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Abstract 
 
This paper aims at an explanation of the discrepancies between natural intuitions and standard 
logic in terms of a distinction between NATURAL and CONSTRUCTED levels of cognition, 
applied to the way human cognition deals with sets. NATURAL SET THEORY (NST) restricts 
standard set theory cutting it down to naturalness. The restrictions are then translated into a 
theory of natural logic. The predicate logic resulting from these restrictions turns out to be that 
proposed in Hamilton (1860) and Jespersen (1917). Since, in this logic, NO is a quantifier in its 
own right, different from NOT-SOME, and given the assumption that natural lexicalization 
processes occur at the level of basic naturalness, single-morpheme lexicalizations for NOT-ALL 
should not occur, just as there is no single-morpheme lexicalization for NOT-SOME at that level. 
An analogous argument is developed for the systematic absence of lexicalizations for NOT-AND 

in propositional logic. 

 
Keywords: Gricean maxims, Logical intuitions, Natural logic, Natural set theory, Valuation 
space analysis. 
  

 
 
 
1. Introductory observations 
 
The present study relies on the general hypothesis that there is gradient in the 
analytical powers of humans ranging from the “rawest” or most basic level of 
unsophistication to the most advanced levels of abstract thinking as found in 
the modern centers of science. The degree of achievement is taken to depend on 
the cultural and other conditions that trigger the use and development of 
available cognitive reserves at the right age interval. Some extremely 
interesting and challenging work has been done over the past few decades 
regarding the arithmetical capacities of infants, schoolchildren, and members of 
illiterate cultures.1 Pica et al. (2004) investigated the arithmetical ability of 
speakers of Mundurukú, an Amazonian language spoken by some 7000, mostly 
illiterate, Brazilian Indians. The language has no numerals beyond five (the 
word for ‘five’ being the equivalent of ‘hand’, as in many South-East Asian    

                                                 

 1 For example, Ginsburg et al. (1984), Dehaene (1997), Buttersworth (1999), Pica et al. (2004). 
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languages), reflecting the fact that the speakers were unable to count beyond 
five and had great difficulty doing simple arithmetical sums. Yet after some 
training, they quickly extended their counting and computing abilities both 
cognitively and lexically, creating expressions like ‘two hands’, even though 
their achievements never matched those of humans born into culturally more 
developed societies (Pierre Pica, p.c.).  

Butterworth states (1999: 7): 
 

What makes human numerical ability unique is the development and transmission of 
cultural tools for extending the capability of the Number Module. These tools include aids 
to counting, such as number words, finger-counting, and tallying; and also the 
accumulated inventions of mathematicians down the centuries - from numerals to 
calculating procedures, from counting-boards to theorems and their proofs. 

 
Unfortunately, I must disagree with Butterworth. Far from being unique to the 
human numerical ability, the power to extend a naturally given ability through 
cultural development appears to be more general. Although the exact 
boundaries of this human power is unknown, it does seem that, along with 
numeracy and, apparently, also the reading ability (Dehaene 2005) and 
geometrical abilities (Dehaene et al., in press), logic and its underlying set 
theory are worthy candidates to be included. This is what is investigated in the 
present paper.  
 NATURAL SET THEORY (NST) aims at describing the way humans deal with 
plural objects, standardly called “sets” in mathematical set theory. Far from 
assuming that the human way of dealing with sets is identical to the way they 
are dealt with in mathematical set theory, we assume that the latter is in many 
ways artificial and does not correspond to the way cognition deals with them at 
a natural level. NST implies a gradient cline between two extremes of cognitive 
achievement, which we name NATURAL SET THEORY and CONSTRUCTED SET 

THEORY, respectively, natural set theory manifesting itself in two forms: Either 
in a BASIC (or PROTOTYPICAL or DEFAULT) form or in a STRICT form, which 
overrides one or more defaults.  
 The method followed here differs from what is found in the studies 
mentioned above, which are experimental, performance-driven, and sometimes 
supported by neurophysiological evidence. Here, a hypothesis is proposed and 
offered for empirical testing, whereby the data are allowed to be largely 
intuitive. This more traditional method consists in observing how “ordinary” 
speakers, whose degree of literacy and cultural sophistication is considered 
“normal” in Western society and who distinguish themselves mainly by NOT 
being academically trained, interpret and use logical expressions - in particular 
the logical constants - in their daily speech. An attempt is then made to reduce 
the (well-known) differences with standard contemporary logic, which is 
entirely based on highly constructed mathematical set theory, to naturally 
given restrictions in the human way of cognitively dealing with plural sets.  
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 The distinction posited between what is natural and what is constructed in 
cognition and language embodies an attempt at making explicit the distinction 
between the contributions of nature and those of nurture to the cognitive 
structures and processes of those who participate in the advanced forms of 
Western culture as it has come into being over the past three or four thousand 
years. The distinction is hypothetical in that no experimental data are available 
that would support it. What follows is, therefore, tentative and exploratory, and 
certainly fragmentary. It fails to account, for example, for scalarity phenomena 
(Jespersen 1917: 82–96; Horn 1989: 204–267). Yet the distinction is intuitively 
appealing, and, if proved right, it will be an important element in the 
understanding of the logic of language. Moreover, it helps to understand 
certain aspects of lexicalization of logical operators, as is shown in section 5. If it 
is true that universal semantic and logical properties of natural language are 
subject to restrictions of naturalness in a variety of ways, then, clearly, we have 
before us a research program of considerable magnitude - one, moreover, that 
has hardly been broached so far. For the moment, all we can do is present a few 
principles that seem to have a bearing on the matter and see how far they take 
us. To the extent that these first attempts are successful or inspiring, they may 
stimulate further research. The program thus outlined in effect amounts to an 
attempt at replacing current Gricean explanations in terms of the famous 
“maxims” for the disparity between logic and language with an explanation 
based on natural set theory.  

 
 

2. Some set-theoretic principles of natural cognition 
 
2.1. Valuation space (VS) analysis in terms of standard  theory 
 
A central role in the analysis is assigned to VALUATION SPACE (VS) ANALYSIS, 
introduced by Van Fraassen (1971). VS-analysis takes a logical language LL 

whose expressions, L-PROPOSITIONS, are taken to underlie the sentences of a 
natural language. Given one single set of reference assignments Ki (“key”) for 

all L-propositions in LL, VS-analysis assigns to each L-proposition P a valuation 

space /P/, which is the set of possible situations under Ki within the totality U 

of all possible situations in which P is true. A POSSIBLE SITUATION is defined as 
a set of truth-value assignments under any given Ki to all L-propositions of LL. 

If LL contains n logically and semantically independent L-propositions, each of 

which allows for truth (T) or falsity (F) independently of all the others, then, in 
a standard bivalent system of truth and falsity, there are, under each Ki, 2n 

logically and semantically independent valuations, that is, assignments of T or 
F to each of the L-propositions of the language. Each such set of assignments is 
called a VALUATION or POSSIBLE SITUATION. Given a particular L-proposition P, 
the VALUATION SPACE of P, written as /P/, is the set of possible situations 
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(valuations), under any given Ki, in which P is assigned the value T. An L-

proposition P is true just in case the actual situation sact is an element in /P/. 

Clearly, L-propositions formed with the help of one or more truth-functional 
propositional operators have their truth value assigned depending on the truth-
values of the component L-proposition(s) and the way the truth function is 
defined. Similar restrictions hold for relations of entailment or contrariety 
depending on nonformalized semantic conditions.  
 Although it would be utterly unrealistic to assume that natural speakers 
have a fully elaborated interpretation of set theory onto a system of valuation 
spaces at their disposal when interpreting utterances, it is not at all unrealistic 
to assume that they have an ill-defined, intuitive idea, probably beyond the 
threshold of possible awareness, of “truth in an overall, possibly infinite, set of 
situations,” and hence of notions like necessary consequence (in)compatibility, 
and contradiction. Correspondingly, one may assume that notions like mutual 
exclusion, partial intersection, and proper inclusion of sets of situations are 
likely to be psychologically real, these notions being defined without any 
appeal to the extreme boundaries of the set-theoretic system, namely the null 
set Ø and the totality of all objects OBJ. Since mutual exclusion, partial 
intersection, and proper inclusion are the key notions in both NST and its 
application to natural logic, it seems reasonable to assume psychological reality 
for both NST and natural logic.  
 The instrument of VS-analysis turns out to be of great use in logical analysis, 
if only because it enables one to establish a very useful link between Boolean 
algebra and propositional logic, different from the standard link, which was 
established by Frege. In the standard Fregean view, propositional logic is a 
specific interpretation of Boolean algebra with 1 and 0, interpreted as TRUE and 
FALSE, respectively, as the only values for the variables: No other constants are 
allowed (hence the convention of designating truth by 1 and falsity by 0). 
Propositions of the logical language are designated by their truth values, taken 
to be their extensions. The propositional truth functions are now computed 
according to the Boolean operations, which give the standard truth tables.  

Negation corresponds to Boolean complement:  

1,¯̄   = 0 and 0,¯̄   = 1.  

Conjunction (∧) corresponds to Boolean multiplication (•):  
1 • 1 = 1; 1 • 0 = 0; 0 • 1 = 0; 0 • 0 = 0.  

Disjunction (∨) corresponds to Boolean addition (+):  
1 + 1 = 1; 1 + 0 = 1; 0 + 1 = 1; 0 + 0 = 0.  

 VS-analysis allows for a different interpretation of Boolean algebra onto 
propositional logic, in that the set-theoretic functions are used as an 
intermediary. First, we use the standard interpretation of Boolean algebra onto 
set theory, which treats 1 as the universe OBJ of all objects and 0 as the null set 
Ø. The Boolean variables are taken to range over sets, so that set-theoretic 
COMPLEMENT corresponds to Boolean complement, set-theoretic INTERSECTION  
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to Boolean multiplication, and set-theoretic UNION to Boolean addition. This 
translates directly onto the truth functions of propositional logic, with VSs as 
sets and the universe U of all possible situations as OBJ, in the following way: 

Negation corresponds to set-theoretic complement: 

 for any L-proposition P: /¬P/ = /P/,¯̄ ¯̄ ¯̄  .  

Conjunction (∧) corresponds to set-theoretic intersection (∩):  

for any L-propositions P and Q: /P ∧ Q/ =  /P/ ∩ /Q/. 

Disjunction (∨) corresponds to to set-theoretic union (∪):  

for any L-propositions P and Q: /P ∨ Q/ =  /P/ ∪ /Q/. 
This allows one to treat the logical truth functions as predicates in the following 
way: 

Negation:  ¬P is true iff    the actual situation sact ∈ /P/,¯̄ ¯̄ ¯̄  . 

Conjunction:  P ∧ Q is true iff  the actual situation sact ∈ /P/ ∩ /Q/. 

Disjunction:  P ∨ Q is true iff the actual situation sact ∈ /P/ ∪ /Q/. 

 Moreover, the metalogical relations are now expressible as set-theoretic VS-

relations. Logical equivalence (≡) corresponds to set-theoretic identity (=), 
entailment (|,  – ) to inclusion, contradictoriness (CD) to mutual exclusion and 

exhaustion of U (for all s ∈ U, s ∈ /P/ or s ∈ /Q/; called FULL UNION below), 
contrariety (C) to mutual exclusion, and subcontrariety (SC) to exhaustion of U, 
as shown in (1): 
 

(1) For any L-propositions P and Q:  

a.     P ≡ Q) iff /P/ =  /Q/ 

b. P|,  –  Q iff  /P/ ⊆ /Q/  

c. CD(P,Q) iff  /P/ ∪  /Q/ =v U   and /P/ ∩ /Q/ =v Ø  (or: /P/ = /Q/, ¯̄ ¯̄  ) 

d. C(P,Q) iff  /P/ ∩ /Q/ =v  Ø   

e. SC(P,Q) iff  /P/ ∪ /Q/ =v U  

 
VS-analysis greatly facilitates simple diagrammatic representations which show 
immediately the essential properties of logical systems, without lengthy proofs. 
 It is important to emphasize the distinction between those set-theoretic 
functions that map n–tuples of sets onto sets and those that map n–tuples of sets 
onto truth values. The former are usually just called SET-THEORETIC FUNCTIONS; 
the latter are often called RELATIONS, but they may as well be called 
PREDICATES, since predicates are typically functions from n–tuples of objects, or 
sets of objects, to truth values. COMPLEMENT, INTERSECTION, UNION, and 
SUBTRACTION are set-theoretic functions, but INCLUSION, for example, is a 

relation: For any given sets A and B, the binary relation of INCLUSION, as in A ⊆ 

B, is either true or false. The set functions A,¯̄  , A ∩ B, A ∪ B, or A–B do not have 
a truth value. Given the proper number of arbitrary sets (one for complement; 
more than one for intersection and union; exactly two for subtraction) they 
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denote a new set defined by the Boolean functions COMPLEMENT, 
INTERSECTION, UNION, and SUBTRACTION, respectively. In logic, a further use of 
the term COMPLEMENT is to denote a relation yielding truth, for any given sets 

A and B, just in case A ∪  B = OBJ and A ∩  B = Ø. 
 The set-theoretic RELATIONS have a twofold use in the reduction of logic to 
set theory. First, they correspond to metalogical relations expressed in terms of 
VS-analysis. For example, the inclusion relation translates into a possible 
metalogical statement that, say, the set of situations /P/ is included in the set of 
situations /Q/ - that is, P entails Q (P|,  –  Q) - which is true or false depending 
on the meanings of P and Q, respectively, including the meanings of the truth-
functional propositional operators. Secondly, some set-theoretic relations 
correspond to QUANTIFIERS. For example, when I say All F is G, this translates, 
in principle, as saying that the set A is included in the set B - following the 
theory of generalized quantifiers (Barwise & Cooper 1981).  
 By contrast, the set-theoretic FUNCTIONS correspond to the propositional 
logical operators (constants) of the object language LL. Just as the set-theoretic 

functions take sets and deliver sets, the propositional functions take valuation 
spaces and deliver valuation spaces. For example, the operator and in an L-
proposition of the form P and Q delivers /P and Q/ - that is, the set of those 

situations that make P and Q true, corresponding to /P/ ∩ /Q/, the 
intersection of /P/ and /Q/. Figure 1 shows how set-theoretic relations and 
functions are interpreted onto metalogical relations, object-language quantifiers, 
and propositional operators.  
 The counterpart in metalogic of the set-theoretic relation PARTIAL 
INTERSECTION (the two sets partially intersect and do not severally or jointly 
equal either U or Ø, as in Figure 3–b) is LOGICO-SEMANTIC INDEPENDENCE, 
which plays no part in the machinery of logic: When /P/ and /Q/ partially 
intersect, the L-propositions P and Q are logically (and semantically) 
independent in the sense that the actual situation sact can be in /P/ but not in 

/Q/, in /Q/ but not in /P/, in both /P/ and /Q/, or in neither /P/ nor /Q/. 
That is, no entailment relation whatsoever holds between P and Q.  
 Moreover, the relations COMPLEMENT, IDENTITY, and FULL UNION (union 
such that the union of the sets involved exhausts OBJ; introduced because it 
corresponds to subcontrariety in traditional logic) lack a quantificational 
counterpart in predicate calculus, perhaps because they lack logical interest or 
perhaps because the makers of modern logic did not see far enough beyond 
natural language. Finally, the set-theoretic function SUBTRACTION lacks a single-
morpheme propositional counterpart, at least in most languages, but it is 
expressed as and/but not: The valuation space of an L-proposition of the form P 

but not Q is the VS of P minus the VS of Q, or /P/–/Q/.  
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set-theoretic relations: 
 
       complement 
 
            identity 
 
     mutual exclusion 
 
      partial intersection 
 
             inclusion 
 
             full union

metalogical relations: 
 
  contradictoriness 
 
      equivalence 
  
           contrariety 
 
logical independence 
 
            entailment 
 
     subcontrariety

quantifying operators: 
 
 
 
 
 
      No F is G 
 
      Some F is G 
 
      All F is G / 
        Some F is G 

set-theoretic functions: 
 
    complement 
 
                 union 
 
     intersection 
 
      subtraction

   propositional operators: 
 
    negation ("not") 
 
    disjunction ("or") 
 
    conjunction ("and"/"or") 
 
    "and/but not" 

 

Figure 1 The reduction of metalogical relations and object-language operators 
to set-theoretic relations and functions 
 
 

 
2.2. The restrictions imposed by NST 
 
So much for standard set theory and standard logic. The question is now: What 
restrictions are to be imposed on this system so that the discrepancies between 
logic and language are correctly predicted? To begin with, let it be assumed that 
NST entails that the mind does not naturally represent a set as either the null 
set (Ø) or the universe of all objects (OBJ). In NST, the null set is not a set at all: 
the cognitive counterpart of Ø is the absence of any set, something which is 
cognitively real and may be called “null” but cannot play the role of a set. 
Whereas “null” still functions cognitively as “absence of a set,” the opposite 
notion of OBJ is typically the product of advanced mathematical and/or 
philosophical construction. OBJ, as an abstract notion in standard modern set-
theoretic thinking, is taken to be too nondescript to be cognitively real and thus 
to play no role in natural set theory. What does seem to play a role in it is the 
notion of a RESTRICTED UNIVERSE OF OBJECTS or OBJR , involving the totality of 
all objects within a contextually defined universe of discourse. Therefore, all 
standard set-theoretic definitions involving OBJ should, for the purpose of 
natural set theory, be redefined as involving the notion of OBJR , which does 
count as a natural set.  
 Given these assumptions, we posit the first PRINCIPLE OF NATURAL SET 

THEORY, PNST–1, which applies to single sets:  
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PNST–1:  Ø  AND  OBJ  ARE  NOT  NATURAL  SETS 

Sets are never cognitively represented as having an EXTREME VALUE - that 
is, as the null set (Ø) or as the totality of objects (OBJ).  

 
Sets that fulfill the condition of PNST–1 are called NATURAL SETS. In the absence 
of any experimental data, and hence of any precise scale of naturalness, we 
posit, more or less intuitively, that PNST–1 is both basically and strictly natural 
in that it strongly resists intellectual construction. Only at a very advanced level 
will the cognitive powers of the human race be able to override PNST–1.  
 One notes that it does not seem to matter, for natural cognition, whether a set 
is finite or, technically speaking, infinite, as the notion “very large” appears to 
cover both “infinite” and “very large but finite.”  
 A further principle of natural set theory requires the nonidentity, or 
distinctness, of any two or more natural set representations. When two or more 
sets are cognitively represented, they are naturally taken to be DISTINCT from 
each other: Any relation of identity is considered constructed. This gives the 
second principle of natural set theory, which eliminates the RELATION OF 

IDENTITY: 
  

PNST–2:  NATURAL  SETS  ARE  DISTINCT 

When sets are distinguished cognitively, they are represented as being 

DISTINCT as regards their membership. There is no natural cognitive 

relation of identity between sets.  

 
Like PNST–1, PNST–2 is taken to be natural in both a basic and a strict sense, in 
that it takes a considerable amount of advanced analytical thinking - much 
more than natural cognition and common natural language can bear - for it to 
be overridden.  
 In actual fact, PNST–2 is more general. It applies to any kind of object 
representation, not only of sets but also of individual objects: No two objects of 
any kind allow for a RELATION OF IDENTITY, since that would make them one 
single object. Yet they do allow for a mental OPERATION OF IDENTIFICATION, 
given distinct levels of representation. This is what underlies the predicate of 
identity in natural language: What was thought to be distinct becomes one. 
Such an operation involves two levels of cognitive representation, one at which 
the two virtual objects or sets are distinct and one at which they have merged 
into one. If truth is claimed for the latter, two virtual objects or sets have been 
identified. If truth is claimed for the former, one virtual object or set has been 
cognitively split up into two.  
 Moreover, the identity predicate, which identifies as one what were thought 
to be different objects, is to be distinguished from the value-assigning predicate 
bev, which assigns a value to a parameter, as in My name is Pieter, where my 



The natural logic of language and cognition    111 
 
name denotes the parameter and Pieter denotes the value assigned to the 
parameter. Obviously, the value-assigning predicate bev cannot be missed in a 

system consisting of functions. Therefore, bev is admitted, allowing for free 

substitution of either of its terms in any context. In standard Boolean and set-
theoretic expressions we will henceforth distinguish between the identity 
predicate (=) and the value-assigning predicate bev written as =v (or v= when the 

value precedes the function).  
 We assume, furthermore, that PNST–2 has three subprinciples, all three less 
basic than PNST–1 and PNST–2, so that they can be overridden at the level of 
strict naturalness. They apply to the set-theoretic functions of UNION, 

SUBTRACTION, and INTERSECTION, respectively (|X| stands for the cardinality 
of any set X): 

 

PNST–2a:  BASIC  NATURAL  UNION  REQUIRES  TOTAL  DISTINCTNESS 

When two (or more) naturally represented sets A and B are added by the 
function UNION, they are, at the level of basic naturalness, TOTALLY 

DISTINCT, without any element in common, so that |A ∪ B| = |A|+|B|.  

 
Under PNST–2a, union is thus defined, at the level of basic naturalness, only 
for any two (or more) totally distinct natural sets. When this condition is not 
fulfilled, there is, at that basic level, no union. 
 PNST–2b is the obverse of PNST–2a, in that it requires total (proper) 
inclusion for the basic natural function of subtraction: 

 

PNST–2b:  BASIC NATURAL SUBTRACTION REQUIRES PROPER INCLUSION 

At the level of basic naturalness, when a set A is subtracted from a set B by 

SUBTRACTION, A is a proper subset of B, so that |B–A| = |B|–|A|. 

 
Under PNST–2b, subtraction is defined, at the level of basic naturalness, for any 
two natural sets A and B such that, if A is subtracted from B, A is a proper 
subset of B. When this condition is not fulfilled, there is no subtraction, at that 
level.  
 The conditions expressed in these two subprinciples have been axiomatized 
in standard arithmetic for the calculus of cardinality. They ensure that, under 
the principles of natural set theory, Boolean addition and subtraction agree 
with their arithmetical namesakes as regards the cardinality of the sets 
involved.  
 By contrast, the set-theoretic function INTERSECTION, and its Boolean 
counterpart MULTIPLICATION, do not correspond to any arithmetical function. 
PNST–2c defines the natural intersection function as excluding both total 
distinctness and proper inclusion, leaving only partial intersection: 
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PNST–2c:  BASIC  NATURAL  INTERSECTION  IS  PARTIAL  

At the level of basic naturalness, the function INTERSECTION of two sets A 

and B requires that A ∩ B be nonnull (also for strict naturalness) and be 

properly included in both A and B (only for basic naturalness).  

 
PNST–2c thus defines, at the level of basic naturalness, intersection only for 
those sets A and B (and possibly more) that satisfy the condition of actually 

intersecting (A ∩ B • Ø), whereby the extra condition holds that the 

intersection be properly included in both (A ∩ B ⊂ A and A ∩ B ⊂ B). Yet, 
while PNST–2c is absolute—that is, both basically and strictly natural - for the 

condition that A ∩ B • Ø, it appears to be merely basically natural, and hence 

relatively easily overridden, for the condition that A ∩ B ⊂ A and A ∩ B ⊂ B, 

creating the possibility that A ∩ B =v A or A ∩ B =v B. (This easy overriding 

allows for the upgrading of exclusive to inclusive or and for the upgrading of 
some excluding all to some including all, as is shown in section 4, and hence for 
the subaltern entailment schema from All F is G to Some F is G.)  
 Thus restricted, the natural intersection function has the unique property of 

ensuring SET-THEORETIC INDEPENDENCE. That is, if A ∩ B has a value under 
PNST–2c, then A and B are set-theoretically independent, and vice versa. It is 

then ensured that, for any element o ∈ OBJR , it is possible that o ∈ A and o ∉ B, 

or o ∈ B and o ∉ A, or o ∈ A and o ∈ B, or o ∉ A and o ∉ B.  
 There is a final principle, relating to the recursive application of the set-
theoretic functions. Whereas in mathematical set-theory one can apply the 
functions recursively to one’s heart’s content, this is not so in natural set theory. 
This applies especially to the function COMPLEMENT, which is nonrecursive in 
basic NST: 

 

PNST–3:  BASIC  COMPLEMENT  IS  NONRECURSIVE 

At the level of basic naturalness, COMPLEMENT is restricted to one 
application. Double complement is admitted in strictly natural set theory; 
further applications are constructed. 

 
Psychological experiments should provide greater clarity and greater precision. 
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3. Consequences for set-theoretic and logical relations and functions 
 
3.1. Consequences for set-theoretic relations and functions 
 
Formally, basic NST amounts to an application of Boolean algebra, whereby the 
restrictions as formulated in (2a–f) hold. In (2a–f) a notational distinction is 
made between the standard Boolean operators and their basic natural 
counterparts. The latter are provided with the superscript BN (basic natural). 
One notes that the definitions of the BN-operators require an appeal to the 
standard operators. 

 

(2)   a.  PNST–1:    0 and 1 are excluded as values of the Boolean variables.  

b.  PNST–2:  the relation = (•) is eliminated; only the value-assigning  relation  =v  

       (or v=) and its negative counterpart •v (or v•) are admitted.  

c.  PNST–2a: ADDITION (x +BN y) is restricted to x, y such that  
         there is no z such that x • y =v z.  

d.  PNST–2b: SUBTRACTION (x –BN y) is restricted to x, y such that 
         x • y =v y  

         x • y •v x.  

e.  PNST–2c:  MULTIPLICATION (x •BN y) is restricted to x, y such that  

         x • y •v x •v y. 

         there is a z such that x • y =v z  

f.  PNST–3:   COMPLEMENT (x,¯̄  
BN

) is non-recursive and restricted to an  
      independently given element y in the range of the variables such that  

       there is a z such that y –BN x =v z. (We say: “x,¯̄   
in y

 =v  z”.) 

 
Thus restricted, Boolean algebra is translatable into basic NST as follows: 

 

(3)  a. •BN  is interpreted as basic natural intersection ∩BN. 

   b. +BN  is interpreted as basic natural union ∪BN. 

    c. x,¯̄  BN  is interpreted as restricted complement X,¯̄  
R

. 

    d. –BN  is interpreted as basic natural subtraction –BN. 

 
 This, in its turn, is interpretable onto a logical system when the logical 
constants are defined in set-theoretic terms. In anticipation of the results of 
section 4.1, we say that the resulting predicate logic, shown in Figure 9 below, is 
the (faulty) logic proposed in Hamilton (1860) and Jespersen (1917). ALL, SOME, 
and NO are defined in (5a–c), where A stands for All F is G, I for Some F is G,  
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and E for No F is G. For internal or “subsentential” negation, as in All/some/no F 

is not G, [[G]] is to be replaced with  [[G]],¯¯¯¯¯ R, the restricted complement of [[G]] 
in any presuppositionally restricted universe of objects. The external negations 
of sentences with ALL, SOME, and NO are defined in (5d–f). The sign ¬ for the 
external negation in the logical language LL is replaced with ~, which selects the 

complement in the restricted universe of all possible situations UR. One notes 
that (5c,e) show that ~I  does not equal E, since the conditions of E exclude [[F]] 

⊂ [[G]], whereas those of ~I  allow for [[F]] ⊂ [[G]] (that is, when sact ∈ /A/). One 

also notes that basic natural proper inclusion (⊂) does not differ from its 
standard counterpart. In terms of NST it is defined as follows: 

 

(4) A ⊂ B is true iff there is a set C such that B –BN A =v C.  

(5) a. ALL F IS G (A) is true iff [[F]] ⊂ [[G]]  

b. SOME F IS G (I) is true iff there is a set H such that H ⊂ [[F]] and H ⊂ [[G]] 

c. NO F IS G (E) is true iff there is no set H such that [[F]] ∩BN [[G]] =v H;  

     

d. ~A is true iff sact ∈ /A/,¯̄ ¯̄ ¯̄  
R

 in UR: sact ∈ /I/ or /E/ or both 

e. ~ I  is true iff sact ∈ /I/,¯̄ ¯̄  ̄
R

 in UR: sact ∈ /A/ or /E/ or both 

f. ~E  is true iff sact ∈ /E/,¯̄ ¯̄ ¯̄  
R

 in UR: sact ∈ /A/ or /I/ or both.  

 

 The VS-model of Figure 9, which shows the basic natural Hamilton-
Jespersen system of quantification, is a direct consequence of the definitions in 
(5a-f). Its propositional counterpart, shown in Figure 10, results from reading 

AND as expressing ∩BN, OR as expressing ∪BN, ~ as expressing X,¯̄  R, and NOR as 
expressing the intersection of /~AND/ and /~ OR/ in Figure 10 (subtraction 
plays no role).  

 The formal sketch given in (2) and (3) requires some comment. We start with 
RESTRICTED COMPLEMENT as a function and as a relation between a set A and its 

complement A,¯̄  R. Neither the function nor the relation are current in standard 
set theory, yet they are of central importance to the study of natural cognition 

and natural language. The FUNCTION, written as X,¯̄  R, is defined in (6a): it takes 

OBJR  as given in any situation and any set X ⊂ OBJR , and it delivers OBJR–X. 
The corresponding RELATION RC between a set X and its restricted complement 
Y within OBJR  is defined in (6b): 
  

(6) a. X,¯̄  
R

 =def the set Y such that Y v= OBJR –BN X.  

 b.     RESTRICTED COMPLEMENT: RC(Y,X,OBJR )  iff  X ⊂ OBJR  and Y v= OBJR–X.  
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Thus, in Figure 2, A,¯̄  R equals OBJR  –BN A (but remember that multiple 
applications of this function are excluded in virtue of PNST–3). The relation be-

tween A and A,¯̄  R (horizontal lines) corresponds to natural contradictoriness 
(that is, within the restricted complement); that between A and 

A,¯̄  (vertical lines)  to the standard metalogical relation of that name.  
 The set-theoretic relation of IDENTITY has been eliminated in virtue of PNST–
2, as has been said. FULL UNION is likewise eliminated, at least for basic 
naturalness: When A and B intersect it is eliminated in virtue of PNST–2a; 
when they do not, full union equals complement. More is said about full union 
in a moment. 

 

Figure 2 The relation between the natural set A, its restricted complement  

    A,¯̄  R, and its standard complement A,¯̄    

 

 The result is that, while OBJ is replaced with OBJR , there are only three 
possible basic natural relations left between any two natural sets A and B: 
MUTUAL EXCLUSION, PARTIAL INTERSECTION, and PROPER INCLUSION. They are 
defined, in standard terms, in (7a,b,c) and shown in Figure 3–a,b,c, 
respectively: 

(7) Basic natural relations between natural sets A and B within OBJR : 

a. MUTUAL EXCLUSION iff A ∩ B =v Ø 

  b. PARTIAL INTERSECTION iff A ∩ B •v Ø 

   A ∩ B,¯̄  
R

 •v Ø 

   B ∩ A,¯̄  
R

 •v Ø 

c. INCLUSION of A in B iff B – A •v Ø 

   A ∩  B,¯̄  
R

 =v Ø 
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Figure 3 MUTUAL EXCLUSION, PARTIAL INTERSECTION, and PROPER   
 INCLUSION as the three basic natural relations between sets A and  B 

 
 INCLUSION has now been reduced to PROPER INCLUSION, as the difference 
hinges on the identity of A and B. This is precisely what is needed, since the 
inclusion relation strikes nonmathematicians as nonnatural for two identical 
sets. Moreover, INTERSECTION has been reduced to PARTIAL INTERSECTION 

because when, in standard terms, A ∩ B =v Ø, there is no intersection, and 

when A ∩ B =v A or A ∩ B =v B, there is (proper) inclusion but not intersection, 

according to PNST–2c (though, as has been said, this latter condition appears to 
apply only to basic, not to strict, naturalness).   
 MUTUAL EXCLUSION has passed relatively unscathed through the naturalness 

restrictions. In particular, it still allows for A and A,¯̄  R, as in Figure 2, to be 
called mutually exclusive. What makes Figure 2 a special case of mutual 

exclusion is that the union of A and A,¯̄  R exhausts OBJR , or A ∪ A,¯̄  R =v 

OBJR .  
 The same freedom for the union of A and B to exhaust OBJR  is, however, not 
granted to them when they partially intersect, as in Figure 4–a, or when the one 
is (properly) included in the other, as in Figure 4–b. In those cases it may be 

true in standard  terms that A ∪ B =v OBJR , but it is not true under the 

restriction imposed by PNST–2a, because PNST–2a leaves basic natural union 
undefined for cases where A and B are not totally distinct. FULL UNION defined 
here as (8) in a form adapted to NST, is thus equally undefined when A and B 
are not totally distinct, even when OBJ is replaced with OBJR  (“FUR” stands 
for full union within any given OBJR). 
 

(8) FUR(A,B) iff A ∪BN B =v OBJR   
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Figure 4 Basic naturalness has no FULL UNION for not totally distinct A and  B  

 

 Whereas it is true, at the level of basic naturalness, that FUR(A,A,¯̄  R), as in 
Figure 2, it is false that FUR(A,B) for the sets A and B represented in Figures 4–
a,b. As for Figure 4–a, the relation between A and B lacks a name. In standard 
set theory it lacks one, presumably, because it is mathematically uninteresting. 
In basic NST it lacks one because no relation is seen there. Only in strict NST 
does it deserve a name (“full union”), because it corresponds to the metalogical 
relation of subcontrariety, which is relevant in predicate calculus. And as 
regards Figure 4–b, all that is involved is the relation of proper inclusion of A 
in B. The relation FUR thus delivers truth, in basic natural set theory, for the 

natural sets A and B only when B,¯̄  R =v A or vice versa - that is, when the one is 

the restricted complement of the other, as illustrated in Figure 2. And since we 
already have a term for both that relation and that function, the notion of FULL 

UNION is not needed in natural set theory. 
 

 
3.2. Consequences for (meta)logical relations and functions 
 
The set-theoretic functions and relations can be translated into functions and 
relations of logic and metalogic. As one reads from Figure 1, the set-theoretic 
RELATIONS translate into metalogical relations. This is achieved by taking the 
valuation spaces of L-propositions P and Q, /P/ and /Q/, respectively, as the 
arguments of the relations and by making the universe of all possible situations 
U stand for OBJ. The set-theoretic relations also translate into the standard 
operators of quantification in the object-language LL if [[F]] and [[G]] are the 

arguments of the relation. The set-theoretic FUNCTIONS are translated into 
propositional operators (truth functions) in the object-language LL again by 

taking /P/ and /Q/ as arguments and by making the universe of all possible 
situations U stand for OBJ.  
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 For standard and traditional Aristotelian-Boethian predicate calculus, we 
distinguish between the sentence types I and A, with their external (¬) and 
internal (*) negations: 

 
    I Some F is G  or equivalently ¬A* Not all F is not-G 
  A All F is G  or equivalently ¬I* No F is not-G 
 ¬I No F is G or equivalently   A* All F is not-G 
 ¬A Not all F is G or equivalently    I* Some F is not-G 
 
Likewise for the sentence schemata in propositional calculus, where OR stands 

for P ∨ Q, AND for P ∧ Q, OR* for ¬P ∨ ¬Q, and AND* for ¬P ∧ ¬Q: 

 

   OR P ∨ Q or equivalently ¬AND* ¬(¬P ∧ ¬Q) 

  AND  P ∧ Q  or equivalently ¬OR* ¬(¬P ∨ ¬Q) 

 ¬OR  ¬(P ∨ Q) or equivalently  AND*  ¬P ∧ ¬Q 

 ¬AND  ¬(P ∧ Q) or equivalently    OR*  ¬P ∨ ¬Q 
 

 Now the VS models shown in Figure 5–a,b can be set up for the sentence 
schemata in predicate and propositional calculus, respectively (space 4 in 
Figure 5–a is reserved for those situations in which the extension of the F-
predicate is null): 

[[F]] = Ø

U

A*A

1 234 3 42

¬I ¬I*

A

I

A*

I*I

I*¬I

¬I*

¬A

¬A ¬A*

¬A*

a.

U

1 2 3

AND*

OR

AND 

23

¬AND*

¬AND*

¬AND 

¬AND 

OR

¬OR

¬OR*

OR*

OR*

b.

 

Figure 5 VS-models for (a) standard modern predicate calculus and  
  (b) propositional calculus 
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 Under the conditions imposed by NST, COMPLEMENT is modified into 

RESTRICTED COMPLEMENT (X,¯̄  R), as defined in (6a), giving rise to a 
(presupposition-preserving) RESTRICTED NEGATION (~). If U is restricted to the 
spaces 1, 2, and 3 of Figure 5–a, the predicate logic within UR is traditional 
Aristotelian-Boethian predicate logic, with the subaltern entailment A|,  –  I, as 
shown in Figure 6. This predicate logic is then seen to be fully isomorphic with 
propositional logic. We consider both traditional Aristotelian-Boethian 
predicate logic and standard propositional logic to represent STRICT natural 
logic. BASIC natural logic is represented by the Hamilton-Jespersen system 
shown in Figure 9 and the basic precursor of standard propositional logic 
shown in Figure 11 below.  

 

Figure 6 VS-model for predicate logic with UR restricted to situations where 
 [[F]] • Ø  

 
 PNST–3 excludes double negation.2 Double logically functional negation 
does occur, but only in culturally well-developed speech. Treble logically 
functional negation is rare and confusing. Quadruple logically functional 
negation is out of the question.  
 At the level of basic naturalness, DISJUNCTION is restricted to nonnull 
valuation spaces that do not intersect. CONJUNCTION is reduced to partial 
intersection and is defined only over actually intersecting sets of situations 
(valuation spaces) /P/ and /Q/ such that neither /P/ nor /Q/ equals Ø or UR, 

                                                 

 2 Except, of course, when the negation is copied for the functional purpose of reinforcement, 
as in the Cockney sentence ‘E’s never been no good to no woman, not never. 
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as in Figure 3–b. (SUBTRACTION plays no role in propositional logic; if it did it 

would be restricted to valuation spaces /P/ and /Q/such that /P/ ⊂ /Q/.)  
 As regards the relations, one remembers that the standard metalogical 

relations of EQUIVALENCE (≡), ENTAILMENT (|,  – ), CONTRADICTION (CD), CON-
TRARIETY (C) and SUBCONTRARIETY (SC) are expressible as standard set-
theoretic relations in terms of valuation spaces, as shown in (1). Natural set 
theory now imposes restrictions on these standard metalogical relations. First, 
EQUIVALENCE has to go: It does not exist in natural set theory as a metalogical 
relation. Yet, as with the identification of sets in general, there is a fully natural 
COGNITIVE OPERATION OF IDENTIFICATION, which takes two sentences that have 
had different interpretative histories and identifies them at some level of under-
standing. For example, one may say that Jack lives in London is equivalent to Dr. 
Smith lives in London provided the expressions Jack and Dr. Smith refer to the 
same person. Likewise, when we say that, in basic natural set theory, Some F is 
G is equivalent with Some F is not-G, what we mean is that they have been 
identified at some level of theoretical interpretation. Equivalence is, therefore, 
reinterpreted as identification. 
 Then, ENTAILMENT of (1b), corresponding to inclusion as defined in standard 
terms in (7c) and redefined in terms of NST in (4), is a (basic and strict) natural 
relation, provided it is restricted to natural sets and to PROPER INCLUSION. The 
violently counterintuitive notion that a necessary falsehood F entails any 
proposition - “ex falso per se ad quodlibet” - has been eliminated, because /F/ 
=v Ø, and Ø is not a natural set. Likewise, the equally violently counterintuitive 

notion that a necessary truth T is entailed by any proposition - “verum per se ex 
quolibet” - has been eliminated, because /T/ =v U, and U is not a natural set. 

The concept of naturalness introduced here further restricts the entailment 
relation in that identity of /P/ and /Q/ is now also excluded, which rules out 
the highly counterintuitive notion of self-entailment.  
 Entailments following from the theorem (“inference rule”) of ADDITION have 
not been eliminated. Addition is the theorem saying that for any L-propositions 

P and Q it is always so that P|,  –  P ∨ Q. Although this theorem is valid in 
standard propositional calculus, it seems clear that it should be qualified as 
nonnatural, since natural speakers will not agree that, for example, Sandy is 
married entails Sandy is married or today is Sunday. Yet NST fails to eliminate it. In 

standard terms, /P ∨ Q/ v= /P/ ∪ /Q/ and because /P/ ⊂ (/P/ ∪ /Q/), one 

must accept that P|,  –  P ∨ Q. NST does not help here, because, even if P and Q 
are contraries, so that /P/ and /Q/ are totally distinct, as in Sandy is married or 

she died last year, it is still so that /P/ ⊂ (/P/ ∪BN /Q/), so that, in NST terms, 
P|,  –  P or Q. In other words, even for a necessarily exclusive OR, the 
entailment schema of addition remains intact.  
 To eliminate addition as a generally valid entailment schema, the notion of 
entailment must be sharpened in such a way that it requires not only that truth 
be preserved, but also that its preservation be determined by the specific 
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linguistic meaning of the entailing L-proposition. This latter condition is not 
satisfied in cases of addition, as there is nothing in the specific meaning of any 
arbitrary P that causes preservation of truth for P or Q, Q being equally 
arbitrary. Not so for the inference rule known as SIMPLIFICATION, which says 
that P and Q entails both P and Q, since here it is the meaning of and that 
causes the entailments. Nothing much thus remains of addition.  
 All this taken together removes a great deal of counterintuitive excess 
baggage and, in fact, restricts the entailment relation to semantically motivated 
entailment, precisely as is wanted. We use the term NATURAL ENTAILMENT for 
the entailment relation as restricted by NST and by the stipulation that 
entailment is meaning-driven. It would seem that the notion of natural 
entailment properly delimits the class of entailments felt to be natural by native 
speakers, and hence empirically observable or measurable as psychologically 
valid data.  
 CONTRADICTION has been slimmed down to a contextually restricted UR, 
created by presuppositional restrictions on the possible situations in any 
discourse at hand. CONTRARIETY is the only relation that can stand unmodified, 
apart from the restriction of the VSs at issue to natural sets of possible 
situations. Finally, SUBCONTRARIETY has disappeared from the basic natural 
system, as it involves the relation of full union, which has been ruled out. Yet it 
reappears in the strict natural system of metalogical relations, though not 
without some considerable cognitive effort.3  
 This leaves the following list of (basically and strictly) natural metalogical 
relations: 
 

(9) For all L-propositions P and Q such that /P/ and /Q/ are natural sets:  

a. CD(P,Q) iff  /P/ ∪  /Q/ =v UR   and /P/ ∩ /Q/ =v Ø  (or: /P/ v= /Q/, ¯̄ ¯̄ ¯̄  
R

) 

b. C(P,Q) iff  /P/ ∩ /Q/ = v Ø  

c. P|,  –|, ( =)  Q iff  /P/ ⊂ /Q/ (in virtue of the meanings of P and Q).  

 
 

4. Problems with the NST-constrained system of logic 
 
So far, no great difficulties have been encountered. The difficulties start when 
one looks at the object-logical operators all, some, not, and, and or and the way 
they interact. As regards the operators of quantification, the only natural 
relations that can hold between sets A and B, namely mutual exclusion, partial 
intersection, and proper inclusion, as shown in Figure 3, look as if they are 
directly reflected in the quantifiers no, some, and all, respectively. Likewise for 

                                                 

 3  Aristotle, with all his logical acument failed to identify it (it was developed by his 
commentators), and beginning logic students, who still have to rely on their natural intuitions, 
tend to find subcontrariety very hard to grasp, as logic teachers know well. 
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the propositional truth-functional operators, which look as if they are the direct 
reflections of the corresponding set-theoretic functions as redefined under NST. 
Yet when one tries to build a LOGICAL system - that is a system which maintains 
consistency - on the basis of these parallels between natural sets on the one 
hand and logical relations and functions on the other, one finds that there are 
complications.  

 
 

4.1. The NST-constrained system of basic natural quantification 
 
We start with predicate calculus. The predicate-calculus system within the 
constraints of NST at the level of basic naturalness as set out above turns out to 
be identical with the system that was defended by the nineteenth-century 
Edinburgh philosopher Sir William Rowan Hamilton (Hamilton 1860) and 
defended in a fierce polemic with the London logician Augustus De Morgan. 
The same system, by and large, was again proposed in the twentieth century in 
Jespersen (1917). Perhaps because Hamilton lost his war with De Morgan, and 
perhaps also because of the unique prestige of modern logic, Hamilton’s system 
was never analysed in detail. Yet, given its undoubted intuitive appeal, it 
deserves a more precise analysis in the context of an investigation of natural 
cognition. The more so because Jespersen, who possessed a finely tuned 
intuition as regards linguistic matters but had no logical knowledge, came up 
with what looks very much like the same system for predicate logic (Jespersen 
1917:  85–92).  
 We will look at this logic from the point of view of basic natural set theory, 
which allows us to be more precise than the Hamilton-Jespersen system, which 
is not in every way as explicit as one would wish. The logic is determined by 
three quantifiers: NO meaning ‘null’, SOME meaning ‘partial’ (henceforth 
SOMEexc) and equivalent to SOMEexc-NOT, and ALL meaning ‘the complete set’, 

plus bivalent negation within a restricted UR - that is, the negation written as ~. 
Figure 7 shows the only possible basic natural relations between [[F]] and [[G]], 
just as the isomorphic Figure 3. 
 There is, of course, a question as regards existential import. Under a strictly 
extensional ontology, the system has existential import, and thus fails to cater 
for situations where [[F]] = Ø. Without a proper provision, this will make the 
system unsound. One such provision, which leaves the ontology strictly 
extensionalist, has been indicated above. It consists in posing the 
presuppositional condition that [[F]] • Ø. Since, however, the entailment of 
existence (existential generalization) is generated as a presupposition not only 
by the universal quantifier but by most ordinary lexical predicates in any 
natural language, the provision must be extended to cover those cases as well. 
The extension we take to be adequate, without arguing for it here as it is not 
directly germane to the main topic of this paper (but see Seuren in prep.), 
consists in the acceptance of a nonextensional ontology whereby any entailment 
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of actual existence is determined by the lexical preconditions of the predicate G. 
The sets [[F]] and [[G]] are then by definition nonnull, as the very fact that F or G 
is brought to bear creates an intensional object or set of objects and hence a 
possible reference object or a possible set to quantify over. To obviate possible 
criticisms to the effect that undue existential import has not been reckoned with 
in the present analysis, we reserve a special “outer” space, marked *[[F]]*, in the 
Figures 8–a and 9–a for the set of situations not satisfying an existential 
precondition lexically imposed by any predicate G.   

 

Figure 7 The possible basic natural relations of [[F]] and [[G]] and the naïve  
 translations into predicate calculus terms 

 
 In this logic, the three quantifiers ALL, SOMEexc(-NOT), and NO denote the 

only three possible basic natural relations between two sets. From a cognitive 
point of view, therefore, their status is very strong. Yet despite their preferred 
status in cognition, there is a question as to the consistency, and hence the 
logical tenability, of the logic thus constrained. If the doubts regarding this logic 
prove justified, the conclusion is clear: Human cognition must yield to the 
demands of a consistent relation to the world and thus upgrade itself. Prototype 
is subservient to consistency. 
 The basic natural system can be looked at in two ways. First, one can follow 
the tradition and read the quantifier NO as a lexicalization of NOT-SOMEexc, with 

SOME  excluding ALL - that is, SOMEexc - and NOT expressing the restricted 

complement-selecting operator ~. On this reading, the VS model of the basic 
natural system is as shown in Figure 8–a, leading to the Square of Figure 8–b. 
(Iexc stands for Someexc F is G; the asterisk indicates internal or “subsentential” 

negation, as in Some F is not G.)4 

                                                 

 4  In the light of PNC-3 it is questionable whether spaces involving multiple negation, such 
as /~E*/ or /~Iexc,* / have cognitive reality. They have not been deleted from Figure 15.7 
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Figure 8    Basic natural quantificational logic with NO = NOT-SOMEexc 

 
 Such a system, however, fails for a variety of reasons. For example, given the 
equivalence of Iexc (Someexc is G) and Iexc,* (Someexc is not G) , their negations 

should both be true in the set of situations forming the complement of /Iexc ≡≡≡≡  

Iexc,* /. But whether there are real flags or only virtual ones, linguistic 

understanding does not allow No flag is green and No flag is not green to be both 

true at the same time. Then, since in Figure 8–a, /Iexc/,¯̄ ¯̄ ¯̄ ¯̄   comprises both 

/A*/ and  /A/, NO would have to mean ‘either none or all’, which is clearly not 
so. Moreover, All flags are green would have to entail No flag is green, which, of 
course, is semantically abhorrent. On this interpretation, therefore, the basic 
natural system is untenable as a logical system serving the purposes of natural 
language. 
 The system is improved when NO is not read as ‘NOT-SOMEexc’ but is taken to 

stand on its own as a separate quantifier equivalent to standard NOT-SOME 
(though “inclusive” SOME does not form part of this logic). A sentence of the 
type ~Iexc is then no longer read as No F is G, but rather as It is not so that (only) 

some F is G, leaving open the possibility that either All F is G or No F is G is true. 
So let us symbolize No F is G as type E, following Boethius, and distinguish E 
from ~Iexc. This system is shown in Figure 9, where /~Iexc/ is the complement 

of /Iexc/ in UR, but /E/ is only part of /~Iexc/, so that No F is G entails It is not 

so that some F is G, but not vice versa.  
 

                                                                                                                                               
because we are interested in the ultimate logical and cognitive-linguistic tenability of the logic 
that emerges from the quantifiers all, some-but-not-all, and no. 



The natural logic of language and cognition    125 
 

 

Figure 9    Basic natural quantificational logic with NO • NOT-SOMEexc 

 
 Now the  restricted universe UR of situations where [[F]] satisfies the 

preconditions defined for the predicate G is fully exhausted by /E ≡≡≡≡ A*/, /Iexc ≡≡≡≡ 

Iexc,* /, and /A ≡≡≡≡ E*/, as shown in Figure 9–a, where E ≡≡≡≡ A*, Iexc ≡≡≡≡ Iexc,* , and A 

≡≡≡≡ E* all stand to each other in the single relation of contrariety. Although this is 
an improvement, it still leaves open the possibility of both Iexc and Iexc,*  being 

false simultaneously. In defence of the system one can say that it does not allow 
for E (No F is G) and E* (No F is not G) to be true simultaneously, which is in 
accordance with natural intuition, but then one must be resigned to the 
counterintuitive result that No F is G is not synonymous with Not-someexc F is G. 

Now, in cases where All F is G is true - that is, for all situations in /A/ - No F is 
G is false whereas Not some F is G is true, because it is still so, under this 
interpretation, that A|,  –  ~Iexc, which is now to be read as All F is G entails It is 

not the case that (only) some F is G.  
 This would be all right - apart from the question of existential import - if some 
meant ‘only some but not all’, but some is also naturally used in the sense of ‘at 
least some, perhaps all’. A speaker can vouch for the truth of Some F is G when 
only part of [[F]] has been checked and so far all elements in [[F]] satisfy the 
conditions of the predicate G. The corresponding mental model will then, for 
the time being, look like Figure 7–b. But as the checking proceeds and the 
elements in [[F]] keep satisfying G, [[F]] will move further and further into [[G]], 
until, in the end, [[F]] may be totally included in [[G]], as in Figure 7–c. It will not 
do, of course, to say that the original Some F is G becomes false the moment the 
last element of [[F]] is checked and found to satisfy G, since that would turn a 
truth into a falsehood during the same discourse without anything changing in 
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the state of affairs s but only as a result of increased knowledge of s. 
Consistency of discourse demands that both the existentially quantified and the 
universally quantified statements are true in such cases. Analogously, as long as 
checking fails to yield an element in [[F]] that satisfies G, Some F is not-G will 
remain true but there will be no warrant for Some F is G. And when this trend 
continues so that, in the end, no element in [[F]] is found that satisfies G, the 
statement Some F is not-G will still be true and Some F is G can be truthfully 
denied as No F is G, without having to revise any truth established earlier.  
 In the second interpretation, the basic natural system of quantification thus 
labors under a lack of consistency through discourse and the counterintuitive 
difference between no and not-someexc, but otherwise the system shown in 

Figure 9 seems to be all right. WE THEREFORE TAKE IT THAT THE BASIC NATURAL 
SYSTEM OF PREDICATE LOGIC IS THE SYSTEM SHOWN IN FIGURE 9, WHERE NO • 

NOT-SOMEexc. For it to be upgraded to full consistency through discourse, an 

entailment from All F is G to Some F is G must be allowed - that is, the famous 
SUBALTERN entailment schema A|,  –  I, which has caused so much trouble in 
the history of logic. The introduction of the subaltern entailment schema 
amounts to an upgrading from basic to strict naturalness.  
 This conclusion is to some extent disconcerting, in that it amounts to saying 
that the basic natural set-theoretic relations of mutual exclusion, partial 
intersection, and proper inclusion as expressed by the quantifiers no, all, and 
someexc, respectively, fail to guarantee consistency through discourse and thus 

form a system which is, in fact, logically inadequate. Had it not been for 
Aristotle, this would be grist to the modern logician’s mill, as it has, for some 
time now, been customary among logicians to condemn natural language for 
being logically unreliable. Aristotle, however, made the world see that, on 
reflection, one must concede that A-type sentences entail the corresponding I-
type sentences, thereby removing the main blemish in the basic natural NST-
constrained system of predicate logic. Needless to say, the Aristotelian system 
conquered the world, until it was replaced, a century ago, with the modern, 
highly constructed, system of predicate logic often referred to as the Russellian 
system, which, ironically, banished again the subaltern entailment from A-type 
to I-type sentences so as to get rid of undue existential import. It does seem, 
however, that the problem of undue existential import can be solved by other 
means, so that a fully sound logic of natural language and cognition can be 
envisaged that is less far removed from natural intuitions and more Aristotelian 
in outlook.  

 
 

4.2. The NST-constrained system of propositional logic 
 
Is there an analog in propositional logic to the basic natural system of 
quantification? To a large extent there is, but there are also differences. We 
recall from Figure 1 that, unlike the quantifiers, which express relations 
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between sets of objects, the propositional operators are functions mapping n–
tuples of VSs on VSs. They become predicates when predicated of the actual 
situation sact, as shown in (10)–(12) below.  

 NEGATION is not immediately problematic (though, when taken in all its 
aspects, it is perhaps the most complex of all the functions). We define basic 
natural negation as follows (P ranges over contextually well-anchored and 
situationally well-keyed L-propositions): 

 

(10) [[~]] = { P |  sact  ∈ /P/, ¯̄ ¯̄  ̄
R

 } 

(the extension of ~ is the set of all L-propositions P such that the actual situation sact  is 

a member of the restricted complement of /P/) 

 

 CONJUNCTION (∧BN) maps onto the BN-intersection of the VSs of the 

argument L-propositions (P+ stands for any number of semantically compatible 
L-propositions): 
  

(11) [[∧BN]] = { P+ |  sact    ∈   
(the extension of ∧ is the set of all sets of two or more propositions p, such that  sact  is 

a member of the BN-intersection of all /P/+) 

 
The argument L-propositions cannot be necessarily true or necessarily false (the 
VSs would equal U and Ø, respectively). Moreover, the conjunction as a whole 
cannot be necessarily true or necessarily false either. The fulfilment of this latter 
condition is ensured by PNST–2c, which stipulates that the VSs of the L-
propositions involved must partially intersect (that is, they must be 
semantically compatible). This ensures, first, that there is at least a chance of all 
the L-propositions united under conjunction to be true simultaneously. For if 
the VSs do not intersect, there is no possible situation in which the two L-
propositions are both true, which makes them contraries and their conjunction 
necessarily false. Since and is the standard discourse-increment function, this 
condition is, in fact, the same as the condition on any new increment to a 
discourse domain that it be compatible with all earlier increments, to avoid a 
reduction of the discourse domain’s VS to zero. 
 Secondly, partial intersection ensures that the VS of one of the L-propositions 
involved does not include the VS of the other, which would make the 
conjunction necessarily true. The basic natural semantics of and thus selects the 
partial intersection in the basic natural intersection relation in Figure 3–b, 
which is, therefore, defined only for L-propositions that neither include nor 
exclude each other in virtue of their meaning.  
 AND thus says that the actual situation sact  is an element in the intersection of 

/P/ and /Q/ of Figure 10. The restricted universe UR is defined by the 
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condition that the operators in question do not yield radical falsity as a result of 
presupposition failure.  

 

Figure 10 VSs for logically independent P and Q and their logical compo-
 sitions 

 

 As regards DISJUNCTION (∨BN), the situation is more complex. We may take 
the linguistic disjunction operator or to map onto the BN-union of the VSs of 

the argument L-propositions, as defined in (12) (P+ stands for any number of L-
propositions): 
  

(12) [[∨BN]] = { P+ |  sact    ∈    

(the extension of ∨ is the set of all  sets of two or more L-propositions P such that sact  is 

a member of the BN-union of all /P/+) 

 
Under the restrictions imposed on union by the criteria of basic naturalness, the 
component VSs must not only be natural sets (neither Ø nor OBJ), but, 
according to PNST–2a, they must also be totally distinct - that is, without any 
intersection. However, natural language or is not restricted to contrary 
argument L-propositions: in a disjunction of the form P or Q, P and Q must be 
allowed to be logically independent, so that their VSs, /P/ and /Q/, actually 
intersect, as in Figure 10. To satisfy PNST–2a, it is, therefore, necessary to 
reformulate P or Q for the purpose of linguistic interpretation at the level of 
basic naturalness in such a way as to ensure that the two arguments of the 
union function are totally distinct.  
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 This can be done in two ways. The least drastic way is to consider P or Q to 

be tacitly understood, in terms of ∧ and ∨ and the restricted negation ~, as: 

 

(13) P or (not-P and Q) (or: P ∨ (~P ∧ Q)) 

 

In standard propositional logic, this is equivalent to P ∨ Q, yet there is a 
difference in that in (13) the two disjuncts have totally distinct VSs, which, 
therefore, allow for the basic natural union operation. This interpretation, 
however, has the disadvantage that or is not exclusive, since if sact  ∈ /P/, it 

may be the case that sact  ∈ /P ∧ Q/, so that type-AND L-propositions entail type-

OR L-propositions. A more drastic reformulation is, therefore, needed to get the 
exclusive ORexc of basic natural propositional logic, corresponding to the 

mutually exclusive basic natural union of NST. 
 To get a proper ORexc it is necessary to regard P or Q to be tacitly understood 

as (14), which is not equivalent to standard P ∨ Q:5 

 

(14) (P and not-Q) or (not-P and Q) (or: (P ∧ ~Q ) ∨ (~P  ∧ Q)) 

 
The disjunction operator ORexc now selects the union of /P/ and /Q/ in Figure 

10, minus their intersection. This does account for the intuition that natural 
language or is exclusive, excluding cases where both P and Q are true.  

 

                                                 

 5 The tacit understanding as formulated in (14) also accounts for the unnaturalness of a 
disjunction where one disjunct entails the other as in 

  (i) !The man is dead or he has been killed. 

 If this is tacitly understood as ‘either the man is dead and he has not been killed or the man is 
not dead and he has been killed’, then the second disjunct is necessarily false owing to the 
contrariety of ‘the man is not dead’ and ‘he has been killed’. 
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Figure 11    Basic natural analog for propositional logic with NOR • ~ OR 

 
But how does this work out for the logic? In the reading (14), /AND/ and 
/ORexc/ are mutually exclusive and together form standard /OR/. The only 

space not covered in UR is the restricted complement of standard /OR/ - that is, 

/OR/R,¯̄ ¯̄ ¯̄  ̄ - normally denoted by the linguistic operator neither a… nor b, also 
realized as not … a or b, and here called NOR.6 One notes that NOR cannot be the 
negation of the exclusive ORexc of this system, since the complement of 

/ORexc/, /ORexc/,¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄  ̄R, comprises /AND/, and neither P nor Q, or not P or 

Q, clearly means not-P and not-Q, excluding P and Q. Therefore, just as 
English no corresponds to standard NOT-SOME and not to basic natural NOT-
SOMEexc, English nor corresponds to standard (but discourse-restricted) NOT-OR 

and not to basic natural NOT-ORexc. Consequently, NOR is equivalent, in this 

system, with AND*, as shown in Figure 11.  
 In this basic natural system, ORexc and ORexc,*  are equivalent, both being 

tacitly understood as specified in (14). Given the fact that ORexc is accounted for 

in the logic of Figure 11, and given the parallelism with the predicate-logic 
system of Figure 9, we take it that THE BASIC NATURAL SYSTEM OF 

                                                 

 6  In Seuren (1974) it is argued that an L-propositional structure of the form and [not-P, not-

Q]—that is, an L-proposition of type AND* - is grammatically transformed into not [P or Q], or 
NOT-OR, by the rule of NEGATIVE RAISING. Likewise all … not, or A* is taken to be transformed 
into not-I. I still feel that this analysis has a great deal going for it, though I would now add that 
these two meaning-preserving instances of NEGATIVE RAISING imply a lexical specialization 
into NOR and NO, and not just the negation of ORexc and SOMEexc, respectively.  
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PROPOSITIONAL LOGIC IS THE SYSTEM SHOWN IN FIGURE 11, WITH NOR • NOT-

ORexc.7  

 Empirical evidence for this point of view is derived, for example, from the 
fact that a sentence like (15a) is naturally and immediately interpreted as (15b), 
whereas (16a) is not at all naturally and immediately interpreted as (16b), even 
though, from a strictly logical point of view, both (15) and (16) merely 
instantiate De Morgan’s Laws. This is a fact on which neither the Gricean 
maxims, nor indeed the whole of pragmatics, have anything to say: 
 

(15)a. He doesn’t like tea or coffee. 

  b. He doesn’t like tea and he doesn’t like coffee. 

(16)a. He doesn’t like tea and coffee. 

  b. He doesn’t like tea or he doesn’t like coffee. 

 
Given the analysis given above, it is now easy to see why this should be so. 
Consider not … tea or coffee in (15a) to be an instance of basic natural NOR (see 
note 6). Figure 11 shows that, in this reading, NOR is equivalent to AND*, both 
sharing the same VS. By contrast, not … tea and coffee in (16a) realizes ~AND, the 

restricted negation of AND, whose VS comprises the combined VSs of NOR (≡ 

AND*) and ORexc (≡ ORexc,* ). It follows not only that the interpretation of (16a) 

requires a great deal more computation than the interpretation of (15a), but also 
that this computation is to take place at the level of strict naturalness (or even at 
the standard constructed level), since the or of (16b) is not the exclusive orexc but 

the standard inclusive or. This latter fact follows from PNST–2a, which requires 
total distinctiness in the case of union (disjunction). Clearly, the restricted 
negations of he likes tea and he likes coffee are logically and semantically 
independent, so that the corresponding VSs intersect partially and thus exclude 
their being processed under the basic natural operation of union.  
 One sees that, despite the differences with the basic natural system of 
predicate logic with NO • NOT SOMEexc shown in Figure 9, the eventually 

resulting system for propositional logic under the same principles turns out to 
be completely parallel. And, likewise in parallel with the basic natural system of 
quantification, there is the counterintuitive fact that natural language nor does 
not stand for the basic natural not-ORexc.  

 Moreover, there is, again, the problem of consistency through discourse. As 
has been widely observed, or is typically used in situations where the speaker is 
uncertain as to which of the disjuncts provides the correct answer to the 
question he or she is entertaining but where the speaker has concluded that 
either disjunct will do as a good enough answer. This conclusion is naturally 

                                                 

 7 NOR*,  ~NOR, and ~NOR* are undefined at the level of basic naturalness, due to PNST–3. 
As before, however, they are still mentioned in Figure 11–a, because our interest is in the 
ultimate logical consequences of the system when it is pursued to the end. 
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expressed by the auxiliary of epistemic necessity must (Kratzer 1979). In the 
course of an investigation, a speaker may say (17b), in response to the question 
(17a): 

 

(17)a. How did the journalist know?  

  b. The journalist must have spoken to Ann or to Jeremy. 

 
If it is then found out that the journalist had spoken to both Ann and Jeremy, it 
would be incorrect to say that the person who uttered (17b) during the 
investigation had been wrong, even if that speaker had failed to think of the 
possibility that the journalist had spoken to both Ann and Jeremy.  
 Therefore, in parallel with the basic natural system of quantification, 
consistency through discourse requires an entailment from AND to OR. This time 
it was the Stoic philosophers who, roughly a century after Aristotle, discovered 
this fact and upgraded the natural propositional logic of language and 
cognition to full consistency by introducing the entailment from AND to OR, 
thereby creating the INCLUSIVE OR of standard propositional calculus.  

 

A

I ~I
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A*

~I*

SC

CD
I*
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OR ~OR
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Figure 12  The upgraded strict natural squares for predicate and 
 propositional logic, corresponding to the VS models in Figure 6  and 5–b, 
 respectively 

 
 The parallelism of the two basic natural systems of predicate and 
propositional logic is thus maintained by the introduction of the parallel 
(subaltern) entailment schemata A|,  –  I and AND|,  –  OR. The former results in 
strict natural predicate calculus, which is identical with traditional Aristotelian-
Boethian predicate calculus and is shown in Figure 12–a. The latter results in 
strict natural propositional calculus, which is identical with standard 
propositional calculus and is shown in Figure 12–b.  
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5. Neither *nand nor *nall: NST predicts their absence 
 
We have reached a point where a question can be discussed which has recently 
attracted some attention. After it had been observed by Thomas Aquinas (see 
Horn 1989: 253), it was again observed more recently (Zwicky 1973; Horn 1972, 
1989: 252–267; Levinson 2000: 69–71) that while a large majority of languages 
have single-morpheme expressions for NOT-SOME (such as English no), a single-
morpheme expression, say *nall, for the complex negative predicate NOT-ALL or 
its presumed equivalent SOME-NOT has not so far been attested. Analogously, 
while many languages have a lexeme for not(P  or Q) or equivalently not-P and 

not-Q (English neither … nor), a lexeme corresponding to *nand, for not(P  and 

Q) or equivalently not-P or not-Q appears to be either nonexistent or at most 
extremely rare.8 The systematic absence of equivalents of *nall and *nand in the 
languages of the world appears to be matched by similar gaps in other lexical 
fields. Thus, whereas one finds lexicalized equivalents of epistemic NOT-
POSSIBLE, lexicalizations of epistemic NOT-NECESSARY are nowhere to be found 
(lexicalized agentive NOT-NECESSARY, such as English unnecessary is widely 
attested). Likewise, NOT-CAUSE is never lexicalized, while NOT-ALLOW is 
frequently found in lexicalizations such as disallow, forbid or prohibit. Typically, 
predicates like necessary or cause show semantic characteristics that may lead 
one to think that they can or should be classified along with all and and: They all 
belong to an “all-yes” section of the lexicon, while possible and allow typically 
belong to the group of “perhaps-yes-perhaps-no” predicates, which also 
comprises the existential quantifier and the propositional connective or. The 
question is: Are these similarities reducible to a single principle, and if so, what 
is it? This question is interesting as it forces one to probe natural set theory in 
both the logic and the lexicalization processes of natural language.  

Horn, Levinson and others seek an answer in the pragmatics of language 
use. Restricting themselves to *nand and *nall, they argue, in essence, as follows. 
Since or is normally exclusive for pragmatic reasons, excluding the case that 
both argument propositions are true, there appears to be no need left for an 
item like *nand which excludes the simultaneous truth of both argument 
propositions and may be taken to imply pragmatically that at least one of the 
argument propositions is true. Then, given the pragmatic equivalence of or and 
*nand, the item without the incorporated negation - that is, or - would be 
preferred on grounds of simplicity in the lexicon, so that *nand is ruled out. 
Similarly, since some often pragmatically implicates ‘not-all’, and can thus be 
taken to convey the intended meaning ‘some but not all’, it is assumed that 
there is no need left for a lexicalized form like *nall meaning ‘not-all’, which, in  

                                                 

 8  Eric Pederson has informed me that Tamil does have a single lexeme meaning ‘not and’ or 
‘either one of the two or none’. Although this is an interesting and clearly relevant observation, 
it will require a great many more such observations to establish typological parity between 
lexemes for NEITHER…NOR on the one hand and NOT-AND on the other. 
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standard logic, would be equivalent to ‘some-not’ and be taken to imply 
pragmatically ‘only some’. In other words, there is no need for operators like 
*nand or *nall, since the pragmatically equivalent but cognitively and 
semantically simpler operators or and some are already available (Levinson 
2000: 70). Therefore, the lexicalized expressions all, some and no will do for the 
quantifiers, and and, or and neither … nor for the propositional operators. 

 For the authors who propose this explanation such a system is not a 
logical system but represents the way listeners construct a quantified mental 
model of a state of affairs described, on the presumption that the speaker has 
full and adequate knowledge of that state of affairs and has the intention to be 
as informative and helpful as possible - that is, that speakers will commit 
themselves to the maximum of what they know. The main criterion of such a 
system is not truth but INFORMATION VALUE ON THE PRESUMPTION OF FULL 

COOPERATIVITY AND COMPLETE KNOWLEDGE. It is not meant for the 
computation of solid entailments grounded in inescapable semantic properties, 
but for practical inferences. To say that two expressions are pragmatically 
equivalent then amounts to saying that they have the same information value 
on the presumption specified.  

 The question is, however, whether one may justifiably posit that linguistic 
lexicalizations depend on information value on the presumption of full 
cooperativity and complete knowledge. It would seem that such a position is 
unwarranted, since the use of language is not restricted to authoritative and 
maximally cooperative reporting on states of affairs fully known to the speaker. 
For one thing, as has been said, reporting often consists in informing the 
listener of WHAT HAS BEEN FOUND OUT SO FAR. When inspecting a population of 
children, a reporter may say that so far no, or so far some, or so far all, children 
have proved to be undernourished, without any commitment as to what is still 
to be found out. This point was made by Hoeksema, who first asks (Hoeksema 
1999: 4) “If nall is not needed, due to the presence of some, then why is not all 
used at all?” and then observes (Hoeksema 1999: 5): 

 

In contexts where the speaker has only partial knowledge, there is not even pragmatic 
equivalence. If I say that some of my students are gay, one should not infer immediately 
that not all my students are gay. Perhaps I am unaware of the sexual preferences of the 
remainder. But if I and O are often not even pragmatically equivalent, because the 
conditions for the Gricean implicatures are not met, then why should O be superfluous? 

 
Since any system of interpretative cognitive model building for linguistic 
utterances depends primarily on pre-existing linguistic meanings, rather than 
on a presumption of full cooperativity and complete knowledge, it would seem 
that the pragmatics answer is not satisfactory on its own terms.  
 But there is an even more decisive argument. First we observe that the 
pragmatics answer described above depends on the assumptions (a) that 
traditional Aristotelian-Boethian predicate calculus and standard propositional  
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logic form the correct logic for language (standard Russellian predicate logic 
has already tacitly been shunted), and (b) that natural lexicalization processes 
conform to the pragmatic implementation of that logic. In the perspective 
developed here, the latter assumption is replaced with the assumption that 
natural lexicalization processes conform to the primitive and inadequate basic 
natural logic of the Figures 9 and 11.  
 Horn (1989) recognizes that his pragmatic system reflects the 
Hamilton/Jespersen predicate logic - that is, the system shown in Figure 9 - but 
fails to mention that in that logic NO does not stand for NOT-SOMEexc, and 

analogously for NOR, which does not stand for NOT-ORexc, NO and NOR being 

operators in their own right. There are thus, at the level of naturalness at which 
lexicalizations are deemed to take place, no single-morpheme expressions for 
NOT-SOME and NOT-OR. This, in effect, takes the bottom out of the question of 
why lexicalizations for NOT-ALL and NOT-AND are systematically absent, as it 
arose in the first place because NOT-SOME and NOT-OR were thought to lack 
counterparts for ALL and AND, respectively. In fact, however, given the lack of 
single-morpheme lexicalizations for NOT-SOME and NOT-OR, NST predicts the 
absence of such lexicalizations for NOT-ALL and NOT-AND, which in turn is 
valuable confirmation for the correctness of our reconstruction of basic natural 
logic as expressed in the Figures 9 and 11.  
 One notes that *nall would have to mean ‘either NO or SOMEexc’, or ‘at most 

someexc’, while its propositional counterpart *nand would have to mean ‘either 

NOR or ORexc’, as does the Tamil connective mentioned in note 8. (Note that I* 

and OR* are unlikely to be lexicalized, for why should internal negation, being 
part of one or more arguments, be lexically incorporated?) *Nall would thus be 
defined in terms of a quantifier, SOMEexc, which does not occur in strict natural 

logic but does in basic natural logic, while no = NOT-SOME would be defined in 
terms of a quantifier, SOME, which does not occur in basic, but does occur in 
strict natural logic. And analogously for propositional logic: *nand would be 
defined in terms of an operator, ORexc, which does not occur in strict natural 

logic but does in basic natural logic, while nor would be defined in terms of an 
operator, OR, which does not occur in basic natural, but does in strict natural 
logic.  
 The simplest answer would seem to be that NOT is never lexically 
incorporated into any operator of the logical system of which it is part, though 
it very often is into other lexical predicates. In many languages, including 
English, (the equivalent of) no, which lexicalizes the natural set-theoretic 
relation of mutual exclusion, clearly does contain an incorporated negation, but 
not in combination with a quantifier of the same logical system. Latin nullus, for 
example, is a combination of the negation word ne and unulus, the diminutive 
of unus (one), like the Dutch expression niet eentje (‘not a little one’). Greek 
oudeis is literally ‘not one’, and so on. Such lexicalizations all deny the presence 
of even the smallest common element in the two sets involved. It is merely  
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accidental that this coincides with the negation of existentially quantified L-
propositions - that is, with ~I  - in both standard modern and strict natural 
predicate calculus, but not in its basic natural counterpart. English no and its 
equivalents in many other languages thus appear not to lexicalize the meaning 
NOT-SOME but, rather, the absence of even the smallest common element in the 
two sets at issue - both linguistically and psychologically a plausible form of 
lexicalization, which, moreover, lends itself to being incorporated into a variety 
of sound systems of predicate logic. An analogous analysis applies to 
propositional logic. 
 Our close inspection of predicate and propositional logic from the point of 
view of cognitive naturalness sheds an interesting new light on Aristotle’s and 
the Stoa’s position in the history of logic and semantics. Whereas it is not totally 
unknown that the Stoics were sensitive to the role of discourse in natural 
language, in that they knew that utterances are, in principle, contextually 
anchored and referentially keyed, historians have so far been unaware of the 
fact that Aristotle’s predicate logic as well as his notion of proposition, and also 
the Stoic creation of propositional logic, were all driven by the requirements 
imposed by the criterion of consistency through discourse. Significantly, where 
basic natural predicate and propositional logic fail to be discourse-proof and 
hence fail to be fully consistent, the Aristotelian and the Stoic upgradings of 
these branches of logic filled precisely the gaps that had to be filled for full 
consistency to be achieved, and they did so in a way that minimally intruded 
upon the basic natural systems.9  
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