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Abstract 

In this paper, we investigate the abilit y of SpeM, our recognition system 
based on the combination of an automatic phone recogniser and a word-
search module, to determine as early as possible during the word recognition 
process whether a word is likely to be recognised correctly (this we refer to as 
‘on-line’ early word recognition). We present two measures that can be used 
to predict whether a word is correctly recognised: the Bayesian word 
activation and the amount of available (acoustic) information for a word. 
SpeM was tested on 1,463 polysyllabic words in 885 continuous speech 
utterances. The investigated predictors indicated that a word activation that is 
1) high (but not too high) and 2) based on more phones is more reliable to 
predict the correctness of a word than a similarly high value based on a small 
number of phones or a lower value of the word activation. 

1. Introduction 

Human listeners and automatic speech recognition 
(ASR) systems both are able to recognise speech, but 
there are clear differences between their competence 
levels. Human listeners outperform ASR systems on all 
types of recognition tasks, varying from the recognition 
of words spoken in isolation to the recognition of 
continuous speech [1]. Another difference is that human 
listeners are capable of recognising a word well before 
its acoustic realisation is complete [2,3], while ASR 
systems yield final results only after the end of a 
complete utterance (e.g., [4]).  

According to mainstream psycholinguistic theory on 
human speech perception, humans seem to compute an 
on-line activation measure for words as the speech 
comes in (and presumably make a decision as soon as 
the activation of a word is high enough). Conventional 
ASR systems, on the other hand, compute the likelihood 
of a number of hypothesised word sequences, and 
identify the words that were recognised on the basis of 
the hypothesis with the highest score at the end of the 
utterance.  

Identifying and recognising words before their 
acoustic realisation is complete is important in human-
human communication, for example for adequate turn-
taking in a dialogue with minimal response latencies. It 
may also simpli fy the segmentation of the continuous 
stream of acoustic information into words, a process 
that should be easier if the end of words can be 
predicted. The capabilit y of recognising words on the 
basis of their initial part certainly helps humans in 

detecting and processing self-corrections, broken words, 
repeats, etc. [5]. Thus, it is worthwhile to investigate 
how ASR systems should be adapted to be able to 
perform early recognition: i.e., recognising a word 
before the end of its acoustic realisation is complete.  

In [6] and [7], we have presented an end-to-end 
speech recognition system called SpeM (SPEech based 
Model of human speech recognition) that is, in 
principle, capable of providing ‘word activations’ that 
are derived from the log-likelihood values such as used 
in conventional ASR systems. (Since the procedure that 
converts log-likelihoods into activations is based on 
Bayes rule, we use the term ‘Bayesian activation’ along 
with the more general term ‘word activation’ .)  

In [6], we investigated the performance of SpeM as 
a speech recognition system that makes decisions about 
the words (mainly spoken in isolation) it has recognised 
after the complete signal has been processed. In other 
words, SpeM was used as a standard ASR system. In 
[8], we extended this research to investigate SpeM’s 
capabilit y for doing continuous speech recognition, and 
we showed that the Bayesian activation could be used to 
recognise a word before the end of its acoustic 
realisation. However, we should note that no perfect 
recognition result was obtained. 

Even in SpeM, early recognition is a different task 
than ‘normal’ speech recognition. In the latter task, it 
suff ices to search for the best scoring path through the 
search space spanned by the language model and the 
acoustic input. In the case of early recognition as 
described in [8], this best-scoring path was analysed to 
investigate the position in a word at which the activation 



of that word became and remained the highest until the 
end of the input. In the case of on-line early recognition, 
however, we need an additional decision procedure for 
accepting a word as being recognised if its local 
activation fulfils one or more criteria.  

Early recognition is a task with many aspects. The 
task is clearly dependent on the structure and the 
contents of the lexicon. If a lexicon contains many 
words that only differ in the last one or two phonemes, 
early recognition on the basis of acoustic input is more 
diff icult than when the lexicon mainly consists of words 
which contain many phonemes after the lexical 
uniqueness point (UP). At the same time, it is evident 
that making decisions on the basis of only a few 
phonemes at the beginning of a long word is more 
dangerous than making a decision on the basis of a 
longer string of phonemes. Therefore, we will 
investigate the decision criteria in early recognition as a 
function of the structure of the lexicon. 

In the next section, we will describe our ASR system 
SpeM, including an explanation on how Bayesian word 
activations are derived from log-likelihood values, and 
the materials used in the experiments and analyses. 
Section 3 describes the general procedure used 
throughout the experiment, the criteria a word must 
comply with in order to be recognised by SpeM, and 
how these were implemented in the current study. In 
section 4, the Bayesian activation is introduced in the 
context of on-line early recognition, and the optimal 
decision criteria for on-line early recognition based on 
word activation as a function of the contents and 
structure of the lexicon are investigated. Finally, in 
section 5, we will discuss our results, and the most 
important findings are summarised. 

2. Materials 

2.1. The recognition system (SpeM) 

SpeM was implemented to function as an automatic 
speech recognition system and at the same time as a tool 
for research in the field of human speech recognition 
(HSR). It is a new and extended implementation of 
Shortlist, the computational model of human word 
recognition developed by Norris [9].  

SpeM consists of two modules that operate in 
sequence. The first module, the automatic phone 
recogniser (APR), generates a symbolic representation 
of the speech signal in the form of a probabili stic phone 
graph. The second module, the word search module, 
parses the graph to find the most likely (sequence of) 
words, and computes for each word its activation based 
on the accumulated acoustic evidence for that word. In 
the present set-up, the word search module only starts 
after the first module has processed a complete 
utterance. However, the search module is able to 
analyse a phone graph that grows incrementally as more 

speech becomes available. Below, we give the relevant 
details of the two modules. 

2.1.1. The automatic phone recogniser 

For the APR, 37 context-independent phone models, 
one noise, and one silence model were trained on 
25,104 utterances (81,090 words, corresponding to 8.9 
hours of speech excluding leading, utterance internal, 
and traili ng silent portions of the recordings) selected 
from the VIOS database that consists of telephone calls 
recorded with the public transport information system 
OVIS [10]. The speech style is extemporaneous. The 
phonemic transcriptions of the training material 
consisted of the citation forms of the words; thus no 
pronunciation variation was taken into account.  

The ‘ lexicon’ used for the phone recognition 
consists of all Dutch phones, one entry for background 
noise, and two entries for fill ed pauses yielding 40 
entries in total. During recognition, the APR uses a uni- 
and bigram phonotactic model trained on the phonemic 
transcriptions of the training material.  

The focus of the present study is on ways in which 
word recognition can be predicted during the 
subsequent search process; we did not invest effort in 
optimising the performance of the APR. 

2.1.2. The search module 

The most important functionaliti es of the search module 
of SpeM used in this experiment have been described in 
detail i n [6]. For the current paper, a new 
implementation was used, which provides more 
parameters to control the search. The biggest 
improvement is that the new version supports unigram 
and bigram language models.  

In SpeM, the search for the best-matching sequence 
of words is the search for the cheapest path through the 
product graph of an input phone lattice and a lexical 
tree. The search is implemented as a time-synchronous 
and breadth-first DP. In the lexical tree, entries share 
common phone sequence prefixes (word-initial cohort), 
and each complete path through the tree represents a 
pronunciation of a word. SpeM is programmed to 
output the list of the N-best paths through the product 
graph for each node in that product graph, together with 
the activation scores of the paths and the words on these 
paths. This capabilit y enables SpeM to provide the 
activation values that can be used in the decision 
module performing on-line early recognition.   

SpeM has a number of parameters that can be tuned 
individually and in combination. Most of these 
parameters (e.g., a word entrance penalty and the trade-
off between the bottom-up acoustic cost of the phones 
calculated by the APR and the contribution of the 
language model) are similar to the parameters in 
conventional ASR systems. In addition, however, SpeM 
has two parameters that are not usually applied in 



conventional ASR systems. The first novel parameter is 
associated to the cost for a symbolic mismatch between 
the input lattice and the lexical tree due to phone 
insertions, deletions, and substitutions (comparable to 
the Levenshtein distance). Insertions, deletions, and 
substitutions have their own weight that can be tuned 
individually. The second novel parameter is associated 
to the Possible Word Constraint (PWC; [11]). The 
PWC checks whether a (sequence of) phone(s) that 
cannot be parsed as a word (i.e., a lexical item) is 
phonotactically well formed (being a possible word) or 
not (see also [6]). Phone sequences that do not conform 
to the PWC are penalised, while sequences that do not 
violate the constraint are not.  

2.1.3. Word activation 

The measure of word activation in SpeM was originally 
designed to simulate experimental results of human 
word recognition experiments [7]. In the computation of 
the word activation, the local negative log-likelihood 
scores for paths and words on a path are converted into 
activation scores that obey the following properties: 
• The word that matches the input best must have the 

highest activation.  
• The activation of a word that matches the input 

must increase each time an input phone is processed.  
• The measure must be appropriately normalised. 

That is, word activation should be a measure that is 
meaningful, both for comparing competing word 
candidates, and for comparing words at different 
moments in time. 

The way SpeM computes word activation is based 
on the idea that word activation is a measure related to 
the bottom-up evidence of a word given the acoustic 
signal: If there is evidence for the word in the acoustic 
signal, the word should be activated. Activation should 
also be sensitive to the prior probabilit y of a word (even 
if this effect was not modelled in the original version of 
Shortlist [9]). This means that the word activation of a 
word W is closely related to the probabilit y P(W|X) of 
observing a word W, given the signal X: the cost 
function maximised in all ASR systems. For more 
details on the implementation of the Bayesian word 
activation, the reader is referred to [8]. 

2.2. Data 

In our evaluation of SpeM’s abilit y for early 
recognition, we focus on polysyllabic words. Given the 
characteristics of the training corpus and test corpus, 
which consists of utterances taken from dialogs between 
customers and an automatic timetable information 
system, we decided to define a set of 318 polysyllabic 
station names as target words. From the VIOS database, 
1,106 utterances (disjoint from the training corpus) 
were selected to tune and test SpeM. Each utterance 

contained two to five words, at least one of which was a 
target word (708 utterances contained multiple target 
words).  

885 utterances of this set (80% of the 1,106 
utterances) were randomly selected and used as the 
independent test corpus. The total number of target 
words in the test corpus was 1,463; 563 utterances 
contained multiple target words. The remaining 221 
utterances were used as development test set and served 
as a tuning corpus on which the parameters of SpeM 
were tuned. The parameter settings yielding the lowest 
Word Error Rate (WER) were used for the experiment. 
The WER is defined as the number of (word) insertions, 
deletions, and substitutions divided by the total number 
of words in the reference transcriptions times 100%. 

The lexicon used by SpeM in the test consisted of 
980 entries: the 318 polysyllabic station names, 
additional city names, verbs, numbers, function words, 
etc. For each word in the lexicon, one unique canonical 
phonemic representation was available. A unigram 
language model (LM) was trained on the VIOS training 
data – the same data that was used for training the 
acoustic models and the uni- and bigram phonotactic 
models for the APR. 

3. Experimental design 

3.1. General procedure and evaluation 

For each utterance, the APR module created a phone 
lattice, which was subsequently presented to the search 
module of SpeM. For each input node, a list of the 10 
most likely sequences of words was created (10-best 
list). At the top of this list is the sequence of words that 
best matches the acoustic signal. For each target word, 
the recognition point (RP) was determined; this is the 
node at which the target word is recognised by SpeM. 
The next section explains the decision module that we 
implemented that decides when a word is said to be 
recognised.  

In order to use word activation as a basis for 
deciding whether a word is considered as recognised 
before the end of its acoustic realisation, a decision 
procedure is needed that takes absolute and relative 
values of the Bayesian activation into account, perhaps 
conditioned on the number of phonemes of the word 
that have already been processed and the number of 
phonemes that remain until the end of the word. The 
performance of the decision module will be evaluated in 
terms of precision and recall:  

Precision: The total number of correctly recognised 
target words relative to the total number of recognised 
target words. Precision gives an impression of the trade-
off between correctly recognised target words and false 
accepts.  

Recall: The total number of correctly recognised 
target words divided by the total number of target words 



in the input. Recall gives an impression of the trade-off 
between correctly recognised target words and false 
rejects. 

Since we are not primarily interested in optimising 
SpeM for a specific task in which the relative costs of 
false accepts and false rejects can be established, we 
decided to refrain from defining a total cost function 
that combines recall and precision into a single measure 
that can be optimised. 

Figure 1. Two target words in competition. 

3.2. Criteria for word recognition 

For a target word to be recognised by SpeM, the 
following three conditions have to be met:  
 
1) The recognised phone sequence assigned to the 
target word is at or beyond the target word’s UP.  
2) The quotient of the word activation of the target 
word on the first-best path and the word activation of its 
closest competitor (if present) exceeds a certain 
threshold (

�
). Thus, we do not want SpeM to make a 

decision as long as promising competitors are still alive. 
In the SpeM search, two words are said to be in 
competition if the paths they are on contain an identical 
sequence of words, except for the word under 
investigation. Figure 1 illustrates this with an example 
where the first-best path: [a:v � nt vo:rbYr*] competes 

with the path: [a:v � nt xu:d � m*]. The competitor of 

[vo:rbYr*] is thus [xu:d � m*]. The asterisk indicates that 
the processing of a word has not yet reached the last 
phone. It is not guaranteed that all words always have a 
competitor. It is possible that all paths in the N-best list 
are completely disjunct. According to our definition no 
word can have a competitor in this case. In the 
experiments described below, we have varied �  between 
0 and 4 in 100 equal-sized steps. Absence of a 
competitor makes the computation of �  impossible. To 
prevent losing all words without competitors due to a 
missing value, we define target words without a 
competitor as being above the quotient by assigning the 
arbitrary value of 5 to these words.  
3) The value of the Bayesian activation of the target 
word should exceed a certain minimum activation 
(Actmin). Thus, SpeM does not just accept the word with 
the highest activation, irrespective of the absolute value 
of the activation. In the experiments described below, 
the value of Actmin was varied between 0.0 and 10.0 in 
20 equal-sized steps. 
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Figure 2. For three values of � , the precision and 
recall of all values of Actmin are plotted. 

4. Analyses and results 

4.1. The effect of the Bayesian activation 

The effect of the Bayesian activation on the recognition 
performance is investigated in terms of �  and Actmin. 
Figure 2 shows the relation between precision (y-axis) 
and recall (x-axis) for a number of combinations of the 
two thresholds. The symbols on the lines in Figure 2 
represent the values of Actmin for three different values 
of � . The left-most symbol on each line corresponds to 
Actmin=10.0; the right-most one corresponds to 
Actmin=0.0. For the sake of clarity, Figure 2 is limited to 
three values of � ; all other values of �  show the same 
trend, i.e., a maximal precision for Actmin values in the 
middle of the range between 0.0 and 10.0. Moreover, 
lower values of �  always yield a higher recall.  

For the most part the results in Figure 2 are 
according to expectation. Recall should be an inverse 
function of � : the smaller �  becomes, the less will it 
function as a filter for words that have a sufficiently high 
activation, but which still have viable competitors. For 
higher values of Actmin, fewer target words will have an 
activation that exceeds Actmin, and thus fewer words are 
recognised. However, it is puzzling why precision 
should decrease if Actmin becomes bigger than about 5.0. 
Apparently, it is possible for words to have very high 
local activation values, despite the fact that they are not 
present in the speech signal. At the same time, these high 
values seem to be non-trustworthy. 

4.2. The effect of the structure of the lexicon 

As pointed out before, a word can only be recognised at 
or after its UP. Thus, words that have an early UP can 
fulfil the conditions to be recognised while there is still 
little evidence for the word. This raises the question 
whether the amount of evidence in support of a word 
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(the number of phones between the start of the word – 
or alternatively the UP – and the RP in a word), or the 
‘ risk’ (in the form of the number of phones following 
the RP until the end of the word) can be helpful in 
increasing the precision and the recall . This is the focus 
of the analyses described in this section. The value for 
Actmin is set to 0.5. 

 
L-UP 0 1 2 3 4 5 6 7 8 9 
#types 10 44 50 63 50 39 38 17 3 2 
#tokens 30 190 182 450 271 186 82 57 11 4 
#Cum. 1463 1433 1243 1061 611 340 154 72 15 4 

Table 1. The distribution (in #types and #tokens) 
in number of phones between the UP and the 
length of a word (L(ength)-UP); #Cum.: #target 
word tokens that could in principle be recognised 
at position L(ength)-UP. 

Since a word can only be recognised at or after its 
UP, we first would like to know the distribution in 
number of phones between the UP and the length of a 
word. This is shown in Table 1. The first row shows the 
distance in number of phones between the UP and the 
end of the word. A ‘L(ength)-UP’ of 0 means that the 
UP lies at the end of the word: the word is embedded in 
a longer word. Rows 2 and 3 show the number of target 
word types and tokens, respectively. The row 
‘#Cum(ulative)’ shows the number of target word 
tokens that could in principle be recognised correctly at 
‘L(ength)-UP’ phones before the end of a word. For 
instance, at 8 phones before the end of the word, the 
only words that could in principle be recognised 
correctly are those that have a distance of 8 or more 
phones between the length of the word and the UP. At 0 
phones before the end of a word, all words could in 
principle be recognised. 

For calculating the recall , the total number of 
correctly recognised target words is divided by the total 
number of target words that could in principle have 
been recognised correctly. In the same manner, the 
precision is calculated: The total number of correctly 
recognised target words so far are divided by the total 
number of recognised target words so far.  

The effect of the amount of evidence is investigated 
in a similar fashion. The precision and recall are 
computed as a function of the number of phones 
between the start of the word and the RP, and again, 
only the number of target word tokens that in principle 
could be recognised correctly is taken into account. 

The contour plots in Figure 3 show the relation 
between the number of phones between the RP and the 
end of the word and the precision and recall for 
different values of � . The cumulative precision is 
plotted in the upper panel; the cumulative recall i s 
plotted in the lower panel. On the y-axis, the value of �  

is shown; the x-axis shows the number of phones 
between the RP and the end of the word. The lines in 
the plots are the equal-percentage lines for the precision 
(upper panel) and the recall (lower panel). The 
precision and recall of a point between two equal-
percentage lines can be estimated using the distance of 
the point to the two neighbouring equal-percentage 
lines. For instance, for � =1.0 and a distance of two 
phones between the RP and the end of the word, the 
precision is about 38%. Similarly, the contour plots in 
Figure 4 show the relation between the number of 
phones between the start of the word and its UP and the 
precision and recall for different values of � . In other 
words, Figure 4 shows the effect of the amount of 
information available for a word on the precision and 
recall .  

Figure 3 suggests that precision and recall at RPs 
where littl e evidence is yet available can be rather high. 
However, this is an artifact caused by the special 
characteristics of the 15 target words that happen to be 
unique already 8 phones before the end of the word.  
The precision and recall of distances between 7 and 5 
are rather low. However, distances of 4 phones or less 
show a clear increase in both precision and recall . The 
results shown in Figure 4 reveal – not surprisingly – that 
when there is yet littl e evidence available for the word 
(the number of phones processed is lower than 4), the 
precision and recall are rather low. The more phones 
have been processed, the higher the precision and recall 
are. 
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Figure 3. The x-axis shows the number of phones 
between the RP and the end of the word; the y-
axis shows the value of � . The upper panel shows 
the precision; the lower shows the recall . 
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Figure 4. The x-axis shows the number of phones 
between the start of a word and its UP; the y-axis 
shows the value of � . The upper panel shows the 
precision; the lower shows the recall . 

The results show that precision and recall decrease if 
the number of phones remaining after the RP is larger. 
This is easy to explain, since mismatches in the part of 
the word that is as yet unseen cannot be accounted for 
in the activation measure, but the risk that future 
mismatches occur will be higher if more phones remain 
until the end of the word. At the same time, 
performance increases if the RP is later, so that more 
information in support of the hypothesis is available. 
This too makes sense, since one may expect that a high 
activation measure that is based on more phones is more 
reliable than a similarly high value based on a small 
number of phones. 

5. Discussion and Conclusion 

In our analyses, we investigated the effect of the 
Bayesian word activation and the effect of the structure 
of the lexicon on the performance during on-line early 
recognition. The results in section 4 indicate that the 
Bayesian activation in terms of �  and Actmin can be used 
as a predictor for the on-line early recognition of 
polysyllabic words if we require that the quotient of the 
activations of the two hypotheses with the highest 
scores ( � ) and the minimum activation (Actmin) both 
exceed a certain threshold. There is, however, a high 
percentage of false alarms. In the subsequent analysis, 
we found an effect of the amount of evidence on the 
performance. In the case the RP was far before the end 
of the word, the word could not be reliably recognised. 
On the other hand, the fewer phones there are between  
the end of the word and the recognition point, the more 
reliable the recognition of a word became.  

The predictors we have chosen have their parallels 
in the research area that investigates word confidence 

scores. For instance, the predictor �  is identical to the 
measure proposed in [12] for scoring a word's 
confidence in the context of an address reading system. 
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