) than the respective DCs of the wild-
types and heterozygotes (Fig. 11b). This was also the case for
the high-noise DCs of the R552H animals (ANOVA, P < 0.001;
Fig. 11a).
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Figure 7: Durations of DCs and of USDs or USIs. (a) The duration of DCs was similar for the three groups of the R552H mouse
line, while S3271X homozygotes had shorter DCs than heterozygotes (b). USDs of homozygotes of both mouse lines were shorter than
those of wild-types and heterozygotes of the respective lines (a, b). There were no differences in duration between USIs of wild-type
and heterozygotes of both mouse lines (c). Sounds of 8-12 animals per group could be analysed (see numbers in the top row of the

figure).
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Figure 8: Duration of inter-call intervals in series of DCs and series of USlIs. (a, b) Inter-call intervals in series of DCs did not differ
among the genotypes of either line. (c) Inter-call intervals in series of USIs of the S327X heterozygotes were longer than those of
their wild-type littermates. US| inter-call intervals did not differ between R552H heterozygotes and their wild-type littermates. Mostly,
sounds of 12 animals per group could be analysed (see numbers in the top row of the figure).
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significant differences in SPL between the DCs of different noise content. Sounds of 6—12 animals per group could be analysed (see

numbers in the top row of the figure).

Discussion

Studies of Foxp2 disruptions generated by gene target-
ing (Fujita etal. 2008; Shu et al. 2005) reported absence
of USIs in homozygous and reduced numbers of USIs in
heterozygous, 6—10 day old pups. Wild-types and heterozy-
gotes produced clicks associated with and separated from
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USIs, while homozygotes produced clicks without USls at
reduced rates compared with the other genotypes (Fujita
et al. 2008; Shu et al. 2005). Our data confirm that homozy-
gous disruptions are associated with dramatic reductions
in US| output. However, the heterozygotes emitted USls
at rates not significantly different from those of wild-types
(Figs 4a and S1a). Notably, the prior investigations described
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Figure 12: Spearman correlation analysis between body weight and number of recorded USIs of the pups. The correlation
coefficients (r) and corresponding P values are indicated. The regression lines (y = yp + a* x) with yp = —521.9, a = 290.0 for the
R552H pups (a) and yp = —227.8, a = 158.2 for the S327X pups (b) describe these correlations. On average, the number of recorded

USIs increases with increasing body weight for both mouse lines.

moderate developmental delays in heterozygous animals,
which were reported to have lower weight than wild-types
at the age when vocalization was assessed (6—10 days)
(Fujita et al. 2008; Shu et al. 2005). This key confounding
factor is absent in our heterozygotes, which show no indi-
cations of developmental delay and have similar weight to
wild-types (Fig. 1). The absence of such confounds may
explain the distinct heterozygous vocalization findings in the
different studies. Crucially, our findings do not support the
previous claims (Fujita et al. 2008; Shu et al. 2005) that a
complete lack of functional Foxp2 protein prevents ultrasonic
vocalization. Our analyses of homozygotes in the distress sit-
uation clearly show that motor coordination for ultrasound
production remains intact. The broader data indicate that con-
nections between Foxp2 dysfunction and changes in mouse
pup vocalizations are more complex than these prior studies
suggested, discussed further below.

Homozygous mutants lacking functional Foxp2 can
produce multiple call types with complex structures
Such mice emit ultrasounds, harmonically structured DCs
and clicks (Figs 2-5 and S1). Thus, structural conditions
and neural mechanisms underlying motor coordination of
all these different vocalizations remain intact, even in total
absence of functional Foxp2 protein in both R552H and
S321X homozygotes.

Total rates of distress vocalizations (DCs and USDs)
are unchanged in Foxp2 mutants

Independent of genotype, mouse pups emitted similar
numbers of audible DCs (Figs 4b and S1b) leading us to
hypothesize that the emotional regulation for vocalizing
is not altered by Foxp2 disruption at the age of 4 days.
If emotional regulation is unaltered, why should the
number of emitted ultrasounds vary between genotypes
(Figs 4 and S1)? Because clicks are often associated with
ultrasounds (Figs 2, 3, 6 and S2), perhaps the occurrence of a
click without ultrasound represents an attempted ultrasound
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emission, which is unsuccessful or undetectable because
of insufficient energy. Consequently, the sum of emitted
clicks and ultrasounds should be constant and genotype
independent, as observed for USDs (Figs 6b and S3).
Although we currently cannot exclude the possibility of
emotional differences between genotypes, we do not believe
this to be the most parsimonious explanation for our data.

Homozygous Foxp2 mutants emit comparably soft
sounds

Given that the distress data discussed above indicate
unchanged attempts to vocalize, why were no USIs recorded
from homozygous R552H mutants and only few from just 4
of the 12 S321X homozygotes? A potential explanation is the
following. The homozygous mutants showed significantly
reduced rates of postnatal weight gain accompanied by
general motor dysfunction (Groszer et al. 2008). Evidence
of subtle postnatal dilation of distal airspaces in the lungs
of homozygous nulls has also been documented (Shu et al.
2007). Although we minimized effects of developmental
delay by assessing pups at an early time-point (P4), we found
significantly reduced weight (Fig. 1) and significantly lower
SPLs of DCs and USDs in homozygotes compared with
heterozygotes and wild-types (Fig. 10). USDs are typically
much louder than USIs. The latter are, on average, just above
the sensitivity limits (~56 dB) of our recording and analysing
apparatus (Fig. S4). Thus, it is plausible that homozygous
mutants emitted very soft USIs undetectable with our
equipment. Such an interpretation, whereby soft USIs can
go undetected because of technical reasons, may also hold
for other studies in which USIs of homozygous mutants
appeared absent while clicks were present (Fujita et al. 2008;
Groszer et al. 2008; Shu et al. 2005).

The lower proportion of high-noise DCs emitted by
homozygotes (Fig. 5) and the lower SPLs of their high-
noise DCs (Fig. 11) contributed to their comparably soft DCs
(Fig. 10). Loud vocalizations tend to have high-noise content
(Fitch et al. 2002).
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Taken together, low weight, small numbers of high-noise
DCs and low SPLs of all vocalizations suggest that somatic
weakness of homozygous mutants plays a significant role
in their altered vocal output. This may yield difficulties in
creating enough power for tension of the vocal cords neces-
sary for emitting loud whistle-like ultrasounds (Roberts 1975;
Sanders et al. 2001) and for generating the high air velocity
through the throat necessary to produce loud and, therefore,
noisy DCs. A statistically significant correlation between body
weight and number of recorded USIs in both mouse lines
(P < 0.0001 in each case; Fig. 12) supports the hypothesis
that somatic weakness, as measured via body weight, influ-
ences the number of detectable sounds. On average, more
USIs were recorded from heavier pups.

Homozygous Foxp2 mutants emit vocalizations of
normal time structure

Homozygous mutants and their wild-type littermates did not
differ in the durations of DCs (Fig. 7a,b) and of the inter-call
intervals in DC series (Fig. 8a,b), indicating similar overall
coordination of calling in the time domain. USDs of homozy-
gotes were shorter than USDs of heterozygous and wild-type
animals (Fig. 7a,b). This finding may again relate to somatic
weakness and general motor dysfunction of homozygotes,
given that pups are known to emit longer ultrasounds when
they are more motorically active (Branchi et al. 2004).

Pups heterozygous for Foxp2 mutations do not
show consistent differences in innate vocalisations
Heterozygous R552H mutants did not differ from wild-
type littermates in any of the vocalization properties
assessed. That is, the mutation in heterozygous mice had
no measurable effect on innate emotional vocalizing, at
least in 4-day-old pups, prior to any possible influence of
auditory feedback. Because Foxp2 is expressed in many
brain areas of sensory, motor and emotional processing
(Campbell etal. 2009), adult heterozygotes will now be
investigated for possible influence of hearing and emotions
on their vocalizations.

Compared with wild-type littermates, S327X heterozy-
gotes showed significant differences in 5 of the 16 measures
characterizing the animals’ sounds: they emitted fewer USDs
(Fig. 4b), fewer ultrasounds (USlIs and USDs) with frequency
jumps (Fig. 9), high-noise DCs with lower SPLs (Fig. 11b)
and USIs with longer inter-call intervals (Fig. 8c). Thus, the
S321X null allele mutation of Foxp2 possibly shows dif-
ferences in phenotypic effects from the R552H missense
mutation (Vernes et al. 2006). Notably, however, the magni-
tudes of the vocalization differences in S327X heterozygotes
were small, and even larger differences could be observed
between the wild-types of the two mouse lines of our study.
Genetic drift during backcrossing of the lines (Egan et al.
2007) as well as litter effects may account for differences
between wild-types. This stresses previous findings (Brunelli
2005; Ehret 2005; Thornton et al. 2005) that vocalization rates
and acoustic characteristics of rodent sounds are subject to
numerous genetic influences.
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Concluding remarks

The present findings significantly extend previous data
on vocalizations of R552H mutants (Groszer et al. 2008)
by incorporating more animals, novel sound parameters
and a second line of mice carrying a distinct mutation
(S321X mutants) in the analysis, leading to the new insight
that Foxp2 expression is not an essential prerequisite
for innate production of emotional vocalizations, at least
in young, still deaf animals. Research in primates has
provided ample evidence for the existence of separable
neural circuits for the production of learned and innate vocal
patterns (Jurgens 2009). In humans, neocortical damage to
circuits supporting learned vocalizations completely prevents
speaking or singing while innate non-verbal emotional
utterances such as crying and laughing are preserved
(JUrgens 2002). The present study assessed this distinction
in relation to potential functions of FoxpZ2 in mice. For the
parameters measured, our data show that dysfunction of
Foxp2 in 4-day-old mouse pups does not overtly affect the
emission of vocalization series that are innately produced in
appropriate behavioural contexts, arguing against pure roles
of Foxp2 in motor production of vocalizations. Vocalization
differences in homozygous Foxp2 mutants co-occur with
developmental delays, somatic weakness and general motor
dysfunction, and are unlikely to represent direct effects.
We also found that innate vocalizations of heterozygous
pups were either unaffected (R552H) or showed small
effects (§327X) that were not as large as differences
between wild-types of the different lines. Any differences
were in the range and of the type previously observed for
normal mouse pups of different strains (Bell etal. 1972;
D'Udine etal. 1982; Hahn & Schanz 2002; Hahn etal.
1997, 1998; Robinson & D’Udine 1982; Roubertoux et al.
1996). Given that other studies implicate Foxp2 in motor-
skill learning in mice (Groszer et al. 2008) and in auditory-
guided vocal learning in songbirds (Haesler et al. 2007), we
hypothesize that its effects on motor coordination may be
most apparent in the context of learning motor patterns for
vocalizing.
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Supporting Information

Additional Supporting Information may be found in the online
version of this article:

Figure S1: Number of vocalizations emitted by R552H
mutants. (a) USIs. Wild-types and heterozygotes produced
similar US| rates during the 15 min of recording, while
ultrasounds from homozygous pups were not detected.
(b) Number of DCs and USDs emitted in the distress
situation. The rates of DCs did not depend on the genetic
background. Homozygotes produced significantly less USDs
than their wild-type and heterozygous littermates. All three
R552H groups produced less USDs than DCs. Data represent
an expanded sample from that reported in Groszer et al.
(2008). Sounds of 11 or 12 animals per group could be
analysed (see numbers in the top row of the figure).

Figure S2: Percentage of ultrasounds in combination with
clicks emitted in isolation (USIs) by R552H and S321X pups.
Except for wild-type S327X animals with a low percentage
of USIs associated with clicks, about one third of the USIs
from the other groups contained clicks. Sounds of 10 or 12
animals per group could be analysed (see numbers in the top
row of the figure).

Figure S3: Number of ultrasounds (USDs) and clicks
produced by R552H mutants in the distress condition. Wild-
type and heterozygous pups emitted more USDs than clicks,
while this was reversed in homozygotes. The sum of the
emitted clicks and USDs, however, did not differ between
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genotypes. Data represent an expanded sample from that
reported in Groszer et al. (2008). Sounds of 11 or 12 animals
per group could be analysed (see numbers in the top row of
the figure).

Figure S4: Peak SPL of USDs or USIs. USDs were
louder than USIs for all genotypes. (a) Wild-type animals;
(b) heterozygotes. Sounds of 11 or 12 animals per group
could be analysed (see numbers in the top row of the figure).
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Table S1: List of statistical tests with their parameters and
results as applied to the data shown in the figures.
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