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Abstract

A computational model of inference during story comprehension is presented, in which story situ-
ations are represented distributively as points in a high-dimensional “situation-state space.” This state
space organizes itself on the basis of a constructed microworld description. From the same description,
causal/temporal world knowledge is extracted. The distributed representation of story situations is more
flexible than Golden and Rumelhart’s [Discourse Proc 16 (1993) 203] localist representation.

A story taking place in the microworld corresponds to a trajectory through situation-state space.
During the inference process, world knowledge is applied to the story trajectory. This results in an
adjusted trajectory, reflecting the inference of propositions that are likely to be the case. Although
inferences do not result from a search for coherence, they do cause story coherence to increase. The
results of simulations correspond to empirical data concerning inference, reading time, and depth of
processing.

An extension of the model for simulating story retention shows how coherence is preserved during
retention without controlling the retention process. Simulation results correspond to empirical data
concerning story recall and intrusion.
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1. Introduction

A narrative text rarely states explicitly all that is the case in the story events being described.
Most facts are left implicit and many can be inferred from the text. Possible inferences range
from finding the correct referent of a pronoun to inferring details of the state of affairs at any
moment in the story. Only few of these inferences are actually made during reading. There
has been considerable debate on which inferences are made on-line (for an overview, see,
e.g.,Graesser, Singer, & Trabasso, 1994). In general, the inferences that are most easily made
on-line are the ones that are most important to the reader’s goals, require knowledge that
is easily available, and contribute to the coherence of the text (McKoon & Ratcliff, 1992;
Noordman, Vonk, & Kempff, 1992; Vonk & Noordman, 1990; for an overview, seeGarrod &
Sanford, 1994; Singer, 1994; Van den Broek, 1994).

When the reader’s goal is to comprehend the story, the causes of the story’s events often
need to be inferred. For instance, from the short story “Bob was riding his bicycle. He hit the
coffee table.”, it might be inferred that Bob was riding his bicycleindoors, which explains
the fact that he could hit a coffee table. Since being outdoors is inconsistent with hitting a
coffee table, adding the inference increases the story’s coherence. The inference requires the
common knowledge that tables are usually found inside houses and that Bob had to be at the
same place as the coffee table in order to hit it. How is this specific information selected from
the large amount of knowledge about riding bicycles, coffee tables, and hitting? And how does
the relevant knowledge update the text representation? Here, we present a computational model
that simulates these processes.

Inference processes are only one aspect of text comprehension. Text comprehension consists
of multiple processes and representations, ranging from the perception of letters and words
to the comprehension of the meaning of the text and its integration with world knowledge.
Theories of text comprehension generally distinguish three levels of representation that are
constructed during comprehension (Kintsch & Van Dijk, 1978; Van Dijk & Kintsch, 1983)
and knowledge-based inferences contribute to the highest of these. The first level is the surface
representation, consisting of the text’s literal wording. This gives rise to the second level, which
is a network of connected propositions called the textbase. In the textbase, two propositions
are connected if they share an argument. If a proposition is read for which no argument sharing
proposition can be found, inferencing is necessary. Kintsch and Van Dijk do not model how
these inferences come about, but they do note that

most of the inferences that occur during comprehension probably derive from the organization of
the text base into facts that are matched up with knowledge frames stored in long-term memory,
thus providing information missing in the text base by a process of pattern completion. (Kintsch
& Van Dijk, 1978, p. 391)

These “facts” refer to the reader’s “personal interpretation of the text that is related to other
information held in long-term memory” (Kintsch, 1998, p. 49). This so-calledsituation model
(Kintsch, 1998; Van Dijk & Kintsch, 1983) forms the third level of text representation, which
is where most knowledge-based inferences are represented.

Existing computational models of story comprehension mainly focus on the construction of a
propositional representation, and rarely deal with inferences. These models are more concerned
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with text propositions than with the reader’s knowledge. The aim and the scope of the present
model differ from most of the existing models in two respects. First, the model does not deal
with a propositional representation of the story. It does not make use of textual information such
as argument overlap of propositions or connectives. Stories are not represented at the textbase
level. Second, and as counterpart of the first point, the model deals with story comprehension
as a process that invokes knowledge. Of course, this process is based on the information in the
text, but it goes beyond the text and encompasses knowledge-based inferences.

Most computational models have a different aim and scope. The Resonance model (Myers
& O’Brien, 1998), for instance, simulates the fluctuating activation of story statements during
reading. These activations lead to a memory representation of the story, as described by the
Landscape model (Van den Broek, Risden, Fletcher, & Thurlow, 1996; Van den Broek, Young,
Tzeng, & Linderholm, 1999). In the story representation constructed by these models, propo-
sitions are related either by argument overlap (Resonance) or by co-occurrence in working
memory (Landscape), not by their relation in the reader’s knowledge base. Therefore, stories
are represented at a textbase level. Propositions that are not in the story but originate from the
reader’s world knowledge may be added to the story representation, but since this is done by
the modeler on anad hocbasis, knowledge-based inferencing is not simulated. Likewise, the
model presented byLangston and Trabasso (1999; Langston, Trabasso, & Magliano, 1999)
receives information about causal relations as input instead of simulating its inference. In con-
trast, we present a model in which stories are represented at a situational level and inferences
result from the application of world knowledge to the story representation.

A major problem in modeling inferencing is the implementation of the large amount of
world knowledge needed for comprehension. For the Construction-Integration model (Kintsch,
1988, 1998), this problem arises in the first of two phases that are assumed to make up text
comprehension. During this so-called construction phase, the text activates a small number of
propositions from the reader’s world-knowledge net. By only implementing this small part of
the reader’s knowledge, the number of propositions in the model remains tractable. However,
it is not well-defined which propositions are to be selected during the construction phase.

For instance,Schmalhofer, McDaniel, and Keefe (2002)used the Construction-Integration
model to explain how bridging inferences are made. They let the model process two different
texts, both starting with the sentence (1)The director and the cameraman were preparing to
shoot closeups of the actress on the edge of the roof of the 14 story building when suddenly the
actress fell. The next sentence was either (2a)Her orphaned daughters sued the director and the
studio for negligenceor (2b)The director was talking to the cameraman and did not see what
happened. From (2a), it can be inferred that the actress died, but from (2b) it cannot. Indeed, the
simulations resulted in strong activation of the proposition “the actress is dead” after processing
of (2a), but not after (2b). However, for this activation to be possible, the proposition has to
be part of the text representation even though it is not part of the text. Therefore, it was added
during the Construction phase of sentence (1). No other proposition was added. Of course, this
was because the modeler knew that one of the sentences (2a) and (2b) implies that the actress
died. But what if the next sentence had turned out to beShe was released from hospital after two
weeks? In this case, the proposition “the actress is wounded” should have been added to the text
representation in the Construction phase of sentence (1). And how aboutThe stunt coordinator
was very pleased with her practice jump? In short, any possible outcome of sentence (1) needs
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to be selected during the Construction phase to make its inference possible. It is up to the
modeler to choose at least the propositions that are expected to be inferred later. As a result,
the process of selecting relevant world knowledge is not part of the computational model. It is
exactly this problem that shall be tackled here in a computational manner.

Other well-known models solve the world-knowledge problem by reducing the size of the
world in which the stories take place, allowing the model to be purely computational. For in-
stance, in the Story Gestalt model (StJohn, 1992; StJohn & McClelland, 1992) a recurrent neural
network is trained to answer questions about the stories it processes. During this training phase,
the network develops distributed representations of the stories and obtains knowledge about
the story world. In a later test phase, it answers questions about novel stories, using regularities
in the stories on which it was trained. This process involves the making of knowledge-based
inferences.

The model presented here is comparable to the Story Gestalt model in the sense that stories
take place in a simplified world and are represented distributively. The major difference between
the two models is that the Story Gestalt model lacks a notion of story time. The network’s
activation patterns represent the story events that occurred but not their temporal order. For
sufficient story comprehension, however, this order is crucial.

Golden and Rumelhart (1993; Golden, Rumelhart, Strickland, & Ting, 1994)proposed a
model in which the order of events described by the story text is represented explicitly. The
architecture of our model is based on Golden and Rumelhart’s. The main difference between
the two is that propositions are represented locally in the Golden and Rumelhart model, while
the current model represents them distributively in a high-dimensional situation space. For this
reason, it is called the Distributed Situation Space (DSS) model.

Because of its similarity to the DSS model, the next section will explain the Golden and
Rumelhart model in enough detail to understand its architecture. Following this,Section 3
describes the world knowledge that was used in our simulations. The DSS model is presented
in Section 4. Also, it is shown how it can be extended to simulate story retention.Section 5
presents results of simulations and corresponding empirical data. The final section discusses
implications for theories of on-line comprehension and makes suggestions for improvements
to the model.

2. The Golden and Rumelhart model

Inferencing in story comprehension requires a representation of the story, knowledge about
the world in which the story takes place, and a process that applies this world knowledge to the
story representation. Here we describe how these three aspects are implemented in the Golden
and Rumelhart model and note some limitations, which are overcome by the DSS model.

2.1. Representing a story

Golden and Rumelhart view a story as a temporal sequence of story situations. In their
model, the order in which story situations occur is represented explicitly by associating to
every situation a “time step” indext. The situation at time stept − 1 occurs before (and is a
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possible cause of) the situation att. Likewise, the situation att + 1 is a possible consequence
of the situation att.

A story situation is a set of propositions that occur at one moment in the story. Letpt denote
a propositionp at story time stept. With each suchpt is associated a valuexp,t between 0
and 1, denoting the (subjective) probability ofpt. This value represents the reader’s belief that
propositionp is the case at time stept. The collection of all values in the situation at story time
stept is denoted by a vectorXt = (xp,t, xq,t, . . . ), with one element for each proposition. If
d different propositions are needed to comprehend a story, every situation vector containsd
elements. Situation vectorsXt can therefore be viewed as points in thed-dimensional unit cube
[0, 1]d called thesituation-state space. A story is a sequence of such points, or atrajectoryin this
space.

2.2. Story world knowledge

If a reader knows that propositionp can cause propositionq in the story world, then the
combination ofpt−1 (propositionp is the case at time stept − 1) andqt (q is the case at the
following time stept) is a plausible sequence of events. Consequently, the reader’s belief in
the occurrence of one of the two events can increase belief in the other. Such causal story
world knowledge (or “world knowledge” for short) is implemented by assigning a valuewpq

to each pair of propositions (p, q). A positive value ofwpq indicates that belief in eitherpt−1

or qt increases belief in the other. A negative value ofwpq indicates the opposite: belief inpt−1

or qt decreases belief in the other. Ifwpq equals 0, no causal relation betweenpt−1 andqt is
known to exist. The valueswpq for all propositionsp andq constitute ad × d matrix W, the
world-knowledge matrix.1

The implementation of this general world knowledge is based on four simplifying assump-
tions:

1. Single propositions. What is modeled is how belief in a single proposition influences
belief in another single proposition. The influence between beliefs in situations (i.e.,
combinations of propositions) only emerges as the result of these influences between
pairs of propositions from the situations.

2. Consistency over time. Causal knowledge does not depend on the moment in the story.
Although the belief in propositions fluctuates during story time, the way beliefs in propo-
sitions influence each other are “laws of nature” that remain constant.

3. Range of influence. Beliefs in propositions at story time stept are influenced only by
beliefs regarding the neighboring time stepst − 1 andt + 1. Propositions at other time
steps can only have an indirect influence if they leave an effect on the propositions at
t − 1 or t + 1.

4. Symmetry. The influence belief inpt−1 has on belief inqt is the same as the influence
in the opposite direction (ofqt on pt−1): Both influences are represented by the value
wpq. This is not in contradiction with causality being directed in time, sincewpq does not
deal withp causingq, but withpt−1 andqt causing belief in each other. For example, a
stomach ache does not cause having eaten too much, but observing a stomach ache does
cause us to believe that too much was eaten before.
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2.3. Model processing

As input, the model receives the initial story trajectory in whichxp,t = 1 if the story text
states that propositionp is the case at time stept, andxp,t = 0 if it does not. This initial trajectory
already includesall the story time steps, so statements do not enter the model one by one.

Propositions stated in the text stand for given facts that cannot be denied, so their values
(equal to 1) do not change. The story comprehension process comes down to updating all
other values, that is, for eachpt that was not stated explicitly the probability that it is the
case is computed. As derived inAppendix A, this probability depends on the other values
in the trajectory and on the world-knowledge matrixW. Of course, the probabilities of all
propositions at all time steps need to be estimated simultaneously. Since changing a single
value will generally change the probability of many other propositions, the values are not set
in a single sweep through the trajectory but are iteratively adjusted until they no longer change.

The trajectory after convergence of this process is the interpretation of the story. In this
trajectory, a large value ofxp,t indicates that propositionp is inferred to be the case at story
time stept (unless it was stated in the original text).

2.4. Limitations

The model’s architecture can be shown to seriously limit the world knowledge and stories
that can be represented. Three main limitations are:

1. Constraints within a time step. One of the basic assumptions concerning the implemen-
tation of world knowledge is that values at time stept are influenced only by those att−1
andt + 1. However, it may be necessary to impose constraints on propositionswithin a
time step. For instance, a story character might have reached a road junction at time step
t − 1, which will cause her to make a left or right turn att. She cannot turn both left and
right, which is a constraint withint.

2. Disjunction. A story statement that is a conjunction of two propositions, like “it is raining
and cold,” is represented by setting bothxrain,t = 1 andxcold,t = 1. For disjunctions,
however, this is not possible. A statement like “the butleror the mysterious stranger
committed the crime” can only be represented as a single proposition, in which case the
“or” is no longer an operator that combines two propositions.2

3. Combined effect of propositions. Occasionally, the consequences of a conjunction can be
quite different from those of the individual propositions that make up the conjunction.
For instance, takingeithermedicine A or B might cure a disease, but takingbothat the
same time can make things worse.Minsky and Papert (1969)showed that an architecture
like Golden and Rumelhart’s cannot compute the so-called exclusive-or function needed
to implement such a causal relation because this requires the world-knowledge values
wtake A,curedandwtake B,cured to be positive but their sum to be negative.3

As shown inSection 4.1, the DSS model solves these three problems by representing stories
differently. In order to explain this alternative representation, it is convenient to first describe
the world knowledge that is implemented. This is done in the following section.
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3. Constructing a microworld

Understanding even the simplest story requires large amounts of knowledge about the world
in which the story takes place. It is, however, impossible to implement any realistic amount of
this world knowledge in a story comprehension model. The solution presented here is similar
to the one proposed byStJohn (1992; StJohn & McClelland, 1992): Instead of limiting the
amount of knowledge, the world itself is limited. The result is a microworld, all knowledge of
which is incorporated in the model. Although the microworld allows only for rather simple and
not particularly interesting stories, it is complex enough to evaluate the model’s properties.

We begin by choosing a small number of basic propositions from which every microworld
situation is built up. In our microworld there exist two story characters, who are named “Bob”
and “Jilly.” Their possible activities and states can be described using the 14 basic propositions
shown inTable 1. These are not unrelated within a time step but put constraints on one another.
For instance, two hard constraints are that Bob and Jilly can only play soccer when they are
outside and can only play a computer game when inside (which is defined as not-outside).
Other important constraints are that Bob and Jilly can only perform one activity at a time and
that it is only possible for someone to win when they play soccer, hide-and-seek, or both play a
computer game. It goes without saying that no proposition can be the case at the same time as
its negation. There also exist soft constraints. For instance, Bob and Jilly are more likely to be
at the same place and do the same thing than to be at different places and do different things.

All knowledge about constraints between (combinations of) propositions within a time step
is considered non-temporal world knowledge.Temporalworld knowledge, on the other hand,
is concerned with contingencies between (combinations of) propositions at adjacent time steps.
Here too, there are hard and soft constraints. Two hard constraints are that Bob and Jilly stop
the game they are playing after one of them wins and that a game can only be won if it was
played in the previous time step. An important soft constraint is that whoever is tired is less

Table 1
Fourteen basic microworld propositions and their intended meanings

No. Name Meaning

1 Sun The sun shines.
2 Rain It rains.
3 B outside Bob is outside.
4 J outside Jilly is outside.
5 Soccer Bob and Jilly play soccer.
6 Hide-and-seek Bob and Jilly play hide-and-seek.
7 B computer Bob plays a computer game.
8 J computer Jilly plays a computer game.
9 B dog Bob plays with the dog.

10 J dog Jilly plays with the dog.
11 B tired Bob is tired.
12 J tired Jilly is tired.
13 B wins Bob wins.
14 J wins Jilly wins.
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likely to win at the next time step. Also, Bob and Jilly are more likely to stay where they are
than to change place unless, of course, the weather changes.

The regularities that hold in our microworld will not be implemented in the model directly.
Rather, they are used to construct a realistic sequence of situations from which the world
knowledge needed by the model is extracted, as explained in the next section. Based on the
temporal relations and the non-temporal constraints, a microworld description of 250 consec-
utive example situations was constructed. In all of these, each basic proposition is stated to be
either the case or not the case. For instance, the 14th example situation states that Bob and Jilly
are playing soccer outside, that the sun does not shine and it does not rain, and that nobody is
tired or wins. The following, 15th example situation is identical except that Bob became tired,
which is why Jilly wins in example situation number 16.

4. The Distributed Situation Space model

The three limitations of the Golden and Rumelhart model discussed inSection 2.4can be
overcome by changing the representation of propositions and situations. Every dimension of
Golden and Rumelhart’s situation space corresponds to exactly one proposition, so propositions
are represented locally in this space. The DSS model, on the other hand, uses a distributed
representation. As in the Golden and Rumelhart model, propositions in the DSS model are
represented by vectors in a high-dimensional situation space. However, there is no one-to-one
correspondence between propositions and dimensions of the distributed situation space.

Section 4.1explains how propositions and story situations are represented distributively,
and vice versa: how a DSS vector can be interpreted in terms of belief values of propositions.
Following this,Section 4.2discusses the distributed representation of temporal world knowl-
edge. It explains how world knowledge affects belief values, and how this leads to measures
for temporal coherence of a story and for a proposition’s “fit” in a story.

The model’s task is to infer which propositions are likely to be the case, given the constraints
put by both the story and world knowledge. As described inSection 4.3, this process is imple-
mented as a form of pattern completion. The DSS vectors corresponding to the successive story
time steps enter the model one by one and are adjusted according to patterns of events known to
occur in the world. This results in the increase of belief values of some propositions, reflecting
the extent to which they are inferred. Although the inference process does not depend on story
coherence, increased coherence may emerge as a result. The section concludes by showing
how DSS provides a natural way of modeling story retention.

4.1. Representing a story

Several researchers have suggested distributed representations of propositions. In his Predi-
cation model,Kintsch (2000, 2001)proposes a representation in which predicate and argument
vectors taken from the LSA model (Landauer & Dumais, 1997) are combined into proposition
vectors in such a way that semantically related propositions have similar vectors. Likewise, in
StJohn and McClelland’s (1990)Sentence Gestalt model a recursive neural network is trained
to develop vector representations for simple sentences. However, neither of these represen-
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Fig. 1. Dependencies between two propositions (p and q) represented as two-dimensional areas. Propositionp
corresponds to the horizontally hatched area andq corresponds to the vertically hatched area. Propositions can
be combined by means of conjunction (bottom left), disjunction (bottom center), or negation (bottom right). The
fraction of the map covered by a proposition or combination thereof equals its probability of occurrence in the story
world.

tations for propositions is suitable for the current model since they cannot be related to the
propositions’ subjective probabilities. Such a relation is required to interpret the representation
in terms of belief values.

In this section, we shall describe a distributed vector representation from which it is possible
to directly compute the subjective probability that a proposition is the case given the story
situation. Such a subjective probability is called a belief value since it indicates to what extent
the proposition is believed to be the case in the situation. In this representation, propositions
can be combined using the Boolean operators of negation, conjunction and disjunction, while
preserving the relation between their representations and belief values.

First, in Section 4.1.1, a representation is presented in which propositions correspond to
areas in two-dimensional space. From this, the representation for negations, conjunctions, and
disjunctions of propositions follows naturally and the limitations of the Golden and Rumelhart
model mentioned before are overcome. Next,Section 4.1.2explains how such a representation
can be extracted automatically from the description of microworld events developed inSection
3, and that this representation is equivalent to a representation as points in high-dimensional
space. Finally,Section 4.1.3shows how belief values can be computed from such a distributed
representation.

4.1.1. Representing propositions and situations
Suppose there is a story world consisting of only two propositions,p andq, each of them

being the case half of the time. That is, stated as probabilities, Pr(p) = Pr(q) = .5. Also suppose
that in this story worldp andq exclude each other to some extent, causing their conjunction to
have a probability of only Pr(p∧ q) = .125 (compared to Pr(p∧ q) = Pr(p)Pr(q) = .25 that
would result if the propositions were independent).

Fig. 1 shows how this story world can be represented by a assigning top andq particular
areas within a rectangle that confines the space of all possibilities. To each proposition is
assigned an area that occupies half of the total space, reflecting the .5a priori probability of both
propositions. For clarity, this is shown for the two propositions separately in the top row ofFig. 1.

A story situation is a (partial) description of events at one moment in the story. The areas
of p andq have been assigned in such a way that any story situation can be represented. The
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two areas have an overlap occupying 1/8 of the space, reflecting that Pr(p∧ q) = .125 (Fig. 1,
bottom left). This area represents the situations in which bothp andq occur.

Not only the conjunction, but all Boolean operators on propositionsp andq are represented
faithfully by areas. For instance, Pr(p∨q) = Pr(p)+Pr(q)−Pr(p∧q) = .875 is the size of the
area occupied by at least one ofp andq (Fig. 1, bottom center) and Pr(¬p) = 1− Pr(p) = .5
is the size of the area not occupied byp (Fig. 1, bottom right).

Note that a story situation contains more specific information if it is the conjunction of more
(negations of) propositions. Consequently, in this representation the more information is avail-
able, the smaller the corresponding area becomes. Note also that this representation does not
allow for a distinction between propositions and situations: They have the same status as areas
of a certain extent. This inability to distinguish propositions from situations is in accordance
with our claim that DSS represents stories atVan Dijk and Kintsch’s (1983)situational level.
Such a representation is similar to the result of experiencing the story events (Fletcher, 1994).
Unlike their textual descriptions, experiences are not considered a combination of separate
propositions.

The three limitations of the Golden and Rumelhart model mentioned inSection 2.4are
overcome by representing propositions and situations in this way. First, constraints between
propositions within the same story time step are implemented in their representations. Second,
it is now possible to represent not only conjunctions but also disjunctions. Third, since the
representation ofp ∧ q is not the sum of the representations ofp andq separately, knowledge
about the causal effects of the conjunction can be qualitatively different from the combined
knowledge about the individual propositions.

4.1.2. Self-Organizing Maps
For any realistic amount of propositions, it is impossible to construct by hand a map such

that the projections of all propositions on this map correspond to their interdependencies.
Fortunately, this can be done automatically by means of a Self-Organizing Map (SOM), also
known as Kohonen Map (Kohonen, 1995). Such a map is a grid of cells that organizes itself to
map propositions as described above.

For each propositionp, each celli has a unique membership valueµi(p) between 0 and 1,
indicating the extent to which the cell belongs to that proposition’s area. As explained in detail
in Appendix B.1, these values are obtained by training on the 250 example situations from the
microworld description developed inSection 3. During training, the membership values are
adapted until they reflect the non-temporal constraints among propositions, while the temporal
contingencies between consecutive situations are ignored. If a perfect mapping is not possible,
the SOM makes an approximation. While these representations of propositions are important
to the psychological model, the self-organizing process by which they are obtained is not
considered part of the model. We do not claim that this is how actual mental representations
of propositions develop.

Fig. 2shows the resulting map for each basic proposition of our microworld. Moreover, the
mappings of two combinations of propositions are given as an example. A SOM does not need
to be two-dimensional, but this is convenient for visualization. Also, the exact size and form
of the map (in our case, 10× 15 hexagonal cells) do not have a large effect on the quality of
the representations.
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sun rain B outside J outside

soccer hideandseek B computer J computer

B dog J dog B tired J tired

B wins J wins hideandseek B wins or J winsoutside 

Fig. 2. Automatically constructed mappings of propositions on a Self-Organizing Map withn = 10× 15 cells. The
darkness of a cell indicates its membership value for the corresponding proposition. The last two mappings of the
bottom row are examples of combined propositions, representing “Hide-and-seek∧ B outside∧ J outside” (Bob
and Jilly play hide-and-seek outside), and “B wins∨ J wins” (Bob or Jilly wins), respectively.

The n = 150 cells of the SOM form a two-dimensional grid, but can also be viewed
as dimensions of ann-dimensional state space [0, 1]n . Any area on the SOM, defined by
membership valuesµi(p) for all cells i, corresponds to apoint in this distributed situation
space, defined by the vectorµ(p) = (µ1(p), µ2(p), . . . , µn(p)). It must be kept in mind,
however, that the difference between the SOM and DSS representations is purely aesthetic.
The DSS vectors are used in mathematical formulas, while the SOM areas are useful for
visualization purposes.

Since a proposition’s area on a SOM is fuzzy instead of sharply defined, we need to resort
to fuzzy set theory to define the areas corresponding to negations, conjunctions, and other
complex propositions. A cell’s membership values for “notp” and for “p andq” are computed
as follows:4

µi(¬p) = 1 − µi(p), µi(p ∧ q) = µi(p)µi(q). (1)

It is a well-known fact that all connectives in propositional logic can be defined in terms of
negation and conjunction, so any story situation can be represented as a DSS situation vector
using the mappings fromFig. 2and the rules for combining them inEq. (1). For instance, the
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membership values for the disjunction “p or q” follow from the De Morgan law:µi(p ∨ q) =
µi(¬(¬p ∧ ¬q)) = µi(p)+ µi(q)− µi(p)µi(q). Likewise, the statement “eitherp or q” can
be represented by defining the exclusive-or operator (xor) as:p xor q≡ (p ∨ q) ∧ ¬(p ∧ q).

A story is a sequence of situation vectors, that is, a trajectory through situation space. If
Xt ∈ [0,1]n is the situation vector at time stept, the trajectory of a story consisting ofT
situations is theT-tupleX̄ = 〈X1, X2, . . . , XT 〉. The model takes this trajectory as input and,
during the inference process, converts it to a more informative trajectory. How the resulting
trajectory can be interpreted is explained next.

4.1.3. Belief values
We now know how to represent any story situation as a vector in DSS. In order to interpret the

trajectory that results from the inference process it will also be necessary to take the opposite
route: given some vector, reconstruct the situation. This is not generally possible, since only
few points in DSS correspond exactly to some combination of propositions. We can, however,
compute the belief value of any proposition given a DSS vector.

Let X = (x1, x2, . . . , xn) be a situation vector (or, equivalently, a SOM area), withn the
number of situation-space dimensions. As an “abuse of notation,” the symbolX will also be
used to refer to the situation represented by the vectorX. As a result of training the SOM,
the subjective unconditional probability that situationX occurs in the microworld equals the
fraction of the map that it covers. This value, denotedτ(X), is the belief value of situationX
and equals

τ(X) = 1

n

∑
i

xi. (2)

Now suppose we want to compute the subjective probability of some propositionp given
that situationX is the case (in fact,p itself can be a combination of propositions). This is the
belief value ofp in situationX, denotedτ(p|X). From the fact that Pr(p|X) = Pr(p∧X)/Pr(X)
andEqs. (1) and (2), it follows that5

τ(p|X) =
∑
iµi(p)xi∑
ixi

. (3)

4.2. Temporal story world knowledge

Apart from the important difference in story representation, the DSS model and the Golden
and Rumelhart model have identical architectures. Be reminded that world-knowledge imple-
mentation in the Golden and Rumelhart model was based on four simplifying assumptions
(seeSection 2.2). Of these, only the assumption that world knowledge is implemented as in-
fluences between propositions does not apply to the DSS model. Instead, it is assumed that
world knowledge concerns influences between “dimensions” or “SOM cells.”

The model can mathematically be considered a Markov random field (MRF) (seeAppendix A).
From this theory and the four assumptions, it follows that temporal world knowledge can be
implemented using onen×nmatrix of parametersW. As explained in detail inAppendix B.2,
this matrix is based on the temporal contingencies between consecutive situations of the mi-
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croworld description after converting them into the distributed representation developed in
Section 4.1.

The world-knowledge matrix can be used to find a situation that is likely to occur at time
stept if the situations att − 1 andt + 1 are known. This is done by calculating, for each SOM
cell i at time stept, the expected value ofxi,t, given the situation vectorsXt−1 andXt+1. As
proven inAppendix A, this expected value equals

Ei,t = σ(Xt−1W·i +Wi·X′
t+1). (4)

Here,σ is the sigmoidal function defined asσ(z) = (1 − e−z)−1 − (1/z), with σ(0) = 1/2.
W·i is theith column ofWandWi· is its ith row. The column vectorX′

t+1 is the transpose of the
row vectorXt+1. In case there is no previous or next situation, sot = 1 or t = T , it is defined
thatX0 = �0 orXT+1 = �0, respectively. Theexpected situation vectorat time stept is formed
by the collection of expected values:Et = (E1,t, . . . , En,t).

Eq. (4) is crucial for the inference process described inSection 4.3. Also, it is used to
compute the belief value of propositionp at time stept, given the situations at the neighboring
time stepst − 1 andt + 1. TakingEq. (3)for computing belief values, but using the expected
vectorEt instead of the actual situation vectorXt, results in the expression

τ(pt|Xt−1, Xt+1) =
∑
iµi(p)Ei,t∑
iEi,t

(5)

for the subjective probability thatp is the case at time stept, given what is known aboutt − 1
and t + 1. This belief value is important for computing two measures that give information
about the temporal relatedness of situations:proposition fitandstory coherence, defined below.

Magliano, Zwaan, and Graesser (1999)present data showing that the extent to which a
sentence fits in a story context, is rated higher if the sentence is more causally connected to
the other story statements. Likewise, we define proposition fit as the proposition’s strength of
relation with neighboring situations. Suppose propositionp can be expected to occur at time
stept given the previous and next situations, for instance becauseXt−1 is a possible cause of
pt, andXt+1 is a possible consequence. In that case, the belief value ofpt givenXt−1 andXt+1

will be larger than the unconditional belief valueτ(p). The difference between the two is the
proposition fit ofpt:

prop. fit(pt) = τ(pt|Xt−1, Xt+1)− τ(p). (6)

Story coherence is a measure for the extent to which a sequence of situations is in con-
cordance with temporal world knowledge. If situationsXt−1 andXt+1 increase the amount of
belief in the intermediate situationXt, then the trajectory〈Xt−1, Xt, Xt+1〉 is temporally coher-
ent. The coherence of a complete story trajectory is the increase in belief value by neighboring
situations, averaged over all time steps:

coh(X̄) = 1

T

∑
t

(τ(Xt|Xt−1, Xt+1)− τ(Xt)). (7)
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4.3. Model processing

4.3.1. Inference
The statements of a story, together with world knowledge, put constraints on the propositions

that can be the case in the story. According to the DSS model, inference is reflected in the
propositions’ belief values changing to satisfy these constraints. This means that propositions
that are likely to be the case in the story have their belief values increased, while the belief values
of unlikely propositions are decreased, which generally results in increased story coherence.
It is important to note that story coherence and belief values do not control or even influence
the inference process, but only reflect its outcome.

Before running the model on a story, the story’s situations are converted into vectors in
situation space, as explained inSection 4.1. Next, the model starts processing on the first two
situation vectorsX1 andX2 simultaneously because no temporal inferences are possible with
only a single situation. Contrary to the Golden and Rumelhart model, all the following story
situations enter the model one by one, and are processed as they come in. When the inference
process is completed for the story so far, the next situation (if any) enters the model and the
process resumes. Processing of the older situations resumes as well, so existing inferences
about earlier time steps can be withdrawn and new inferences can be made.

During the inference process, the model uses temporal world knowledge to convert the
sequence of situation vectors (i.e., the trajectory) corresponding to the story read so far, into
one that contains the information present in the story as well as new information inferred
from it. This means that the process needs to solve two problems. First, the facts given by the
story should be preserved. Second, the story trajectory should be adapted to temporal world
knowledge.

4.3.1.1. Preventing inconsistency.Preventing text-given propositions from being denied is
straightforward in Golden and Rumelhart’s localist situation space: These propositions are
never allowed to have their belief values changed. In the DSS model, there is no direct connec-
tion between situation vectors and propositions. Still, it is not difficult to prevent conclusions
that are inconsistent with the original story. Everything outside a story situation’s SOM area
belongs to the negation of the situation and may therefore not be inferred during the inference
process. A story situation plus extra information is always a subarea of the original situation’s
area. Ifx0

i,t is the value of SOM celli at time stept of the original story, then after any amount
of processing time, the current valuexi,t may not be larger thanx0

i,t.

4.3.1.2. Applying temporal knowledge.Knowledge about the temporal patterns occurring in
the microworld is encoded in matrixW. During the inference process, the trajectory is brought
into closer correspondence with this matrix. This temporal pattern matching is accomplished
by adjusting all individual valuesxi,t towards levels that are more likely considering the current
trajectory and the values inW.

Eq. (4) gives the expected valueEi,t of SOM cell i at time stept, given the rest of the
trajectory and world knowledge. However, it follows from MRF theory that themost likely
value for any SOM celli at time stept is eitherxi,t = 0 or xi,t = 1 (seeAppendix A). If the
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expected valueEi,t is larger than .5, the most likely value isxi,t = 1, soxi,t has to increase
(taking into account that its maximum value isx0

i,t). WhenEi,t < .5, the most likely value is
xi,t = 0, soxi,t should decrease (taking into account that it cannot become negative). This is
done for all values in the trajectorȳX in parallel.

Since the expected values at time stept depend on the current values ofXt±1, and the
expected values att ± 1 depend onXt, the xs cannot be set to 0 orx0 directly. Instead, a
first-order differential equation states how thechangein value ofxi,t over processing time,
denoteḋxi,t, depends on the current trajectory:

ẋi,t =




(
Ei,t − 1

2

)
(x0
i,t − xi,t) if Ei,t >

1

2(
Ei,t − 1

2

)
xi,t if Ei,t ≤ 1

2
.

(8)

The factor (Ei,t − 1/2) makes sure thatxi,t always changes towards a more likely value: It
increases as long asEi,t > .5 and decreases whenEi,t < .5. If xi,t is increasing, its rate
of change is multiplied by its distance to the maximum valuex0

i,t, which preventsxi,t from
becoming larger than this maximum. Ifxi,t is decreasing, its rate of change is multiplied by its
distance to 0, which preventsxi,t from becoming negative.

Given an initial trajectory,Eq. (8) can be solved approximately, giving the development
of the trajectory over continuous time expressed in arbitrary “model processing time” units.
The original story trajectorȳX0 serves as the initial value for this evaluation. The equation
is solved by the functionode45 in Matlab 6.1, using a method developed byDormand and
Prince (1980).

4.3.1.3. Depth of processing.When a situation has been sufficiently processed, the next situ-
ation is allowed to enter the model. The criterium for sufficient processing is controlled by a
positive depth-of-processing parameterθ. Eq. (8) is evaluated until the trajectory’s total rate
of change is less than the threshold value 1/θ:

∑
i,t

|ẋi,t| < 1

θ
, (9)

wheret ranges from 1 to the number of story situations in the model at that moment. Large
values ofθ correspond to deep processing, since story situations are added when inferencing
on the previous situations is mostly completed. Asθ decreases, the criterium for convergence
becomes less stringent and the process halts even if much can still be inferred, corresponding
to shallower processing. In all simulations presented here, the value ofθ was set to 0.3 unless
stated otherwise.

4.3.1.4. Amount of inference.At any moment during the inference process, the trajectory can
be interpreted by computing the belief value of any proposition-at-time-steppt. If the process
results in an increase of belief inpt, this means thatpt is positively inferred. Likewise, if its
belief value decreases,pt is negatively inferred, meaning that it is inferred not to be the case.
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Formally, the amount of inference is defined as the increase of the proposition’s belief value
relative to its value in the original story:

inf (pt) = τ(pt|Xt)− τ(pt|X0
t ). (10)

For validation against empirical findings, we also require a measure for the total amount of
inference that takes place during processing. This is not simplyEq. (10)summed over all basic
propositions because complex propositions should be taken into account as well. The total
amount of inference is therefore determined by directly comparing the initial story trajectory
to the result of its processing.

The unconditional belief value of a story situationX0
t is computed usingEq. (2). When

new facts about the situation at time stept are inferred, it is replaced by a more informative
situationXt. Since this new situation is more specific, it is less likely to occur and has a lower
unconditional belief value. The total amount of inference on the situation at time stept equals
its decrease in unconditional belief value:τ(X0

t )−τ(Xt). This can be interpreted as the increase
in the amount of knowledge there is about the situation. The total amount of inference on a
trajectory is the sum of the amounts of inference on its individual situations:

total inf(X̄) =
∑
t

(τ(X0
t )− τ(Xt)), (11)

wheret ranges from 1 to the number of story situations in the model at that moment. Note that
the total amount of inference is largest whenτ(Xt) = 0, which is only the case ifXt equals
the nil vector. If this happens, the model has inferred that the situation was inconsistent with
the rest of the story and should not be believed. A reader making such an inference may well
discard it and accept the story at face value, awaiting further information and resulting in no
inference made. The model does not include a process that evaluates its inferences. Therefore,
when faced with a sequence of situations that is inconsistent according to world knowledge, it
can be inferred that one of the situations is impossible.

4.3.2. Retention
The DSS model can easily be adapted for modeling retention of story propositions. Over

time, the memory trace of a story becomes weaker, meaning that the amount of information in
it decreases. In DSS, a situation that covers a large part of the SOM contains less information
than a situation that covers only a small part. Therefore, reducing the amount of information in
a trajectory corresponds to an increase in the SOM cell valuesxi,t. The rate of increase depends
on world knowledge and on the rest of the trajectory. If there is much evidence that somexi,t
has a small value (i.e.,Ei,t is small), this value will drift up to 1 more slowly. The weakening
of a story’s memory trace over retention time is given by the differential equation

ẋi,t = Ei,t(1 − xi,t). (12)

The value ofxi,t increases at a rate equal toEi,t, multiplied by its distance to 1 in order
to preventxi,t from exceeding this maximum value. The story trajectory resulting from the
inference process serves as the initial value for the evaluation ofEq. (12). The time over which
the equation is evaluated corresponds to the amount of time that elapsed since the story was
read, expressed in arbitrary “model retention time” units.
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The retention process, like the inference process, is not affected by belief values but results
in adjusted belief values. As retention time grows, the belief values of the story’s propositions
regress to their unconditional levels. The extent to which a proposition is still retained can
therefore be defined as the difference between its current and its unconditional belief value:

ret(pt) = τ(pt|Xt)− τ(p). (13)

5. Results

5.1. World-knowledge implementation

As explained in detail inAppendix B, the world knowledge used by the model was extracted
in two steps from the microworld description developed inSection 3. First, the microworld
description was used to train a Self-Organizing Map, the result of which is shown inFig. 2.
Next, these mappings were used to convert the microworld description into a distributed rep-
resentation, from which the world-knowledge matrixW was computed.

How can we ascertain that world knowledge was implemented successfully? Be reminded
that the belief values, based on this world-knowledge implementation, can be interpreted as
the subjective probabilities of propositions. The probabilities also follow directly from the
microworld description. By comparing these “actual” probabilities (Pr) to the belief values
(τ) as computed byEqs. (2), (3) and (5), it can be established whether the model’s world
knowledge reflects the regularities that hold in the microworld.

First, the subjective and actual probabilities of all conjunctionsp ∧ q of (negations of)
basic propositions were compared. The resulting scatter plot is shown in the left panel of
Fig. 3. Second, we tested whether the non-temporal dependencies among propositions are
captured by their vector representations. If a (negation of a) basic propositionp is given, the
probability that a positive basic propositions is the case at the same moment in the microworld
description equals Pr(s|p). Of all situations in whichp is the case, this is the proportion that
includes. The overall proportion of situations in which propositions occurs is itsa priori
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Fig. 3. Scatter plots of actual probabilities (Pr) versus subjective probabilities (τ), and coefficients of correlation
(r). Propositions denoted byp or by q are basic propositions or negations thereof. Propositions denoted bys are
positive basic propositions.
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Table 2
Three stories used to model specific inferences

Story t Situation Possible text

1 1 ¬Rain∧ ¬Sun It doesn’t rain and the sun doesn’t shine.
2 (Soccer∨ Hide-and-seek∨ (B computer

∧ J computer))∧ (B wins∨ J wins)
Bob and Jilly are playing a game and one of them wins.

2 1 Sun The sun is shining.
2 Hide-and-seek Bob and Jilly are playing hide-and-seek.
3 ¬(B outside)∧ ¬(J outside) They are inside.

3 1 Sun∧ Soccer The sun shines and Bob and Jilly play soccer.
2 B tired∧ ¬(J tired) Bob is tired, but Jilly isn’t.
3 B wins∨ J wins Next, one of them wins.
4 B tired∧ J tired Now they are both tired.
5 Rain It starts raining.
6 B inside∧ J inside∧ Hide-and-seek Bob and Jilly go and play hide-and-seek inside.
7 J tired∧ ¬(B tired) Only Jilly is tired.
8 B wins∨ J wins Someone wins.
9 B computer∧ J dog Later, Bob is playing a computer game,

and Jilly is playing with the dog.

For each situation, it is shown how it is constructed from basic propositions and a possible text describing this
situation is given.

probability Pr(s), so the probability ofschanges by an amount Pr(s|p)−Pr(s) under influence
of p. The center panel ofFig. 3 shows the scatter plot of these actual probability differences
versus their corresponding subjective probability differences. Third, we tested whether the
world-knowledge matrixW correctly captures temporal dependencies among propositions.
In the microworld, the amount of influence that a propositionp at time stept ± 1 has on a
propositions at t is Pr(st|pt±1) − Pr(s), the change in probability ofst. All positive basic
propositionsst and (negations of) basic propositionspt±1 were used for the scatter plot of
actual versus subjective probability differences in the right panel ofFig. 3.

In all three cases, the correlation between actual and subjective probabilities was very high:
.996, .979, and .914, respectively. Also, the three scatter plots show that there are no outliers. In
short, the vector representation of propositions and the world-knowledge matrixWdid capture
the regularities that occurred in the microworld description.

5.2. Inference

5.2.1. Specific inferences
In order to test the model’s ability to make specific inferences, three simple sequences of

situations (“stories”) were constructed. These stories, shown inTable 2, varied in length from
two to nine situations. Each story was meant to evoke one or more specific inferences.

• Story 1: realizing the exclusive-or relation. From the fact that Bob or Jilly wins, it can
be inferred that they must have been at the same place in the previous time step. This
inference requires the exclusive-or relation: IfeitherBobor Jilly is outside att, winning
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Fig. 4. Amount of inference (Eq. (10)) of “Bob and Jilly are outside” (B outside∧ J outside), of “Bob and Jilly
are inside” (¬(B outside) ∧ −(J outside)), and of “either Bob or Jilly is outside” (B outsidexor J outside) during
processing of Story 1.

cannot occur att+1; if bothare (not) outside att, winning is possible att+1. Story 1 tests
whether this knowledge was successfully implemented in matrixW. The situation att = 1
gives no indication where Bob and Jilly might be. Following this, someone wins, which
means that they both must have been either outside or not outside (which is equivalent
to being inside) att = 1. The model is able to correctly infer this, as can be seen from
Fig. 4. This result shows that the DSS model can handle the exclusive-or relation required
to make this inference.

The amounts of inference of “Bob and Jilly are outside” and of “Bob and Jilly are
inside” seem fairly low. There are two reasons for this. First, these two situations exclude
each other and can therefore never be both strongly inferred. Second, Bob and Jilly are
a priori more likely to be at the same place than to be at different places. As a result,
the belief values for “Bob and Jilly are (not) outside” are high to begin with and cannot
increase much more.

• Story 2: retracting an inference. After reading the first two sentences of Story 2, one
might infer that Bob and Jilly play hide-and-seekoutside. This inference is based on the
information that the sun shines and on the knowledge that this usually causes them to be
outside. However, the third sentence tells us that they are in fact inside att = 3. This does
not necessarily mean that they were already inside att = 2, but it does make that more
likely. Therefore, the inference that Bob and Jilly are outside att = 2 should be retracted.
As Fig. 5 shows, this is indeed what the model does. At first, the belief value of “Bob
and Jilly are outside” att = 2 increases. After 5.38 units of model processing time have
passed, the process stabilizes enough (i.e., the total trajectory change is less than 1/θ, as
in Eq. (9)) to allow the third situation to be added to the story trajectory. At that moment,
the belief value decreases almost to its original level: it is no longer inferred that Bob and
Jilly are outside during story time stept = 2.

• Story 3: inferring who wins at what. Whoever is tired, is less likely to win. In Story 3, it
is Bob who is tired at first, so the one who wins att = 3 is probably not him, but Jilly.
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Fig. 5. Amount of inference (Eq. (10)) of “Bob and Jilly are outside” and of “Bob and Jilly are inside” att = 2,
during processing of Story 2. The third situation enters the model after 5.38 units of processing time, as indicated
by the arrow.

The left graph inFig. 6shows that the model infers exactly this. The right graph shows
that Bob wins later in the story (t = 8), when Jilly is tired.

Also, the model infers what Bob and Jilly are playing when one of them wins. Note that
the game being played is mentioned two time steps before it is stated that someone wins.
Still, it is inferred that the game being won is soccer att = 3 and hide-and-seek att = 8.
Since situations are only directly influenced by the previous and next time steps, this
information must have travelled through the intermediate time stepst = 2 andt = 7, re-
spectively, showing that indirect influence from more distant situations is indeed possible.
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Fig. 6. Amounts of inference (Eq. (10)) during processing of Story 3. Left: inference att = 3 of
“Bob wins,” of “Jilly wins,” of “Bob and Jilly play soccer,” and of “Bob and Jilly play something else”
(Hide-and-seek∨ (B computer∧ J computer)). The third situation is added to the story trajectory at 1.19 units
of processing time after the inference process began with the first two situations. Right: inference att = 8 of
“Bob wins,” of “Jilly wins,” of “Bob and Jilly play hide-and-seek” and of “Bob and Jilly play something else”
(Soccer∨ (B computer∧ J computer)). The eighth situation enters the model at 15.10 units of processing time.
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5.2.2. Inferences in general
The previous section shows that the model’s inferences correspond to our intuitions: propo-

sitions that are implied by the story are inferred. In order to test this more systematically, 100
random stories were constructed and used as input to the inference model. The stories varied
in length from three to seven situations. There were 20 random stories of each length, so the
total number of story situations equaled 20× (3+ 4+ 5+ 6+ 7) = 500. Each such situation
consisted of exactly one basic proposition or its negation.

In general, propositions that are inferred on the basis of temporal world knowledge should be

• implied by the story;
• possible given the story situation. If it is stated that Bob is outside, it cannot be inferred

that he is inside at the same moment in story time;
• not already given by the story situation. If Bob and Jilly play soccer, then they must be

outside. This inference does not require information from other story situations, and is
therefore not an inference in the sense ofEq. (10).

For each situation of each random story, the proposition fit (Eq. (6)) and amount of inference
(Eq. (10)) of all basic propositions were obtained (except for the proposition that constituted
the situation). The correlation between amount of inference and fit of propositions was .66
(based on 500 situations× (14 − 1)propositions= 6,500 observations), indicating that the
model does indeed infer propositions that are implied. Moreover, propositions with positive
fit were inferred to be the case (positive inference) and propositions with negative fit were
inferred to be not the case (negative inference).

Whether a propositionpt is possible given the original story situationX0
t , can be seen from

its initial belief valueτ(pt|X0
t ). If this value is close to 0,pt is unlikely to be the case at that

moment in the story and should not be inferred even if it is a likely proposition given the rest
of the story. Likewise, if the initial belief value is close to 1,pt is already likely given story
situationX0

t and it should not be inferred to be the case att from situations at other story time
steps.

Indeed, this is what the model predicts. All 500 situations× 14 basic propositions= 7,000
observations were divided into two groups. The “non-inferable” group contained cases with
initial belief values so close to 0 or1 (less than .001 or more than .999) that inference was not
expected to occur. The “inferable” group contained the others. The average absolute proposition
fit was .11 among the non-inferables and .08 among the inferables, indicating that the latter
would be inferred less if only proposition fit would matter. However, the opposite was the case:
The average absolute amount of inference was .07 among the inferables but only 2.4 × 10−5

among the non-inferables.

5.2.3. Inference and coherence
As noted in the introduction, the inferences that readers most easily make on-line are infer-

ences that contribute to the coherence of the story, which in the model is defined inEq. (7). The
coherences of the 100 random stories ranged from−.23 to .25, with an average of .001. Since
coherence is a measure for the match between a story and temporal world knowledge, and the
inference process adapts the trajectory to world-knowledge matrixW, the story coherences
of the trajectories increased through this process. The result was a larger coherence value for
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Table 3
Stories with different relatedness levels

t Relatedness level Situation Possible text

1 Soccer Bob and Jilly play soccer.

2 1 B tired∧ ¬(J tired) Only Bob is tired.
2 B tired Bob is tired.
3 B tiredxor J tired One of them is tired.
4 J tired Jilly is tired.
5 J tired∧ ¬(B tired) Only Jilly is tired.

3 B wins Bob wins.

Relatedness level is varied by using one of the five situations att = 2.

all 100 stories (the average was .28), showing that the inferences contributed to the stories’
coherence. However, this is not a built-in consequence of the model’s equations: Transient
decreases of coherence during processing were observed for 17 stories, taking 4.5% of their
processing time.

5.2.4. Relatedness, inference and reading time
A story sentence is read faster when it is more related to the preceding sentence.Myers,

Shinjo, and Duffy (1987), and alsoGolding, Millis, Hauselt, and Sego (1995), showed this by
having subjects read stories consisting of just two events. The relatedness between those events
varied: The second story event was either unrelated to the first event or was predictable to a
certain degree. They found that reading the second sentence took more time when it was less
related to the first sentence.Murray (1995, 1997)also had subjects read two-sentence stories
but included stories in which the events were adversatively related, meaning that the first story
event made the second event less likely to occur. He found that the second sentence took more
time to read when it was adversatively related to the first sentence than when it was unrelated.
Using more realistic texts,Sanders and Noordman (2000)showed that a sentence is read faster
when it is embedded in a text that causally implies it, than when it is not causally related to the
rest of the text.

To test whether the model predicts the same relation between relatedness and reading time,
five stories with different levels of relatedness were constructed. Each of the stories, shown in
Table 3, consisted of three situations, the first of which was “soccer” and the last was “Bob
wins.” Relatedness was varied among stories by modifying the second situation. Since Bob is
more likely to win when Jilly is tired, stating that Jilly is tired and Bob is not, should result in
the highest relatedness to the last situation. If, on the other hand, Bob is tired and Jilly is not,
relatedness is lowest. Intermediate levels of relatedness are obtained in a similar way.

The time needed by the model to process the last situation and the amount of inference that
took place during this process, are plotted inFig. 7. These results clearly show that a higher
level of relatedness leads to shorter processing time and less inference, which is consistent
with the generally accepted idea that the on-line construction of an inference takes time.
For instance,Vonk and Noordman (1990)had subjects read texts that contained an inference
evoking sentence. When the information to be inferred was explicitly stated in the text before
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Fig. 7. Amount of time needed to process the situation “Bob wins” (left) and total amount of inference (Eq. (11))
that took place during this process (right), as a function of the situation’s relatedness to the previous situation.

the inferring sentence, reading times on the inferring sentence were shorter than when the
information was not stated but had to be inferred.

Stories describing less related events evoke more inferences, which slows down reading. To
test whether this relation holds in general, the model was run on all stories consisting of just
two situations, with each situation consisting of exactly one (negation of a) basic proposition.
Since there are 14 positive basic propositions, the number of stories was(2 × 14)2 = 784.
Story coherence was taken as a measure of relatedness. These ranged from−.34 to .38, so the
relatedness of the two situations ranged from adversative to predictable.

Fig. 8 directly compares the model’s results to those ofGolding et al. (1995)andMyers
et al. (1987). Since they did not use stories with adversatively related sentences, only the
model’s results for the 394 stories with non-negative coherence are plotted. The effect of story
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Fig. 8. Left: amount of processing time needed to process two-sentence stories, as a function of story coherence
(Eq. (7)). Each of the eight points in the graph is the average of processing times and coherences for 49 or 50 stories.
Right: reading time on the second sentence of two-sentence stories, as a function of sentence relatedness (Golding
et al., 1995; Myers et al., 1987).
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Fig. 9. Effect of depth-of-processing parameterθ on average processing time per situation (left) and total amount
of inference (Eq. (11)) during processing of each situation (right).

coherence on processing time as found by the model is quite similar to the effect of relatedness
on reading time as found by Myers et al. and Golding et al.

Over all 784 stories tested, the correlation between story coherence and amount of inference
was−.42. A sequence of story situations that violates temporal world knowledge will evoke
more inferences than a story that is in accordance with world knowledge. This results in
an increase in processing time. Accordingly, there was a negative correlation (r = −.36)
between story coherence and model processing time. The model correctly predicts that stories
with adversatively related events are processed slower than stories that describe unrelated
events, and that stories describing positively related events are processed quickest. The strong
relation between amount of inference and processing time was also reflected in the high positive
correlation (r = .93) between the two.

5.2.5. Inference and depth of processing
Noordman et al. (1992)varied subjects’ reading goal by either instructing them to check for

inconsistencies in a text, or by not giving such an instruction. They found that the consistency-
checking instruction led to more inferences and longer reading times.Stewart, Pickering,
and Sanford (2000)used another method to manipulate the reading process. Their subjects
read single sentences and had to answer a related question after every sentence. In one con-
dition, all of these questions could be answered without making any inference from the sen-
tences, while in the other condition inferences needed to be made from every sentence. It
was found that reading slowed down when inferencing was required compared to when it was
not.

Supposedly, instructing readers to check for inconsistencies or having them answer inference-
requiring questions leads to deeper processing of the texts. In the model, depth of processing
is controlled by parameterθ. Fig. 9shows the effect of varyingθ on average processing time
per situation and total amount of inference during processing of each situation, for the 100 ran-
dom stories constructed inSection 5.2.2. In accordance with empirical data, deeper processing
resulted in longer processing times6 and more inference.
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Fig. 10. Left: average amount of retention (Eq. (13)) of story propositions of the 100 random stories, as a function
of retention time. Right: average coherence (Eq. (7)) of retained story trajectories as a function of retention time.

5.3. Retention

The inference results showed that inferences contributed to the stories’ coherences. The
retention process behaves similarly: Although retention of story propositions decreases as
retention time grows (Fig. 10, left) the average coherence of the retained trajectories shows an
increase before it starts to decrease after approximately three units of retention time (Fig. 10,
right). As retention time reaches infinity, all SOM cell values approach 1, which byEqs. (5)
and (7)means that the coherence equals 0.

There are two explanations for the increase in coherence during retention. First, propositions
may be forgotten selectively. Indeed, it is well known that some story propositions are recalled
more easily than others. In a cued recall task,Myers et al. (1987)found that, in general, a
sentence was more likely to be recalled if it was more related to the one that was given as a
recall cue. However, the highest levels of relatedness resulted in a small decrease in recall.
This last effect was not found byVarnhagen, Morrison, and Everall (1994). They had children
read a number of stories and asked them to recall as much of the stories as possible, without
giving any sentences as cue. Story propositions with many causal connections in the story
were recalled more often than propositions with fewer connections. No decrease in free recall
for the highest levels of connectivity was found. The same relation between number of causal
connections and recall probability was found byTrabasso and Van den Broek (1985)and by
Fletcher and Bloom (1988). In short, propositions that form the “causal backbone” of the
story are remembered best. Moreover,Goldman and Varnhagen (1986)found that this effect is
stronger in a delayed free recall task than in immediate recall. Not surprisingly, they also found
that fewer story propositions are recalled in delayed recall than in immediate recall, as did many
other researchers (e.g.,Duffy, Shinjo, & Myers, 1990; Trabasso & Van den Broek, 1985).

Another reason for the increasing coherence might be the occurrence of intrusions. Readers
occasionally recall propositions that were never part of the text, but are part of their knowledge.
Bower, Black, and Turner (1979)as well asSmith and Graesser (1981)found that propositions
that form part of a story script and are therefore highly predictable in the story, are falsely
recalled more often than less predictable propositions.Luftig (1982) too found higher intru-
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Fig. 11. Correlation between retention (Eq. (13)) and fit (Eq. (6)) of propositions as a function of model retention
time, for story propositions and non-story propositions (intrusions).

sion rates of propositions that, according to world knowledge, follow from the text than of
propositions that do not. Moreover, this effect was stronger in a delayed recall task than in
immediate recall.

If the model accounts for these empirical data, there should be a positive correlation be-
tween proposition fit and retention both for story propositions and for non-story propositions
(intrusions). Moreover, these correlations should increase over retention time.Fig. 11shows
that the model does predict all of these effects. After two units of retention time, the correlation
between fit and retention is .49 (based on 500 observations) for story propositions and .58
(based on 6,500 observations) for non-story propositions.

6. Discussion

6.1. Evaluation of the model

6.1.1. Inference
The DSS model takes as input a temporal sequence of story situations and uses world

knowledge about temporal contingencies to infer which propositions that were not stated in
the story are likely to be the case. The results show that this was successful: The inferred
propositions were temporally implied by the story statements, were not impossible or already
given in the story, and contributed to the story’s coherence. The model does not make any
distinction between reasoning forwards and backwards in story time, nor between inferring
a single-situation event (like winning) and events than span multiple story time steps (like
rain). All of these are handled by the same inference process. More importantly, the inference
model was validated against several experimental findings. Processing of less coherent stories
took more time because these stories evoked more inferences than did more coherent stories.
Also, increasing depth of processing led to more inference and slower reading. That the model
accounts for these experimental results is not trivial. The model was only designed to perform
inferencing by adjusting incomplete descriptions of story events to world knowledge, and not



S.L. Frank et al. / Cognitive Science 27 (2003) 875–910 901

to simulate particular experimental data. Therefore, accounting for these data is an emergent
property of the model.

The two major theories of on-line inference are the minimalist theory (McKoon & Ratcliff,
1992), which claims that readers do not commonly create elaborate situation models during
reading, and the constructionist theory (Graesser et al., 1994), which says that readers do form
such situation models. Clearly, the DSS model leans more towards the latter account since
all of its inferences are based on situation models. However, the model also differs from the
constructionist theory in one important respect. Graesser et al. claim that readers actively try
to accomplish coherence of a text, according to the so-called search-after-meaning principle.
In other words, inferencing is driven by a need for coherence. The model offers a reverse
interpretation: Increased coherence results from inferences, which emerge from matching the
events described in the story to patterns of events known to occur in the world. There is no search
for story coherence. Rather, incoming information automatically adjusts the story trajectory,
generally resulting in increased coherence.

Technically, making the model coherence-driven is not hard to do. A standard gradient-ascent
algorithm can be applied to search for a local maximum of story coherence (Eq. (7)) starting with
the original story trajectory. However, such a coherence-driven implementation is theoretically
excluded in our approach. The definition of story coherence is based on belief values, which
depend on the situation vectors but cannot influence them. Therefore, the inference process
can never be controlled by the story’s coherence. Nevertheless, if the increase of coherence
is wrongly interpreted as the driving force of the process instead of its consequence, this
leads to the illusion of an active search for coherence. The switch from localist to distributed
representations makes clear how belief values and coherence form an abstraction, based on a
story representation, and can therefore not change the story representation. This shows that
using distributed representations is not only useful in practice, allowing for more flexibility
in representing situations and world knowledge than localist representations like Golden and
Rumelhart’s, but is also of theoretical importance.

6.1.2. Retention
The retention model showed that story coherence can increase over retention time although

story propositions are forgotten. Like the inference process, the retention process does not look
for coherence nor are propositions in any way selected to be retained or forgotten. Preservation
of coherence simply follows as an emergent property from the differential equation that defines
the retention process. This equation does not know about coherence or even propositions, and
cannot make use of such higher level concepts. Nevertheless, the model correctly predicted
empirical recall data. Propositions that were more related to the story were retained better than
unrelated propositions and intrusion rates were higher for predictable propositions than for
unpredictable ones. Both of these effects increased as retention time grew.

6.2. Limitations and possible improvements

6.2.1. Temporal world knowledge
Using the MRF framework guarantees a mathematically sound model. However, certain

architectural assumptions were made in order to simplify the MRF analysis, and it is unclear to
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what extent these limit the model’s abilities. In particular, the symmetry assumption claimed
that the temporal knowledge matrixW can be used to reason forwards in story time and the
transposed matrixW′ to reason backwards. However, there is no reason to assume that the real
world shows the same symmetry.

It is important to note that from the symmetry assumption it does not follow that the belief
values are symmetrical. In general,τ(pt|qt±1) �= τ(qt±1|pt). To give an example: If Bob or
Jilly wins at t, it is certain that they did not play with the dog att − 1. This is reflected in the
high belief valueτ(¬(B ∨ J dog)t−1|B ∨ J winst) = .90. On the other hand, given that Bob and
Jilly do not play with the dog att − 1, it is not at all certain that one of them will win att.
Indeed, the corresponding belief value isτ(B ∨ J winst|¬(B ∨ J dog)t−1) = .24.

The high correlation between microworld probability differences(Pr(pt|qt±1) − Pr(p))
and belief value differences(τ(pt|qt±1) − τ(p)) shows that at least in our microworld, the
symmetry assumption does not seriously limit the quality of the knowledge matrix. In other
(micro)worlds, this might be different. Fortunately, the MRF approach is not necessary for
the model’s functioning and can easily be replaced by only changing the definition of the
Ei,t-function (Eq. (4)). This function gives the expected value forxi,t, given the previous and/or
next situations and world knowledge. It is the model’s central function, since it states how world
knowledge is implemented and applied to a story representation. If a better implementation of
world knowledge is found, or a better way to apply it to the story trajectory, only theEi,t-function
needs to be changed accordingly. All of the four assumptions on which world-knowledge
implementation is based can be discarded if a betterEi,t-function is to be found without them.

6.2.2. Stories versus texts
As far as the model is concerned, a story is no more than a temporal sequence of situations.

This makes story comprehension no different from understanding events going on in the real
world. The reader of a text, however, can make use of information that is not available to an
observer of real world events. In particular, causal connectives like “because” and “although”
can influence the processing of a text (Millis & Just, 1994) and its recall (Millis, Graesser, &
Haberlandt, 1993), but are of course not available in the real world.

The same is true for temporal connectives. For instance, in Story 2 ofSection 5.2.1, Bob and
Jilly are inside att = 3 from which it is inferred that they were also inside att = 2, when they
were playing hide-and-seek. It is not possible to tell the model that a new episode had started at
t = 3 by adding a connective like “next” or “then.”Bestgen and Vonk (1995)showed that tem-
poral markers like “then” reduce the availability of information in the previous sentence, so such
a connective could signal that the situations att = 2 and 3 do not need to influence each other.

The current model does not make use of textual information because it represents stories at
the situational level of text representation. Situations (or “facts,” as Kintsch and Van Dijk call
them) are related by the effect that they have on each other’s probabilities: “relations between
facts in some possible world [. . . ] are typically of a conditional nature, where the conditional
relation may range from possibility, compatibility, or enablement via probability to various
kinds of necessity” (Kintsch & Van Dijk, 1978, p. 390). At the textbase level, propositions are
not related by probability, but “connection relations between propositions in a coherent text
base are typically expressed by connectives such as ‘and,’ ‘but,’ ‘because,’ ‘although,’ ‘yet,’
‘then,’ ‘next,’ and so on” (p. 390).
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This raises the question whether such a textbase level can be added to the DSS model. Textual
information carried by, for instance, connectives is present at this level and can influence the
inferencing process that takes place at the situational level. Currently, we are investigating
ways to extend the DSS model with such a textbase level.

Notes

1. The world-knowledge matrix is denoted byB in Golden and Rumelhart’s notation.
2. In the field of propositional logic, the De Morgan law states how disjunction can be

rewritten in terms of negation and conjunction:p ∨ q ≡ ¬(¬p ∧ ¬q). However, this
does not help here, since the conjunction¬p ∧ ¬q must be represented as a single
proposition in order to be negated.

3. This follows directly from the expression for the probability of a proposition (Eq. (A.5)
in Appendix A). If it is known that propositionq causesp and thatr causesp, bothwqp

andwrp are positive. If onlyqt−1 is the case, the probability ofpt equals the logistic
function of ap + wqp. If both qt−1 andrt−1 occur, the probability ofpt is the logistic
function ofap+wqp+wrp, which must be larger sincewqp > 0,wrp > 0 and the logistic
function is monotonically increasing. Ergo, it is impossible to represent the knowledge
that bothq andr causep, butq ∧ r causes¬p.

4. This is not the only way to model negation and conjunction in fuzzy logic. In par-
ticular,µi(p ∧ q) = min{µi(p), µi(q)} is often used. However, using the product to
model conjunction yieldsEq. (3), which has the useful property thatτ(p|X) = 1 − τ
(¬p|X).

5. Note that the belief value ofp given anX = p can be somewhat less than 1, reflecting
the uncertainty inherent in fuzzy logic systems. In practice, however, the subjective
probabilities correspond very closely to the actual probabilities in the microworld, as is
shown in the results ofSection 5.1.

6. FromEq. (9), which determines when processing of a situation is completed, it might
seem as if processing time can never decrease with increasingθ. However, this only is
true for the first two story situations. Deeper processing can lead to shorter processing
time for the situation att + 1 if this situation is highly compatible with an inference
that was made at story time stept. With shallower processing this “t + 1-compatible”
inference might not be made, leading to longer processing time fort + 1. In fact,
when comparingθ = 0.3 to θ = 0.6, this effect occurs in three of the 100 random
stories.
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Appendix A. Markov random fields

The mathematics of both the Golden and Rumelhart and the DSS model are based on Markov
random field theory. A simplified introduction to this theory, applied to the two models, is
presented here. For a more thorough explanation, see for instanceGolden (1996, Chap. 6.3)or
Cressie (1991, Chap. 6.4).

A.1. Model architecture

Suppose we havemrandom variablesz1, . . . , zm, all real valued on the interval [0, 1]. If the
probability of the value ofzi is dependent on the value ofzj, thenzi is said to be connected tozj.
Note that, ifzi is connected tozj, thenzj is also connected tozi. Since a value depends on itself,
all variables are connected to themselves. Such a system is called a Markov random field if every
combination of values ofz1, . . . , zm has a positive probability density. Since probability densi-
ties can be arbitrarily close to 0, this is not a serious restriction. For the Golden and Rumelhart
model, the random variables are the values of propositions-at-time-steps. For the DSS model,
they are the values of SOM-cells-at-time-steps. From here on, we shall use the term “cell” to re-
fer to both propositions and SOM cells, and a cell-at-a-time-step will be referred to as a “node.”

Any particular configuration of valuesZ = (z1, . . . , zm) is an instantiation of a field and
has associated with it a probability densityP(Z). Since this refers to a complete instantiation,
it is aglobalprobability density. It is not easy to compute, but we can compare the probability
densities of two instantiations.

The Hammersley–Clifford theorem (1971, unpublished) as described inBesag (1974)states
how a valid probability distribution over a Markov random field can be constructed. First, we
need to define the notion of a clique: A cliqueis a set of variables that are all connected to
each other. Since variables are connected to themselves, every single variable forms a clique.
Now letZ1 andZ2 be two instantiations of a Markov random field. The Hammersley–Clifford
theorem states thatP(Z) forms a valid probability density function if and only if

P(Z1)

P(Z2)
= eQ(Z1)−Q(Z2) (A.1)

with Q a function of the form:

Q(z1, . . . , zm)=
m∑
i=1

ziGi(zi)+
m∑
i=1

m∑
j>i

zizjGij (zi, zj)+
m∑
i=1

m∑
j>i

m∑
k>j

zizjzkGijk(zi, zj, zk)

+ · · · + z1z2 . . . zmG1,2,... ,m(z1, z2, . . . , zm). (A.2)

Here, theG’s are functions such thatGij ...(zi, zj, . . . ) = 0 if variableszi, zj, . . . do not form
a clique. For use in the two models,Eq. (A.2)simplifies greatly. Two simplifications follow
from the models’ architecture, shown graphically inFig. 12. First, it can easily be seen that
there exist no fully connected groups (cliques) of more than two nodes. This means that every
G function with more than two arguments equals 0 and these terms disappear fromEq. (A.2).
Only the first two terms are left over.

Second, the strength of dependencies between nodes is the same for all story time steps.
This means that not all connected pairs of nodes need to be stated inEq. (A.2) separately
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i=1

t=1 t=2 t=3 t=4

i=3

i=2

Fig. 12. Architecture of the Golden and Rumelhart and the DSS model, in a story world consisting ofn = 3 cells
(i = 1, 2, 3) andT = 4 time steps (t = 1, . . . ,4), making a total ofm = 12 nodes. Every row corresponds to a cell.
Every column corresponds to a time step. Two nodes are connected only if they are from neighboring time steps.
The thickness of a connection indicates the strength of the dependency.

because they can be summed over all time steps. The variableszi andzj are therefore replaced
by variablesxi,t−1 andxj,t that have additional time step indices. Instead of summing overm
variables, we now sum overn cells andT time steps.

Finally, it is assumed that a node’s contribution toQ increases linearly with its value. This
is accomplished by turning theG functions into constants. The first term ofEq. (A.2) gives
rise ton of these:G1, . . . ,Gn, which will be denoted by the vectorA = (a1, . . . , an). The
second line ofEq. (A.2)gives rise ton× n constantsG11, . . . ,Gnn, which form a matrix that
will be denotedW = (wij )i,j=1,... ,n. The resulting, simplifiedQ function is

Q(X̄) =
T∑
t=1

n∑
i=1

xi,tai +
T∑
t=1

n∑
i=1

n∑
j=1

xi,t−1xj,twij =
T∑
t=1

(XtA+Xt−1WXt). (A.3)

Thexs refer to a trajectorȳX = 〈X1, X2, . . . , XT 〉 consisting ofT time steps. For the equation
to be valid att = 1, all values at the non-existent time stept = 0 are defined to be 0.

In the Golden and Rumelhart model, the unconditional probability of a propositioni is
a function ofai only. In the DSS model this value has become obsolete, since knowledge
about the unconditional probabilities is incorporated in the propositions’ vector representations.
Therefore, in the DSS modelA is set to the zero vector and the corresponding term drops from
Eq. (A.3).

A.2. Expected value

Both in the Golden and Rumelhart and the DSS model the expected value of a node is
computed using the local probability distributionPi,t. This is the probability distribution of
node (i, t) given the values of all other nodes.Eq. (A.1)gives the ratio of two global probabilities,
but the ratio of the corresponding local probabilities is easily shown to be the same.

Let X̄∗
i,t denote the collection of all values of the trajectory except that of node (i, t). The

ratio of the local probabilitiesPi,t(x1) andPi,t(x2) equals

Pi,t(x1)

Pi,t(x2)
= P(x1|X̄∗

i,t)

P(x2|X̄∗
i,t)

= P(x1, X̄
∗
i,t)/P(X̄

∗
i,t)

P(x2, X̄
∗
i,t)/P(X̄

∗
i,t)

= P(x1, X̄
∗
i,t)

P(x2, X̄
∗
i,t)

= eQ(x1,X̄
∗
i,t )−Q(x2,X̄

∗
i,t ).
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FromEq. (A.3)it follows that

Q(x1, X̄
∗
i,t)−Q(x2, X̄

∗
i,t) = (x1 − x2)(ai +Xt−1W·i +Wi·X′

t+1).

Here,W·i andWi· are theith column and theith row of W, respectively. For this equation to
be valid at every time step, the vectorsX0 andXT+1 are defined to consist of 0s only. We shall
use the shorthand notation

$Qi,t = ai +Xt−1W·i +Wi·X′
t+1,

with, as noted above,ai = 0 in the DSS model. Note that$Qi,t is a function ofX̄∗
i,t, but does

not depend on the valuex1 or x2 of node (i, t). The ratio of local probabilities can now more
simply be written as

Pi,t(x1)

Pi,t(x2)
= e(x1−x2)$Qi,t . (A.4)

Both for the Golden and Rumelhart model and the DSS model the local probability dis-
tribution can be derived from (A.4). First, for the Golden and Rumelhart model there are
theoretically only two possible values, 0 and 1, for a node. Takingx1 = 0 andx2 = 1 in Eq.
(A.4), and usingPi,t(0)+ Pi,t(1) = 1, leads to

Pi,t(1) = 1

1 + e−$Qi,t , (A.5)

that is, the logistic function of$Qi,t. With 0 and 1 as the possible values, this probability that
xi,t = 1 equals the expected value of the local probability distribution of node (i, t).

For the DSS model, the situation is more complicated, since nodes can now theoretically
have any value between 0 and 1. Consequently, the local probabilityPi,t is to be replaced by
a probability density. ApplyingEq. (A.4)to this density, withx2 = 0 andx1 = x, x ∈ [0,1],
leads to the following equation for the densityPi,t:

Pi,t(x) = Pi,t(0)ex$Qi,t .
Being a probability density,Pi,t has to integrate to unity over the interval [0, 1]. Thus, for
$Qi,t �= 0,

∫ 1

0
Pi,t(x)dx = Pi,t(0)

∫ 1

0
ex$Qi,t dx = Pi,t(0)[($Qi,t)−1ex$Qi,t ]1

0

= Pi,t(0)($Qi,t)−1(e$Qi,t − 1) = 1,

showing thatPi,t(0) = $Qi,t(e$Qi,t − 1)−1 and so

Pi,t(x) = $Qi,tex$Qi,t

e$Qi,t − 1
.

If $Qi,t approaches zero, this density approaches the uniform densityPi,t(x) = 1 on the
interval [0, 1]. This density also results directly from applying the above argument to the case
$Qi,t = 0.
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Inspection of the expression forPi,t makes clear that the maximum probability density is
always obtained for one of the extreme values: forxi,t = 0 if $Qi,t < 0, and forxi,t = 1 if
$Qi,t > 0. This is why the inference model described inSection 4.3lets eachxi,t approach
either 0 or its maximum value.

For$Qi,t �= 0, the expected value ofxi,t is obtained through integration by parts:

Ei,t($Qi,t) =
∫ 1

0
xPi,t(x)dx = $Qi,t

e$Qi,t − 1

∫ 1

0
x ex$Qi,t dx

= $Qi,t

e$Qi,t − 1

([
($Qi,t)

−1x ex$Qi,t
]1

0 −
∫ 1

0
($Qi,t)

−1ex$Qi,t dx

)

= $Qi,t

e$Qi,t − 1

(
($Qi,t)

−1e$Qi,t − [
($Qi,t)

−2ex$Qi,t
]1

0

)

= 1

1 − e−$Qi,t − 1

$Qi,t
.

According to this expression,Ei,t(0) = 1/2 in the limit for$Qi,t going to zero, corresponding
to the expected value of the uniform density valid for$Qi,t = 0.

Appendix B. Implementation of world knowledge

The world knowledge that the model uses is extracted from the microworld description
constructed inSection 3, consisting of 250 example situations, in each of which every basic
proposition is either known to be the case or known to be not the case. Since there are 14 basic
propositions (seeTable 1) an example situation can be represented by a vector consisting of
14 binary elements, one for each proposition. An element has a value of 1 if the corresponding
proposition is the case, or 0 if it is not. For instance, the situation in which the sun shines (the
first proposition) and Bob is outside (the third proposition), and no other basic proposition is
the case, corresponds to the vectorS = (1,0,1,0,0,0,0,0,0,0,0,0,0,0).

Implementing world knowledge is a two-stage process. First, a Self-Organizing Map is
trained on the individual example situation vectorsS. Contingencies between situations are ign-
ored in this stage. Next, the resulting mappings are used to convert each vectorSinto its distribu-
ted representation. The contingencies between situations at adjacent time steps are used to com-
pute the temporal world-knowledge matrixW from the distributed example situation vectors.

B.1. Vector representations of propositions

The 250 example situations serve as input to a two-dimensional SOM consisting of 10×15 =
150 hexagonal cells, as inFig. 2. Between every two cellsi andj a distanced(i, j) is defined.
This equals the minimum number of steps needed to get fromi to j, if every step takes you
from a cell to its immediate neighbor. The distance between two neighboring cells is 1, and
the largest distance on a 10× 15 map with hexagonal cells is 16. Theneighborhoodof cell
i is defined as the set of cellsj that lie within a certain distance ofN from i, so j is in the
neighborhood ofi iff d(i, j) ≤ N. Note thati is in its own neighborhood.
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With each celli is associated a vectorµi of weights between 0 and 1. These weight vectors
consist of one element for each basic proposition, soµi = (µi(Sun), µi(Rain), . . . , µi(J wins)).
Training the SOM comes down to setting these vectors so that the structure of the input vectors
is mapped onto the two dimensions of the SOM.

Before training begins, a learning rate parameterα = .9 and a neighborhood size parameter
N = 16 are set. Next, the SOM is trained by repetitively presenting it with all example vectors.
After presentation of each vectorS:

1. The euclidean distances between each weight vector andSare computed.
2. Let i be the cell whose weight vectorµi is closest toS. All cells in the neighborhood of

i now have their weight vectors moved towardsS. If j is one of these cells, its weight
vector changes by an amountα(S − µj).

3. The value ofN is reduced by 4× 10−4 andα is reduced by 3.52× 10−5.

These steps are repeated until all example vectors have been presented to the SOM 100
times. By then,N = 6 andα = .02. Next, the training process continues but without changing
α. After presenting all example vectors 60 more times,N = 0 and training is completed.

The vector representation of a proposition is obtained by taking from each cell’s weight vec-
tor the element corresponding to the proposition. For instance, the first value of weight vectorµi
isµi(Sun). This is the extent to which celli belongs to the representation of “the sun shines.” The
full vector representation of “the sun shines” isµ(Sun) = (µ1(Sun), µ2(Sun), . . . , µ150(Sun)).

B.2. Temporal world knowledge

The temporal world-knowledge matrixW is also based on the microworld description but
its values are not obtained by a training procedure. Instead,W is computed directly from the
example situations.

Let S1, S2, . . . , S250 be the sequence of example situations developed inSection 3. Thekth
example can be represented by a vectorµ(Sk) in distributed situation space by applying the
rules inEq. (1)to the vector representations of propositions. BeforeWcan be computed, these
vectors need to be normalized:

νi(Sk) = µi(Sk)

µ̄(Sk)
− 1.

Each vectorµ(Sk) is divided by the average value of its elements,µ̄(Sk). As a result, all vectors
have the same average value of 1. Next, from all vectors, 1 is subtracted, making the averages
of each vectorν equal to 0. Each entry inW is computed from the normalized vectorsν:

wij = 1

K − 1

K−1∑
k=1

νi(Sk)νj(Sk+1)

whereK = 250, the number of training situations. If it often happens that two SOM cellsi and
j both have a high value or both have a low value in consecutive example situations, thenwij

will become positive. Ifi andj often have dissimilar values in consecutive examples,wij will
become negative. In this way,wij reflects the temporal contingencies between cellsi andj.
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