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Abstract—This paper combines acoustic features with a high
temporal and a high frequency resolution to reliably classify ar-
ticulatory events of short duration, such as bursts in plosives.
SVM classification experiments on TIMIT and SVArticulatory
showed that articulatory-acoustic features (AFs) based on a
combination of MFCCs derived from a long window of 25ms and
a short window of 5ms that are both shifted with 2.5ms steps
(Both) outperform standard MFCCs derived with a window of 25
ms and a shift of 10 ms (Baseline). Finally, comparison of the
TIMIT and SVArticulatory results showed that for classifiers
trained on data that allows for asynchronously changing AFs
(SVArticulatory) the improvement from Baseline to Both is
larger than for classifiers trained on data where AFs change si-
multaneously with the phone boundaries (TIMIT).

I. INTRODUCTION

Most automatic speech recognition (ASR) systems are
based on the principle that words are composed of a sequence
of phones, also referred to as the ‘beads on a string’ model of
speech [1]. This model works reasonably well for carefully
produced speech. However, ASR performance drops tremen-
dously for spontaneous speech, mainly due to the high pro-
nunciation variability [2]. Phone-based modeling of pronun-
ciation variation has its limitations, because it is not able to
capture the overlapping, asynchronous gestures of the articu-
lators, e.g., [3]. Therefore, there has been an increased interest
in articulatory-acoustic features (AFs), which are the acoustic
correlates of articulatory events. With this type of features
speech can be represented in a way that does not impose a se-
quence of discrete segments. An estimate of the degree of
asynchrony in AF changes in speech is given in [4] in terms of
AF combinations. AF representations derived from the ca-
nonical phonemic transcriptions resulted in 62 AF combina-
tions. When the AFs were allowed to change asynchronously,
this number increased to 351.

AF classifiers have been used to improve speech recogni-
tion performance in adverse conditions [5], [6], to build lan-
guage independent phone recognizers [7], and to improve
computational models of human word recognition [8]. Fur-
thermore, AF-based descriptions of the speech material are
now being used to investigate pronunciation errors by learners
of a second language [10] and for the automatic analysis of
fine-phonetic detail [11]. For these latter two applications, an
accurate and reliable classification is crucial.

Unfortunately, the evaluation of the performance of AF
classifiers suffers from the absence of large corpora that pro-
vide reliable labeling of AF values. As a consequence, train-
ing and testing of AF classifiers is generally done on the basis
of data that is labeled on the phoneme level after which all

phonemes are replaced by their (canonical) AF values. Thus,
these phonologically inspired AF values change synchro-
nously at phone boundaries. Obviously, it is unclear to what
extent the classifiers trained with AFs obtained in this fashion
can be assumed to yield classification results that truly reflect
articulatory gestures.

The aim of the present study is two-fold. The first aim is to
build an AF classifier that can be used for reliable and accu-
rate detection of slight pronunciation errors and the automatic
analysis of fine-phonetic detail. One error second language
learners often make is the confusion of fricatives and plosives
[12]. Moreover, plosives show tremendous articulatory varia-
tion in casual speech [11]. Therefore, in this paper, we focus
on improving the automatic classification of the manner of ar-
ticulation (see Section I.A.). The second aim is to investigate
the effect of the AF labeling of the training and test material
on performance estimates (see Section I.B).

A. Improving manner classification through capturing tem-
poral information in the acoustic features

Previous research has attempted to improve AF classifiers
from several directions. First, different statistical classifiers
have been tested and their (frame-based) classification accura-
cies have been compared [5], [13], [14]. Second, different
methods to parameterize the acoustic waveforms have been
evaluated for the task of AF classification [5], [15]. A third
type of approach tries to exploit the long span contextual in-
fluence among phonetic units by explicit modeling of the dy-
namic temporal constraints induced by the physical properties
of the articulators (e.g. [27] and the references therein).

Regardless of the AF classification system used, the un-
derlying acoustic representation are mostly MFCCs and
hardly anyone has moved away from using a window length
of 25ms and a window shift of 10ms1, probably because these
settings are known to be close to optimal for ASR purposes.
With this window length and shift reasonably good results can
be obtained for more or less stationary sounds, for whose cor-
rect classification a high resolution in the frequency domain is
more important than a high temporal resolution. For instance,
around 90% of the vowels were classified correctly in a classi-
fication task [13] on TIMIT [18]. However, many articulatory
events are not stationary or are much shorter than 25ms and
can therefore not be properly captured. This is especially the
case for plosives. For comparison, the same study [13]
                                                  
1 To our knowledge, only two studies used a different window length and
shift: [16] used a 16ms window and a 8ms shift, while [17] used a 25ms win-
dow shifted with 2.5ms.



showed that only 80% of the plosives were correctly classi-
fied. In the TIMIT database, which is often used for investi-
gation of AFs, 10% of the segments are shorter than 25ms.

In order to obtain both a high time and frequency resolu-
tion, we propose an acoustic feature vector with MFCCs de-
rived from a window of 25ms and from a short window of
5ms that are both shifted with 2.5ms steps. We will investigate
the usefulness of such extended acoustic features by training
an AF classifier based on a support vector machine (SVM)
and subsequently test it on TIMIT. The reason for using an
SVM is that this type of classifiers provides good generaliza-
tion given a small amount of high-dimensional data, and that
SVMs have shown good AF classification results (e.g., [13]).
The classifier trained with the new acoustic feature vectors
based on a combination of short and long windows will be
compared to a baseline classifier with ‘standard’ MFCCs in
order to investigate whether these acoustic features achieve a
better frame classification accuracy.

B. Dealing with inaccurate material
Ideally, AF classifiers should be trained and tested on ob-

served articulatory trajectories or on speech corpora that are
manually transcribed on the articulatory level. However, these
data are not available in sufficient quantity, and the creation of
these data is extremely time-consuming. For instance, [20] re-
ported that transcriptions of utterances on the AF level take
1000 times real-time for SVitchboard [21] (a selection of the
Switchboard corpus that can be considered a small vocabulary
data set). The conventional ‘solution’ to obtain enough train-
ing and testing material is to use a canonical mapping from
phonetic alignments to AF values. Thus, the phoneme /t/
would map to the AF values ‘voiceless’, ‘alveolar’, and a se-
quence of ‘closure’ and ‘burst+release’. However, for Dutch,
it has been shown that only 11.5% of word-final /t/s are real-
ized according to this canonical feature representation [11].
Similar pronunciation variation can be expected for other
sounds and in other languages. Thus, the mapping from pho-
nemic labels to AF labels results in classifiers that are trained
and tested on stretches of speech that may not contain the as-
signed feature value at all. This raises doubts about the valid-
ity of the data the classifiers are trained and evaluated on.

In the absence of a sufficient amount of AF labeled data,
we followed the standard procedure: the reference frame la-
bels are derived by replacing the frame-level phonemic TIMIT
labels by the canonical AF values. This thus implies that if
one wants to evaluate the degree of success with which a clas-
sifier is able to correctly classify the acoustic correlates of un-
derlying articulatory gestures, while in actual practice the
phone-based canonical labels are used as the reference, asyn-
chronously changing AFs may be erroneously marked as er-
rors. The impact on apparent frame accuracy due to the lack
of a transcription that accounts for asynchronously changing
AFs is illustrated by [22]. They showed that if a feature is al-
lowed to change within a range of ±2 frames from the phone
boundary, the measure “all frames correct” increases signifi-
cantly by 9% to 63%. Therefore, the number of such virtual
errors occurring at phone boundaries creates a substantial (and
for diagnostic purposes, misleading) decrease in the frame ac-

curacy when not allowing asynchronously changing AFs.
Note that the lack of a transcription of the speech signal that
accounts for asynchronously changing AFs also means that it
is impossible to achieve 100% correct classification on the
given task and that the ‘upper-bound’ of the classification ac-
curacy is unknown. In order to investigate the effect of the
synchronously changing AF values around phone boundaries
on the errors the AF classification systems make, we carry out
an analysis of the classification results around the phone
boundaries.

Finally, the fact that an AF classifier is often trained on
stretches of speech that may or may not contain the assigned
feature value can result in an AF classifier that suggests a
good performance in detecting plosives, even if not all plo-
sives are produced in their canonical form as a closure and a
release. Since our goal is to build classifiers that are able to
detect slight pronunciation errors and fine-phonetic detail, it is
important that the classifier can distinguish different plosive
realizations. Therefore, in addition to evaluating the classifier
on the TIMIT data, we also test the new acoustic features on
those SVitchboard utterances that have been transcribed at the
AF value level [20]. In this paper we refer to the latter dataset
as SVArticulatory. Comparing the new classifier with the
baseline system on both data sets will show whether the new
classifier is better able to describe the speech signal at the ar-
ticulatory feature level.

TABLE 1
MAPPING OF TIMIT PHONE SYMBOLS TO THE MANNER AF VALUES.

Phone Manner AF value
sil, pau silence

l, el, r liquid
w, y glide

em, en, eng, m, n, ng, nx nasal
dh, f, hh, s sh, th, v, z, zh, hv fricative

b, d, g, p, t, k, q burst+release
bcl, dcl, gcl, pcl, tcl kcl closure

dx, epi, all vowels NIL

II. METHOD

A. Articulatory feature values
In the past, different methods have been proposed to char-

acterize manner of articulation. For example, plosives can ei-
ther be mapped as a whole on one AF value ‘plosive’ [13],
[22], [23] or be split up into two parts ‘closure’ and ‘release’,
where the release can be modeled together with ‘fricative’ [5],
[24] or separate from the fricatives as a ‘burst+release’ [14],
[16]. The latter is also the way we deal with plosives, for two
reasons. First, modeling plosives as one unit violates the as-
sumption of SVMs that the sequence of frames assigned to a
sound can be considered as drawn from one population, which
is definitely not the case for plosives that consist of a se-
quence of ‘closure’ and ‘release’. Secondly, we aim at using
AF classifiers to analyze how the sounds were actually pro-
duced, for instance whether a plosive was realized as a closure
followed by friction or as a closure plus burst and friction.



Therefore we train separate classifiers for ‘fricative’ and
‘burst+release’. We excluded all ‘vowel’ material, because it
is possible that certain AF values overlap in time, for instance
in the case of nasalized vowels. However, when including
both ‘vowel’ and ‘nasal’ as an AF value, these AF values can-
not co-occur in a frame, as the classifier has to make a choice
between the two. A full overview of the manner AF values is
given in Table 1.

B. Speech material

1)  TIMIT
The speech material used in this study is taken from

TIMIT, which contains hand-labeled and hand-segmented
phonetically balanced sentences read by 630 speakers (of
which 70% were male) from eight major dialects of American
English. We followed TIMITs training and testing division, in
which no sentence or speaker appears in both the training and
test set. The training set consists of 3,696 utterances.

To train the SVM classifiers, a smaller training set of
25,210 10ms frames was created by randomly selecting
frames from the full training set with the same prior distribu-
tion of the AF value classes as in the full training set. Note:
since the window shift is 2.5ms in the case of the new acoustic
features, the original 25,210 training frames were split into
100,842 2.5ms frames to train the new classifiers.

In the first experiment (Section III.A.), the classifiers were
tested on the TIMIT test set consisting of 1,344 utterances;
i.e., 236,984 10ms frames and 943,604 2.5ms frames.

The TIMIT database is labeled using 59 Arpabet symbols,
which have been relabeled in terms of AF values according to
Table 1. Therefore, the AF values change simultaneously with
the original phone boundaries. Note that it is possible that
segments that have been annotated as ‘burst+release’ in the
TIMIT material indeed contain a burst; however, it is also
possible that the burst is actually missing, just leaving frica-
tion.

2)  SVArticulatory
For the second experiment, we used a data set that con-

sisted of 78 utterances (a total of 119s of speech, excluding
initial and final silences) drawn from SVitchboard, a small-
vocabulary subset of spontaneous telephone speech from
Switchboard [19]. This subset is converted into a set of 13,295
10ms frames, and a set of 53,115 2.5ms frames. SVArticula-
tory was manually transcribed on the AF level for the 2006
JHU Summer Workshop [20]. The original set of AFs did,
however, not match our set of AFs. Therefore, manual adap-
tations were made for which the starting point was the tran-
scriptions from the tier on which the feature set ‘Dg1’ (Degree
of forward constriction) was annotated. These transcriptions
were modified to our feature set. Table 2 shows the mapping
between these two feature sets. When modifying the annota-
tions, the original boundaries were maintained, but the labels
were changed according to Table 2; e.g., the original label
‘fricative’ was changed to ‘burst+release’ in those plosives
where a burst was present. Releases without burst maintained
the label   ‘fricative’. New boundaries were placed when one

feature in the ‘Dg1’ set is transcribed as two features in our
set; e.g., an ‘approximant’ in the original set occasionally was
replaced by a ‘liquid’ followed by a ‘glide’ in our set. New
boundaries were placed to separate background speakers from
silence. The boundaries of the ‘Nasality’ tier of the original
transcription were used to annotate the nasal consonants. Pre-
vious labeling mistakes that occurred in two utterances were
corrected. Furthermore, frames labeled as flap or containing
background speech have been removed.

TABLE 2
PHONE-TO-AF MAPPING FOR THE ORIGINAL ‘DG1’(DEGREE OF FORWARD

CONSTRICTION) AND OUR AF SET.

Phone Dg1 Our AF set
l, el closure liquid
er, r approximant liquid
w, y approximant glide

em, en, eng, m, n, ng, nx closure nasal
dh, f, hh, s sh, th, v, z, zh,hv fricative fricative

b, d, g, p, t, k, q fricative burst+release
or fricative

bcl, dcl, gcl, pcl, tcl kcl closure closure
silence silence silence

TABLE 3
THE %SV AND VALUES FOR C AND γ FOR DIFFERENT ACOUSTIC FEATURES.

%SV c γ
Baseline 55.0 0.4 2
Short 46.1 0.8 1
Long 31.1 0.5 4
Both 41.8 0.3 2

C. Support Vector Machines
The AF classifiers built in this study are SVMs [25]. In our

experiments, we used the LIBSVM package [26], which
achieves multi-class classification by error correcting codes.
The RBF kernel was used for the experiments reported in this
paper.

For the AF classifiers, trained using four sets of acoustic
features (cf. Section III.A), the number of support vectors
(SVs) is listed in Table 3 as a percentage of the amount of
training data (%SV). The percentage of SVs indicates the task
complexity: more SVs suggest either more complex decision
boundaries or more overlapping data. Table 3 also lists the γ
and c parameters in the SVMs, estimated on an independent
development set of 2,000 frames. A large γ implies narrower
RBFs. If c is large, the more complex decision boundaries are
constructed to fit the training data, but this may result in poor
generalization.

Table 3 shows that the %SV is lowest for Long, while the
value for γ is highest. This indicates that the width of the
RBFs is reasonably small, which suggests that the clusters in
the Long model are more localized, with little overlap between
the AF values, resulting in a fair generalization. The c values
of the four models do not differ much. The %SV is highest for
Baseline, while the value for γ is relatively low, indicating that
the width of the RBFs is relatively large which results in less
localized AF clusters and less generalization than Long and



Both. Short has the lowest generalization, while Both is most
likely in between Baseline and Long.

III. EXPERIMENTS

A. Experiment 1
The first experiment investigated the effect of different

window sizes over which the MFCCs are calculated. This ex-
periment gives insights into the effect of improving the tem-
poral resolution in the MFCCs. In total four different MFCC
representations were compared:

• Baseline: window size: 25ms; window shift: 10 ms.
• Short: window size: 5ms; window shift: 2.5ms.
• Long: window size: 25ms; window shift: 2.5ms.
• Both: the Short and Long MFCCs are concatenated.

For all acoustic features, the input speech is first divided
into overlapping Hamming windows of 25ms or 5ms with a
10ms or 2.5ms shift and a pre-emphasis factor of 0.97. For the
25ms windows 13 MFCCs (C0-C12), and their first and sec-
ond order derivatives were calculated (39 features). For the
5ms windows, 7 MFCCs (C0-C6) and first and second order
derivatives were calculated (21 features). Afterwards, cepstral
mean subtraction (CMS) was applied.

Adding context information has shown to improve classifi-
cation performance (e.g., [13]). We therefore carried out dif-
ferent tests to determine the optimal amount of temporal con-
text, which was 30ms at both sides. For Baseline, 3 frames (30
ms) left and right of a frame were taken into account resulting
in MFCC vectors of length 7*39=273. Since the window shift
is different for the baseline system and the three other sys-
tems, the context was incorporated slightly differently in the
Short, Long and Both classifiers: for these three classifiers ±3
frames were taken but taking only every fourth frame, in order
to cover the same temporal context left and right of the frame
as Baseline. This resulted in feature vectors of length 273 for
Long and 147 for Short. To combine the window lengths
(25ms and 5ms) for Both, feature vectors of both windows
with the same midpoint were concatenated, resulting in fea-
ture vectors of length 273 (from the 25ms window) + 147
(from the 5ms window) = 420.

1)  Results
Table 4 shows the performance of the four AF classifiers in

terms of percentage correctly classified frames on the TIMIT
test material in confusion matrices. For clarity, the percent-
ages along the diagonal are in bold. Comparing the three new
acoustic features with the baseline system shows that the
Short and Both classifiers performs best for ‘burst’ (Bur) as is
to be expected, because the burst of a plosive is an event with
a short duration. The Both and Long classifiers perform best
for ‘frication’ (Fric). The AF value that profits most from
adding temporal information is ‘liquid’ (Liq). Taking the dif-
ferent cell frequencies into account and computing the average
accuracy, the Both classifier is slightly better than the others
(85.1±0.1 vs. BL: 84.0±0.2, Short: 81.8±0.1 and Long: 84.8±0.1%).
Most importantly, the Both classifier seems to be able to com-
bine the classification power of both the Short and Long clas-
sifiers.

TABLE 4
CONFUSION MATRICES FOR THE AF CLASSIFIERS ON TIMIT; BL=THE

BASELINE SYSTEM. THE DIAGONALS ALSO CONTAIN 95% CONFIDENCE
INTERVALS.

BL Sil Liq Gli Nas Fric Bur Clo
Sil 82.3±.9 0.2 1.4 0.3 2.4 3.3 10.1

Liq 0.0 85.7±.4 4.1 3.9 3.0 2.1 1.2
Gli 0.0 13.2 81.0±.7 2.9 0.9 1.0 1.0
Nas 1.0 3.1 2.2 84.9±.4 3.0 0.9 4.9
Fric 1.0 1.7 1.1 2.0 86.7±.2 4.8 2.7
Bur 2.9 2.0 1.1 0.9 11.6 76.8±.5 4.7
Clo 4.9 0.9 0.3 3.0 3.0 4.0 82.9±.3

Short Sil Liq Gli Nas Fric Bur Clo
Sil 72.2±.5 0.1 1.9 0.9 5.1 6.0 13.8
Liq 0.2 84.4±.2 5.2 4.8 3.1 1.2 1.1
Gli 0.1 16.4 75.3±.4 4.0 1.9 1.1 1.2
Nas 1.1 7.3 3.1 76.2±.2 5.1 0.9 6.3
Fric 1.1 1.4 1.0 1.6 88.1±.1 4.8 2.0
Bur 2.0 1.8 1.1 1.0 11.8 78.1±.3 4.2
Clo 9.8 1.0 0.1 2.1 4.2 3.9 78.9±.2

Long Sil Liq Gli Nas Fric Bur Clo
Sil 77.8±.5 0.0 1.4 0.0 3.1 4.8 12.9
Liq 0.0 88.7±.2 3.9 3.6 1.8 1.1 0.9
Gli 0.9 12.1 81.3±.3 2.8 0.9 1.0 1.0
Nas 1.1 2.8 1.0 86.9±.2 3.2 0.1 4.9
Fric 1.7 0.9 1.1 1.0 88.7±.1 4.0 2.6
Bur 2.8 1.9 1.0 1.0 11.9 76.7±.3 4.7
Clo 5.9 1.2 0.4 3.0 4.1 4.0 81.4±.2

Both Sil Liq Gli Nas Fric Bur Clo
Sil 76.4±.5 0.2 1.0 0.0 2.9 4.8 14.7
Liq 0.2 88.7±.2 4.1 3.2 1.8 1.1 0.9
Gli 0.3 12.3 81.4±.3 2.8 1.0 1.0 1.2
Nas 1.0 3.3 1.0 86.4±.2 3.1 0.2 5.0
Fric 1.9 1.0 0.9 1.1 89.0±.1 2.7 3.4
Bur 2.8 1.7 1.1 1.1 11.2 78.1±.3 4.0
Clo 5.4 1.0 0.2 2.9 4.1 4.2 82.2±.2

2)  Analysis
As explained above, the synchronously changing AF values at
the phone boundaries in the training data are likely to incur er-
rors around those phone boundaries in the test material. In or-
der to further analyze these errors and to investigate the influ-
ence of improving the temporal resolution of the MFCCs on
these errors, the classification output of the best performing
new classifier Both was further analyzed and compared to the
Baseline system. To that end, the percentage correctly classi-
fied frames for the 20ms following a phone boundary or
leading towards a phone boundary are calculated for each of
the AF values separately. As Baseline consists of a 10ms



Fig. 1. The frame accuracy over time for each of the AF val-
ues for Baseline. The bold line shows the overall performance.

Fig. 2. The frame accuracy over time for each of the AF val-
ues for Both. The solid line shows the overall performance.

window shift, only two frames are analyzed; the Both system
uses 2.5ms window shifts, resulting in eight frames that are
analyzed. With this method, only phonemes of a minimum du-
ration of 40ms could be analyzed, and the presented figures
therefore only represent those 75.4% of segments in TIMIT
that have this minimum length.

Figs. 1 (Baseline) and 2 (Both) show the percentage cor-
rectly classified frames for each of the AF values separately
and the overall classification score over time. The positive
numbers indicate the frame numbers counting from the start of
the phone, the negative numbers indicate the frames numbers
counted from the end of the phone. As expected, the perform-
ance of the classifiers is lower towards the boundaries as there
the co-articulation effects are strongest. These results suggest
that indeed the synchronously changing AFs in the test mate-
rial result in a reduced frame accuracy. However, the central
frames of the phone do not reach 100% correct classification
accuracy; this might be due to the fact that the models are cor-
rupted due to the synchronously changing AFs in the training
material. While the frame accuracies over time for most AF
values show the same pattern, there are a few exceptions. Si-
lence shows extremely low accuracies close to the phone
boundaries. The glides and bursts show lower accuracies at
the beginning of the phone. Note that those AFs that do not

follow the overall pattern are those that profit the least from
the Both system compared to Baseline.

Finally, comparing Baseline and Both it can be observed
that the first frame after a boundary and the last before a
boundary have relatively low accuracies and that the accura-
cies for some manner classes rise at a different rate than oth-
ers. However, all in all, the results seem to suggest that in-
creasing the temporal resolution yields a larger proportion of
representative training data which results in better classifiers
which are less sensitive to errors introduced by the synchro-
nously changing AFs.

B. Experiment 2
In the second experiment, the best performing new acoustic

features are compared with the baseline system on the SVAr-
ticulatory data. To that end, new SVMs are trained using the
acoustic features of the Both system and the Baseline system
on the SVArticulatory data and subsequently tested in a 5-fold
cross validation scheme. Folds were generated by randomly
dividing the whole dataset into five parts. Note that, as op-
posed to the TIMIT experiment, there was not a stringent
separation between utterances from training and test speakers.
Both classifiers were trained five times on 80% of the material
and tested on the remaining 20%. Each time, γ and c parame-
ters were optimized on the training material by training and
testing on two random subsets (from the training set) with dif-
ferent parameters.

With this experiment we intend to investigate the impact of
labeling accuracy and its interaction with improved temporal
resolution.

3)  Results and Discussion
Table 5 shows the performance of Baseline and Both in

terms of percentage correctly classified frames on the SVAr-
ticulatory material in confusion matrices. As is clear from the
percentages on the diagonal, Both outperforms Baseline for all
AF values, except for silence (Sil) where they perform equally
well. The performance of Both on the SVArticulatory data is
substantially better than on TIMIT. Despite the differences
between the two experiments we firmly believe that this is
mainly due to more accurate labels in SVArticulatory than in
TIMIT. Furthermore, the difference between Both and Base-
line is much bigger than for the TIMIT data. The difference is
biggest for ‘burst’ (Bur), which is according to expectation as
here the temporal resolution resulting from the short windows
gives additional information about the bursts, which are short
and dynamic acoustic events. Thus, it seems safe to conclude
that when the training material does allow for asynchronously
changing (and consequently more accurate) AFs (SVArticu-
latory), the upper bound for the classification performance is
raised. Moreover, in the presence of more accurate labels in
training and test the gain obtained thanks to improved tempo-
ral resolution is larger than the improvement obtained in
TIMIT, where the AF labels are less accurate because of the
synchronous changes imposed by the mapping from phonetic
symbols to AF labels.



TABLE 5
CONFUSION MATRICES FOR THE TWO AF CLASSIFIERS ON SVARTICULATORY;

BL=THE BASELINE SYSTEM.

BL Sil Liq Gli Nas Fric Bur Clo
Sil 96.2±.4 0.2 0.0 1.0 1.3 1.1 0.2

Liq 1.0 89.9±2.3 3.7 1.8 1.7 1.0 0.9

Gli 1.9 2.5 87.0±.2.7 3.6 2.1 1.9 1.0

Nas 1.0 1.9 2.9 84.4±2.5 3.7 1.1 5.1

Fric 1.9 1.4 1.8 1.9 83.1±.1.8 4.8 5.1

Bur 1.1 1.0 0.2 1.4 3.5 82.7±3.6 10.1

Clo 1.8 0.8 1.9 3.2 5.9 2.9 83.5±2.1

Both Sil Liq Gli Nas Fric Bur Clo
Sil 96.0±.2 0.4 0.1 0.1 2.3 0.1 1.0

Liq 1.0 95.4±.8 1.2 0.9 0.9 0.4 0.2

Gli 0.2 1.9 95.1±.9 1.4 1.0 0.2 0.2

Nas 0.2 1.9 0.9 93.3±.9 1.5 0.2 2.0

Fric 1.9 1.1 0.0 0.9 89.3±.7 3.3 3.5

Bur 0.2 0.1 0.0 0.0 4.2 92.4±1.3 3.1

Clo 1.4 0.2 0.9 1.2 5.1 1.2 90.0±.9

IV. CONCLUSIONS

The aim of the present study was two-fold. The first aim
was to build an AF classifier that can be used for reliable and
accurate detection of slight pronunciation errors and the auto-
matic analysis of fine-phonetic detail. In order to improve the
automatic classification of the manner of articulation, we pro-
posed a combination of acoustic features with both a high
temporal and a high frequency resolution so that it becomes
possible to detect and reliably classify articulatory events of
short duration, such as bursts in plosives. The results showed
that combining MFCCs derived from a long window of 25ms
and from a short window of 5ms that are both shifted with
2.5ms steps outperforms standard MFCCs. The added value of
temporal information was found when testing the SVM classi-
fiers on TIMIT and on a subset of SVArticulatory.

Secondly, we investigated the effect of the AF labeling of
the training and test material on performance estimates.
Comparing the results of the two presented experiments
showed that for classifiers trained on data that is labeled at the
AF level with asynchronously changing labels (SVArticula-
tory) the improvement from Baseline to Both is larger than for
classifiers trained on data where the labels of the AF level
were generated by mapping from the phone label to the AF
value (TIMIT). Thus in order to train reliable and accurate AF
classifiers, training and test material that allows for asynchro-
nously changing AFs is crucial.
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