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Abstract

A computational model of inference during story comprehension is presented, in which story situ-
ations are represented distributively as points in a high-dimensional “situation-state space.” This state
space organizes itself on the basis of a constructed microworld description. From the same descriptior
causal/temporal world knowledge is extracted. The distributed representation of story situations is more
flexible than Golden and Rumelhart’s [Discourse Proc 16 (1993) 203] localist representation.

A story taking place in the microworld corresponds to a trajectory through situation-state space.
During the inference process, world knowledge is applied to the story trajectory. This results in an
adjusted trajectory, reflecting the inference of propositions that are likely to be the case. Although
inferences do not result from a search for coherence, they do cause story coherence to increase. T
results of simulations correspond to empirical data concerning inference, reading time, and depth o
processing.

An extension of the model for simulating story retention shows how coherence is preserved during
retention without controlling the retention process. Simulation results correspond to empirical data
concerning story recall and intrusion.
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1. Introduction

A narrative text rarely states explicitly all that is the case in the story events being described.
Most facts are left implicit and many can be inferred from the text. Possible inferences range
from finding the correct referent of a pronoun to inferring details of the state of affairs at any
moment in the story. Only few of these inferences are actually made during reading. There
has been considerable debate on which inferences are made on-line (for an overview, see,
e.g.,Graesser, Singer, & Trabasso, 1994 general, the inferences that are most easily made
on-line are the ones that are most important to the reader’s goals, require knowledge that
is easily available, and contribute to the coherence of the MgKoon & Ratcliff, 1992
Noordman, Vonk, & Kempff, 1992/onk & Noordman, 1990for an overview, se&arrod &
Sanford, 1994; Singer, 1994; Van den Broek, 1994

When the reader’s goal is to comprehend the story, the causes of the story’s events often
need to be inferred. For instance, from the short story “Bob was riding his bicycle. He hit the
coffee table.”, it might be inferred that Bob was riding his bicyildoors which explains
the fact that he could hit a coffee table. Since being outdoors is inconsistent with hitting a
coffee table, adding the inference increases the story’s coherence. The inference requires the
common knowledge that tables are usually found inside houses and that Bob had to be at the
same place as the coffee table in order to hit it. How is this specific information selected from
the large amount of knowledge about riding bicycles, coffee tables, and hitting? And how does
the relevant knowledge update the text representation? Here, we present a computational mode
that simulates these processes.

Inference processes are only one aspect of text comprehension. Text comprehension consist:
of multiple processes and representations, ranging from the perception of letters and words
to the comprehension of the meaning of the text and its integration with world knowledge.
Theories of text comprehension generally distinguish three levels of representation that are
constructed during comprehensidfir{tsch & Van Dijk, 1978; Van Dijk & Kintsch, 1988
and knowledge-based inferences contribute to the highest of these. The first level is the surface
representation, consisting of the text’s literal wording. This gives rise to the second level, which
is a network of connected propositions called the textbase. In the textbase, two propositions
are connected if they share an argument. If a proposition is read for which no argument sharing
proposition can be found, inferencing is necessary. Kintsch and Van Dijk do not model how
these inferences come about, but they do note that

most of the inferences that occur during comprehension probably derive from the organization of
the text base into facts that are matched up with knowledge frames stored in long-term memory,
thus providing information missing in the text base by a process of pattern complétiatsch

& Van Dijk, 1978, p. 391)

These “facts” refer to the reader’s “personal interpretation of the text that is related to other
information held in long-term memoryXintsch, 1998p. 49). This so-calledituation model
(Kintsch, 1998; Van Dijk & Kintsch, 1983orms the third level of text representation, which
is where most knowledge-based inferences are represented.

Existing computational models of story comprehension mainly focus on the construction of a
propositional representation, and rarely deal with inferences. These models are more concernec
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with text propositions than with the reader’s knowledge. The aim and the scope of the presen
model differ from most of the existing models in two respects. First, the model does not deal
with a propositional representation of the story. It does not make use of textual information such
as argument overlap of propositions or connectives. Stories are not represented at the textba
level. Second, and as counterpart of the first point, the model deals with story comprehensiol
as a process that invokes knowledge. Of course, this process is based on the information in tf
text, but it goes beyond the text and encompasses knowledge-based inferences.

Most computational models have a different aim and scope. The Resonance Wpele (
& O’Brien, 1998), for instance, simulates the fluctuating activation of story statements during
reading. These activations lead to a memory representation of the story, as described by tt
Landscape modeVan den Broek, Risden, Fletcher, & Thurlow, 1996; Van den Broek, Young,
Tzeng, & Linderholm, 199P In the story representation constructed by these models, propo-
sitions are related either by argument overlap (Resonance) or by co-occurrence in working
memory (Landscape), not by their relation in the reader’s knowledge base. Therefore, storie:
are represented at a textbase level. Propositions that are not in the story but originate from th
reader’s world knowledge may be added to the story representation, but since this is done b
the modeler on aad hocbasis, knowledge-based inferencing is not simulated. Likewise, the
model presented biangston and Trabasso (1999ngston, Trabasso, & Magliano, 1999)
receives information about causal relations as input instead of simulating its inference. In con-
trast, we present a model in which stories are represented at a situational level and inference
result from the application of world knowledge to the story representation.

A major problem in modeling inferencing is the implementation of the large amount of
world knowledge needed for comprehension. For the Construction-Integration ridodsth,
1988, 1998, this problem arises in the first of two phases that are assumed to make up text
comprehension. During this so-called construction phase, the text activates a small number c
propositions from the reader’s world-knowledge net. By only implementing this small part of
the reader’s knowledge, the number of propositions in the model remains tractable. However
it is not well-defined which propositions are to be selected during the construction phase.

For instanceSchmalhofer, McDaniel, and Keefe (2008ed the Construction-Integration
model to explain how bridging inferences are made. They let the model process two different
texts, both starting with the sentence The director and the cameraman were preparing to
shoot closeups of the actress on the edge of the roof of the 14 story building when suddenly th
actress fellThe next sentence was either (B&y orphaned daughters sued the director and the
studio for negligencer (2b) The director was talking to the cameraman and did not see what
happenedFrom (2a), it can be inferred that the actress died, but from (2b) it cannot. Indeed, the
simulations resulted in strong activation of the proposition “the actress is dead” after processing
of (2a), but not after (2b). However, for this activation to be possible, the proposition has to
be part of the text representation even though it is not part of the text. Therefore, it was addec
during the Construction phase of sentence (1). No other proposition was added. Of course, thi
was because the modeler knew that one of the sentences (2a) and (2b) implies that the actre
died. Butwhat if the next sentence had turned out tSlhewas released from hospital after two
week® In this case, the proposition “the actress is wounded” should have been added to the te»
representation in the Construction phase of sentence (1). And howEt®atunt coordinator
was very pleased with her practice jufhm short, any possible outcome of sentence (1) needs
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to be selected during the Construction phase to make its inference possible. It is up to the
modeler to choose at least the propositions that are expected to be inferred later. As a result,
the process of selecting relevant world knowledge is not part of the computational model. It is
exactly this problem that shall be tackled here in a computational manner.

Other well-known models solve the world-knowledge problem by reducing the size of the
world in which the stories take place, allowing the model to be purely computational. For in-
stance, inthe Story Gestalt modstjohn, 1992; StJohn & McClelland, 19%%ecurrent neural
network is trained to answer guestions about the stories it processes. During this training phase,
the network develops distributed representations of the stories and obtains knowledge about
the story world. In a later test phase, it answers questions about novel stories, using regularities
in the stories on which it was trained. This process involves the making of knowledge-based
inferences.

The model presented here is comparable to the Story Gestalt model in the sense that stories
take place in a simplified world and are represented distributively. The major difference between
the two models is that the Story Gestalt model lacks a notion of story time. The network’s
activation patterns represent the story events that occurred but not their temporal order. For
sufficient story comprehension, however, this order is crucial.

Golden and Rumelhart (199&olden, Rumelhart, Strickland, & Ting, 199@)oposed a
model in which the order of events described by the story text is represented explicitly. The
architecture of our model is based on Golden and Rumelhart’'s. The main difference between
the two is that propositions are represented locally in the Golden and Rumelhart model, while
the current model represents them distributively in a high-dimensional situation space. For this
reason, itis called the Distributed Situation Space (DSS) model.

Because of its similarity to the DSS model, the next section will explain the Golden and
Rumelhart model in enough detail to understand its architecture. FollowingSedion 3
describes the world knowledge that was used in our simulations. The DSS model is presented
in Section 4 Also, it is shown how it can be extended to simulate story retenSewtion 5
presents results of simulations and corresponding empirical data. The final section discusses
implications for theories of on-line comprehension and makes suggestions for improvements
to the model.

2. The Golden and Rumelhart model

Inferencing in story comprehension requires a representation of the story, knowledge about
the world in which the story takes place, and a process that applies this world knowledge to the
story representation. Here we describe how these three aspects are implemented in the Goldel
and Rumelhart model and note some limitations, which are overcome by the DSS model.

2.1. Representing a story
Golden and Rumelhart view a story as a temporal sequence of story situations. In their

model, the order in which story situations occur is represented explicitly by associating to
every situation a “time step” indelx The situation at time step— 1 occurs before (and is a
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possible cause of) the situationtatikewise, the situation at+ 1 is a possible consequence
of the situation at.

A story situation is a set of propositions that occur at one moment in the stony. demnote
a propositionp at story time step. With each suclp, is associated a value, ; between 0
and 1, denoting the (subjective) probabilitymf This value represents the reader’s belief that
propositionp is the case at time stapThe collection of all values in the situation at story time
stept is denoted by a vectaX; = (x,;, x4, . . .), with one element for each proposition. If
d different propositions are needed to comprehend a story, every situation vector cdntains
elements. Situation vectoXs can therefore be viewed as points in thdimensional unit cube
[0, 1]¢ called thesituation-state spacé story is a sequence of such points, tnegectoryin this
space.

2.2. Story world knowledge

If a reader knows that propositigncan cause propositiof in the story world, then the
combination ofp,_; (propositionp is the case at time step- 1) andg; (q is the case at the
following time stept) is a plausible sequence of events. Consequently, the reader’s belief in
the occurrence of one of the two events can increase belief in the other. Such causal stor
world knowledge (or “world knowledge” for short) is implemented by assigning a vajde
to each pair of propositiong,q). A positive value ofw,q indicates that belief in eithey,_
or g, increases belief in the other. A negative valuevgf indicates the opposite: belief p_;
or ¢, decreases belief in the other.udf, equals 0, no causal relation betwggn; andg, is
known to exist. The valuesyq for all propositiongp andq constitute ai x d matrix W, the
world-knowledge matrix.

The implementation of this general world knowledge is based on four simplifying assump-
tions:

1. Single propositionsWhat is modeled is how belief in a single proposition influences
belief in another single proposition. The influence between beliefs in situations (i.e.,
combinations of propositions) only emerges as the result of these influences betweer
pairs of propositions from the situations.

2. Consistency over tim&ausal knowledge does not depend on the moment in the story.
Although the belief in propositions fluctuates during story time, the way beliefs in propo-
sitions influence each other are “laws of nature” that remain constant.

3. Range of influenceBeliefs in propositions at story time sté@re influenced only by
beliefs regarding the neighboring time steps 1 andr + 1. Propositions at other time
steps can only have an indirect influence if they leave an effect on the propositions at
t—1orr+1.

4. SymmetryThe influence belief irp,_; has on belief irg, is the same as the influence
in the opposite direction (af, on p;_;): Both influences are represented by the value
wpg- This is not in contradiction with causality being directed in time, singgdoes not
deal withp causingg, but with p,_; andg, causing belief in each other. For example, a
stomach ache does not cause having eaten too much, but observing a stomach ache dc
cause us to believe that too much was eaten before.
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2.3. Model processing

As input, the model receives the initial story trajectory in whigh = 1 if the story text
states that propositigmis the case attime sté¢andx, , = Oifitdoes not. This initial trajectory
already includesll the story time steps, so statements do not enter the model one by one.

Propositions stated in the text stand for given facts that cannot be denied, so their values
(equal to 1) do not change. The story comprehension process comes down to updating all
other values, that is, for eaqh that was not stated explicitly the probability that it is the
case is computed. As derived Appendix A this probability depends on the other values
in the trajectory and on the world-knowledge matvix Of course, the probabilities of all
propositions at all time steps need to be estimated simultaneously. Since changing a single
value will generally change the probability of many other propositions, the values are not set
in a single sweep through the trajectory but are iteratively adjusted until they no longer change.

The trajectory after convergence of this process is the interpretation of the story. In this
trajectory, a large value of, ; indicates that propositiop is inferred to be the case at story
time stept (unless it was stated in the original text).

2.4. Limitations

The model’s architecture can be shown to seriously limit the world knowledge and stories
that can be represented. Three main limitations are:

1. Constraints within a time ste®ne of the basic assumptions concerning the implemen-
tation of world knowledge is that values at time stepe influenced only by thosemat 1
and: + 1. However, it may be necessary to impose constraints on proposititiria a
time step. For instance, a story character might have reached a road junction at time step
t — 1, which will cause her to make a left or right turntaBhe cannot turn both left and
right, which is a constraint within

2. Disjunction A story statement that is a conjunction of two propositions, like “itis raining
and cold,” is represented by setting bathin, = 1 andxcoq, = 1. For disjunctions,
however, this is not possible. A statement like “the butlethe mysterious stranger
committed the crime” can only be represented as a single proposition, in which case the
“or” is no longer an operator that combines two propositiéns.

3. Combined effect of proposition@ccasionally, the consequences of a conjunction can be
quite different from those of the individual propositions that make up the conjunction.
For instance, takingithermedicine A or B might cure a disease, but takbah at the
same time can make things worséinsky and Papert (196%howed that an architecture
like Golden and Rumelhart’'s cannot compute the so-called exclusive-or function needed
to implement such a causal relation because this requires the world-knowledge values
Wiake A.cured AN Wiake B, cured tO DE positive but their sum to be negative.

As shown inSection 4.1the DSS model solves these three problems by representing stories
differently. In order to explain this alternative representation, it is convenient to first describe
the world knowledge that is implemented. This is done in the following section.
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3. Constructing a microworld

Understanding even the simplest story requires large amounts of knowledge about the worls
in which the story takes place. Itis, however, impossible to implement any realistic amount of
this world knowledge in a story comprehension model. The solution presented here is similar
to the one proposed b$tJohn (1992StJohn & McClelland, 1992)nstead of limiting the
amount of knowledge, the world itself is limited. The result is a microworld, all knowledge of
which is incorporated in the model. Although the microworld allows only for rather simple and
not particularly interesting stories, it is complex enough to evaluate the model’s properties.

We begin by choosing a small number of basic propositions from which every microworld
situation is built up. In our microworld there exist two story characters, who are named “Bob”
and “Jilly.” Their possible activities and states can be described using the 14 basic proposition:
shown inTable 1 These are not unrelated within a time step but put constraints on one another.
For instance, two hard constraints are that Bob and Jilly can only play soccer when they are
outside and can only play a computer game when inside (which is defined as not-outside)
Other important constraints are that Bob and Jilly can only perform one activity at a time and
that it is only possible for someone to win when they play soccer, hide-and-seek, or both play ¢
computer game. It goes without saying that no proposition can be the case at the same time :
its negation. There also exist soft constraints. For instance, Bob and Jilly are more likely to be
at the same place and do the same thing than to be at different places and do different things

All knowledge about constraints between (combinations of) propositions within a time step
is considered non-temporal world knowled@emporalworld knowledge, on the other hand,
is concerned with contingencies between (combinations of) propositions at adjacent time step:
Here too, there are hard and soft constraints. Two hard constraints are that Bob and Jilly sto
the game they are playing after one of them wins and that a game can only be won if it was
played in the previous time step. An important soft constraint is that whoever is tired is less

Table 1

Fourteen basic microworld propositions and their intended meanings

No. Name Meaning
1 Sun The sun shines.
2 Rain It rains.
3 B outside Bob is outside.
4 J outside Jilly is outside.
5 Soccer Bob and Jilly play soccer.
6 Hide-and-seek Bob and Jilly play hide-and-seek.
7 B computer Bob plays a computer game.
8 J computer Jilly plays a computer game.
9 B dog Bob plays with the dog.

10 J dog Jilly plays with the dog.

11 B tired Bob is tired.

12 J tired Jilly is tired.

13 B wins Bob wins.

14 Jwins Jilly wins.
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likely to win at the next time step. Also, Bob and Jilly are more likely to stay where they are
than to change place unless, of course, the weather changes.

The regularities that hold in our microworld will not be implemented in the model directly.
Rather, they are used to construct a realistic sequence of situations from which the world
knowledge needed by the model is extracted, as explained in the next section. Based on the
temporal relations and the non-temporal constraints, a microworld description of 250 consec-
utive example situations was constructed. In all of these, each basic proposition is stated to be
either the case or not the case. For instance, the 14th example situation states that Bob and Jilly
are playing soccer outside, that the sun does not shine and it does not rain, and that nobody is
tired or wins. The following, 15th example situation is identical except that Bob became tired,
which is why Jilly wins in example situation number 16.

4. TheDistributed Situation Space model

The three limitations of the Golden and Rumelhart model discuss8ddtion 2.4can be
overcome by changing the representation of propositions and situations. Every dimension of
Golden and Rumelhart’s situation space corresponds to exactly one proposition, so propositions
are represented locally in this space. The DSS model, on the other hand, uses a distributed
representation. As in the Golden and Rumelhart model, propositions in the DSS model are
represented by vectors in a high-dimensional situation space. However, there is no one-to-one
correspondence between propositions and dimensions of the distributed situation space.

Section 4.lexplains how propositions and story situations are represented distributively,
and vice versa: how a DSS vector can be interpreted in terms of belief values of propositions.
Following this,Section 4.discusses the distributed representation of temporal world knowl-
edge. It explains how world knowledge affects belief values, and how this leads to measures
for temporal coherence of a story and for a proposition’s “fit” in a story.

The model’s task is to infer which propositions are likely to be the case, given the constraints
put by both the story and world knowledge. As describeBeotion 4.3this process is imple-
mented as a form of pattern completion. The DSS vectors corresponding to the successive story
time steps enter the model one by one and are adjusted according to patterns of events known tc
occur in the world. This results in the increase of belief values of some propositions, reflecting
the extent to which they are inferred. Although the inference process does not depend on story
coherence, increased coherence may emerge as a result. The section concludes by showin
how DSS provides a natural way of modeling story retention.

4.1. Representing a story

Several researchers have suggested distributed representations of propositions. In his Predi
cation modelKintsch (2000, 2001proposes a representation in which predicate and argument
vectors taken from the LSA moddlgndauer & Dumais, 199are combined into proposition
vectors in such a way that semantically related propositions have similar vectors. Likewise, in
StJohn and McClelland’s (199@entence Gestalt model a recursive neural network is trained
to develop vector representations for simple sentences. However, neither of these represen-
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4 q

Fig. 1. Dependencies between two propositignsiid g) represented as two-dimensional areas. Proposgtion
corresponds to the horizontally hatched area @umorresponds to the vertically hatched area. Propositions can
be combined by means of conjunction (bottom left), disjunction (bottom center), or negation (bottom right). The
fraction of the map covered by a proposition or combination thereof equals its probability of occurrence in the story
world.

tations for propositions is suitable for the current model since they cannot be related to the
propositions’ subjective probabilities. Such a relation is required to interpret the representatior
in terms of belief values.

In this section, we shall describe a distributed vector representation from which it is possible
to directly compute the subjective probability that a proposition is the case given the story
situation. Such a subjective probability is called a belief value since it indicates to what extent
the proposition is believed to be the case in the situation. In this representation, proposition:
can be combined using the Boolean operators of negation, conjunction and disjunction, while
preserving the relation between their representations and belief values.

First, in Section 4.1.1a representation is presented in which propositions correspond to
areas in two-dimensional space. From this, the representation for negations, conjunctions, ar
disjunctions of propositions follows naturally and the limitations of the Golden and Rumelhart
model mentioned before are overcome. N&sgtion 4.1.2xplains how such a representation
can be extracted automatically from the description of microworld events develofedtion
3, and that this representation is equivalent to a representation as points in high-dimensione
space. FinallySection 4.1.3hows how belief values can be computed from such a distributed
representation.

4.1.1. Representing propositions and situations

Suppose there is a story world consisting of only two propositipragdqg, each of them
beingthe case half ofthe time. That s, stated as probabilitiés) Rt Pr(q) = .5. Also suppose
that in this story worlg andqg exclude each other to some extent, causing their conjunction to
have a probability of only Rp A g) = .125 (compared to Rp A g) = Pr(p)Pr(g) = .25 that
would result if the propositions were independent).

Fig. 1 shows how this story world can be represented by a assignip@tal g particular
areas within a rectangle that confines the space of all possibilities. To each proposition is
assigned an areathat occupies half of the total space, reflectingtheo8 probability of both
propositions. For clarity, this is shown for the two propositions separately in the top Fog: af

A story situation is a (partial) description of events at one moment in the story. The areas
of p andqg have been assigned in such a way that any story situation can be represented. Th
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two areas have an overlap occupying 1/8 of the space, reflecting thet gy = .125 Fig. 1,
bottom left). This area represents the situations in which pathdqg occur.

Not only the conjunction, but all Boolean operators on propositmansdq are represented
faithfully by areas. Forinstance, @rv g) = Pr(p)+Pr(q) —Pr(p Aq) = .875isthe size of the
area occupied by at least onedindq (Fig. 1, bottom center) and Prp) =1 — Pr(p) = .5
is the size of the area not occupiedp{fig. 1, bottom right).

Note that a story situation contains more specific information if it is the conjunction of more
(negations of) propositions. Consequently, in this representation the more information is avail-
able, the smaller the corresponding area becomes. Note also that this representation does nc
allow for a distinction between propositions and situations: They have the same status as areas
of a certain extent. This inability to distinguish propositions from situations is in accordance
with our claim that DSS represents storie¥aih Dijk and Kintsch’s (1983%ituational level.

Such a representation is similar to the result of experiencing the story e#atsher, 19941
Unlike their textual descriptions, experiences are not considered a combination of separate
propositions.

The three limitations of the Golden and Rumelhart model mentione®eition 2.4are
overcome by representing propositions and situations in this way. First, constraints between
propositions within the same story time step are implemented in their representations. Second,
it is now possible to represent not only conjunctions but also disjunctions. Third, since the
representation gp A g is not the sum of the representationgpandqg separately, knowledge
about the causal effects of the conjunction can be qualitatively different from the combined
knowledge about the individual propositions.

4.1.2. Self-Organizing Maps

For any realistic amount of propositions, it is impossible to construct by hand a map such
that the projections of all propositions on this map correspond to their interdependencies.
Fortunately, this can be done automatically by means of a Self-Organizing Map (SOM), also
known as Kohonen MagKhonen, 1995 Such a map is a grid of cells that organizes itself to
map propositions as described above.

For each propositiop, each celi has a unique membership valugp) between 0 and 1,
indicating the extent to which the cell belongs to that proposition’s area. As explained in detalil
in Appendix B.1 these values are obtained by training on the 250 example situations from the
microworld description developed fBection 3 During training, the membership values are
adapted until they reflect the non-temporal constraints among propositions, while the temporal
contingencies between consecutive situations are ignored. If a perfect mapping is not possible,
the SOM makes an approximation. While these representations of propositions are important
to the psychological model, the self-organizing process by which they are obtained is not
considered part of the model. We do not claim that this is how actual mental representations
of propositions develop.

Fig. 2shows the resulting map for each basic proposition of our microworld. Moreover, the
mappings of two combinations of propositions are given as an example. A SOM does not need
to be two-dimensional, but this is convenient for visualization. Also, the exact size and form
of the map (in our case, 19 15 hexagonal cells) do not have a large effect on the quality of
the representations.
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B outside J outside

J computer

hideandseek
outside

Fig. 2. Automatically constructed mappings of propositions on a Self-Organizing Map withO x 15 cells. The
darkness of a cell indicates its membership value for the corresponding proposition. The last two mappings of the
bottom row are examples of combined propositions, representing “Hide-andxdeakutsideA J outside” (Bob

and Jilly play hide-and-seek outside), and “B wind wins” (Bob or Jilly wins), respectively.

Then = 150 cells of the SOM form a two-dimensional grid, but can also be viewed
as dimensions of an-dimensional state space [0,"1]Any area on the SOM, defined by
membership valueg;(p) for all cellsi, corresponds to @oint in this distributed situation
space, defined by the vectarp) = (u1(p), u2(p), ..., w.(p)). It must be kept in mind,
however, that the difference between the SOM and DSS representations is purely aestheti
The DSS vectors are used in mathematical formulas, while the SOM areas are useful fo
visualization purposes.

Since a proposition’s area on a SOM is fuzzy instead of sharply defined, we need to resor
to fuzzy set theory to define the areas corresponding to negations, conjunctions, and othe
complex propositions. A cell’'s membership values for “pband for “p andq” are computed
as follows*

wi(=p) =1—pi(p), wmi(pAq = pni(p)ui(q). 1)

It is a well-known fact that all connectives in propositional logic can be defined in terms of
negation and conjunction, so any story situation can be represented as a DSS situation vect
using the mappings fromaig. 2and the rules for combining them kEx. (1) For instance, the
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membership values for the disjunctiop 6r g” follow from the De Morgan lawu;(p Vv q) =
wi(—(=p A—g) = wi(p) + wilg) — wi(p)ui(q). Likewise, the statement “eitheror q” can
be represented by defining the exclusive-or operator)as:p xor ¢=(p vV ¢) A —=(p A q).

A story is a sequence of situation vectors, that is, a trajectory through situation space. If
X, € [0, 1]" is the situation vector at time stépthe trajectory of a story consisting &f
situations is th@-tuple X = (X1, X», ... , X7). The model takes this trajectory as input and,
during the inference process, converts it to a more informative trajectory. How the resulting
trajectory can be interpreted is explained next.

4.1.3. Belief values

We now know how to represent any story situation as a vectorin DSS. In order to interpret the
trajectory that results from the inference process it will also be necessary to take the opposite
route: given some vector, reconstruct the situation. This is not generally possible, since only
few points in DSS correspond exactly to some combination of propositions. We can, however,
compute the belief value of any proposition given a DSS vector.

Let X = (x1, x2, ..., x,) be a situation vector (or, equivalently, a SOM area), witthe
number of situation-space dimensions. As an “abuse of notation,” the sytniitil also be
used to refer to the situation represented by the veXtdks a result of training the SOM,
the subjective unconditional probability that situatdémccurs in the microworld equals the
fraction of the map that it covers. This value, denoté), is the belief value of situatioX
and equals

1
(X)) = ;Zx,-. 2)

Now suppose we want to compute the subjective probability of some propogitisen
that situationX is the case (in facy itself can be a combination of propositions). This is the
belief value ofpin situationX, denoted(p|X). From the fact that Rp| X) = Pr(p A X) /Pr(X)
andEgs. (1) and (2)it follows thaf

Do ii(p)x;
D i '

4.2. Temporal story world knowledge

(plX) = 3)

Apart from the important difference in story representation, the DSS model and the Golden
and Rumelhart model have identical architectures. Be reminded that world-knowledge imple-
mentation in the Golden and Rumelhart model was based on four simplifying assumptions
(seeSection 2.2. Of these, only the assumption that world knowledge is implemented as in-
fluences between propositions does not apply to the DSS model. Instead, it is assumed that
world knowledge concerns influences between “dimensions” or “SOM cells.”

The model can mathematically be considered a Markov random field (MR igeadix A).

From this theory and the four assumptions, it follows that temporal world knowledge can be
implemented using one x n matrix of parameterg/. As explained in detail il\ppendix B.2
this matrix is based on the temporal contingencies between consecutive situations of the mi-
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croworld description after converting them into the distributed representation developed in
Section 4.1

The world-knowledge matrix can be used to find a situation that is likely to occur at time
stept if the situations at — 1 andr + 1 are known. This is done by calculating, for each SOM
celli at time steg, the expected value of ;, given the situation vector¥,_; and X,.1. As
proven inAppendix A this expected value equals

Here,o is the sigmoidal function defined a$z) = (1 — e%)~! — (1/z), with o(0) = 1/2.
W.; is theith column ofWandW;,. is itsith row. The column vectoJ(;+1 is the transpose of the
row vectorX,,;. In case there is no previous or next situations so1 or¢ = T, it is defined
that Xy = 0 or X7,1 = 0O, respectively. Thexpected situation vectait time step is formed
by the collection of expected values; = (E1,, ..., E,,).

Eq. (4)is crucial for the inference process describedsection 4.3 Also, it is used to
compute the belief value of propositigrat time steg, given the situations at the neighboring
time steps — 1 andr + 1. TakingEq. (3)for computing belief values, but using the expected

vectorE, instead of the actual situation veciy, results in the expression

Yo ii(PEi;
Z,’Ei,t

for the subjective probability thattis the case at time stépgiven what is known about— 1

andt + 1. This belief value is important for computing two measures that give information

about the temporal relatedness of situatigmeposition fitandstory coherencalefined below.
Magliano, Zwaan, and Graesser (1999gsent data showing that the extent to which a

sentence fits in a story context, is rated higher if the sentence is more causally connected t

the other story statements. Likewise, we define proposition fit as the proposition’s strength of

relation with neighboring situations. Suppose proposipaan be expected to occur at time

stept given the previous and next situations, for instance bec&usgis a possible cause of

p:, andX, 1 is a possible consequence. In that case, the belief valpegdfen X, _; and X, 1

will be larger than the unconditional belief valugp). The difference between the two is the

proposition fit ofp;:

(Pl Xi—1, Xe41) = (5)

prop fit(p,) = t(p:| Xi—1, Xi41) — ©(p). (6)

Story coherence is a measure for the extent to which a sequence of situations is in con
cordance with temporal world knowledge. If situaticXis ; and X, ; increase the amount of
belief in the intermediate situatiofy, then the trajectoryX,_1, X;, X,,1) is temporally coher-
ent. The coherence of a complete story trajectory is the increase in belief value by neighboring
situations, averaged over all time steps:

- 1
con(X) = Z 3 (t(Xi|X;-1, Xpya) — (X)), 7

t
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4.3. Model processing

4.3.1. Inference

The statements of a story, together with world knowledge, put constraints on the propositions
that can be the case in the story. According to the DSS model, inference is reflected in the
propositions’ belief values changing to satisfy these constraints. This means that propositions
thatare likely to be the case in the story have their belief values increased, while the belief values
of unlikely propositions are decreased, which generally results in increased story coherence.
It is important to note that story coherence and belief values do not control or even influence
the inference process, but only reflect its outcome.

Before running the model on a story, the story’s situations are converted into vectors in
situation space, as explainedSection 4.1 Next, the model starts processing on the first two
situation vectors(; andX, simultaneously because no temporal inferences are possible with
only a single situation. Contrary to the Golden and Rumelhart model, all the following story
situations enter the model one by one, and are processed as they come in. When the inference
process is completed for the story so far, the next situation (if any) enters the model and the
process resumes. Processing of the older situations resumes as well, so existing inference:
about earlier time steps can be withdrawn and new inferences can be made.

During the inference process, the model uses temporal world knowledge to convert the
sequence of situation vectors (i.e., the trajectory) corresponding to the story read so far, into
one that contains the information present in the story as well as new information inferred
from it. This means that the process needs to solve two problems. First, the facts given by the
story should be preserved. Second, the story trajectory should be adapted to temporal world
knowledge.

4.3.1.1. Preventing inconsisten&reventing text-given propositions from being denied is
straightforward in Golden and Rumelhart’s localist situation space: These propositions are
never allowed to have their belief values changed. In the DSS model, there is no direct connec-
tion between situation vectors and propositions. Still, it is not difficult to prevent conclusions
that are inconsistent with the original story. Everything outside a story situation’s SOM area
belongs to the negation of the situation and may therefore not be inferred during the inference
process. A story situation plus extra information is always a subarea of the original situation’s
area. Ifxgt is the value of SOM cell at time steq of the original story, then after any amount

of processing time, the current valug may not be larger tharﬁt.

4.3.1.2. Applying temporal knowleddénowledge about the temporal patterns occurring in
the microworld is encoded in matri¥. During the inference process, the trajectory is brought
into closer correspondence with this matrix. This temporal pattern matching is accomplished
by adjusting all individual values , towards levels that are more likely considering the current
trajectory and the values W.

Eq. (4) gives the expected valug;, of SOM celli at time stept, given the rest of the
trajectory and world knowledge. However, it follows from MRF theory that st likely
value for any SOM celi at time steft is eitherx;, = 0 orx;, = 1 (seeAppendix A). If the
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expected value&; , is larger than .5, the most likely value ig, = 1, sox;, has to increase
(taking into account that its maximum valuexi%) WhenE;,; < .5, the most likely value is
xi, = 0, sox;, should decrease (taking into account that it cannot become negative). This is
done for all values in the trajectoy in parallel.

Since the expected values at time stegepend on the current values &f.;, and the
expected values at+ 1 depend or¥,, the xs cannot be set to 0 o directly. Instead, a
first-order differential equation states how ttigangein value ofx; , over processing time,
denotedy; ,, depends on the current trajectory:

1

1
(Ei,z - E) (x,?; —xi) it Ej > 5
xi,t = (8)

1 .
Ei,t - é Xit if Ei,t =< E

The factor E;, — 1/2) makes sure that;, always changes towards a more likely value: It
increases as long as;; > .5 and decreases whdr, < .5. If x;, is increasing, its rate
of change is multiplied by its distance to the maximum va:t@,e which preventsy;, from
becoming larger than this maximumudf, is decreasing, its rate of change is multiplied by its
distance to 0, which preventg, from becoming negative.

Given an initial trajectoryEg. (8) can be solved approximately, giving the development
of the trajectory over continuous time expressed in arbitrary “model processing time” units.
The original story trajectorx® serves as the initial value for this evaluation. The equation
is solved by the functiowpe45 in MaTtLAB 6.1, using a method developed Bprmand and
Prince (1980)

= N

4.3.1.3. Depth of processind/hen a situation has been sufficiently processed, the next situ-
ation is allowed to enter the model. The criterium for sufficient processing is controlled by a
positive depth-of-processing parameieEg. (8)is evaluated until the trajectory’s total rate

of change is less than the threshold valug 1/

1
> il < =, ©)
it o

wheret ranges from 1 to the number of story situations in the model at that moment. Large
values off correspond to deep processing, since story situations are added when inferencin
on the previous situations is mostly completed 64decreases, the criterium for convergence
becomes less stringent and the process halts even if much can still be inferred, correspondir
to shallower processing. In all simulations presented here, the vatueras set to 0.3 unless
stated otherwise.

4.3.1.4. Amount of inferencAt any moment during the inference process, the trajectory can
be interpreted by computing the belief value of any proposition-at-timepsi¢fithe process
results in an increase of belief p, this means thap, is positively inferred. Likewise, if its
belief value decreasep, is negatively inferred, meaning that it is inferred not to be the case.
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Formally, the amount of inference is defined as the increase of the proposition’s belief value
relative to its value in the original story:

inf(p,) = t(p:| X)) — ©(pi X2). (10)

For validation against empirical findings, we also require a measure for the total amount of
inference that takes place during processing. This is not sifgply10)summed over all basic
propositions because complex propositions should be taken into account as well. The total
amount of inference is therefore determined by directly comparing the initial story trajectory
to the result of its processing.

The unconditional belief value of a story situatiaif is computed usindeq. (2) When
new facts about the situation at time stegre inferred, it is replaced by a more informative
situationX,. Since this new situation is more specific, it is less likely to occur and has a lower
unconditional belief value. The total amount of inference on the situation at timé etesals
its decrease in unconditional belief valaex®) — z(X,). This can be interpreted as the increase
in the amount of knowledge there is about the situation. The total amount of inference on a
trajectory is the sum of the amounts of inference on its individual situations:

total inf(X) = » "(r(X?) — 7(X,)). (11)
t

wheret ranges from 1 to the number of story situations in the model at that moment. Note that
the total amount of inference is largest whgix,) = 0, which is only the case X; equals
the nil vector. If this happens, the model has inferred that the situation was inconsistent with
the rest of the story and should not be believed. A reader making such an inference may well
discard it and accept the story at face value, awaiting further information and resulting in no
inference made. The model does not include a process that evaluates its inferences. Therefore
when faced with a sequence of situations that is inconsistent according to world knowledge, it
can be inferred that one of the situations is impossible.

4.3.2. Retention

The DSS model can easily be adapted for modeling retention of story propositions. Over
time, the memory trace of a story becomes weaker, meaning that the amount of information in
it decreases. In DSS, a situation that covers a large part of the SOM contains less information
than a situation that covers only a small part. Therefore, reducing the amount of information in
atrajectory corresponds to an increase in the SOM cell valye$he rate of increase depends
on world knowledge and on the rest of the trajectory. If there is much evidence thattgome
has a small value (i.eE;, is small), this value will drift up to 1 more slowly. The weakening
of a story’s memory trace over retention time is given by the differential equation

xi,t = Ei,z(l - xi,t)- (12)

The value ofx;, increases at a rate equal &,, multiplied by its distance to 1 in order
to preventx; , from exceeding this maximum value. The story trajectory resulting from the
inference process serves as the initial value for the evaluatigg.qfL2) The time over which
the equation is evaluated corresponds to the amount of time that elapsed since the story was
read, expressed in arbitrary “model retention time” units.
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The retention process, like the inference process, is not affected by belief values but result
in adjusted belief values. As retention time grows, the belief values of the story’s propositions
regress to their unconditional levels. The extent to which a proposition is still retained can
therefore be defined as the difference between its current and its unconditional belief value:

ret(p,) = t(p:| X;) — t(p). (13)

5. Results
5.1. World-knowledge implementation

As explained in detail il\ppendix B the world knowledge used by the model was extracted
in two steps from the microworld description developedsiction 3 First, the microworld
description was used to train a Self-Organizing Map, the result of which is shotrig.ir2
Next, these mappings were used to convert the microworld description into a distributed rep-
resentation, from which the world-knowledge matfikwvas computed.

How can we ascertain that world knowledge was implemented successfully? Be remindec
that the belief values, based on this world-knowledge implementation, can be interpreted a:
the subjective probabilities of propositions. The probabilities also follow directly from the
microworld description. By comparing these “actual” probabilities (Pr) to the belief values
(r) as computed b¥gs. (2), (3) and (5)it can be established whether the model’'s world
knowledge reflects the regularities that hold in the microworld.

First, the subjective and actual probabilities of all conjunctipns ¢ of (negations of)
basic propositions were compared. The resulting scatter plot is shown in the left panel of
Fig. 3 Second, we tested whether the non-temporal dependencies among propositions ai
captured by their vector representations. If a (negation of a) basic propgsisagiven, the
probability that a positive basic propositisrs the case at the same moment in the microworld
description equals Py| p). Of all situations in whiclp is the case, this is the proportion that
includes. The overall proportion of situations in which propositistoccurs is itsa priori

r=.996 r=.979 r=.914
1 1 0.7
—_ @
' B @
—~ = “___.3;\.‘- |
go.s L0 e 0 '.#f
= . w o * '
= " e
o =
oL 1 0.7
0 0.5 1 1 0 1 0.7 0 0.7
Pr(p0a) Pr(s|p) - Pr(s) Pr(slp, ;) = Pr(s)

Fig. 3. Scatter plots of actual probabilities (Pr) versus subjective probabilifiean(d coefficients of correlation

(r). Propositions denoted hyor by g are basic propositions or negations thereof. Propositions denotsdrey
positive basic propositions.
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Table 2

Three stories used to model specific inferences

Story t Situation Possible text

1 1 —RainA =Sun It doesn’t rain and the sun doesn'’t shine.

2 (Soccerv Hide-and-seek/ (B computer Bob and Jilly are playing a game and one of them wins.
A J computer) (B wins v J wins)

2 1 Sun The sun is shining.
2 Hide-and-seek Bob and Jilly are playing hide-and-seek.
3 —(B outside)A —(J outside) They are inside.
3 1 Suna Soccer The sun shines and Bob and Jilly play soccer.
2 BtiredA —(J tired) Bob is tired, but Jilly isn't.
3 Bwinsv Jwins Next, one of them wins.
4 BtiredA Jtired Now they are both tired.
5 Rain It starts raining.
6 BinsideA Jinsidea Hide-and-seek Bob and Jilly go and play hide-and-seek inside.
7 JtiredA —(B tired) Only Jilly is tired.
8 Bwinsv Jwins Someone wins.
9 B computern J dog Later, Bob is playing a computer game,

and Jilly is playing with the dog.

For each situation, it is shown how it is constructed from basic propositions and a possible text describing this
situation is given.

probability Pré), so the probability of changes by an amount®fp) — Pr(s) under influence

of p. The center panel dfig. 3 shows the scatter plot of these actual probability differences
versus their corresponding subjective probability differences. Third, we tested whether the
world-knowledge matriXdV correctly captures temporal dependencies among propositions.
In the microworld, the amount of influence that a proposifoat time stepr +£ 1 has on a
propositions att is Pr(s;| p;+1) — Pr(s), the change in probability of,. All positive basic
propositionss, and (negations of) basic propositiops.; were used for the scatter plot of
actual versus subjective probability differences in the right panElgf3.

In all three cases, the correlation between actual and subjective probabilities was very high:
.996, .979, and .914, respectively. Also, the three scatter plots show that there are no outliers. In
short, the vector representation of propositions and the world-knowledge Médiitckcapture
the regularities that occurred in the microworld description.

5.2. Inference

5.2.1. Specific inferences

In order to test the model's ability to make specific inferences, three simple sequences of
situations (“stories”) were constructed. These stories, showabite 2 varied in length from
two to nine situations. Each story was meant to evoke one or more specific inferences.

e Story 1. realizing the exclusive-or relatiofRrom the fact that Bob or Jilly wins, it can
be inferred that they must have been at the same place in the previous time step. This
inference requires the exclusive-or relationeitherBob or Jilly is outside at, winning
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either B or Jis outside =~ ~
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Fig. 4. Amount of inferenceHq. (10) of “Bob and Jilly are outside” (B outside J outside), of “Bob and Jilly
are inside” (B outside A —(J outsidg), and of “either Bob or Jilly is outside” (B outsideor J outside) during
processing of Story 1.

cannot occur at+ 1; if bothare (not) outside df winning is possible at+ 1. Story 1 tests
whether this knowledge was successfully implemented in m@trikhe situation at = 1

gives no indication where Bob and Jilly might be. Following this, someone wins, which
means that they both must have been either outside or not outside (which is equivalen
to being inside) at = 1. The model is able to correctly infer this, as can be seen from
Fig. 4. This result shows that the DSS model can handle the exclusive-or relation required
to make this inference.

The amounts of inference of “Bob and Jilly are outside” and of “Bob and Jilly are
inside” seem fairly low. There are two reasons for this. First, these two situations exclude
each other and can therefore never be both strongly inferred. Second, Bob and Jilly are
a priori more likely to be at the same place than to be at different places. As a result,
the belief values for “Bob and Jilly are (not) outside” are high to begin with and cannot
increase much more.

e Story 2: retracting an inferenceéAfter reading the first two sentences of Story 2, one
might infer that Bob and Jilly play hide-and-seektside This inference is based on the
information that the sun shines and on the knowledge that this usually causes them to b
outside. However, the third sentence tells us that they are in fact inside &t This does
not necessarily mean that they were already inside=a®, but it does make that more
likely. Therefore, the inference that Bob and Jilly are outside-a should be retracted.

As Fig. 5shows, this is indeed what the model does. At first, the belief value of “Bob
and Jilly are outside” at = 2 increases. After 5.38 units of model processing time have
passed, the process stabilizes enough (i.e., the total trajectory change is lesg,than 1/
in Eq. (9) to allow the third situation to be added to the story trajectory. At that moment,
the belief value decreases almost to its original level: it is no longer inferred that Bob and
Jilly are outside during story time step= 2.

e Story 3: inferring who wins at whatWWhoever is tired, is less likely to win. In Story 3, it
is Bob who is tired at first, so the one who winsat 3 is probably not him, but Jilly.
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Fig. 5. Amount of inferenceHq. (10) of “Bob and Jilly are outside” and of “Bob and Jilly are inside"rat 2,
during processing of Story 2. The third situation enters the model after 5.38 units of processing time, as indicated

by the arrow.

The left graph inFig. 6 shows that the model infers exactly this. The right graph shows
that Bob wins later in the story & 8), when Jilly is tired.
Also, the model infers what Bob and Jilly are playing when one of them wins. Note that
the game being played is mentioned two time steps before it is stated that someone wins.

Still, it is inferred that the game being won is soccer at 3 and hide-and-seek at= 8.
Since situations are only directly influenced by the previous and next time steps, this
information must have travelled through the intermediate time step2 andr = 7, re-
spectively, showing that indirect influence from more distant situations is indeed possible.

0.4

=3

inf(pl) ont:

0.4

Fig. 6. Amounts of inferenceEg. (10) during processing of Story 3. Left: inference at =

B&J play soccer

Jilly wins

=8

inf(pt) ont

10
model processing time

20

0.2

Bob wins

—

B&J play

Jilly wins

B&J play something else

hide and seek

0.2

15 20

model processing time

3 of

“Bob wins,” of “Jilly wins,” of “Bob and Jilly play soccer,” and of “Bob and Jilly play something else”
(Hide-and-seek/ (B computera Jcomputey). The third situation is added to the story trajectory at 1.19 units
of processing time after the inference process began with the first two situations. Right: inference8abf
“Bob wins,” of “Jilly wins,” of “Bob and Jilly play hide-and-seek” and of “Bob and Jilly play something else”
(Soccerv (B computern J computey). The eighth situation enters the model at 15.10 units of processing time.
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5.2.2. Inferences in general

The previous section shows that the model’'s inferences correspond to our intuitions: propo-
sitions that are implied by the story are inferred. In order to test this more systematically, 100
random stories were constructed and used as input to the inference model. The stories varie
in length from three to seven situations. There were 20 random stories of each length, so th
total number of story situations equaled:2@3+ 4+ 5+ 6 + 7) = 500. Each such situation
consisted of exactly one basic proposition or its negation.

In general, propositions that are inferred on the basis of temporal world knowledge should be

e implied by the story;

e possible given the story situation. If it is stated that Bob is outside, it cannot be inferred
that he is inside at the same moment in story time;

e not already given by the story situation. If Bob and Jilly play soccer, then they must be
outside. This inference does not require information from other story situations, and is
therefore not an inference in the sensé&qf (10)

For each situation of each random story, the propositiokfjt (6) and amount of inference
(Eg. (10) of all basic propositions were obtained (except for the proposition that constituted
the situation). The correlation between amount of inference and fit of propositions was .66
(based on 500 situations (14 — 1) propositions= 6,500 observations), indicating that the
model does indeed infer propositions that are implied. Moreover, propositions with positive
fit were inferred to be the case (positive inference) and propositions with negative fit were
inferred to be not the case (negative inference).

Whether a propositiop, is possible given the original story situatiaif, can be seen from
its initial belief valuer(p,| X°). If this value is close to Qy, is unlikely to be the case at that
moment in the story and should not be inferred even if it is a likely proposition given the rest
of the story. Likewise, if the initial belief value is close tof,is already likely given story
situationX? and it should not be inferred to be the casefeam situations at other story time
steps.

Indeed, this is what the model predicts. All 500 situatiens4 basic propositions- 7,000
observations were divided into two groups. The “non-inferable” group contained cases with
initial belief values so close to 0 orl (less than .001 or more than .999) that inference was no
expected to occur. The “inferable” group contained the others. The average absolute propositio
fit was .11 among the non-inferables and .08 among the inferables, indicating that the lattel
would be inferred less if only proposition fit would matter. However, the opposite was the case:
The average absolute amount of inference was .07 among the inferables butdorlg@°
among the non-inferables.

5.2.3. Inference and coherence

As noted in the introduction, the inferences that readers most easily make on-line are infer-
ences that contribute to the coherence of the story, which in the model is deftegdif) The
coherences of the 100 random stories ranged fro#8 to .25, with an average of .001. Since
coherence is a measure for the match between a story and temporal world knowledge, and tt
inference process adapts the trajectory to world-knowledge mafrithe story coherences
of the trajectories increased through this process. The result was a larger coherence value f
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Table 3
Stories with different relatedness levels
t Relatedness level Situation Possible text
1 Soccer Bob and Jilly play soccer.
2 1 B tired A —(J tired) Only Bob is tired.
2 B tired Bob is tired.
3 B tiredxor J tired One of them is tired.
4 J tired Jilly is tired.
5 J tiredA —(B tired) Only Jilly is tired.
3 B wins Bob wins.

Relatedness level is varied by using one of the five situations-a2.

all 100 stories (the average was .28), showing that the inferences contributed to the stories’
coherence. However, this is not a built-in consequence of the model's equations: Transient
decreases of coherence during processing were observed for 17 stories, taking 4.5% of their
processing time.

5.2.4. Relatedness, inference and reading time

A story sentence is read faster when it is more related to the preceding semigecs,
Shinjo, and Duffy (1987)and alsdsolding, Millis, Hauselt, and Sego (199%howed this by
having subjects read stories consisting of just two events. The relatedness between those event
varied: The second story event was either unrelated to the first event or was predictable to a
certain degree. They found that reading the second sentence took more time when it was less
related to the first sentenddurray (1995, 1997also had subjects read two-sentence stories
but included stories in which the events were adversatively related, meaning that the first story
event made the second event less likely to occur. He found that the second sentence took more
time to read when it was adversatively related to the first sentence than when it was unrelated.
Using more realistic text§anders and Noordman (20G®jowed that a sentence is read faster
when it is embedded in a text that causally implies it, than when it is not causally related to the
rest of the text.

To test whether the model predicts the same relation between relatedness and reading time.
five stories with different levels of relatedness were constructed. Each of the stories, shown in
Table 3 consisted of three situations, the first of which was “soccer” and the last was “Bob
wins.” Relatedness was varied among stories by modifying the second situation. Since Bob is
more likely to win when Jilly is tired, stating that Jilly is tired and Bob is not, should result in
the highest relatedness to the last situation. If, on the other hand, Bob is tired and Jilly is not,
relatedness is lowest. Intermediate levels of relatedness are obtained in a similar way.

The time needed by the model to process the last situation and the amount of inference that
took place during this process, are plotted=ig. 7. These results clearly show that a higher
level of relatedness leads to shorter processing time and less inference, which is consistent
with the generally accepted idea that the on-line construction of an inference takes time.
For instancelonk and Noordman (199(0)ad subjects read texts that contained an inference
evoking sentence. When the information to be inferred was explicitly stated in the text before
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Fig. 7. Amount of time needed to process the situation “Bob wins” (left) and total amount of infeEemqcgl 1)
that took place during this process (right), as a function of the situation’s relatedness to the previous situation.

the inferring sentence, reading times on the inferring sentence were shorter than when th
information was not stated but had to be inferred.

Stories describing less related events evoke more inferences, which slows down reading. T
test whether this relation holds in general, the model was run on all stories consisting of just
two situations, with each situation consisting of exactly one (negation of a) basic proposition.
Since there are 14 positive basic propositions, the number of storie€2wad4)? = 784.

Story coherence was taken as a measure of relatedness. These range®#dm.38, so the
relatedness of the two situations ranged from adversative to predictable.

Fig. 8 directly compares the model’s results to those&soiding et al. (1995and Myers
et al. (1987) Since they did not use stories with adversatively related sentences, only the
model’s results for the 394 stories with non-negative coherence are plotted. The effect of story

model results data
8 3.6 —>— Myers et al. (1987)
-©- Golding et al. (1995)
—— average
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Fig. 8. Left: amount of processing time needed to process two-sentence stories, as a function of story coherenc
(Eq. (7). Each of the eight points in the graph is the average of processing times and coherences for 49 or 50 stories
Right: reading time on the second sentence of two-sentence stories, as a function of sentence relamdimess (
etal., 1995; Myers et al., 1987
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Fig. 9. Effect of depth-of-processing parameatem average processing time per situation (left) and total amount
of inference Eq. (11) during processing of each situation (right).

coherence on processing time as found by the model is quite similar to the effect of relatedness
on reading time as found by Myers et al. and Golding et al.

Over all 784 stories tested, the correlation between story coherence and amount of inference
was—.42. A sequence of story situations that violates temporal world knowledge will evoke
more inferences than a story that is in accordance with world knowledge. This results in
an increase in processing time. Accordingly, there was a negative correlatisn-{.36)
between story coherence and model processing time. The model correctly predicts that stories
with adversatively related events are processed slower than stories that describe unrelatec
events, and that stories describing positively related events are processed quickest. The strong
relation between amount of inference and processing time was also reflected in the high positive
correlation ¢ = .93) between the two.

5.2.5. Inference and depth of processing

Noordman et al. (1992)aried subjects’ reading goal by either instructing them to check for
inconsistencies in a text, or by not giving such an instruction. They found that the consistency-
checking instruction led to more inferences and longer reading tiBtesvart, Pickering,
and Sanford (2000)ised another method to manipulate the reading process. Their subjects
read single sentences and had to answer a related question after every sentence. In one cor
dition, all of these questions could be answered without making any inference from the sen-
tences, while in the other condition inferences needed to be made from every sentence. It
was found that reading slowed down when inferencing was required compared to when it was
not.

Supposedly, instructing readers to check forinconsistencies or having them answer inference-
requiring questions leads to deeper processing of the texts. In the model, depth of processing
is controlled by parameter. Fig. 9 shows the effect of varying on average processing time
per situation and total amount of inference during processing of each situation, for the 100 ran-
dom stories constructed Bection 5.2.2In accordance with empirical data, deeper processing
resulted in longer processing tinfeand more inference.
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Fig. 10. Left: average amount of retentidexy, (13) of story propositions of the 100 random stories, as a function
of retention time. Right: average coherengg.((7) of retained story trajectories as a function of retention time.

5.3. Retention

The inference results showed that inferences contributed to the stories’ coherences. Th
retention process behaves similarly: Although retention of story propositions decreases a
retention time growsKig. 10 left) the average coherence of the retained trajectories shows an
increase before it starts to decrease after approximately three units of retentioRitimrE)(
right). As retention time reaches infinity, all SOM cell values approach 1, whidkdsy (5)
and (7)means that the coherence equals 0.

There are two explanations for the increase in coherence during retention. First, proposition:
may be forgotten selectively. Indeed, it is well known that some story propositions are recalled
more easily than others. In a cued recall tdgkers et al. (1987found that, in general, a
sentence was more likely to be recalled if it was more related to the one that was given as :
recall cue. However, the highest levels of relatedness resulted in a small decrease in recal
This last effect was not found Byarnhagen, Morrison, and Everall (1994hey had children
read a number of stories and asked them to recall as much of the stories as possible, withot
giving any sentences as cue. Story propositions with many causal connections in the ston
were recalled more often than propositions with fewer connections. No decrease in free recal
for the highest levels of connectivity was found. The same relation between number of causa
connections and recall probability was foundiyabasso and Van den Broek (19&6)d by
Fletcher and Bloom (1988)n short, propositions that form the “causal backbone” of the
story are remembered best. Moreo¥@o]dman and Varnhagen (1986)nd that this effect is
stronger in a delayed free recall task than in immediate recall. Not surprisingly, they also found
that fewer story propositions are recalled in delayed recall than inimmediate recall, as did many
other researchers (e.quffy, Shinjo, & Myers, 1990 Trabasso & Van den Broek, 1985

Another reason for the increasing coherence might be the occurrence of intrusions. Readel
occasionally recall propositions that were never part of the text, but are part of their knowledge.
Bower, Black, and Turner (1979 well asSmith and Graesser (198fbund that propositions
that form part of a story script and are therefore highly predictable in the story, are falsely
recalled more often than less predictable propositibnftig (1982)too found higher intru-
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Fig. 11. Correlation between retentidad. (13) and fit €q. (6) of propositions as a function of model retention
time, for story propositions and non-story propositions (intrusions).

sion rates of propositions that, according to world knowledge, follow from the text than of
propositions that do not. Moreover, this effect was stronger in a delayed recall task than in
immediate recall.

If the model accounts for these empirical data, there should be a positive correlation be-
tween proposition fit and retention both for story propositions and for non-story propositions
(intrusions). Moreover, these correlations should increase over retentiorHignd.1 shows
that the model does predict all of these effects. After two units of retention time, the correlation
between fit and retention is .49 (based on 500 observations) for story propositions and .58
(based on 6,500 observations) for non-story propositions.

6. Discussion
6.1. Evaluation of the model

6.1.1. Inference

The DSS model takes as input a temporal sequence of story situations and uses world
knowledge about temporal contingencies to infer which propositions that were not stated in
the story are likely to be the case. The results show that this was successful: The inferred
propositions were temporally implied by the story statements, were not impossible or already
given in the story, and contributed to the story’s coherence. The model does not make any
distinction between reasoning forwards and backwards in story time, nor between inferring
a single-situation event (like winning) and events than span multiple story time steps (like
rain). All of these are handled by the same inference process. More importantly, the inference
model was validated against several experimental findings. Processing of less coherent stories
took more time because these stories evoked more inferences than did more coherent stories
Also, increasing depth of processing led to more inference and slower reading. That the model
accounts for these experimental results is not trivial. The model was only designed to perform
inferencing by adjusting incomplete descriptions of story events to world knowledge, and not
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to simulate particular experimental data. Therefore, accounting for these data is an emerger
property of the model.

The two major theories of on-line inference are the minimalist theldigkjoon & Ratcliff,
1992, which claims that readers do not commonly create elaborate situation models during
reading, and the constructionist theoBréesser et al., 1994vhich says that readers do form
such situation models. Clearly, the DSS model leans more towards the latter account sinc
all of its inferences are based on situation models. However, the model also differs from the
constructionist theory in one important respect. Graesser et al. claim that readers actively tn
to accomplish coherence of a text, according to the so-called search-after-meaning principle
In other words, inferencing is driven by a need for coherence. The model offers a reverse
interpretation: Increased coherence results from inferences, which emerge from matching th
events described in the story to patterns of events known to occur in the world. There isno searc
for story coherence. Rather, incoming information automatically adjusts the story trajectory,
generally resulting in increased coherence.

Technically, making the model coherence-drivenis not hard to do. A standard gradient-ascen
algorithm can be applied to search for alocal maximum of story coherBac€r) starting with
the original story trajectory. However, such a coherence-driven implementation is theoretically
excluded in our approach. The definition of story coherence is based on belief values, whict
depend on the situation vectors but cannot influence them. Therefore, the inference proces
can never be controlled by the story’s coherence. Nevertheless, if the increase of coherenc
is wrongly interpreted as the driving force of the process instead of its consequence, this
leads to the illusion of an active search for coherence. The switch from localist to distributed
representations makes clear how belief values and coherence form an abstraction, based or
story representation, and can therefore not change the story representation. This shows th
using distributed representations is not only useful in practice, allowing for more flexibility
in representing situations and world knowledge than localist representations like Golden anc
Rumelhart’s, but is also of theoretical importance.

6.1.2. Retention

The retention model showed that story coherence can increase over retention time althoug
story propositions are forgotten. Like the inference process, the retention process does not loc
for coherence nor are propositions in any way selected to be retained or forgotten. Preservatio
of coherence simply follows as an emergent property from the differential equation that defines
the retention process. This equation does not know about coherence or even propositions, at
cannot make use of such higher level concepts. Nevertheless, the model correctly predicte
empirical recall data. Propositions that were more related to the story were retained better tha
unrelated propositions and intrusion rates were higher for predictable propositions than for
unpredictable ones. Both of these effects increased as retention time grew.

6.2. Limitations and possible improvements
6.2.1. Temporal world knowledge

Using the MRF framework guarantees a mathematically sound model. However, certain
architectural assumptions were made in order to simplify the MRF analysis, and it is unclear to
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what extent these limit the model’s abilities. In particular, the symmetry assumption claimed
that the temporal knowledge matiW can be used to reason forwards in story time and the
transposed matri¥ to reason backwards. However, there is no reason to assume that the real
world shows the same symmetry.

It is important to note that from the symmetry assumption it does not follow that the belief
values are symmetrical. In generalp,|q;+1) # ©(q:~1|p;). TO give an example: If Bob or
Jilly wins att, it is certain that they did not play with the dograt 1. This is reflected in the
high belief valuer(—=(B v Jdog,_1|B v Jwins) = .90. On the other hand, given that Bob and
Jilly do not play with the dog at — 1, it is not at all certain that one of them will win &t
Indeed, the corresponding belief value{B v Jwins|—(B v Jdog,_1) = .24.

The high correlation between microworld probability differen€Bs(p,|g;+1) — Pr(p))
and belief value difference&(p;|g;+1) — t(p)) shows that at least in our microworld, the
symmetry assumption does not seriously limit the quality of the knowledge matrix. In other
(micro)worlds, this might be different. Fortunately, the MRF approach is not necessary for
the model's functioning and can easily be replaced by only changing the definition of the
E; -function (Eg. (4). This function gives the expected value igr, given the previous and/or
next situations and world knowledge. Itis the model’s central function, since it states how world
knowledge is implemented and applied to a story representation. If a better implementation of
world knowledge is found, or a better way to apply it to the story trajectory, onl théunction
needs to be changed accordingly. All of the four assumptions on which world-knowledge
implementation is based can be discarded if a béttefunction is to be found without them.

6.2.2. Stories versus texts

As far as the model is concerned, a story is no more than a temporal sequence of situations.
This makes story comprehension no different from understanding events going on in the real
world. The reader of a text, however, can make use of information that is not available to an
observer of real world events. In particular, causal connectives like “because” and “although”
can influence the processing of a teMil{is & Just, 1994 and its recall iillis, Graesser, &
Haberlandt, 19983 but are of course not available in the real world.

The same is true for temporal connectives. For instance, in Stor$&ation 5.2.1Bob and
Jilly are inside at = 3 from which it is inferred that they were also inside at 2, when they
were playing hide-and-seek. Itis not possible to tell the model that a new episode had started at
t = 3 by adding a connective like “next” or “therBestgen and Vonk (1995howed that tem-
poral markers like “then” reduce the availability of information in the previous sentence, so such
a connective could signal that the situations&at2 and 3 do not need to influence each other.

The current model does not make use of textual information because it represents stories at
the situational level of text representation. Situations (or “facts,” as Kintsch and Van Dijk call
them) are related by the effect that they have on each other’s probabilities: “relations between
facts in some possible world.[. ] are typically of a conditional nature, where the conditional
relation may range from possibility, compatibility, or enablement via probability to various
kinds of necessity”’Kintsch & Van Dijk, 1978 p. 390). At the textbase level, propositions are
not related by probability, but “connection relations between propositions in a coherent text
base are typically expressed by connectives such as ‘and,’ ‘but,’ ‘because,’ ‘although,’ ‘yet,’
‘then,’ ‘next,” and so on” (p. 390).
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This raises the question whether such atextbase level can be added to the DSS model. Textt
information carried by, for instance, connectives is present at this level and can influence the
inferencing process that takes place at the situational level. Currently, we are investigating
ways to extend the DSS model with such a textbase level.

Notes

1. The world-knowledge matrix is denoted Byn Golden and Rumelhart’s notation.

2. In the field of propositional logic, the De Morgan law states how disjunction can be
rewritten in terms of negation and conjunctigny ¢ = —(—p A —¢q). However, this
does not help here, since the conjunctiep A =g must be represented as a single
proposition in order to be negated.

3. This follows directly from the expression for the probability of a propositteq. (A.5)
in Appendix A). If it is known that propositior cause$ and thatr cause, bothwgp
andwy, are positive. If onlyg,_; is the case, the probability @f equals the logistic
function ofa, + wqp. If both ¢, andr,_1 occur, the probability of; is the logistic
function ofa, 4+ wqp+ wrp, Which must be larger sinagg, > 0, wy, > 0 and the logistic
function is monotonically increasing. Ergo, it is impossible to represent the knowledge
that bothg andr causep, butg A r causes-p.

4. This is not the only way to model negation and conjunction in fuzzy logic. In par-
ticular, u;(p A g) = min{u;(p), ni(g)} is often used. However, using the product to
model conjunction yield&q. (3) which has the useful property thetp|X) = 1 — ¢
(—=plX).

5. Note that the belief value @fgiven anX = p can be somewhat less than 1, reflecting
the uncertainty inherent in fuzzy logic systems. In practice, however, the subjective
probabilities correspond very closely to the actual probabilities in the microworld, as is
shown in the results ddection 5.1

6. FromEq. (9) which determines when processing of a situation is completed, it might
seem as if processing time can never decrease with incre@asimyvever, this only is
true for the first two story situations. Deeper processing can lead to shorter processing
time for the situation at + 1 if this situation is highly compatible with an inference
that was made at story time step/ith shallower processing thig % 1-compatible”
inference might not be made, leading to longer processing time forl. In fact,
when comparing = 0.3 to9 = 0.6, this effect occurs in three of the 100 random
stories.
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Appendix A. Markov random fields

The mathematics of both the Golden and Rumelhart and the DSS model are based on Markov
random field theory. A simplified introduction to this theory, applied to the two models, is
presented here. For a more thorough explanation, see for instanhden (1996, Chap. 6.8y
Cressie (1991, Chap. 6.4)

A.1. Model architecture

Suppose we havarandom variables,, ... , z,, all real valued on the interval [0, 1]. If the
probability of the value of; is dependent on the valuenf thenz; is said to be connected zp.
Note that, ifz; is connected ta;, thenz; is also connected . Since a value depends on itself,
all variables are connected to themselves. Such a system s called a Markov random field if every
combination of values ofy, . . . , z,, has a positive probability density. Since probability densi-
ties can be arbitrarily close to 0, this is not a serious restriction. For the Golden and Rumelhart
model, the random variables are the values of propositions-at-time-steps. For the DSS model,
they are the values of SOM-cells-at-time-steps. From here on, we shall use the term “cell” to re-
ferto both propositions and SOM cells, and a cell-at-a-time-step will be referred to as a “node.”
Any particular configuration of valueg = (z1, ... , z,») iS an instantiation of a field and
has associated with it a probability dendi{Z). Since this refers to a complete instantiation,
it is aglobal probability density. It is not easy to compute, but we can compare the probability
densities of two instantiations.
The Hammersley—Clifford theorem (1971, unpublished) as descriligesiag (19743tates
how a valid probability distribution over a Markov random field can be constructed. First, we
need to define the notion of a clique: A cligisea set of variables that are all connected to
each otherSince variables are connected to themselves, every single variable forms a clique.
Now letZ; andZ; be two instantiations of a Markov random field. The Hammersley—Clifford
theorem states th&(Z) forms a valid probability density function if and only if

P(Z1)
P(Zy)
with Q a function of the form:

01, ... .2m) = ZZ,G (zi) + ZZZ 2jGij(zi, zj) + ZZZZ z2jzkGik (i, 2, 2k)

i=1 j>i i=1 j>i k>j
+ -+ z2122. .. 2w G2 (21, 22, -0 Ti)- (A.2)

Here, theG's are functions such that; (z;, z;,...) = 0 if variablesz;, z;, ... do not form
a clique. For use in the two modesg. (A.2) simplifies greatly. Two simplifications follow
from the models’ architecture, shown graphicallyHig. 12 First, it can easily be seen that
there exist no fully connected groups (cliques) of more than two nodes. This means that every
G function with more than two arguments equals 0 and these terms disapped&drgm?2).
Only the first two terms are left over.

Second, the strength of dependencies between nodes is the same for all story time steps
This means that not all connected pairs of nodes need to be stakgl (A\.2) separately

Q(Zl) 0(Z) (Al)
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t=1 t=2 t=3 t=4

Fig. 12. Architecture of the Golden and Rumelhart and the DSS model, in a story world consistirg ®tells
(i=1,2,3)andr = 4time stepsi(= 1, ... , 4), making a total of= = 12 nodes. Every row corresponds to a cell.
Every column corresponds to a time step. Two nodes are connected only if they are from neighboring time steps
The thickness of a connection indicates the strength of the dependency.

because they can be summed over all time steps. The variabledz; are therefore replaced
by variablesx;,;_; andx;, that have additional time step indices. Instead of summing iwver
variables, we now sum overcells andT time steps.

Finally, it is assumed that a node’s contributiorQancreases linearly with its value. This
is accomplished by turning th@ functions into constants. The first term B6§. (A.2) gives
rise ton of these:Gy, ... , G,, which will be denoted by the vectet = (a3, ... ,a,). The
second line oEqg. (A.2)gives rise tor x n constants’sis, ... , Gy, Which form a matrix that
will be denotedW = (wj); j=1... ... The resulting, simplifie® function is

T n T n n T
QX) =D xuai+ Y Y Y xiaxjwi =y _(X,A+ X, _3WX). (A.3)

t=1i=1 t=1i=1 j=1 =1

Thexs refer to a trajectorX = (X1, Xo, ... , X7) consisting ofT time steps. For the equation
to be valid atr = 1, all values at the non-existent time step 0 are defined to be 0.

In the Golden and Rumelhart model, the unconditional probability of a proposii®n
a function ofa; only. In the DSS model this value has become obsolete, since knowledge
aboutthe unconditional probabilities is incorporated in the propositions’ vector representations
Therefore, in the DSS modAlis set to the zero vector and the corresponding term drops from
Eq. (A.3)

A.2. Expected value

Both in the Golden and Rumelhart and the DSS model the expected value of a node is
computed using the local probability distributidh,. This is the probability distribution of
node {, t) given the values of all other nodésy. (A.1)gives the ratio of two global probabilities,
but the ratio of the corresponding local probabilities is easily shown to be the same.

Let X* denote the collection of all values of the trajectory except that of node The
ratio of the local probabilitie®; ;(x1) and P; ;(x2) equals

P (x)  PGalXi) PG, XP)/P(XF) PG, X7)

Tit) Q1 X7)-002.X])
Piu(x2) — P(xalX7) PO, Xi)/P(X})  Plxa, X))
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FromEg. (A.3)it follows that
Q(xl’ X;’jt) - Q(XZ, )_(?jt) = (X]_ - xZ)(ai + Xt—lW~i + Wi-X;+1)'

Here, W, and W;. are theith column and theth row of W, respectively. For this equation to
be valid at every time step, the vectofsand X 1 are defined to consist of Os only. We shall
use the shorthand notation

AQiy=a;+ X, AW, + Wi.X;+1,

with, as noted abovey = 0 in the DSS model. Note thatQ; , is a function of)_(;ft, but does
not depend on the valug or x, of node {, t). The ratio of local probabilities can now more

simply be written as

Pllf(xl) — e(X1*X2)AQi.t‘ (A-4)
Pi,t(xz)

Both for the Golden and Rumelhart model and the DSS model the local probability dis-
tribution can be derived from (A.4). First, for the Golden and Rumelhart model there are
theoretically only two possible values, 0 and 1, for a node. Taking 0 andx, = 1 in Eq.

(A.4), and usingpP;;(0) + P;,;(1) = 1, leads to

1

Pi,z(l) = m,

(A.5)

that is, the logistic function oA Q; ,. With 0 and 1 as the possible values, this probability that
x;; = 1 equals the expected value of the local probability distribution of npde (

For the DSS model, the situation is more complicated, since nodes can now theoretically
have any value between 0 and 1. Consequently, the local proba®ilitg to be replaced by
a probability density. Applyindeq. (A.4)to this density, withx, = 0 andx; = x, x € [0, 1],
leads to the following equation for the denshy;:

Pii(x) = P;;(0) €9
Being a probability densityP; , has to integrate to unity over the interval [0, 1]. Thus, for
AQi,f ;é Ol

1 1
f P, (x)dx = P;;(0) f e dy = P, (0)[(AQ; ) e ];
0 0
= P(0)(AQ;) M€ —1) =1,

showing thatP,,(0) = AQ;,(e*%+ — 1)"1 and so

AQi,teXAQi"
erli — 1
If AQ;, approaches zero, this density approaches the uniform deRsity) = 1 on the

interval [0, 1]. This density also results directly from applying the above argument to the case
AQi,t = 0

P (x) =
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Inspection of the expression f@, makes clear that the maximum probability density is
always obtained for one of the extreme values:ifgr= 0 if AQ;, < 0, and forx;, = 1 if
AQ;, > 0. This is why the inference model describedSection 4.3ets eachy;, approach
either O or its maximum value.

For AQ;, # 0, the expected value af, is obtained through integration by parts:

Ei(AQiy) :/ XP;,(x) dx = Qi / xe"A0ir gy
0 0

A0, 1
AQ; B 1 1 ) )
B GAT—IZL ([(AQ”) ety _/(; (AQ;) te dx)
AQ; e s
= 2 (a0 el —[(a0,) %0 )

1 1
S l-e AQ

According to this expressioik; ;(0) = 1/2 in the limit for A Q; , going to zero, corresponding
to the expected value of the uniform density valid fo@;, = O.

Appendix B. Implementation of world knowledge

The world knowledge that the model uses is extracted from the microworld description
constructed irBection 3 consisting of 250 example situations, in each of which every basic
proposition is either known to be the case or known to be not the case. Since there are 14 bas
propositions (se@able 1) an example situation can be represented by a vector consisting of
14 binary elements, one for each proposition. An element has a value of 1 if the corresponding
proposition is the case, or 0O if it is not. For instance, the situation in which the sun shines (the
first proposition) and Bob is outside (the third proposition), and no other basic proposition is
the case, corresponds to the vedior (1,0,1,0,0,0,0,0,0,0,0,0, 0, 0).

Implementing world knowledge is a two-stage process. First, a Self-Organizing Map is
trained on the individual example situation vect8r€ontingencies between situations are ign-
oredinthis stage. Next, the resulting mappings are used to convert eachSiatdats distribu-
ted representation. The contingencies between situations at adjacent time steps are used to co
pute the temporal world-knowledge matkixfrom the distributed example situation vectors.

B.1. Vector representations of propositions

The 250 example situations serve as input to a two-dimensional SOM consisting 510
150 hexagonal cells, as kig. 2 Between every two cellisandj a distancel(i, j) is defined.
This equals the minimum number of steps needed to get frtmnj, if every step takes you
from a cell to its immediate neighbor. The distance between two neighboring cells is 1, and
the largest distance on a 2015 map with hexagonal cells is 16. Theighborhoodf cell
i is defined as the set of cellghat lie within a certain distance ™ from i, soj is in the
neighborhood of iff d(i, j)) < N. Note that is in its own neighborhood.
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With each cell is associated a vectr; of weights between 0 and 1. These weight vectors
consistof one elementfor each basic propositiop,;se (w;(Sun, u;(Rain), ..., u;(Jwing).
Training the SOM comes down to setting these vectors so that the structure of the input vectors
is mapped onto the two dimensions of the SOM.

Before training begins, a learning rate parameter .9 and a neighborhood size parameter
N = 16 are set. Next, the SOM is trained by repetitively presenting it with all example vectors.
After presentation of each vect8r

1. The euclidean distances between each weight vectos arelcomputed.

2. Leti be the cell whose weight vectar; is closest td5. All cells in the neighborhood of
i now have their weight vectors moved towa@ldf j is one of these cells, its weight
vector changes by an amountS — ;).

3. The value oN is reduced by 4« 10~* andu is reduced by 52 x 107°.

These steps are repeated until all example vectors have been presented to the SOM 10C
times. By thenN = 6 anda = .02. Next, the training process continues but without changing
«. After presenting all example vectors 60 more tinfés= 0 and training is completed.

The vector representation of a proposition is obtained by taking from each cell’'s weight vec-
tor the element corresponding to the proposition. For instance, the first value of weighguector
is ;(Sun). This is the extentto which cebelongs to the representation of “the sun shines.” The
full vector representation of “the sun shinesfieSun = (u1(Sun), w2(Sun), ... , niso(Sun).

B.2. Temporal world knowledge

The temporal world-knowledge matri%/ is also based on the microworld description but
its values are not obtained by a training procedure. Inst&d,computed directly from the
example situations.

Let Sy, So, ..., S250 be the sequence of example situations develop&dation 3 Thekth
example can be represented by a vegt(fs) in distributed situation space by applying the
rules inEqg. (1)to the vector representations of propositions. BeWmean be computed, these
vectors need to be normalized:

mi(Se) 1
1 (Sk)
Each vectop(S,) is divided by the average value of its elemet&s, ). As aresult, all vectors

have the same average value of 1. Next, from all vectors, 1 is subtracted, making the averages
of each vectop equal to 0. Each entry iW is computed from the normalized vectars

vi(Sk) =

1 K-1
wj = ———> vi(S)v;(Sis1)
K — 1/(:1

whereK = 250, the number of training situations. If it often happens that two SOMicatid

J both have a high value or both have a low value in consecutive example situationsjthen
will become positive. If andj often have dissimilar values in consecutive examplgswill
become negative. In this way;; reflects the temporal contingencies between ceilfsd].
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