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ABSTRACT

Maximum margin clustering (MMC) is a relatively new and promis-
ing kernel method. In this paper, we apply MMC to the task of un-
supervised speech segmentation. We present three automatic speech
segmentation methods based on MMC, which are tested on TIMIT
and evaluated on the level of phoneme boundary detection. The re-
sults show that MMC is highly competitive with existing unsuper-
vised methods for the automatic detection of phoneme boundaries.
Furthermore, initial analyses show that MMC is a promising method
for the automatic detection of sub-phonetic information inthe speech
signal.

Index Terms— speech processing, clustering methods, unsuper-
vised learning.

1. INTRODUCTION

Kernel methods have become increasingly prominent recently with
the development of support vector machines (SVMs) [1] and their
successful application in various fields. For example, SVMshave
become an integral part of most state-of-the-art speaker recognition
systems competing in the annual NIST evaluations [2]. In contrast,
the use of kernel methods in other fields of speech processing, such as
automatic speech recognition (ASR), is comparatively uncommon.

Maximum margin clustering (MMC) [3] is a relatively new and
promising kernel method. It is of interest because of its close
relationship to SVMs. MMC is a (semi) unsupervised form of SVM
which determines the maximum margin dichotomy when (some
or) no labels are specified: the two are related by the maximum
margin criterion [1] for finding the optimum solution. Also,kernels
developed for SVMs are immediately applicable to MMC. For
example, using a sequence kernel developed for speaker verification
[4, 5, 6] enables maximum margin speaker clustering and using
a temporally discriminant sequence kernel developed for speech
recognition [7] enables clustering of variable length speech segments.
For the latter it is necessary to provide an initial segmentation of the
speech signal. Since MMC and SVMs are closely related, it seems
natural to use MMC to segment the speech for later reclassification
by SVMs. However, before applying sequence kernels an evaluation
of MMC’s potential to segment speech is necessary.

In this paper, we examine the use of MMC for frame-level
unsupervised speech segmentation using standard kernels.The
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Pereiro Estevan.

margin not
maximal

maximised
margin

decision
boundary

a: b: c:

non-optimal
MMC

Fig. 1. The maximum margin criterion applied to SVMs and MMC.

obtained segmentation will be evaluated on TIMIT [8] by comparing
the segment boundaries to the phone boundaries. One has to bear
in mind though, that MMC is a speech segmentation method, but
the evaluation is on the level of phonemes. Our goal is not strictly
phoneme segmentation, but the segmentation of speech into clusters
that may be classified later using SVMs.

The remainder of the paper is as follows. Section 2 describes
MMC. Section 3 describes the material used. The segmentation
methods and their results are presented in Section 4, and discussed in
Section 5. The paper concludes with the most important findings and
a brief outlook on future research.

2. MAXIMUM MARGIN CLUSTERING

The principle underlying SVMs is the maximum margin criterion.
It states that if a linear decision boundary is to be placed between
two separable classes then the optimum position is located exactly
mid-way between the two such that the shortest distances from the
boundary to the nearest points of each class are equal and maximal.
Such an optimal decision boundary is illustrated in figure 1a, whereas
figure 1b illustrates a non-optimal decision boundary. The empty
region bounded by the two lines running parallel to the decision
boundary between the two classes is called the margin and should
have maximal width, i.e., it should be as wide as possible while
remaining empty. The SVM formulation extends this principle to
the non-separable case by penalising incursions into a so-called
soft-marginand the goal then is to maximise the soft-margin while
minimising the penalties.

Maximum margin clustering (MMC) developed by [3] employs
the same underlying principle. The difference between SVMsand
MMC is as follows. In SVMs the goal is to find the decision
boundary that maximises the margin given a set of input vectors and
their corresponding cluster labels. This task is illustrated in figures
1a and 1b where the task is to find the optimal decision boundary
that maximises the margin between the black dots and the grey
squares. Hence SVMs are discriminative classifiers that aretrained
in a supervised manner. In contrast, the goal of MMC is to find the
cluster label assignments given the input vectors such thatthe margin



between the two resulting classes is maximal. This is illustrated in
figure 1c where the task is to find the optimal decision boundary
between the two sets of black dots. The proposed boundary in figure
1c is non-optimal, the boundary should be placed as is done infigure
1a. Therefore, MMC is an unsupervised algorithm which can be
used to dichotomise a set of feature vectors. The MMC optimisation
problem can be formulated as a semidefinite programming problem
and our implementation closely follows that outlined in [3]. It is
interesting to note that MMC can also be used in a semi-supervised
setting in which some of the points are labelled. This leads to a
constrained form of MMC which might be useful when handling
temporally ordered data such as speech. However, this property is
not exploited in this study.

The application of MMC to divide a speech signal into segments
separated by maximum margin is relatively straight-forward and is
described in section 4. Such MMC segments may be useful on
multiple levels. For example, for the analysis of two consecutive
phonemes. Alternatively, MMC can be used to analyse a single
phoneme such as a long vowel in which case it might be able to detect
fine sub-phonetic detail [9]. Thus the method may provide valuable
insights into our understanding of speech.

3. MATERIAL

The speech used in this study is taken from the TIMIT corpus
[8]. TIMIT consists of reliably hand labelled and segmenteddata
of quasi-phonetically balanced sentences read by native speakers
of eight major dialect regions of American English. Of the 630
speakers in the corpus, 438 (70%) were male. We used TIMIT’s
predefined test set, consisting of 1,344 utterances (the sa sentences
are excluded). Note that in our experiments the silence part(i.e. the
closure) of the stop consonant is merged with the release part of the
stop consonant into a single segment.

The speech was parameterised with 12 MFCC coefficients and
log energy, augmented with their first and second derivatives result-
ing in 39-dimensional MFCC vectors. The MFCC were computed
on windows of 15 ms, with a 5 ms frame shift, and cepstral mean and
variance normalisation was applied.

4. SEGMENTATION AND RESULTS

To perform a frame-level segmentation of speech, a sliding window,
which is N frames wide, is applied to the parameterised speech
signal. From initial experiments a value ofN = 18 was determined
to yield the best results. MMC using an RBF kernel (with a width
of 200 determined using a small development set) is applied to the
frames inside the window and a set of cluster labels is obtained. The
window is then shifted by one frame and the process is repeated
across a whole utterance. The results of the analysis are shown in
figure 2a. Thex-axis represents the time of the frame at the centre
of the sliding window. Each column of the graph corresponds to a
window centred on a different frame so adjacent columns correspond
to windows centred on adjacent frames. Elements at the bottom of
a column occur earlier than elements at the top. The shading of
each element indicates the cluster label assigned to each frame so
a change in the shading corresponds to a potential boundary.The
TIMIT phoneme label transcription is marked on thex-axis.

Segment boundaries can be seen by comparing the cluster label
assignments across the columns. Boundaries that are well defined
should shift downwards in subsequent columns leading to diagonal
structures in the graph. An example of a phoneme boundary is
highlighted in rectangleB of figure 2a: the maximum margin
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Fig. 2. a: Sliding window clustering representation; each column
shows the cluster label assignments. b: Euclidean distancebetween
cluster means; the detected boundaries (usingδ = 0.001) are
indicated by the solid vertical lines. Thex-axis shows the TIMIT
boundaries (dashed vertical lines) of the phrase “She had your
dar[k]”.

segmentation found by MMC coincides with the hand labelled
TIMIT boundary marked on thex-axis.

Section 4.1 describes the metrics used to evaluate the segmen-
tation quantitatively with respect to the TIMIT phoneme labels. A
method of finding potential segmentation points by detecting diag-
onal structures in the graph is described in section 4.2. Section 4.3
describes an alternative method of finding segmentation points based
on the Euclidean distance between the clusters. A combination of the
two approaches is described in 4.4.

4.1. Evaluation metrics

Firstly, detected boundaries will not generally coincide exactly with
manually transcribed phoneme labels. Thus, following [10]a bound-
ary is considered to be correctly detected if the hypothesisand the
manual transcription are within 20ms of each other.

Four metrics are used to evaluate the segmentation. Thecorrect
detection rate(c.d.r.) is defined as,

c.d.r.=
Total number of correct boundaries detected

Total number of true boundaries
(1)

which is a measure of the proportion of the true boundaries detected.
A related metric is the miss rate (m.r.) which is defined asm.r. =

1 − c.d.r and indicates the proportion of true boundaries that were
not detected.

Over-segmentation(o.s.) [11] gives an indication of how many
segments were hypothesised compared to the actual number of
segments.

o.s. =
Total number of boundaries found
Total number of true boundaries

− 1 (2)

An o.s. = 0 indicates that the number of hypothesised segments
equals the number of true boundaries. Expressed as a percentage,
an o.s. = 100% means that there are twice as many hypothesised
segments as there are true segments. A negative value indicates too
few segments were found.

The last metric used is thefalse alarm rate(f.a.), which indicates
the proportion of boundaries that were incorrectly detected:

f.a. = 1 −
Total number of true boundaries found

Total number of boundaries found
(3)



mask size 2 × 1 2 × 2 4 × 3

c.d.r. (%) 81.6 59.4 32.4

m.r. (%) 19.4 40.6 67.6

f.a. (%) 67.2 50.3 38.4

o.s. (%) 195.2 39.5 −46.2

Table 1.
Boundary detection performances for different mask sizes.

4.2. Detecting structures (MB)

A mask based (MB) method is used to detect the diagonal structures
in figure 2a. The mask is ann × m matrix that is divided along
its diagonal into two: each element in the upper right triangle must
match the lighter shaded elements of the graph while the elements
in the lower left triangle must match the darker shade. One mask is
slid across the graph so that the top row of the mask is at the current
frame of each column and another (inverted mask) is slid across the
top of the graph. The total number of matching elements in themask
is counted each time. When all of the mask’s elements are matched
then a segment boundary is marked at the time corresponding to the
frames along the mask’s diagonal.

Table 1 shows the results of phoneme boundary detection on the
TIMIT test using different mask sizes. The smallest mask is most
sensitive as it looks only at one column whereas larger maskslook
for consistent boundaries across multiple columns. As is shown by
Table 1, larger masks lead to much lowerc.d.r. as not all structures
are as large as those illustrated in figure 2a. Consequently, larger
masks also led to very lowf.a. ando.s.. Marking boundaries when
there was only a partial match was considered. However, thisled to
an increase in the number of false alarms without a corresponding
decrease in the miss rate.

4.3. Segmenting by Euclidean distance (ED)

The structures in figure 2a are quite complex and the MB approach
is not very robust. An alternative method of determining whether a
segment boundary is detected is to calculate the distance between
the assigned clusters of a window. When the distance peaks, a
boundary is detected. Since this is a maximum margin approach,
our first instinct is to use the margin distance. However, this measure
was found to be noisy and a relatively poor indicator of a segment
boundary: although there may be two distinct clusters the margin
separating them can vary significantly depending on the relative
positions of the points on the edge of the margin. A more reliable
and stable measure is to use the Euclidean distance between the
mean vectors of the clusters (referred to as ED). The graph ofthese
Euclidean distances is shown in figure 2b. A simple peak detector
that registers peaks only if the value has changed by a value greater
than a thresholdδ is used to find local maxima in the Euclidean
distance. These maxima are marked in the graph by the solid vertical
bars, the TIMIT phoneme boundaries are marked by the dotted
vertical bars. The peaks clearly line up well with the TIMIT phoneme
labels for this particular utterance.

Figure 3 shows a graph of miss rate (x-axis) plotted against over-
segmentation (y-axis). The various points on the curve are obtained
by varying the thresholdδ in the peak detection algorithm. Figure 3
shows that at no over-segmentation the miss rate is 25% (equivalently
75% of the phoneme boundaries are correctly detected).

Figure 4 plots miss rate against false alarm (an inverted ROC
curve). In fact this method is unable to detect all of the TIMIT
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Fig. 3. Miss rate (x-axis) plotted against over-segmentation (y-axis)
for varyingδ, for ED and COMB.

phoneme boundaries: missing about 8% with a 60% false alarm.
When no false boundaries are detected the method detects approx-
imately 25% of the phone boundaries. Comparing thef.a. andm.r. in
Table 1 for the various mask sizes with the results plotted inFigure 4
clearly shows that the ED method outperforms MB.

4.4. Combined approach (COMB)

It is interesting to combine the above approaches to determine
whether searching for structures gives additional information over
the ED method. The detected segments from each method are
combined using a “soft” OR operator in which boundaries from
the two methods withink frames of each other are combined and
replaced by a single boundary located at the mean of the two.

In this approach (referred to as COMB), a4 × 3 mask was
combined with the Euclidean distance segments. The reason for
using a4 × 3 mask is that it introduces a low number of false
alarms, which makes it well suited to investigate whether MBfinds
boundaries that ED does not. Figures 3 and 4 show the results of
COMB for different distances ofk (1, 2, or 3 frames) between the
boundaries hypothesised by MB and by ED.

The figures show that for lower miss rates, COMB gives fewer
false alarms compared to the ED method. Thus MB does indeed find
correct boundaries that are not found by ED, without introducing new
false alarms.
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Fig. 4. Miss rate (x-axis) plotted against false alarm (y-axis) for
varyingδ, for ED and COMB.



5. DISCUSSION

Theo.s. results in figure 3 and thef.a. results in figure 4 show that
combining MB and ED yields the best performance. With ano.s.

rate of 0%, 76.0% of the phoneme boundaries are detected correctly,
increasing to 90.3%c.d.r. when allowing 75.5%o.s. This compares
well with results found in the literature. [10] obtained ac.d.r. of
73.6% with ano.s. of 0%, increasing to 90.0%c.d.r with an o.s.

of 63.0% on a subset of 480 utterances from TIMIT. [12] obtained a
c.d.r. of 85.9% (they did not reporto.s.) on the full TIMIT test set
while using a supervised method (this in contrast to our and [10]’s
method which are unsupervised). Even though the methods proposed
here and by [10] are different, the results are strikingly similar. This
might suggest that there may be an upper limit on the accuracyof
unsupervised automatic detection of phone boundaries.

Figure 4 shows that with ED a 25%c.d.r. can be obtained at
no f.a.. Combining ED with MB into COMB however leads to an
increasedf.a. rate. The difference between thef.a. rates for COMB
and ED indicates the number of additional boundaries introduced
by MB. The Euclidean distance is low for some of the boundaries
hypothesised by MB, indicating that the MFCCs on either sideof
the hypothesised boundary are very similar. This suggests that both
sides of the hypothesised boundary belong to the same phoneme.
Since MB hypothesises a boundary, this might indicate that there
is information in the speech signal on a sub-phonetic level;for an
example of such a boundary see structureA in figure 2.

We further analysed theA structures. Of the 5,827 times such a
structure occurred, 35.7% were related to vowels, 17.1% to fricatives,
and 14.2% to plosives, the rest were distributed over the other
consonant classes and silence. The high percentage for vowels is
not surprising considering the coarticulation effects occurring during
sound production. During the production of one sound, articulatory
features belonging to the preceding or following sound may spread
into that sound. Looking more closely at the case where a boundary
is hypothesised in the middle of a vowel segment shows that in36.4%
the following TIMIT phoneme label is a plosive, while 25.6% is
followed by a nasal. These preliminary results show that themethod
proposed in this paper is indeed very good at capturing sub-phonetic
detail. This is an interesting area for further research.

The automatic detection of sub-phonetic information is also
getting increasing attention in the field of ASR. Since 1999,it
has been proposed to move away from the standard ‘beads-on-a-
string’ (i.e. phoneme-based) recognition paradigm [13]. One of
the proposals of such a new system is based on the modelling of
articulatory features (AFs) [14, 15]. Since MMC can extractsub-
phonetic information it is an interesting method for the development
of a kernel based ASR system that is based on this sub-phonetic AF
information. In this paper, the parameter settings were optimised
for the automatic segmentation of phonemes. However, different
parameter settings will result in the detection of even moredetailed
information in the speech signal.

6. CONCLUDING REMARKS AND FUTURE WORK

In this paper we have presented a novel application of MMC to the
task of unsupervised speech segmentation. It is a first step towards
the ultimate goal of building a kernel based ASR system. MMC’s
potential with respect to the automatic segmentation of speech is
evaluated on TIMIT. The results in sections 4 and 5 have shownthat
MMC is highly competitive with existing unsupervised methods for
the automatic detection of phoneme boundaries. Although MMC has
been evaluated in terms ofphonemeboundary detection, it is in fact

a speechsegmentation method. To achieve our ultimate goal, future
work will refine then analyse the speech segments. The segements
can be reclustered and classified by sequence kernel approaches. The
preliminary results in section 5 also show that MMC is a promising
method for the automatic detection of sub-phonetic information in
the speech signal.

Finally, we should note that this work is based on an earlier
version of MMC: there now exists a newer formulation that can
handle multiple classes [16].
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