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Evidence that listeners, at least in a laboratory environment, use durational cues to help resolve
temporarily ambiguous speech input has accumulated over the past decades. This paper introduces
Fine-Tracker, a computational model of word recognition specifically designed for “tracking”
fine-phonetic information in the acoustic speech signal and using it during word recognition. Two
simulations were carried out using real speech as input to the model. The simulations showed that
the Fine-Tracker, as has been found for humans, benefits from durational information during word
recognition, and uses it to disambiguate the incoming speech signal. The availability of durational
information allows the computational model to distinguish embedded words from their matrix
words (first simulation), and to distinguish word final realizations of [s] from word initial
realizations (second simulation). Fine-Tracker thus provides the first computational model of human
word recognition that is able to extract durational information from the speech signal and to use it

to differentiate words. © 2010 Acoustical Society of America. [DOI: 10.1121/1.3377050]

PACS number(s): 43.71.Sy, 43.71.An, 43.71.Es [JES]

I. INTRODUCTION

We, as listeners, are continually confronted with novel
utterances that speakers may generate on the spot, and usu-
ally we encounter little to no difficulty in recognizing and
understanding them. Word beginnings and endings are often
clearly separated in written text in languages that use an
alphabetic script. However, in spoken language, clear bound-
aries are often absent. This can occasionally lead to ambigu-
ity in the speech signal (e.g., Gow and Gordon, 1995), which
can be illustrated with the following example (taken from
Norris, 1994). Take the phonemic representation of the
phrase “ship inquiry:” [[ipinkwaiori]. This phoneme se-
quence contains many embedded words, such as “ink” and
“choir” in “inquiry,” but also words that straddle the word
boundary such as “shipping” and “pink.” While the speech
signal unfolds over time, all these possible words will be-
come activated and compete with one another (e.g., Al-
lopenna et al., 1998; Gow and Gordon, 1995). However, this
temporary ambiguity is usually quickly solved by the listen-
ers, and the intended word sequence is recognized.

Perceptual studies provide a clue to how listeners are
able to disambiguate the incoming speech signal without a
delay. There is now a vast amount of evidence, accrued over
the past decades, that has shown that listeners can use subtle
phonetic information, such as acoustic cues due to coarticu-
lation and assimilation processes (e.g., Gaskell and Marslen-
Wilson, 1996; Gow, 2002; Tanenhaus et al., 2000) and dura-
tional and prosodic cues (e.g., Andruski et al., 1994; Cho
et al., 2007; Davis et al., 2002; Denes, 1955; Gow and Gor-
don, 1995; Kemps et al., 2005; Salverda et al., 2003, 2007;
Shatzman and McQueen, 2006a, 2006b; Strange et al., 1983;
for a review of early work on the importance of duration in
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identifying speech sounds, syllables, and words, see Lehiste,
1970), for the disambiguation of temporarily ambiguous
stretches of speech. Subtle phonetic detail helps to resolve
the temporary ambiguity present in the speech signal by re-
ducing the activation of words that have mismatching pho-
netic detail and by reducing the number of activated words
during the process of the recognition of spoken words. For
instance, Gow (2002) showed that the [raip] in “right ber-
ries” where the /p/ is assimilated to a [p] is not identical to
the [raip] in “ripe berries.” Humans show priming of the
word “right” but not of “ripe” when the [raip] derived from
“right” was presented. Apparently, the assimilation process
preserves perceptible acoustic-phonetic evidence about the
unassimilated form of the word. Davis et al. (2002) and Sal-
verda et al. (2003, 2007) showed that listeners can make the
distinction between the two interpretations of an ambiguous
sequence in the case of initially embedded words, such as
“ham” in “hamster”, even before the acoustic end of the first
syllable ham. Using an eye-tracking paradigm, they showed
that an embedded word was more activated, i.e., attracted
more eye fixations, when the ambiguous sequence came
from a monosyllabic word than when it came from the
longer word in which it was embedded. Salverda et al.
(2003) concluded that a longer sequence tends to be inter-
preted as a monosyllabic word more often than a shorter one,
and that the lexical interpretation of temporarily ambiguous
sequences is influenced by duration.

Durational cues also seem to play a pivotal role in re-
solving temporary ambiguities that straddle word boundaries
(e.g., Gow and Gordon, 1995; Shatzman and McQueen,
2006a, 2006b, and references therein). Gow and Gordon
(1995) investigated the recognition of lexically ambiguous
sequences that could either be interpreted as a single longer
word or as two shorter words (e.g., “tulips” vs “two lips”).
They found priming effects for “lips” when the participant
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had just heard “two lips,” but not after hearing “tulips.”
Analyses of the stimuli showed that the word-initial conso-
nants (here, [1]) were longer in duration than word-internal
consonants. Shatzman and McQueen (2006a) showed in two
eye-tracking studies that listeners use segment duration to
decide whether a speaker said “eens pot” (once jar) or “een
spot” (a spotlight). They concluded that the duration of indi-
vidual speech sounds is used as a cue for online word seg-
mentation of continuous speech. Segment, syllable, and word
durations are influenced by various mechanisms, such as
word-initial lengthening, polysyllabic shortening, accentual
lengthening, and syllable ratio equalization (e.g., Cho et al.,
2007; Klatt, 1976; Salverda et al., 2003; Turk and Shattuck-
Hufnagel, 2000).

Although there now is an abundance of evidence that
durational cues play a role in resolving temporarily ambigu-
ous stretches of speech, it is still unclear whether durational
information is indeed the crucial factor, or whether listeners
also use other acoustic cues, such as spectral changes (which
can occur due to durational changes), formant frequency in-
formation, assimilation cues, or relative durations within the
span of the syllable, to differentiate between possible in-
terpretations of an ambiguous speech signal. Shatzman and
McQueen (2006a) investigated whether other cues played a
role. They showed that there were indeed other differences
between the two recording contexts of their stimuli besides
the duration of the [s]: namely, the duration of the closure
before the stop, the duration of the target word (excluding
the stop), the root mean squared (rms) energy of the [s], and
the rms energy of the stop. However, it was shown that lis-
teners only used the duration of the [s] segment to disam-
biguate the signal. Furthermore, Salverda er al. (2003)
showed that when removing the durational differences be-
tween the monosyllabic word and the first syllable of the
polysyllabic word, this also removes the possibility for lis-
teners to differentiate between the two. They concluded that
the production of a monosyllabic word or of the initial por-
tion of a longer word does not always contain acoustic cues
that can resolve the ambiguity, and that the duration of the
ambiguous sequence, more than the word it originates from,
thus determines its lexical interpretation (Davis et al., 2002;
Salverda et al., 2003). As, so far, durational information has
been the only cue shown to help the disambiguation process,
this work focuses on the role of durational information for
resolving the temporary ambiguity in the speech signal due
to lexical embedding.

The role of subtle phonetic information is problematic
for computational models of spoken-word recognition that
assume a discrete, abstract prelexical level between the
acoustic input and the lexicon, such as TRACE (McClelland
and Elman, 1986), Shortlist (Norris, 1994), and the distrib-
uted cohort model (Gaskell and Marslen-Wilson, 1997).
When confronted with an input such as [[ipinkwaiori], all
words that (partly) match the input will be activated and
compete with each other. However, as phonemic prelexical
representations do not provide an adequate means to capture
subtle phonetic detail, this results in spurious activated words
in these models. Crucially, the recognition of an embedded
word can only occur after its offset, resulting in a slower

J. Acoust. Soc. Am., Vol. 127, No. 6, June 2010

disambiguation of temporarily ambiguous parses for the
models than for humans. There now is, as Gow and McMur-
ray (2004) point out, a move toward using input representa-
tions that capture aspects of phonetic detail [e.g., in TRACE
(although TRACE uses a limited set of abstract representa-
tions, there is the possibility of incorporating some aspects of
phonetic detail) McClelland and Elman, 1986; Gaskell,
2003]. Nevertheless, computational models that are sensitive
to subtle phonetic detail, take the acoustic signal as input,
and in which subtle phonetic variation can be represented as
some sort of continuous features do not yet exist. This paper
introduces and tests such a computational model: Fine-
Tracker.

Fine-Tracker is a novel computational model of human
spoken-word recognition specifically designed for “tracking”
subtle, or fine, phonetic information in the speech signal and
using it for word recognition. Fine-Tracker takes the acoustic
speech signal as its input, and therefore can be tested with
exactly the same stimulus materials as used in behavioral
studies, instead of using some idealized form of input repre-
sentation as is done by other models of human word recog-
nition.

Eye-tracking studies have shown (Davis et al., 2002;
Salverda et al., 2003, 2007; Shatzman and McQueen, 20064,
2006b) that listeners are able to extract phonetic detail from
the acoustic signal and use it during the word recognition
process, i.e., “on-line.” Listeners thus do not need an explicit
segmentation of the speech signal to use durational informa-
tion (note, “duration” can only be obtained after segmenta-
tion). We investigate whether subtle phonetic detail, more
specifically durational cues, in the speech signal can be au-
tomatically detected in the acoustic speech signal and used
during word recognition by a computational model, without
the need for segmentation of the speech signal. The first half
of this paper is devoted to introducing Fine-Tracker. The
second half of the paper focuses on testing Fine-Tracker with
respect to modeling the human ability to detect and use du-
rational cues during spoken-word recognition. We investigate
whether durational information is beneficial for Fine-
Tracker, as has been found for listeners, in two sets of simu-
lations. In the first set of simulations, Fine-Tracker is tested
on its ability to distinguish monosyllabic words from the
longer words in which they are embedded, using the original
acoustic stimuli of Salverda et al. (2003). To investigate
Fine-Tracker’s simulation performance, Fine-Tracker’s out-
put in terms of word activation over time is correlated with
the duration of the stimuli. The second set of simulations
focuses on the differences in durations of a single segment.
For this set of simulations, we use the acoustic stimuli from
Shatzman and McQueen (2006a). The effect of durational
information on Fine-Tracker is investigated by correlating its
word activations over time to the segment durations. To in-
vestigate the effect of durational information, Fine-Tracker is
tested in two conditions: one in which Fine-Tracker was not
able to use the durational cues in the speech signal and one
where durational information was incorporated in the model.
Given the accumulated evidence that listeners use durational
information to resolve temporary ambiguity in the speech
signal, it is to be expected that not being able to use dura-
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FIG. 1. Overview of Fine-Tracker: the output of the prelexical level, consisting of a set of ANNSs, is the input to the “Word search” module at the lexical level.

tional information will result in a failure of Fine-Tracker to
distinguish monosyllabic words from the longer words in
which they are embedded and a failure to distinguish longer
from shorter segments. If introducing durational information
into the model proves to be beneficial to word level disam-
biguation, it will allow us to further investigate the effect of
other subtle phonetic information on spoken-word recogni-
tion in a computational model.

Il. FINE-TRACKER

Fine-Tracker is developed as part of a research line
aimed at building a complete end-to-end computational
model of human spoken-word recognition (Scharenborg
et al., 2003, 2005), i.e., a model that takes acoustic record-
ings of speech as its input. To that end, Fine-Tracker is built
using techniques from the field of automatic speech recogni-
tion (ASR), and as such is part of a growing line of research
aimed at bridging the research fields of psycholinguistics and
ASR (for an overview, see Scharenborg, 2007).

Like its predecessor SpeM (Scharenborg et al., 2005),
Fine-Tracker is based on the theory underlying Shortlist
(Norris, 1994). This theory holds that the human speech rec-
ognition process consists of two levels. First, listeners map
the incoming acoustic signal onto so-called prelexical repre-
sentations at the prelexical level. Second, at the lexical level,
all lexical representations are stored in the form of sequences
of prelexical units, and those lexical representations that
(partly) match the prelexical representations are activated.
The flow of information from the prelexical level to the lexi-
cal level is unidirectional. This means that the processing at
the prelexical level is totally unaffected by lexical level pro-
cessing. All words that have a good match with the input
enter the lexical competition phase, where word hypotheses
that overlap in time compete with each other. The result of
this competition is a sequence of nonoverlapping words, usu-
ally identical to the sequence of words actually produced by
the speaker. The competition phase thus resolves the tempo-
rary ambiguity of overlapping words competing with one
another, and results in the optimal segmentation of the input.
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Figure 1 shows an overview of Fine-Tracker; imple-
menting the processing at two levels. The prelexical level
consists of a set of artificial neural nets (ANNs) which con-
vert the continuous acoustic signal into feature vectors with a
time resolution of 5 ms. At the lexical level, the feature vec-
tors are used as input to the word search module, which is
responsible for finding the word sequence (note, a word se-
quence can also consist of a single word) that corresponds to
the best path through the search space spanned by the prel-
exical feature vectors and the lexical representations. The
output of Fine-Tracker is an N-best list of most likely lexical
paths with word scores for each word on each path. The
details of Fine-Tracker will be explained below.

A. The prelexical level

Prelexical representations provide a means of capturing
the acoustic-phonetic information in the speech signal in
terms of a limited set of predefined sub-word units. The ex-
act form of the representations at the prelexical level is still
the topic of research and debate (McQueen, 2005). In the
absence of a clear answer, different models make different
assumptions about the form that prelexical representations
take, for example, acoustic-phonetic features (TRACE,
McClelland and Elman, 1986), features (DCM, Gaskell and
Marslen-Wilson, 1997), context sensitive allophones
(PARSYN, Luce e al., 2000), and phonemes in Shortlist and
SpeM. Fine-Tracker deviates from SpeM, which also takes
real speech as its input, in that it uses “articulatory features”
(AFs) as prelexical representations. Fine-Tracker is therefore
able to model subtle phonetic information in its lexical rep-
resentations, whereas SpeM is not.

Articulatory features describe acoustic correlates of ar-
ticulatory properties of speech sounds. One of the benefits of
using AFs is that they are able to change asynchronously,
which makes them suitable to describe the variation occur-
ring in natural speech arising from effects such as coarticu-
lation and assimilation. Table I shows an overview of the
AFs used by Fine-Tracker. Note that fr(ont)-back, round,
height, and dur(ation)-diph(thong) only apply to vowels.
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TABLE 1. Specification of the AFs, their types, and the number of hidden
nodes in the ANNs.

No. of
AF AF type hidden nodes
Plosive, fricative, nasal, glide,
Manner liquid, vowel, retroflex, silence 300
Bilabial, labiodental, alveolar,
Place velar, glottal, nil, silence 200
Voice +voice, —voice 100
Fr-back Front, central, back, nil 200
Round +round, —round, nil 200
Height High, mid, low, nil 250
Dur-diph Long, short, diphthong, silence 200

For each of the seven AFs, one artificial neural net was
trained for all its AF types (see Table I) using the NICO
Toolkit (Strom, 1997). The ANNs were trained on 3410 ran-
domly selected utterances from the manually transcribed
read speech part of the Spoken Dutch Corpus [Corpus Ge-
sproken Nederlands (CGN), Oostdijk et al., 2002]. The
speech files were parameterized with 12 Mel frequency cep-
stral coefficients (MFCCs) and log energy and augmented
with first and second temporal derivatives resulting in a 39-
dimensional acoustic feature vector. The MFCCs were com-
puted using 25 ms analysis windows with a 5 ms shift. The
section analyzed at every 5 ms is referred to as a “frame.” To
train the ANNS, the training material was labeled at the
frame level. To that end, the training data were segmented at
the phone level using a forced alignment with a set of 37
hidden Markov monophone models, each consisting of three
emitting states, which were trained on the read speech part of
the Spoken Dutch Corpus. Next, all frames belonging to a
phoneme segment received the AF type labels belonging to
the phoneme. During training, each ANN’s performance was
calculated at regular time intervals on a validation set of 379
utterances randomly taken from the CGN (disjoint from the
test and training sets). The performance was evaluated using
a “frame classification” task in which each ANN was forced
to make one AF type decision for each frame. These frame
decisions were compared to the canonical frame labels.
Training was terminated when the validation set’s frame
classification error rate began to increase, as this indicates
that the optimal ANN has been reached.

Each ANN consisted of three layers: an input, hidden,
and output layer. The architecture of the ANNs was the same
for all AFs, with the exception of the number of hidden
nodes and number of output nodes. At the input layer, se-
quences of 11 frames were used with the frame to be classi-
fied in the sixth position. The output layer estimates the pos-
terior probability of the AF type given the input. The number
of output nodes is identical to the number of AF types (see
Table I). The hidden layer had hyperbolic tan transfer func-
tions and a different number of nodes' depending upon the
AF. The optimal number of hidden units was determined
through tuning experiments and is listed in the third column
of Table I.

The output of the prelexical level serves as the input of
the lexical level of Fine-Tracker. For each frame, each ANN
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creates a “soft” decision, i.e., a continuous value between 0
and 1, for each of its AF types. This numeric value can be
regarded as an activation measure of this AF type over time.
Per frame, the soft decisions for each of the AF types are
combined into a feature vector (see Fig. 1), whose length is
equal to the total number of AF types (33), resulting in a
sequence of AF feature vectors with a time-spacing of 5 ms,
which is fed as input to the lexical level of Fine-Tracker.

B. The lexical level
1. The lexicon

Fine-Tracker’s lexicon contains all words that could po-
tentially be recognized. The lexical representations of the
words are based on the prelexical representations, so each
word in the lexicon is represented in terms of AF vectors.
Pronunciation variation is dealt with by adding multiple pro-
nunciations for the specific word to the lexicon. Lexical fea-
ture vectors have the same dimension as the prelexical fea-
ture vectors, 33, and each AF type in the lexical feature
vectors takes a value between 0 and 1, where O corresponds
to the absence of the AF and 1 to the presence of the AF. The
extremes of this scale can be regarded as “canonical” real-
izations of the AF. Intermediate values result in lexical fea-
ture vectors that are less canonical. These can be used to
encode speech phenomena such as coarticulation, assimila-
tion, and nasalization of vowels in a gradual continuous way
instead of a binary decision. Note that using intermediate
values might result in lexical feature vectors that are more
similar, resulting in less differentiation between lexical fea-
ture vectors.

Figure 1 shows an example of the lexical feature repre-
sentations of the words “ham” and “hamster” in the lexicon
of Fine-Tracker. Note that the phone labels at the start of
each line representing a lexical feature vector are only
present for clarity purposes. These labels are not used during
the word search. It is possible to assign an “unspecified”
value to an AF type—this is indicated with an asterisk in the
lexical feature representations in Fig. 1. During the calcula-
tion of the “goodness of fit” (see next section) between the
lexical representation and the prelexical feature vector, this
AF type is ignored. In this way, a match between lexical and
prelexical feature vectors can deal with underspecification.

Essential in Fine-Tracker is the fact that the number of
feature vectors can be set in the lexicon for each lexical item
separately. An example is shown in Fig. 1 where each of the
phonemes of “ham” is represented using two identical fea-
ture vectors, whereas there is only one feature vector per
phoneme for the first syllable of “hamster.” Fine-Tracker’s
word search module is able to deal with the resulting subtle
differences in lexical representations. Currently, the number
of lexical feature vectors is set by hand.

The lexicon is internally represented as a tree of feature
vectors. When a node in the lexical tree is accessed, all
words in the corresponding word-initial cohort, i.e., all
words that start with the same sequence of lexical feature
vectors, are equally activated. An example of the start of a
lexical tree is depicted on the left hand side of Fig. 2. The
“B” indicates the start of the lexical tree; each node depicts a
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FIG. 2. The left hand side depicts a graphical representation of the lexical
search implemented in Fine-Tracker: the y-axis shows the lexicon in the
form of a lexical tree; the x-axis shows time in terms of prelexical feature
vectors. The right hand side shows a subset of the search space nodes that
are created during the word search: the first index represents the node in the
lexical tree; the second index represents the number of the prelexical feature
vector.

lexical feature vector. Continuous word recognition is imple-
mented through a loop over the lexical tree: once the end of
a word has been reached, the search algorithm jumps back to
the start of the lexical tree.

2. The activation and competition process

There is considerable evidence that multiple candidate
words are “activated” simultaneously during human word
recognition (e.g., Allopenna et al., 1998; Gow and Gordon,
1995; Luce et al., 2000), the evaluation of which is assumed
to be handled by a competition process (for an overview, see
McQueen, 2005). In Fine-Tracker, following Shortlist B
(Norris and McQueen, 2008) and SpeM (Scharenborg et al.,
2005), this process is implemented as a probabilistic word
search.” This process is depicted in the left hand side of Fig.
2. Multiple activation of words is implemented through the
use of word-initial cohorts in which all words are equally
activated. As explained above, the y-axis shows the lexicon
in the form of a lexical tree; the x-axis shows time in terms
of the prelexical feature vectors (see also Fig. 1). The right
hand side of Fig. 2 shows the search space nodes that are
created during the word search. Each node refers to a posi-
tion in the lexical tree (left index) and the number of the
prelexical feature vector (right index). The word search al-
gorithm is time-synchronous and breadth-first: all search
space nodes at a given time (i.e., at a prelexical feature vec-
tor) are expanded before their “child” search space nodes are
created. The word search algorithm starts in the root node of
the lexical tree and the first prelexical feature vector, i.e.,
search space node (B,1). Subsequently, the child nodes of
(B,1) are created using two mechanisms: (1) make a “step”
in the input, but not in the lexical tree, this results in child
node (B,2); (2) make a step in both the input and the lexical
tree, this results in the child nodes (1,2) and (2,2). Note that
this process can result in the creation of duplicate search
space nodes, which is shown in Fig. 2 by two (1,3) nodes.
The top (1,3) node is a child node of (B,2) resulting from
making a step in the input and lexical tree; the bottom (1,3)
node is a child node of (1,2) resulting from making only a
step in the input. A sequence of search space nodes is called
a path.
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The search algorithm allows multiple 5 ms prelexical
feature vectors to be mapped onto a single lexical feature
vector. An example of this is the path (B,1), (B,2), (B,3),
which maps the first three prelexical feature vectors onto the
start of the lexical tree. This so-called “many-to-one map-
ping” results in chunks of speech input (or to be more precise
sequences of prelexical feature vectors) mapped onto a single
lexical feature vector. The goal of the word search process is
to find the cheapest path, i.e., the path with the lowest fotal
cost (see below), through the search space spanned by the
lexical tree and the prelexical input feature vectors. This pro-
cess necessarily results in the most likely word sequence
given the input. Once the most likely word sequence is
found, the exact mapping of lexical feature vectors onto lexi-
cal feature vectors is given at the output of Fine-Tracker.
There therefore is no explicit segmentation process that
chunks the input and maps it onto the lexical feature vectors.
This also implies that if there is no evidence for the presence
of a lexical feature vector (note: not phone as the lexical
feature vectors strictly speaking do not have phone labels) in
the input, a word containing that lexical feature vector can
still be recognized. In that case, the number of prelexical
feature vectors mapped onto that specific lexical feature vec-
tor is just one.

The cheapest path through the search space is deter-
mined by evaluating each search space node by calculating
the goodness-of-fit between the prelexical and lexical feature
vectors using a distance measure (DM). The present imple-
mentation of Fine-Tracker uses the averaged squared dis-
tance (ASD) between the prelexical and lexical feature vec-
tor. There is however an option in Fine-Tracker to implement
other distance measures. The ASD was chosen as this mea-
sure is very similar to (Euclidean) measures that are fre-
quently and successfully used in search mechanisms in ASR
systems, and thus has proven to be successful in dealing with
speech (cf. Cha. 7; Jurafsky and Martin, 2000). The relative
weight of the distance measure is determined by a parameter
a. The ASD is defined as follows:

S sdmcomp(lexval — preval)®
#Admissable

ASD = (1)

First, the difference in raw values of each “admissible”
AF type in the incoming prelexical (preval) and lexical fea-
ture vector (lexval) is determined and squared. The “admis-
sible” AF types are those AF types without the “unspecified”
marker in the lexical feature vector. Next the sum of all
squared differences of all admissible AF types is normalized
by dividing it by the number of admissible AF types, yield-
ing a single ASD value between O and 1 measuring the dis-
similarity between the two feature vectors.

The ASD value is part of the word score of the word in
which the lexical feature vector occurs. The word score is the
score from the beginning of the word up to that prelexical
feature vector and corresponds to the degree of match of the
word to the already processed prelexical feature vectors. It is
defined as follows:
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word_score = > SV + aDM, (2)

prelex_feature_vectors

where the DM is the above-explained ASD and step value
(SV) is either the step-in-input (SI) or the step-in-input-and-
lexicon (SIL) value, depending on the current path.

e SI: value associated with making a step in the input but not
in the lexicon.

e SIL: value associated with making a step in both the input
and the lexicon. This is indicated with the dotted arrow in
the gray box, indicating the search space, on the left hand
side of Fig. 2.

The input can contain multiple words. To accommodate
for word sequences, the path on which each word lies is
assigned a score. The path that has the lowest fotal cost is
said to have the best fit with the input. The total cost of the
path then is the current word score accumulated with:

* Word entrance penalty (WEP): cost to start a new word,
i.e., the algorithm goes through the start of the lexical tree.
A higher WEP results in fewer hypothesized words, instead
the algorithm will favor longer words; a lower WEP results
in more and shorter words.

» Word-not-finished penalty (WNF): at the end of the input,
i.e., when all prelexical feature vectors have been pro-
cessed, all activated cohorts that do not correspond to
words get a penalty. This is to penalize incomplete word
hypotheses at the end of the acoustic input.

* History: the cost of the cheapest path from the beginning
of the input up to the current search space node.

All parameters (i.e., SI, SIL, WEP, and WNF) can be
tuned separately. For the simulations (and tuning experi-
ments) presented in the current paper, the optimal parameter
settings were obtained through word recognition experiments
in which the evaluation criteria were, in order of importance:
(1) the highest number of correctly identified words within
the N-best list, where N=50 and where the list is obtained at
the end of the utterance; (2) the number of times the correct
word was on the best path; (3) the position at which the
correct word was found in the N-best list (if found).

To restrict the search space, a maximum number of
search space nodes, containing only the most likely candi-
date words and paths, are kept in memory during the word
search. Furthermore, there are no duplicate paths: of identical
word sequences, only the cheapest path is kept. At any mo-
ment in time the word search module can produce a ranked
N-best list of alternative parses, each with its associated total
cost. Each path, or parse, contains words, word-initial co-
horts, silences, and any combination of these and the word
score for each of these constituting items, with the restriction
that a word-initial cohort can only occur as the last element
in the parse. If a certain word sequence becomes more likely
after the processing of more input, this word sequence will
move up in the N-best list as processing proceeds; Fine-
Tracker does not have to revise or recompute its parses.

In order to relate the output of a computational model to
behavioral data, an important assumption of any model is a
measure of how easy each word will be for subjects to re-
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spond to in a listening experiment, this measure is usually
referred to as “word activation.” Scharenborg et al. (2005)
presents a way to directly compute word activations from the
word scores as output by Fine-Tracker and SpeM. Since
word activations can be directly computed from the word
scores, we used the raw word scores in the subsequent simu-
lations, as these give identical results to word activations.

lll. SIMULATION I: LEXICAL EMBEDDING

In the first set of simulations, we investigate whether
durational information is beneficial for Fine-Tracker for dis-
tinguishing fully embedded words, such as “ham,” from the
words in which they are embedded (i.e., the matrix word),
such as “hamster,” as has been found for humans (e.g., Davis
et al., 2002; Salverda et al., 2003, 2007). The acoustic
stimuli and behavioral data used are taken from the eye-
tracking study referred to as “Experiment 1A” in Salverda
et al. (2003; henceforth referred to as “Salverda”). In this
study, participants were presented with manipulated Dutch
sentences over headphones. The crucial difference between
the sentences was the way the “target word” in each sentence
was constructed. The target word is a polysyllabic word of
which the first syllable also constitutes a monosyllabic word
(e.g., “hamster” contains the embedded word “ham”). In con-
structing the target words, the first syllable was either cross-
spliced from a monosyllabic word (e.g., “ham”; the MONO
condition) or from the first syllable from another recording
of that target word (“hamster”’; the CARRIER condition). In
total, 28 target words were used (see Table II).

The participants were asked to click on the picture of the
target word mentioned in the sentence. The target word was
represented by one of four pictures presented on a computer
screen. The other three pictures consisted of two distractors
and, crucially, the embedded word (here “ham”). During the
experiment, participants’ eye movements were monitored.
Analysis of the eye movements showed that there were sig-
nificantly more fixations to pictures representing monosyl-
labic words if the first syllable of the target word had been
replaced by a recording of the monosyllabic word than when
it came from a different recording of the first syllable of that
target word. Although there might be multiple acoustic dif-
ferences between the first syllable of the target word and a
monosyllabic realization of that first syllable, Salverda et al.
(2003) only found a significant effect for durational informa-
tion to explain their findings. They concluded that listeners
use durational information to distinguish between the embed-
ded word and its matrix word.

A. Setup of the simulations

Fine-Tracker was tested in two conditions: with and
without the ability to use durational information. The task set
to Fine-Tracker is to reproduce the finding that pictures rep-
resenting monosyllabic words attract more fixations when
the first syllable of the target word has been replaced by a
recording of the monosyllabic word than when it comes from
a different recording of the target word. Tanenhaus et al.
(2000) demonstrated that eye-tracking studies provide a sen-
sitive measure of the time course of lexical activation in
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TABLE II. The first column indicates the embedded and target word; in case
of orthographic differences between the embedded and target word, the tar-
get word is given in full after the forward slash. The condition in which the
embedded word has the highest word activation over time is indicated for
the canonical lexicon and the duration lexicon; Diff syllable duration (ms)*
shows the difference in duration of the first syllable of the target word
between the two conditions; Effect size human data shows the difference in
the average proportions of eye fixations to the embedded word between the
two conditions.

Lexicon Diff syllable

Embedded and duration Effect size
[target] word Canonical ~ Duration (ms) human data
bij/[beitel] CARRIER MONO 20 0.19
blik[sem] CARRIER CARRIER 17 0.01
bok[ser] MONO MONO 16 0.12
ei[kel] CARRIER CARRIER 17 0.01
ham[ster] CARRIER CARRIER 11 0.01
hen[del] CARRIER MONO 18 —0.30
kan[delaar] CARRIER  MONO 28 0.22
kei/[kijker] CARRIER MONO 20 —0.01
knip[sel] MONO MONO 14 —0.03
koe[kepan] CARRIER CARRIER 47 0.23
kok/[cocktail ] CARRIER CARRIER 11 0.07
kom/[compact-disk] MONO MONO 19 0.08
la[ma] CARRIER MONO 28 0.05
lam[pekap] MONO MONO 22 —0.08
lei[ding] CARRIER CARRIER 15 —0.02
man|tel] MONO MONO 25 0.09
pan[da] CARRIER CARRIER 10 0.03
pen/[panty] MONO MONO 15 —0.03
pin[da] MONO MONO 21 —-0.10
ree/[regenton] CARRIER  MONO 23 0.14
roos[ter] MONO MONO 30 —0.01
schil[der] MONO MONO 24 0.20
sla[ger] CARRIER CARRIER 21 0.10
snor|kel] CARRIER  MONO 12 0.00
tak/[ taxi] CARRIER CARRIER 7 0.26
thee/[tegel] CARRIER CARRIER 13 0.13
tor[so] CARRIER MONO 19 —0.02
zee/[zebra] CARRIER CARRIER 5 0.12
Total MONO: 9 MONO: 17 MONO: 18

“The syllable duration and human data are kindly provided by A.P. Salverda
and are presented here with his kind permission. The window used to cal-
culate the human data is identical to the window used in the original analy-
ses by Salverda er al. (2003).

continuous speech, and that a simple “linking hypothesis”
provides a good mapping of pattern and timing of eye fixa-
tions onto the underlying lexical activation. Following this, if
we consider the amount of fixations of Salverda’s partici-
pants as a degree of the word activation during word recog-
nition, the output of the computational model can be com-
pared with the behavioral data. We, then, expect the
activation of the embedded word in the MONO condition to
be higher than the word activation of the embedded word in
the CARRIER condition.

Fine-Tracker is evaluated by comparing the word acti-
vations of the embedded words over time in the MONO and
CARRIER conditions. If the word activations of the embed-
ded words in the MONO condition are higher than those in
the CARRIER condition, this is regarded as a correct simu-
lation. The effect of durational information is investigated by
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comparing the simulation results of the conditions with and
without durational information, and by correlating Fine-
Tracker’s word activations over time with the difference in
duration of the stimuli. Finally, Fine-Tracker’s results are
compared to the behavioral data.

One way to code durational differences between words
is in the lexical entries, which is the implementation chosen
for Fine-Tracker. In the condition where Fine-Tracker is not
able to use the durational cues (canonical lexicon condition),
the lexical feature representations of the embedded word and
the first syllable of the matrix word were kept identical. Each
phoneme in the lexical representation of the words was rep-
resented by a single feature vector. In the condition where
durational information was taken into account, the lexical
representations of the monosyllabic words and the first syl-
lable of the matrix words were different (the duration
lexicon condition). Acoustic measurements using PRAAT
(www.praat.org) showed that syllables were on average 232
ms long in the CARRIER condition, and 249 ms in the
MONO condition. This 17 ms durational difference is equal
to a difference of three frames at the prelexical level. To
accommodate for this durational difference, each phoneme in
the lexical representation of the monosyllabic word was rep-
resented by two identical feature vectors, whereas for the
first syllable of the matrix word each phoneme was repre-
sented by a single feature vector (see also Fig. 1).

B. Materials

For the simulations, the speech files from Salverda’s ex-
periment are first cut manually such that the cut-out stimulus
consists of the target word. When the stimulus did not allow
for a clean cutting point at the start of the target word, the
stimulus is cut before the target word’s preceding article or
adverb. Subsequently, the stimuli were parameterized with
12 MFCC coefficients and log energy and augmented with
first and second temporal derivatives resulting in a 39-
dimensional feature vector. The features were computed us-
ing 25 ms windows shifted by 5 ms per frame. The MFCC
feature vectors were used as input to the ANN module at the
prelexical level. The output of the prelexical level is then
used as input to the search module at the lexical level of
Fine-Tracker. The parameter settings for Fine-Tracker were
optimized on the MONO test set (there was not enough data
to create an independent tuning set), and subsequently tested
on the CARRIER test set to ensure maximum performance
on both sets. The parameter settings were the same in both
conditions.

The lexical feature vector representations were obtained
by substituting all phonemes of a word’s canonical phonemic
representation with its canonical AF vectors. The lexicon
used in the simulations consists of 27 740 entries. To guide
Fine-Tracker’s word search, we applied priors to the 61
words that occurred in the stimuli such that they were far
more likely than the other words in the lexicon. Thus, words
that do not receive a prior but are in the same word-initial
cohort as words that do receive the prior are far less acti-
vated. All words in a particular word-initial cohort that re-
ceive the prior are, however, equally activated.
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C. Results and discussion

A prerequisite for a correct simulation is that Fine-
Tracker is able to correctly identify the target and embedded
words. For the canonical lexicon, for both the MONO and
CARRIER condition, all 28 target and 28 embedded words
were found in the 50-best list output by Fine-Tracker. For the
MONO condition, the target word was first best 20 times,
whereas this was the case 21 times in the CARRIER condi-
tion. For the duration lexicon, for both conditions, all 28
target and 28 embedded words were found in the 50-best list.
For the MONO condition, the target word was the first best
15 times, for the CARRIER condition it was the first best 16
times.

In order to investigate the strength of Fine-Tracker’s
modeling ability and the effect of the ability to use durational
information, we compared the word activations over time of
the embedded words in the MONO and the CARRIER con-
ditions for both lexicon conditions. To that end, the word
scores for the embedded words are automatically extracted
from the 50-best lists. The durational differences between the
stimuli in the two conditions (and thus different numbers of
prelexical feature vectors mapped onto the word-initial co-
horts) means that it is not trivial to plot the word activations
over time for the embedded words in the MONO and the
CARRIER condition. Instead, Table II indicates in which
condition (MONO or CARRIER) the embedded word had
the highest word activation over time, for both the canonical
and the duration lexicon. This decision was based on a com-
parison of the patterns of the word scores over time. The
condition that had the highest word activation for the largest
part of the stimulus was regarded as the “winner.”

Table II shows that for the canonical lexicon, the embed-
ded word had a higher word activation in the MONO than in
the CARRIER condition for 9 of the 28 stimuli. This number
increased substantially to 17 when using a lexicon that takes
durational information into account. This improvement was
shown to be significant (p <0.005) according to a one-tailed
McNemar Test for related samples. The small number of
stimuli decreases the certainty that the data has a normal
distribution. Therefore, all statistical tests reported in this
paper are nonparametric. In the McNemar test, the stimuli
were pairwise compared (i.e., canonical vs. durational lexi-
con), where a “win” by the MONO condition was marked as
“1” and a win by the CARRIER condition as “0.”

We further investigated the effect of durational informa-
tion on Fine-Tracker. We expect the best modeling results for
Fine-Tracker for those stimuli where the difference in dura-
tional information is greatest between the monosyllabic word
(i.e., MONO condition) and the first syllable in the polysyl-
labic word (CARRIER condition). This assumption was
tested by correlating the difference in duration between the
monosyllabic word and the first syllable of the polysyllabic
word and the strength of the effect shown by Fine-Tracker
for all 28 stimuli. As the patterns of word scores over time,
which are used to make the decisions in Table II, cannot
easily be used to calculate the correlation, these word score
patterns were smoothed such that they were represented by a
single value. The durational differences are shown in ms in
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the column “Diff syllable duration” in Table II for each
stimulus. A positive number indicates a longer duration for
the first syllable of the target word in the MONO condition.
A one-tailed (bivariate) Spearman’s rho test was used to in-
vestigate the correlation. The test, indeed, showed a signifi-
cant positive correlation (Spearman’s tho=0.448, p<0.01):
bigger durational differences between the MONO and CAR-
RIER conditions correlated with better modeling results of
Fine-Tracker.

Fine-Tracker’s preference to map longer signals onto the
embedded words when using the duration lexicon, thus map-
ping the speech signal onto a lexical representation that con-
sists of a doubling of the lexical feature vector for each
phone, can be attributed to two aspects: the acoustic differ-
ences between the longer and the shorter signals, which is
reflected in different results for the computation of the dis-
tance measure, and the settings of the parameters that guide
the search in the word search module, more specifically, the
SI and SIL. This can be clarified as follows. Imagine two
signals, one consisting of 12 and one of 18 prelexical vec-
tors, and a lexical representation consisting of six lexical
feature vectors. Since the lexical representations of the em-
bedded words are identical in both the MONO and CAR-
RIER conditions, the SIL parameter is applied an equal num-
ber of times in both conditions. The difference thus lies in
the application of the SI parameter. This parameter needs to
be applied more often for a longer signal (usually the MONO
condition). In order to compare the word scores of the em-
bedded words across the two conditions at a specific point in
time, a normalization needs to be carried out, i.e., the em-
bedded word’s word score at that point in time is divided by
the number of prelexical feature vectors associated with the
embedded word at that point in time. According to the tuning
experiments, the value of SIL was to be set higher than the
value of SI. With a higher number of input feature vectors,
the relative contribution of the higher value for the SIL pa-
rameter to the normalized word score is less than in the case
of a lower number of prelexical feature vectors, resulting in a
lower average word score, thus a higher word activation
(Scharenborg et al., 2005), thus a better match of longer
signals onto the embedded words compared to the shorter
signals.

In short, subtle acoustic variation can be coded in the
lexicon in Fine-Tracker, as is done for the durational differ-
ences between the embedded and target words resulting in
the embedded and target words necessarily being in different
word-initial cohorts. This makes it possible for Fine-Tracker
to distinguish between embedded words and the first syllable
of the target words. Furthermore, the SI and SIL parameters
make Fine-Tracker sensitive to the subtle phonetic detail in
the acoustic signal. These features allow Fine-Tracker to use
durational information during word recognition. It is these
features that set Fine-Tracker apart from other existing com-
putational models of human word recognition, such as
TRACE and Shortlist, which are not able to represent dura-
tional differences nor are able to use durational information
during the word recognition process.

As is clear from Table II, the effect of durational infor-
mation was not the same for all stimuli. This is in line with
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Salverda et al. (2003). They also found that their main effect
was not equally strong for all target words. The column “Ef-
fect size human data” shows the size of the effect in the
behavioral study as the difference in the average proportions
of eye fixations, calculated over the window [300-900] ms
after onset of the target word, to the embedded word between
the MONO and the CARRIER conditions. A positive differ-
ence means that there were on average more fixations to the
embedded word in the MONO condition. As Table II shows,
an effect was found for 18 of the stimuli for the listeners
(Fine-Tracker: 17 stimuli). There is an overlap between Fine-
Tracker and the human data in the stimuli for which an effect
was found, but there were also differences. To investigate
whether Fine-Tracker and the listeners showed similar be-
havior, the strength of the effect shown by Fine-Tracker (rep-
resented by the single value also used for the correlation with
the durational differences, see above) and the human data
was correlated. A one-tailed (bivariate) Spearman’s rho test
showed a nonsignificant correlation (Spearman’s rho=
—0.285, p=0.071). This nonsignificant correlation was fur-
ther investigated by correlating the human data with the syl-
lable duration differences between the MONO and CAR-
RIER conditions. If this correlation is not significant, this
suggests that humans use other cues besides durational infor-
mation to resolve temporarily ambiguous stretches of speech.
Indeed, this correlation proved not to be significant (Spear-
man’s tho=0.111, p=0.286) indicating that bigger durational
differences between the MONO and CARRIER conditions
did not result in bigger differences in average proportion of
eye fixations to the embedded word between the MONO and
CARRIER conditions. These results seem to suggest that hu-
mans might use other cues, besides durational information,
for disambiguation.

IV. SIMULATION Il: SEGMENT DURATIONS AS A CUE
TO WORD BOUNDARIES

We further investigate Fine-Tracker’s ability to detect
and use durational information during word recognition; this
time with respect to differences in durations of a single seg-
ment. We use the results from Shatzman and McQueen
(2006a). They presented listeners in an eye-tracking study
with ambiguous Dutch sentences. For instance, two subse-
quent words could either be interpreted as “eens pot” (once
jar) or “een spot” (a spotlight). The sentences were con-
structed such that the final [s] of “eens™ and the target word
(in this example) “pot” was constructed either through
identity-splicing (the IDENT condition), where the [s] of
“eens” and the target word were spliced from another record-
ing of that same target-bearing sentence, or through cross-
splicing (the CROSS condition), where the “eens” target
word sequence was spliced from a phonemically identical
sentence but where the [s] of “eens” was produced as the first
segment of an [s]-plosive cluster, in our example “spot.”
Shatzman and McQueen (2006a) showed that the crucial dif-
ference between the two types of constructed sentences was
the duration of the [s].

The participants of the study were asked to click on the
picture of the target word mentioned in the sentence. The
target word was represented by one of four pictures pre-
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sented on a computer screen. The other three pictures con-
sisted of two distractors, and crucially, a picture of a com-
petitor word that had the same initial two-consonant cluster
as the first segment of the target word preceded by the [s] of
“eens,” in our example the competitor word would start with
[sp] [Shatzman and McQueen (2006a) used “spin,” spider].
Analysis of the eye movements showed that participants
used the duration of [s] as a cue for placing the word bound-
ary. Participants made fewer fixations and were slower to
fixate on the picture of the target word when the [s] in the
ambiguous sequence was long, thus taken from a recording
of the cluster-initial word “een spot,” than when it was
spliced from another recording of the “eens pot” reading of
the sentence.

A. Setup of the simulations

In this simulation, we test Fine-Tracker on its ability to
detect durational cues that distinguish word final from word
onset [s] realizations, and use these cues to place the word
boundaries. The task set to Fine-Tracker is to reproduce the
findings that listeners are slower to fixate on the picture of
the target word when the duration of the [s] in the ambiguous
sequence is longer, and that listeners make fewer fixations to
the target picture in the CROSS condition than in the IDENT
condition. Considering the amount of eye fixations as a de-
gree of the word activation, we expect the activation of the
target word in the CROSS condition to be lower than in the
IDENT condition, and at least the word activation to be
lower at the start of the target word compared to the IDENT
condition.

The setup of the simulation is that as used in the previ-
ous simulations. A simulation is correct when the target
word’s activation in the CROSS condition is lower than in
the IDENT condition, at least at the start of the target word.
Fine-Tracker’s performance is evaluated by correlating the
word activations over time with the difference in [s] duration
in the IDENT and CROSS condition. Finally, the output of
Fine-Tracker is compared with the behavioral data on a per
stimulus basis.

Similarly to the previous simulation, each phoneme is
represented by a single feature vector, in the canonical lexi-
con. In the duration lexicon, each phoneme in the canonical
lexical representation of the words was represented by a
single feature vector, apart from the word-initial [s]. Acoustic
measurements, carried out using PRAAT, showed that the
mean [s] duration was 95 ms in the IDENT condition and
110 ms in the CROSS condition, which results in a dura-
tional difference of three 5 ms frames. Taking this durational
difference into account, the word-initial [s] was represented
by three feature vectors, in the lexicon.

B. Materials

The stimuli consisted of 20 Dutch sentences each con-
taining one stop-initial target word, the stop either being a [t]
or a [p], preceded by the word “eens,” taken from Shatzman
and McQueen’s (2006a) study. Again, they were cut manu-
ally such that the cut-out stimulus consisted of the “eens”
followed by the target word sequence. Subsequently, the
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stimuli were parameterized with 12 MFCC coefficients and
log energy and augmented with first and second temporal
derivatives resulting in a 39-dimensional feature vector. The
features were computed on 25 ms windows shifted by 5 ms
per frame. The MFCC feature vectors were used as input to
the ANN module. The parameter settings for Fine-Tracker
were similar to those of the previous simulations. Finally, as
in the previous set of simulations, we applied priors to the 42
words in our stimuli (20 target words, 20 words that had the
form [s]+target word, “een,” and “eens”).

C. Results and discussion

For the canonical lexicon, for the IDENT condition all
20 target words were found in the 50-best list; however, in
the CROSS condition, only 18 were found. For the IDENT
condition the target word was first best six times, and seven
times in the CROSS condition. For the duration lexicon, for
both conditions, all 20 target words were found in the 50-
best list. For the IDENT condition, the target word was the
first best only once, whereas it was twice first best in the
CROSS condition. The word activation over time of the tar-
get words in the IDENT and the CROSS condition for both
lexicon conditions were then compared following the proce-
dure described in Sec. III C.

Table III shows, for the canonical lexicon and the dura-
tion lexicon separately, in which condition (IDENT or
CROSS) the target word had the highest word activation
over time, derived using the same procedure as in the previ-
ous simulation. For the canonical lexicon, for 8 out of 20
stimuli, the target word had the highest word activation in
the IDENT condition. For an additional two stimuli, indi-
cated with the asterisk in Table III, the word activation of the
target word was initially lower in the CROSS condition than
in the IDENT condition, although the word activation of the
target word in the CROSS condition was eventually higher
than in the IDENT condition. The word activation of the
target word increased more slowly in the CROSS condition
than in the IDENT condition, as was found for the listeners
in Shatzman and McQueen’s (2006a) study. For the duration
lexicon, this number increased to 13 of the 20 stimuli, while
for an additional two stimuli, the word activation of the tar-
get word was initially lower in the CROSS condition than in
the IDENT condition. This improvement was shown to be
significant (p<0.05) according to the one-tailed McNemar
Test for related samples, in which the stimuli were pair-wise
compared for the two lexicon conditions.

Subsequently, the difference in [s] duration in the
IDENT and CROSS condition was correlated with the
strength of the modeling effect of Fine-Tracker to test
whether the best modeling results for Fine-Tracker could be
found for those stimuli where the [s] duration difference is
greatest. The durational differences are shown in the column
‘Diff [s] duration (ms)’ in Table III. A positive number indi-
cates a longer [s] duration in the CROSS condition. Follow-
ing the procedure described in Sec. III C, a one-tailed (bi-
variate) Spearman’s rho correlation test was carried out. This
correlation showed a significant positive correlation (Spear-
man’s rho=0.620, p<0.005): a larger per stimulus differ-
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TABLE III. The condition in which the target word has the highest word
activation over time is indicated for the canonical and duration lexicon
separately; Diff [s] duration (ms) shows the difference in duration of the [s]
between the IDENT and the CROSS condition; Effect size human data®
shows the difference in the average proportions of eye fixations to the em-
bedded word between the two conditions. See the text for an explanation of
the asterisk.

Lexicon

Target Diff [s] duration  Effect size
word Canonical Duration (ms) human data
pan CROSS IDENT 17 0.03
peen IDENT IDENT 25 0.22
peer IDENT IDENT 7 0.16
pier CROSS CROSS 2 —0.04
pijl CROSS IDENT 19 0.20
pil IDENT* IDENT* 16 0.13
pin CROSS CROSS 9 0.05
pion CROSS IDENT 27 0.18

pit CROSS IDENT 21 0.15
pot CROSS IDENT 17 0.07
prei IDENT* IDENT 16 0.01
taart IDENT IDENT -2 —0.02
tand CROSS CROSS 7 0.05
tang IDENT IDENT 16 —0.02
teen CROSS CROSS 7 —0.10
teil IDENT IDENT 13 0.34
tempel IDENT IDENT* 12 0.19
thee IDENT IDENT 19 —0.20
tol CROSS CROSS 5 0.03
tulp IDENT IDENT 30 0.04
Total IDENT: 10  IDENT: 15 IDENT: 15

*The human data are kindly provided by K. Shatzman and J. M. McQueen
and are presented here with their kind permission. The window used to
calculate the human data is identical to the window used in the original
analyses by Shatzman and McQueen (2006a).

ence in [s] duration between the IDENT and CROSS condi-
tions correlated with a stronger modeling effect of Fine-
Tracker, and vice versa.

The column “Effect size human data” in Table III shows
the size of the effect in the Shatzman and McQueen (2006a)
study, calculated over the window [300-1200] ms after onset
of the [s] by Shatzman and McQueen’s (2006a), as the dif-
ference in the average proportions of eye fixations to the
target word between the IDENT and the CROSS conditions.
A positive difference in the average proportion means that
there were on average more fixations to the target word in
the IDENT condition. In this behavioral study, the main ef-
fect was not found for all stimuli. For 15 (Fine-Tracker: also
15) of the 20 stimuli Shatzman and McQueen’s (2006a)
found an effect, i.e., listeners were slower to fixate on the
picture of the target word when the duration of the [s] in the
ambiguous sequence was longer (CROSS condition) com-
pared to when the [s] was shorter (IDENT condition). To
investigate whether Fine-Tracker and the listeners showed
similar behavior, the strength of the effect shown by Fine-
Tracker and the human data was again correlated. Following
the procedure described in Sec. IIT C, a one-tailed (bivariate)
Spearman’s rho correlation was carried out. Similarly to the
simulation of the Salverda study, a nonsignificant correlation
was found (Spearman’s tho=0.323, p=0.082). In order to
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investigate this nonsignificant correlation and to further in-
vestigate the hypothesis that human listeners might use other
acoustic cues besides durational information for disambigu-
ation, the human data was correlated with the differences in
[s] durations between the IDENT and CROSS conditions.
This correlation was also not significant (Spearman’s rho
=0.349, p=0.66) indicating that larger differences in [s] du-
ration between the IDENT and CROSS conditions did not
result in larger differences in average proportion of eye fixa-
tions between the IDENT and CROSS conditions. This again
seems to suggest that human listeners might use other cues
besides durational information.

V. GENERAL DISCUSSION

The current investigation introduced “Fine-Tracker,” a
computational model of human spoken-word recognition
specifically designed for “tracking” subtle phonetic informa-
tion in the acoustic speech signal and using it during word
recognition. Two simulations, using the acoustic material
from the original behavioral studies, were carried out. As has
been found for humans, durational information is beneficial
during word recognition in Fine-Tracker. The results for the
simulations where durational information was included were
significantly better than those without durational informa-
tion. Durational cues allowed Fine-Tracker to distinguish
embedded words from their matrix words (first set of simu-
lations), and to distinguish word final realizations of [s] from
word initial realizations (second set of simulations). Further-
more, Fine-Tracker’s word activations over time correlated
significantly with the durational differences between the test
conditions in both simulations. These results show that Fine-
Tracker is sensitive to durational cues and is able to use
durational cues that distinguish whole syllables but also
single segments to disambiguate temporarily ambiguous
stretches of speech.

Fine-Tracker’s results were also compared to the human
data in order to investigate its ability to model the behavioral
data. Correlation analyses between Fine-Tracker’s results
and the behavioral data proved to be nonsignificant. An
analysis was carried out to investigate these nonsignificant
correlations. The results showed that, although there is a sig-
nificant correlation between Fine-Tracker’s results and the
durational differences in the stimuli, no such significant cor-
relation was found between the behavioral data and the du-
rational differences. This nonsignificant correlation suggests
that human listeners employ additional acoustic cues, and
perhaps additional strategies, that are not used by Fine-
Tracker, for resolving temporarily ambiguous stretches of
speech. However, more research is needed to investigate
which acoustic cues, besides durational cues, play a role in
the disambiguation process during spoken-word recognition.
Incorporation of these possible other cues into Fine-Tracker
is likely to result in an improvement in the modeling of the
behavioral data. Despite the poor correlation between Fine-
Tracker’s results and the behavioral data, there are two clear
advantages of using a computational model that takes the
acoustic signal as its input. First, instead of using some kind
of idealized input representation, the input used for the com-

3768 J. Acoust. Soc. Am., Vol. 127, No. 6, June 2010

putational model can be identical to the stimuli used in the
behavioral studies. Second, an end-to-end model necessarily
has to deal with the whole range of issues related to the
recognition of spoken words, instead of focusing on only
parts of the speech recognition process like most other exist-
ing computational models of spoken-word recognition. Nev-
ertheless, as the simulations have shown, there remain chal-
lenges for the future to improve Fine-Tracker’s performance.

The simulation results showed that the target words are
not always first best in the 50-best lists. There are multiple
reasons why Fine-Tracker occasionally fails. First of all, as a
result of the creation process of the target words, which were
spliced from two different utterances, there is far more vari-
ability between the stimuli in the two conditions than just
duration, as was also shown by Shatzman and McQueen
(2006a). These acoustic differences between the stimuli will
have an effect on the word scores of the target words due to
differences in the averaged squared distance between the
prelexical and lexical feature vectors for the two conditions.
Second, as is shown in Tables II and III, some of the dura-
tional differences between the two conditions went in the
opposite direction from the general trend which will result in
problems for Fine-Tracker. Finally, the ANNs used at the
prelexical level are not perfect. The frame classification error
rates on the Salverda stimuli ranged from 75.9% correct for
manner and 89.3% correct for voice. If the ANNs make ini-
tial errors then all following processes will be affected.
Analysis of the failures of Fine-Tracker will inform us about
areas where the model needs improvement.

In the current implementation, durational information is
stored in the lexicon in the form of a multiplication of a
feature vector. This setup allows for making lexical distinc-
tions between, for instance, embedded words and their ma-
trix words, while using an identical phoneme set for both
words. In Fine-Tracker’s lexicon, the [&] in “ham” is identi-
cal to the representation of the [&] in “hamster,” the only
difference being the number of feature vectors representing
the [&] in the lexical representation of the word, and thus its
minimum duration in the signal. Segmental distinctions can
be made in a similar fashion. The only difference between
the feature vectors of a word final [s] and a word initial [s] is
the number of feature vectors used to represent the phoneme.
Fine-Tracker is therefore “able to use durational information
[...] both for segmental distinctions and for lexical distinc-
tions that do not depend on differences between phonemes”
(Shatzman and McQueen, 2006a). Currently, the number of
feature vectors for each word in the lexicon is set by hand.
However, as is shown by Tables II and III, there are large
differences in the durational difference for the different
stimuli between the two conditions. The positive significant
correlation between Fine-Tracker’s simulation results and the
durational differences raises the question of what would hap-
pen if the number of feature vectors was determined specifi-
cally for each stimulus. For instance, it might be expected
that for stimuli where the durational difference is (much)
larger than the average difference, increasing the number of
feature vectors might be beneficial. This was investigated for
the target word “koekepan” and its embedded word “koe,” as
the durational difference between the two conditions for this
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target word is much larger than average and Fine-Tracker
was not able to produce a correct simulation for this target
word. Increasing the number of feature vectors to four for
each phoneme in the word indeed resulted in a correct simu-
lation. This seems to suggest that making the number of
feature vectors stimulus-dependent might improve Fine-
Tracker’s simulation power. Further research should shed
light on issues such as finding the optimal number of feature
vectors for each stimulus and whether this number should be
equal for each phoneme in the lexical representation or not.

Within the psycholinguistic literature, the flow of infor-
mation in spoken-word recognition is a controversial issue.
There are computational models, such as TRACE (McClel-
land and Elman, 1986), that allow information to flow from
the lexical to the prelexical levels, which are able to simulate
well-known phenomena related to the involvement of lexical
information in phonemic decision making. Simulations with
Merge (Norris et al., 2000), on the other hand, showed that it
is possible to simulate these phenomena without information
flowing back from the lexical to the prelexical level. As the
issue of the flow of information is still unresolved, Fine-
Tracker is based on the simplest model, i.e., without top-
down information.

There are three aspects that are crucial to the model’s
performance: (1) the differentiation in the lexical representa-
tions between monosyllabic words and phonemically identi-
cal syllables which are part of polysyllabic words—which
does not need to be encoded in the lexicon; (2) the ability to
use the durational information at the prelexical level; (3) the
use of this durational information at the lexical level to dis-
tinguish between the monosyllabic and the polysyllabic
word. In Fine-Tracker, durational information is hard-coded
in the lexicon. However, a perhaps more elegant implemen-
tation would be to incorporate durational information by al-
lowing the lexical search to loop over a lexical feature vec-
tor, and assigning a probability to the self-transition loop, in
order to allow for difference in length for monosyllabic and
polysyllabic words within the same lexical representation.
This would provide a way to use durational information at
the prelexical level, for instance, in a prosodic analyzer such
as proposed by Salverda et al. (2003) and Cho et al. (2007).
It is to be expected that such an implementation, as long as it
incorporates the three aspects that make the current imple-
mentation of Fine-Tracker work, will also be able to take
benefit from durational cues to resolve temporarily ambigu-
ous speech signals during word recognition, like Fine-
Tracker.

In this study, we have investigated Fine-Tracker’s simu-
lation abilities with respect to a limited set of words. If one is
interested in investigating more or other words than those
investigated in this study, this can easily be done by includ-
ing these words in Fine-Tracker’s lexicon. Note, however,
that, as for any computational model and ASR system, in-
creasing the number of words in the lexicon will result in an
increase in the difficulty of the task as more word hypotheses
have to be investigated during the word search, which in turn
often leads to a decrease in performance. If one is interested
in simulating psycholinguistic findings that use pseudo- or
nonwords, another issue arises. Computational models can in
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principle only recognize words that are in its lexicon. This
means that if one is interested in simulating behavioral find-
ings related to pseudo- or nonwords, these words have to be
included in the lexicon, which means that in the strict sense
they have become actual words. It is the experimenter’s re-
sponsibility to remember which entries in the lexicon are
actually pseudo- or nonwords and treat these words
differently—the computational model in principle cannot do
this.

The current study used the stimuli of the original eye-
tracking studies, which consisted of a limited number of
stimuli spoken by a single speaker in a single speaking style,
and with little difference in overall speech rate. In future
work, we will extend this research by investigating the per-
formance of Fine-Tracker using speech from more speakers,
using different types of lexical embedding, spoken in differ-
ent speaking styles at different speech rates. To this end, data
from the Spoken Dutch Corpus (Oostdijk et al., 2002) will
be extracted and analyzed. This will provide new knowledge
about the nature and structure of subtle phonetic detail, and
durational information specifically, in different types of
speech. This knowledge can be used to further improve Fine-
Tracker. Durational information extracted from real speech
from the Spoken Dutch Corpus could be used to improve the
lexical representations in terms of setting the number of fea-
ture vectors. Furthermore, this type of data can be used to
investigate the effect of different types of acoustic cues, for
instance those due to assimilation and coarticulation, on
word recognition in a computational model. This can easily
be investigated by using values in between 0 and 1 for the
AF types in the lexical representation. Finally, Fine-Tracker
does not have an explicit mechanism to deal with differences
in speech rate, as so far this was implicitly controlled in the
stimuli used. When using real speech, dealing with differ-
ences in speech rate will become an important issue. It is
possible that a mechanism is needed that will provide a nor-
malization of the speech rate.

To conclude, the implementation of Fine-Tracker and its
successful simulations show that it is possible to develop a
computational model of human spoken-word recognition that
is sensitive to subtle phonetic detail, takes the acoustic signal
as input, and in which subtle phonetic variation can be rep-
resented as continuous features. Fine-Tracker provides the
first computational model of human spoken-word recogni-
tion that benefits from durational cues to resolve temporarily
ambiguous speech signals during word recognition, as is
found for humans. Fine-Tracker thus provides a good plat-
form for further investigating the effect of durational cues in
nonlaboratory speech and the role of other types of subtle
acoustic cues on spoken-word recognition.
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1Generally speaking, the more AF types there are to model with a single AF
ANN, the more hidden nodes are needed. On the other hand, the more
separable the AF types are within a single AF ANN, the fewer hidden
nodes are needed.

’The word search module software of Fine-Tracker is implemented in JAVA
and is distributed under the GNU General Public License (GPL) via http://
www.finetracker.org (last viewed 4/12/2010).
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