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The human capacity for acquiring speech and language

must derive, at least in part, from the genome. In 2001,

a study described the first case of a gene, FOXP2, which

is thought to be implicated in our ability to acquire spo-

ken language. In the present article, we discuss how

this gene was discovered, what it might do, how it

relates to other genes, and what it could tell us about

the nature of speech and language development. We

explain how FOXP2 could, without being specific to the

brain or to our own species, still provide an invaluable

entry-point into understanding the genetic cascades

and neural pathways that contribute to our capacity for

speech and language.

It has long been known that our genomes are, nucleotide
for nucleotide, quite similar (around 98.5%) to those of our
nearest non-talking neighbors, chimpanzees [1,2]. Why is
it that we can talk and they cannot? Culture must play
some role, but chimpanzees that are raised in human
environments do not acquire human linguistic compe-
tence, even with intensive tuition [3,4]. By contrast,
groups of deaf children with restricted linguistic input
can spontaneously create signing systems that have many
hallmarks of natural spoken language, with structure at
both word and sentence levels [5–7]. Over the years much
evidence has accumulated to support the idea that aspects
of our genetic makeup are critical for acquisition of spoken
language [8]. Clearly some of the crucial changes are
related to anatomical constraints [9]. For example,
genetically encoded modifications of vocal tract mor-
phology, which give us a longer oral cavity and lower
larynx than other primates, are crucial for modern human
speech, allowing us to produce a dramatically increased
repertoire of sounds [9]. However, there are also likely to
be genetic changes that impact on aspects of neurological
development, including those that underlie our capacity
for enhanced motor control over the articulators, as well as
those that contribute to higher order cognitive processing
involved in language acquisition and use [8].

A gene mutated in a speech and language disorder

A 2001 study identified the first case of a gene that may be
implicated in our abilities for acquiring spoken language
[10]. In humans, mutation of this gene, which has the
technical name of ‘FOXP2’ (see Box 1) results in a severe

developmental disorder that significantly disrupts speech
and language skills. The discovery of a link between
FOXP2 and spoken language owes something to recent
innovations in the field of molecular genetics [11], but was
largely dependent on an opportune finding of a unique
family known as KE [12]. This family consists of three
generations in which about half of the members
(15 individuals) suffer from severe speech and language
difficulties (see Box 2 for discussion), although the
remaining relatives escape unaffected. The inheritance
of the problems in this family appears to be very
straightforward, consistent with the involvement of just

Box 1. FOXP2 hunting

Even when family and twin-based data strongly suggest that genes

play a role in a particular cognitive or behavioural trait, finding the

particular gene or genes involved is a challenging task [11,36]. In the

unusual case of the KE family, the inheritance of impairment follows

the simple pattern of a single-gene disorder, rather than the more

complex (and more difficult to trace) pattern of a trait that is caused by

the interaction of multiple genes [11]. This suggested that the

problems of the family were the result of damage to just one gene. In

their search for the gene that was damaged, geneticists tried to

correlate the distribution of a set of ‘markers’ - small stretches of DNA

of known location that tend to vary between individuals - with the

distribution of the disorder among members of the KE family [13].

This led them to a small region (or ‘locus’) of the long arm of

chromosome 7. Although the markers themselves were not thought

to be causally responsible for the disorder, they appeared to be in

close proximity to the damaged gene and thus provided an index to

its approximate chromosomal location (see Fig. 1 in main text).

The next step was to search that locus – more than 70 genes long –

to identify which of the genes that lay within it was damaged [14]. A

chance discovery of another individual, who was not related to the KE

family, but had a disorder with similar symptoms, greatly accelerated

the process. This individual had a major chromosomal rearrange-

ment, in which part of his chromosome 7 had broken and become

attached to part of chromosome 5. The point of breakage on

chromosome 7 lay in the middle of the critical region implicated in the

KE family. More precise analysis showed that this breakpoint directly

interrupted a gene that appeared to belong to a group of genes

encoding forkhead transcription factors (see Box 3). The gene was

given the name ‘FOXP2’, which stands for Forkhead bOX P2, on the

basis of comparisons with other forkhead genes. (There are multiple

branches of the forkhead gene family, which are designated with

letters from A-Q. FOXP2 was the second gene to be identified in the

‘P’ branch.) Analysis of FOXP2 in the affected KE individuals revealed

that they had all inherited a single nucleotide change in the gene

sequence, which was likely to disrupt the function of the resulting

protein [10]–establishing for the first time an unambiguous link

between the mutation of a gene and a developmental disorder of

speech and language.Corresponding authors: Gary F. Marcus (gary.marcus@nyu.edu),
Simon E. Fisher (simon.fisher@well.ox.ac.uk).
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a single gene on an autosome (that is, a chromosome but
not one of the sex chromosomes), acting in a dominant
fashion [13]. In itself, such an observation of monogenic
inheritance is nothing extraordinary; several thousand
different human disorders are known to be caused by
changes in single genes (see http://www.ncbi.nlm.nih.gov/
Omim/). However, the KE family remains the only
documented case of simple inheritance for a developmen-
tal speech and language disorder, and by studying the
DNA of affected and unaffected KE individuals [13,14] it

was possible to track down the specific mutation, which
ultimately turned out to be an alteration of sequence in the
FOXP2 gene [10] (see Box 1; Fig 1).

The disorder in the KE family, and in an unrelated
individual with a gross chromosomal rearrangement
involving FOXP2, is confined to the central nervous
system and greatly impacts on the development of speech
and language abilities. As outlined in Box 2, it involves
multiple associated deficits, including articulation diffi-
culties, language problems, and grammatical impairment
[12,15–21]. Examination of the cognitive profiles of
members of the KE family indicates that this is not a
generalised intellectual delay. Although some affected
individuals have a moderate reduction in non-verbal IQ,
others are in the normal range despite their speech and
language problems, and there is substantial overlap
between IQ scores of the affected and unaffected family
members [18,21]. Moreover, the observed deficits in verbal
cognition are more severe and wide-ranging than those
found on tests of non-verbal ability. For the affected
individuals, Watkins and colleagues reported significant
deficits with every sub-test used to assess verbal IQ, but
only one out of four different non-verbal sub-tests [21]. The
relative importance of different features of this form of
speech and language disorder has been debated for over a

Box 2. Debating deficits: motor control, language ability

and the KE family

Although the disorder that afflicts members of the KE family was first

described in the scientific literature over a decade ago [12], the

precise nature of the primary neurobiological deficit remains open to

question. Hurst et al. first characterised the disorder as ‘develop-

mental verbal dyspraxia’, in reference to the profound articulation

difficulties experienced by affected individuals in early childhood

[12]. However, Myrna Gopnik put forward a contrasting viewpoint,

proposing that the language problems of the KE family stem from an

underlying deficit in specific grammatical abilities, such as the use of

features marking number, gender and tense [15,16]. This ‘feature-

blindness’ hypothesis received widespread media attention and has

sometimes been taken as evidence for existence of genes specific to

grammar. However, extensive work by Faraneh Vargha-Khadem and

colleagues has made it clear that the impairment in the KE family is

not restricted to selective aspects of grammar [17–21]. In line with the

original description of the KE family [12], Vargha-Khadem’s team

demonstrated that affected individuals have severe difficulties with

controlling complex co-ordinated face and mouth movements

(orofacial dyspraxia), which impedes their speech [18–20]. Further-

more, although the disorder does involve deficits in generating word

inflections and derivations, impairment is broader than that

suggested by Gopnik, affecting many aspects of grammar and

language ability [18,21]. For example, affected individuals have

significant problems in understanding sentences with complex

syntactical structure (assessed by picture selection), in distinguish-

ing real words from non-words (lexical decision), in reading and

spelling non-words, and in manipulating phonemes [18,21].

Orofacial dyspraxia is a prominent aspect of the disorder, and one

that could be considered a ‘core’ feature, in the sense that it gives a

clear distinction between affected and unaffected members of the KE

family. As such, some scholars have wondered whether the observed

linguistic difficulties might be inevitable secondary consequences of

a fundamental deficit in motor control, with no genuine relevance for

higher cognition. There are several considerations that would

suggest otherwise. First, the affected KE individuals perform

normally for single simple oral movements and do not show

abnormalities in limb praxis [19–21]. Second, it is true that the

affected members have similar problems not just with speech but

also with complex non-speech mouth movements; however the two

are not significantly correlated with each other in these individuals,

so the speech difficulties are not fully accounted for by more basic

impairments in orofacial praxis [19]. Third, the disorder is not

confined to production of spoken language; impairment is evident on

tests of written language (such as those assessing verbal fluency)

and, as outlined above, the affected members have trouble with

language comprehension as well as production [18,21]. Fourth,

recent brain imaging of affected KE members indicates functional

abnormalities in language-related cortical regions, demonstrating

that their problems extend beyond the motor system [34]. Clearly, the

links between development of brain systems underlying speech

motor control and those contributing to language abilities are highly

complex and not yet well understood. A more complete explanation

of the relation between the motor and linguistic aspects of the

disorder might come from future integration of data from genetic,

linguistic and neurophysiological studies [11].

Box 3. FOX transcription factors: regulating complexity

Forkhead proteins are a set of evolutionarily-related transcription

factors that perform a wide variety of functions in cellular

differentiation and proliferation, pattern formation and signal

transduction [22]. Many are implicated in regulating the develop-

ment of the growing embryo, and some also have distinct roles in

adult tissues, for example in controlling metabolism.

The first member of the forkhead group of transcription factors to

be discovered was a gene that is essential for proper formation of

terminal structures in fruit-fly embryos [37], and the name ‘forkhead’

relates to the unusual spiked-head structures found in fly embryos

with mutations in that original gene. The uniting feature of all FOX

proteins is the forkhead box, a small string of 80–100 amino acids

forming a motif that binds to DNA [22]. This DNA-binding domain is a

crucial element that allows FOX proteins to regulate expression of

target genes (although other varying parts of each protein are also

important). In the KE family it is the DNA-binding domain of FOXP2

that is mutated in those individuals affected with speech and

language disorder.

Mutations of the genes encoding forkhead proteins have been

implicated in diverse developmental disorders [22], including

glaucoma (FOXC1), thyroid agenesis (FOXE1), immune deficiency

(FOXN1 and FOXP3), ovarian failure (FOXL2) and lymphedema

(FOXC2). For some FOX proteins it appears that the amount of

functional protein (dosage) has an important influence on particular

aspects of development [22,38]. For example, it has been shown that

alteration of FOXC1 dosage has dramatic effects on the development

of the eye [38].

FOX genes are only found in animals and fungi, and it is intriguing

to note that there is a correlation between the number of different

FOX genes in a genome and the anatomical complexity of the

organism. Based on current available sequence information the

yeast genome contains just four distinct FOX genes, whereas 15 are

found in the nematode, 20 in the fruit-fly, and at least 40 in human

beings. Given their importance in patterning of embryos, it has been

suggested that the expansion of this group of genes might have been

driven by increasing body-plan complexity [22]. Perhaps one or more

FOX genes might have played similar roles in generating aspects of

neural complexity.
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decade, and, at the cognitive level, the question of a ‘core
deficit’ remains controversial [12,15–21] (see Box 2). From
the genetic point of view, however, there is no ambiguity;
inheritance of a mutated copy of FOXP2 is necessary and
sufficient to cause problems [10]. So, how does the
knowledge of a clear genetic explanation help us to
understand speech and language deficits at the neurologi-
cal and cognitive levels? Can this discovery tell us
anything in general about acquisition of spoken language?

FOXP2 function–lessons from developmental biology

Before we can properly address these and other related
questions, we must gain some idea of the normal function
of FOXP2. Fortunately, we can already make some
educated guesses, by comparing the sequence of the gene
to that of other genes that have been studied for several
years and are thus better understood. On the basis of these
comparisons, the FOXP2 gene belongs to a group of genes
that make proteins containing forkhead-box (FOX)
domains [22] (Box 3). FOX proteins are themselves just
one subtype of a much larger group, known as transcrip-
tion factors, which are involved in controlling the genetic
programs of cells.

To understand the importance of transcription factors it
is useful to view genes in terms of two key constituents;
coding regions and regulatory regions (Fig. 2). The coding

region of a gene comprises the template for the construc-
tion of a protein containing a specific sequence of amino
acids. Protein-building relies on an initial step where the
information contained in the DNA sequence of each gene is
transcribed into intermediary copies (mRNA molecules),
via a carefully controlled process called ‘transcription’. The
regulatory region of a gene is involved in determining how
many copies of a gene’s mRNA are made (and hence the
amount of the encoded protein) in a particular cell at a
given moment. Taken together, the two parts of a gene act
something like an IF ! THEN statement in a computer
program; if certain conditions hold, then a protein is
synthesized. Transcription factors, like that encoded by
FOXP2, are proteins that interact with the regulatory
regions of genes and modulate their transcription levels,
thereby ultimately influencing the relative abundances of
other proteins in the cell. Overall, the system enables the
cells of an organism to dramatically diversify their
morphology and function by modifying the levels of
expression of different genes in a tissue-specific manner,
at particular points during the organism’s development, or
in response to internal/external stimuli.

One of the most well-studied of transcription factor
genes is one that is known as PAX6 [23,24]. PAX6 plays a
crucial part in the development of the eye, and an
understanding of its role might give some insight into

Fig. 1. Locating the damaged gene in the KE family. For simplicity, only a subset of the family is shown (b), including two branches containing 8 of the total 15 affected indi-

viduals. (See Ref. [13] for a full pedigree diagram and more details.) Squares represent males, circles represent females, black shaded individuals are affected with speech

and language disorder, unshaded individuals are normal. The star indicates a non-identical twin whose DNA was not available for study. Every human being inherits two

copies of each chromosome (one paternal, one maternal), and sections of these copies get shuffled around from generation to generation by a process of exchange known

as recombination. Thus, the genomic make-up that is inherited by an individual is best viewed as a patchwork of the maternal and paternal chromosomes from previous

generations, and this can be exploited in order to locate damaged genes. Geneticists used information from a series of genetic markers to track the pattern of inheritance of

chromosomal regions through the KE family [13]. They found particularly interesting results for one section of chromosome 7; part of the chromosomal band known as

7q31 (a). In (b) different colours indicate the origins of different copies of chromosomes within the KE family. It was discovered that all affected individuals in the KE family

had inherited an identical copy of one portion of 7q31. This copy originated from one chromosome of the affected grandmother (labelled in red). By determining the precise

portion of the red-labelled copy of 7q31 that was common to all affected members (but not inherited by any unaffected members) it was possible to deduce the likely

location of the damaged gene [13]. The researchers were then able to focus on genes from this specific portion of chromosome 7 in their subsequent mutation screening

efforts [14] (and see Box 1), and eventually tracked down the mutation responsible [10] (denoted here by a white X).
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possible functions of FOXP2. When PAX6 is artificially
expressed in the antenna of a fruit-fly, the fly grows an
extra eye right there, at that rather unusual location [25];
for this reason, Walter Gehring has described it as a
‘master control gene’ [23]. PAX6 by itself does not actually
contain a blueprint or plan for eye-building. Instead, it
promotes eye development by mobilizing – through direct

and indirect action – a vast number of genes, perhaps 2500
in all [25]. Like a Chief Executive Officer, it might not do
much work on its own, but its orders can determine the
actions of many subordinates, referred to in biology as
downstream targets. Even without knowing which sub-
ordinates receive orders from PAX6, the gene’s importance
is obvious. Still, we cannot be said to fully appreciate either

Fig. 2. What is the function of FOXP2? On the basis of currently available data, the FOXP2 protein probably acts as a transcription factor, binding to regulatory regions

(green) in the genomic DNA of target genes, and modulating the rate at which the coding regions of those genes (red) are transcribed into messenger RNA (mRNA), which

in turn serve as intermediate temPlate that are then translated into proteins (yellow). The figure depicts two possible ways that transcription factors can influence the

expression of a target gene: (a) Activation (which increases the transcription of a target gene); hypothetical scenario illustrated in which FOXP2 stimulates transcription of

target gene ‘A’; and (b) Repression (which decreases the transcription of a target gene); scenario in which FOXP2 inhibits transcription of target gene ‘B’. In reality, FOXP2

might influence the expression of many more genes, and its influence is very likely to be mediated by interactions with other proteins. (We have further simplified by ignor-

ing additional complexities of transcription and translation, and by depicting genes here as simply being in alternate states of ‘on’ or ‘off’, whereas in fact transcriptional

regulation can involve much more subtle changes in gene expression.) Future work will aim to determine the identities of the proteins (indicated by ‘?’) that act upstream of

FOXP2 to control its expression, the actual targets of FOXP2, and the co-factors that interact with the FOXP2 protein to regulate its function. Experiments have demon-

strated that FOXP2 is able to repress certain lung-specific genes [26], but its role in activation/repression of genes involved in neurogenesis or neuronal function is still

unknown [11].
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its function or the process of eye development as a whole
until we understand not just PAX6 but all of the genes it
interacts with, directly and indirectly, the organizational
chart as a whole. The situation is likely to be similar with
FOXP2, its power coming from the consequences it has for
a cascade (or cascades) of other genes.

Building brains…and lungs, guts and hearts

FOXP2 is expressed in restricted parts of the developing
brain and might participate in generating neural sub-
strates involved in acquisition of spoken language. But
FOXP2 is also expressed in defined regions of other tissues
during embryo development, including the lung, the gut
and the heart [26], as well as in several tissues of the adult
organism [10]. Again, this has parallels in what we already
know about other transcription factors, many of which
have multiple differing jobs, sometimes at diverse time-
points during the lifetime of an organism. For example, our
‘master control gene’ for eye-building, PAX6, is also
essential for development of the central nervous system
and endocrine glands, and regulates a range of cellular
processes, including proliferation, migration, adhesion
and signalling [24].

Why are the deficits of the KE family confined to brain
function, if the gene is so important for development of
organs like the lung or heart? The answer to that question
could lie in the fact that our genome is diploid–we each
have two copies of every gene (one from our mother and one
from our father). The problems of the KE family are
associated with mutation in just one copy of the FOXP2
gene, which probably leaves affected members with only
half the usual dosage of normally functioning FOXP2
protein. This dose might be adequate for development of
the lungs, gut and heart, but insufficient for the brain (or
certain sub-structures and/or cell-types within). Although
we cannot be certain that the effects of altered dosage are
indeed the explanation, there are again many precedents
for its importance in studies of other transcription factors,
including several other types of forkhead gene [22] (see
Box 3). Alternatively, there might be subtle changes in
tissues other than the brain that we have not yet been able
to detect.

Evolving FOXP2

Just as FOXP2 is not unique to the brain, it is not unique to
Homo sapiens. Mice, for example, have a version of the
gene with a nucleotide coding sequence that is 93.5%
identical to the human version [27], and yet (except in the
world of cartoons and children’s films) no mouse has ever
been heard to speak. Does the observation that FOXP2 is
present in a similar form in a broad range of mammalian
species imply that it is not involved in speech and language
after all? Not at all. If the rest of biology is any guide, the
machinery of language is likely to be the product of a
mixture of evolutionary novelty and evolutionary recy-
cling. In general, the way that new structures are built is
by small (but sometimes significant) modifications of old
machinery. As Francois Jacob put it, evolution is like a
tinkerer who ‘often without knowing what he is going to
produce, … uses what ever he finds around him, old
cardboards, pieces of strings, fragments of wood or metal,

to make some kind of workable object…’ [28]. The genetic
mechanisms involved in speech and language develop-
ment are likely to involve recruitment and modification of
pre-existing genetic cascades, much in the way that the
development of the wing began with the development of
the basic design of a vertebrate forelimb [29]. Speech and
language, in this sense, may derive in part from unique
configurations of genetic cascades that figure in other
neural systems, such as those that direct motor control,
planning, social cognition, and spatiotemporal
representation.

Investigations of mouse FOXP2 [26] suggest that the
gene was already playing a significant role in the
development of the brain in the common ancestor of
mice and humans (perhaps, for example, in patterning of
neural structures involved in aspects of motor control).
Only three amino acid differences distinguish the versions
of FOXP2 protein found in mouse and man, but two of
these changes occurred on the human lineage after
separation from the human-chimp common ancestor
[27,30]. Computer-based comparisons of human and
chimp protein sequences indicate that one of these changes
may have had important consequences for FOXP2 func-
tion, by altering the way it is regulated by other proteins.
Intriguingly, mathematical analyses of the within-species
variability of the FOXP2 genomic locus suggest that
FOXP2 has been a target of selection relatively recently
in human history [27,30]. These studies concluded that
modern human-specific FOXP2 most likely became fixed in
the human population within the last 200 000 years,
consistent with several archaeological estimates of the
time of emergence of proficient spoken language [31,32].

Overall, the presence of FOXP2 in other animals does
not diminish its relevance for speech and language, but
rather represents another example of recruitment and
modification of existing pathways in evolution. Although
the genetic pathways implicated in language may have in
part been recruited from genetic cascades involved in other
brain systems, this does not mean that they necessarily
draw on the same neural substrates as these other
systems. It is quite possible, for example, that the
development of an ability to represent hierarchical
grammar might be influenced by some of the same genes
as those influencing representation of hierarchical plans
in other domains, even if the circuitry involved were
physically located in two places. Separate circuits in
separate brain areas could compute similar functions,
allowing, for example, the simultaneous planning of a
linguistic sentence and a motor sequence. Coming back to
FOXP2 and the KE family, it might be the case (as
discussed in Box 1) that a deficit restricted to the motor
system is fully responsible for the wide-ranging profile of
impairment. However, it is also possible that the different
aspects of the disorder are separate consequences of
disruption to a gene that is expressed in separate systems.
Consistent with this idea, neuroimaging studies have
detected structural and functional anomalies in several
different brain regions in affected members of the KE
family [19,33,34]. These abnormalities include a bilateral
reduction of grey matter density in the caudate nucleus (a
site of pathology that could account for the motor aspects of
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the disorder) [19,33], as well as significant underactivation
in several language-related regions, including Broca’s
area, during covert and overt word generation tasks [34].

Uncovering neural pathways

FOXP2 cannot be called ‘the gene for speech’ or ‘the gene
for language’. It is just one element of a complex pathway
involving multiple genes, and it is too early to tell whether
its role within that pathway is special. Furthermore,
FOXP2 appears to be normal in common forms of
developmental language disorder, and these seldom
involve the kinds of oromotor deficits observed in the KE
family [35]. Nonetheless, the gene can provide a valuable
entry-point into the relevant neural pathway (or path-
ways), by pointing to the downstream targets which it
regulates or the proteins with which it interacts. Speech
and language are likely to be products of mechanisms that
are shared with other neural domains and those that are
not. They are also likely to represent a mixture of genetic
mechanisms, including those that are found to vary among
normal individuals and those that are not. A gene like
FOXP2 that is virtually invariant in the normal popu-
lation [27,30,35], could cast light on both sorts of
mechanisms: directly, on invariant processes in which it
participates, and indirectly, by allowing the identification
of other elements of these pathways that might vary
between individuals. In each way, future studies of FOXP2
could provide a significant wedge into the understanding
of our unique linguistic heritage.
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