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ABSTRACT a: .

Maximum margin clustering (MMC) is a relatively new and piiem
ing kernel method. In this paper, we apply MMC to the task of un
supervised speech segmentation. We present three aut@mpaéch
segmentation methods based on MMC, which are tested on TIMIT '\J .
and evaluated on the level of phoneme boundary detectioa.rgh ~ Maximise decision
sults show that MMC is highly competitive with existing upsu-
vised methods for the automatic detection of phoneme baoigsda
Furthermore, initial analyses show that MMC is a promisirettmd
for the automatic detection of sub-phonetic informatiothespeech ~ Fig. 1. The maximum margin criterion applied to SVMs and MMC.
signal.
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vised learning. obtained segmentation will be evaluated on [8] by camipg

the segment boundaries to the phone boundaries. One hasirto be
in mind though, that MMC is a speech segmentation method, but
1. INTRODUCTION the evaluation is on the level of phonemes. Our goal is nattistr

) ) ) ] phoneme segmentation, but the segmentation of speechliisters
Kernel methods have become increasingly prominent recenith  that may be classified later using SVMs.

the development of support vector machines (SVMs) [1] arer th The remainder of the paper is as follows. Section 2 describes
successful application in various fields. For example, S\dse  pMMC. Section 3 describes the material used. The segmentatio
become an integral part of most state-of-the-art speakegrétion  methods and their results are presented in Section 4, acuissisd in

systems competing in the annual NIST evaluations [2]. Irtrest,  Section 5. The paper concludes with the most important fgsland
the use of kernel methods in other fields of speech processioh as 3 prief outlook on future research.

automatic speech recognition (ASR), is comparatively umoen.
Maximum margin clustering (MMC) [3] is a relatively new and
promising kernel method. It is of interest because of itsselo
relationship to SVMs. MMC is a (semi) unsupervised form of\6V
which determines the maximum margin dichotomy when (som
or) no labels are specified: the two are related by the maximu
margin criterion [1] for finding the optimum solution. Alskernels
developed for SVMs are immediately applicable to MMC. For
example, using a sequence kernel developed for speakécaton
[4, 5, 6] enables maximum margin speaker clustering andgusin
a temporally discriminant sequence kernel developed feedp
recognition [7] enables clustering of variable length gesegments.
For the latter it is necessary to provide an initial segmtésmaof the
speech signal. Since MMC and SVMs are closely related, insee
natural to use MMC to segment the speech for later reclasgdit
by SVMs. However, before applying sequence kernels an atiatu
of MMC'’s potential to segment speech is necessary.
In this paper, we examine the use of MMC for frame-level
unsupervised speech segmentation using standard kerrBhe

2. MAXIMUM MARGIN CLUSTERING

The principle underlying SVMs is the maximum margin crioeri
St states that if a linear decision boundary is to be placewéen
Two separable classes then the optimum position is locatectlg
mid-way between the two such that the shortest distances tie
boundary to the nearest points of each class are equal andchalax
Such an optimal decision boundary is illustrated in figurenizereas
figure 1b illustrates a non-optimal decision boundary. Thepty
region bounded by the two lines running parallel to the denis
boundary between the two classes is called the margin anddsho
have maximal width, i.e., it should be as wide as possiblelenhi
remaining empty. The SVM formulation extends this prineipb
the non-separable case by penalising incursions into aakedc
soft-marginand the goal then is to maximise the soft-margin while
minimising the penalties.

Maximum margin clustering (MMC) developed by [3] employs
the same underlying principle. The difference between S\akid
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between the two resulting classes is maximal. This is iiuetl in -~ 2 A B e B
figure 1c where the task is to find the optimal decision boundar I I I
between the two sets of black dots. The proposed boundarngurefi

1c is non-optimal, the boundary should be placed as is dofiguire

la. Therefore, MMC is an unsupervised algorithm which can be
used to dichotomise a set of feature vectors. The MMC opéitita
problem can be formulated as a semidefinite programmingmob

Frame index in window
o

and our implementation closely follows that outlined in.[3tis  b: , sh ix hv eh deljh  ih ] _d_]ah
interesting to note that MMC can also be used in a semi-sigetv g g | ‘ \\[ ,
setting in which some of the points are labelled. This leadat 2% | \ N/

constrained form of MMC which might be useful when handling § 5 | \/ ]
temporally ordered data such as speech. However, this fyoise 1;’ go’ ]
not exploited in this study. d4=7 sh ix hv oeh /o deljhihd ab

The application of MMC to divide a speech signal into segraent
separated by maximum margin is relatively straight-focvand is g 2 a: Sliding window clustering representation; each column
described in section 4. Such MMC segments may be useful 08hows the cluster label assignments. b: Euclidean distaebeeen
multiple levels. For (_axample, for the analysis of two comrm/e_ cluster means; the detected boundaries (using= 0.001) are
phonemes. Alternatively, MMC can be used to analyse a singlgygicated by the solid vertical lines. Theaxis shows the TIMIT

phoneme such as a long vowel in which case it might be abletéatle poyndaries (dashed vertical lines) of the phrase “She hadryo
fine sub-phonetic detail [9]. Thus the method may provideahle (k).

insights into our understanding of speech.

3. MATERIAL segmentation found by MMC coincides with the hand labelled
TIMIT boundary marked on the-axis.

The speech used in this study is taken from the TIMIT corpus _Section 4.1 descri_bes the metrics used to evaluate the segme
[8]. TIMIT consists of reliably hand labelled and segmentizda  tation quantitatively with respect to the TIMIT phonemee&b A
of quasi-phonetically balanced sentences read by natieakgps ~Method of finding potential segmentation points by detectiiag-
of eight major dialect regions of American English. Of thep63 ©Onal structures in the graph is described in section 4.2ti®e4.3
speakers in the corpus, 438 (70%) were male. We used TIMIT'§lescribes an alterqatlve method of finding segmentatlmlt.spbqsed
predefined test set’ Consisting of 1’344 utterances (therﬁames on the EUC“dean.dlstanC.e bet.\Neen the C|ustel‘s. A Combmaflthe
are excluded). Note that in our experiments the silence(partthe ~ tWo approaches is described in 4.4.
closure) of the stop consonant is merged with the releaseptre
stop consonant into a single segment. 4.1. Evaluation metrics

The speech was parameterised with 12 MFCC coefficients an
log energy, augmented with their first and second derivatiesult-
ing in 39-dimensional MFCC vectors. The MFCC were compute
on windows of 15 ms, with a 5 ms frame shift, and cepstral mean a
variance normalisation was applied.

Eirstly, detected boundaries will not generally coincidactly with
d’nanually transcribed phoneme labels. Thus, following fLBbund-
ary is considered to be correctly detected if the hypothasdsthe
manual transcription are within 20ms of each other.

Four metrics are used to evaluate the segmentationcdirect

detection ratgc.d.r) is defined as,

4. SEGMENTATION AND RESULTS

Total number of correct boundaries detected
cdr= 1)

To perform a frame-level segmentation of speech, a slidimglow, Total number of true boundaries

which is N frames wide, is applied to the parameterised speeckyhich is a measure of the proportion of the true boundariésotied.
signal. From initial experiments a value &f = 18 was determined A related metric is the miss raten(r.) which is defined asn.r. =

to yield the best results. MMC using an RBF kernel (with a Widt 1 _ . 4., and indicates the proportion of true boundaries that were
of 200 determined using a small development set) is apptigtie ot detected.

frames inside the window and a set of cluster labels is obthiithe Over-segmentatio(p.s) [11] gives an indication of how many

window is then shifted by one frame and the process is refleatesegments were hypothesised compared to the actual number of
across a whole utterance. The results of the analysis avensiio  segments.

figure 22. Thez-axis represents the time of the frame at the centre )

of the sliding window. Each column of the graph corresponda t o.s. — Jotal number of boundaries found @)
window centred on a different frame so adjacent columnsspond Total number of true boundaries

to windows centred on adjacent frames. Elements at therbatfo a5 — o indicates that the number of hypothesised segments

a column occur e_arlier than elements at the_ top. The shading Qquals the number of true boundaries. Expressed as a pEgeent
each element indicates the cluster label assigned to eantefso 51, s — 100% means that there are twice as many hypothesised

a change in the shading corresponds to a potential bounddy.  gegments as there are true segments. A negative valuetisiica
TIMIT phoneme label transcription is marked on thaxis. f

h X ew segments were found.
Segment boundaries can be seen by comparing the clustér labe  The |ast metric used is thalse alarm ratg(f.a.), which indicates

assignments across the columns. Boundaries that are wlede e proportion of boundaries that were incorrectly deticte
should shift downwards in subsequent columns leading tgodial

structures in the graph. An example of a phoneme boundary is fa.=1- Total number of true boundaries found 3)
highlighted in rectangleB of figure 2a: the maximum margin o Total number of boundaries found




[ masksize [ 2x1 [2x2] 4x3]

cdr. (%) | 81.6 | 59.4 | 324

m.r. (%) 194 | 40.6 67.6

fa. (%) | 672 | 50.3 | 384

0.s. (%) | 195.2 | 39.5 | —46.2
Table 1.

Boundary detection performances for different mask sizes.

4.2. Detecting structures (MB)

A mask based (MB) method is used to detect the diagonal stest
in figure 22. The mask is am x m matrix that is divided along
its diagonal into two: each element in the upper right triangust
match the lighter shaded elements of the graph while theegiesn
in the lower left triangle must match the darker shade. Onskng
slid across the graph so that the top row of the mask is at thrertu
frame of each column and another (inverted mask) is slidsacttoe
top of the graph. The total number of matching elements imtask
is counted each time. When all of the mask’s elements arehaatc
then a segment boundary is marked at the time corresponalithg t
frames along the mask’s diagonal.
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Fig. 3. Miss rate (x-axis) plotted against over-segmentationXiga
for varyingé, for ED and COMB.

phoneme boundaries: missing about 8% with a 60% false alarm.
When no false boundaries are detected the method deteaisxapp
imately 25% of the phone boundaries. Comparingftheandm.r.in
Table 1 for the various mask sizes with the results plotteegure 4
clearly shows that the ED method outperforms MB.

Table 1 shows the results of phoneme boundary detectioneon th

TIMIT test using different mask sizes. The smallest mask éstm
sensitive as it looks only at one column whereas larger miagis
for consistent boundaries across multiple columns. As dsvehby
Table 1, larger masks lead to much loveed.r. as not all structures
are as large as those illustrated in figuee Zonsequently, larger
masks also led to very lofva. ando.s. Marking boundaries when
there was only a partial match was considered. However|etito
an increase in the number of false alarms without a correpgn
decrease in the miss rate.

4.3. Segmenting by Euclidean distance (ED)

The structures in figureaare quite complex and the MB approach
is not very robust. An alternative method of determining thiee a
segment boundary is detected is to calculate the distartvecbe
the assigned clusters of a window. When the distance peaks,
boundary is detected. Since this is a maximum margin approac
our firstinstinct is to use the margin distance. Howeves tthéasure
was found to be noisy and a relatively poor indicator of a sagm
boundary: although there may be two distinct clusters thegma
separating them can vary significantly depending on thetivela
positions of the points on the edge of the margin. A more bédia

and stable measure is to use the Euclidean distance betleen t

mean vectors of the clusters (referred to as ED). The graphese
Euclidean distances is shown in figure. 2A simple peak detector
that registers peaks only if the value has changed by a vatstay
than a threshold is used to find local maxima in the Euclidean
distance. These maxima are marked in the graph by the sotidale
bars, the TIMIT phoneme boundaries are marked by the dotte
vertical bars. The peaks clearly line up well with the TIMIigneme
labels for this particular utterance.

Figure 3 shows a graph of miss ratedxis) plotted against over-

segmentatiomy-axis). The various points on the curve are obtained

by varying the threshold in the peak detection algorithm. Figure 3
shows that at no over-segmentation the miss rate is 25%/g@quotly
75% of the phoneme boundaries are correctly detected).

Figure 4 plots miss rate against false alarm (an inverted RO
curve). In fact this method is unable to detect all of the TIMI

4.4, Combined approach (COMB)

It is interesting to combine the above approaches to determi
whether searching for structures gives additional infaromaover

the ED method. The detected segments from each method are
combined using a “soft” OR operator in which boundaries from
the two methods withirk frames of each other are combined and
replaced by a single boundary located at the mean of the two.

In this approach (referred to as COMB),4ax 3 mask was
combined with the Euclidean distance segments. The reason f
using a4 x 3 mask is that it introduces a low number of false
alarms, which makes it well suited to investigate whether fiils
boundaries that ED does not. Figures 3 and 4 show the redults o
COMB for different distances df (1, 2, or 3 frames) between the
bé)undaries hypothesised by MB and by ED.

The figures show that for lower miss rates, COMB gives fewer
false alarms compared to the ED method. Thus MB does indegd fin
correct boundaries that are not found by ED, without intidg new
false alarms.
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Fig. 4. Miss rate (x-axis) plotted against false alarm (y-axis) for

C\{aryingé, for ED and COMB.



5. DISCUSSION

Theo.s. results in figure 3 and thg.a. results in figure 4 show that
combining MB and ED yields the best performance. Withoan
rate of 0%, 76.0% of the phoneme boundaries are detectesttigrr
increasing to 90.3%.d.r. when allowing 75.5%.s. This compares
well with results found in the literature. [10] obtained:al.r. of
73.6% with ano.s. of 0%, increasing to 90.0%.d.r with ano.s.
of 63.0% on a subset of 480 utterances from TIMIT. [12] oledia
c.d.r. of 85.9% (they did not repon.s) on the full TIMIT test set
while using a supervised method (this in contrast to our d0fq
method which are unsupervised). Even though the methogeped
here and by [10] are different, the results are strikinglgikir. This
might suggest that there may be an upper limit on the accusfcy
unsupervised automatic detection of phone boundaries.

Figure 4 shows that with ED a 25%d.r. can be obtained at
no f.a.. Combining ED with MB into COMB however leads to an
increased .a. rate. The difference between tffies. rates for COMB
and ED indicates the number of additional boundaries intred
by MB. The Euclidean distance is low for some of the boundarie
hypothesised by MB, indicating that the MFCCs on either sifle
the hypothesised boundary are very similar. This suggkatsbth

sides of the hypothesised boundary belong to the same pleonem

Since MB hypothesises a boundary, this might indicate thatet
is information in the speech signal on a sub-phonetic lefeelan
example of such a boundary see structie figure 2.

We further analysed tha structures. Of the 5,827 times such a
structure occurred, 35.7% were related to vowels, 17.1%datfves,
and 14.2% to plosives, the rest were distributed over theroth
consonant classes and silence. The high percentage fols/ave
not surprising considering the coarticulation effectsusdag during
sound production. During the production of one sound, aldtory
features belonging to the preceding or following sound nprgad
into that sound. Looking more closely at the case where adgyn
is hypothesised in the middle of a vowel segment shows tt88.i42%
the following TIMIT phoneme label is a plosive, while 25.6% i
followed by a nasal. These preliminary results show thantkéhod
proposed in this paper is indeed very good at capturing uinigtic
detail. This is an interesting area for further research.

The automatic detection of sub-phonetic information isoals
getting increasing attention in the field of ASR. Since 1989,
has been proposed to move away from the standard ‘beads-on
string’ (i.e. phoneme-based) recognition paradigm [13]ne@f

articulatory features (AFs) [14, 15]. Since MMC can extragb-

phonetic information it is an interesting method for the@lepment
of a kernel based ASR system that is based on this sub-phdkiéti
information. In this paper, the parameter settings weréropéed

for the automatic segmentation of phonemes. However, rdifite
parameter settings will result in the detection of even nuwiiled

information in the speech signal.

6. CONCLUDING REMARKS AND FUTURE WORK

In this paper we have presented a novel application of MMQ#o t
task of unsupervised speech segmentation. It is a first etegrds
the ultimate goal of building a kernel based ASR system. M$/1C’
potential with respect to the automatic segmentation oeclpéds
evaluated on TIMIT. The results in sections 4 and 5 have sftbain
MMC is highly competitive with existing unsupervised metlsdor
the automatic detection of phoneme boundaries. Althoughdvids
been evaluated in terms phoneméoundary detection, it is in fact

Jo

the proposals of such a new system is based on the modelling of

a speechtsegmentation method. To achieve our ultimate goal, future
work will refine then analyse the speech segments. The segeme
can be reclustered and classified by sequence kernel appakhe
preliminary results in section 5 also show that MMC is a prsing
method for the automatic detection of sub-phonetic infaromain
the speech signal.

Finally, we should note that this work is based on an earlier
version of MMC: there now exists a newer formulation that can
handle multiple classes [16].
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