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Abstract 

 

This paper presents a meta-analysis of hemodynamic studies on passive auditory 

language processing. We assess the overlap of hemodynamic activation areas and 

activation maxima reported in experiments involving the presentation of sentences, 

words, pseudowords, or sublexical or non-linguistic auditory stimuli. Areas that have 

been reliably replicated are identified. The results of the meta-analysis are compared 

to electrophysiological, magnetencephalic (MEG), and clinical findings. It is 

concluded that auditory language input is processed in a left posterior frontal and 

bilateral temporal cortical network. Within this network, no processing leve l is related 

to a single cortical area. The temporal lobes seem to differ with respect to their 

involvement in post-lexical processing, in that the left temporal lobe has greater 

involvement than the right, and also in the degree of anatomical specialization for 

phonological, lexical, and sentence -level processing, with greater overlap on the right 

contrasting with a higher degree of differentiation on the left. 
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1. Introduction 

The listener's task in understanding spoken language is to extract meaning from an 

almost continuous stream of sound. The meaning - the message which speakers wish 

to convey - is expressed via a sequence of words and the relationships between those 

words (which can in turn be encoded, depending on the language, in the order in 

which the words occur, or in inflectional markings of various kinds applied to them). 

Whole utterance meanings are rarely stored in memory; the beauty of language is the 

possibility of expressing new meanings via combinations of known words. The words 

are however stored as known units, in some form (again, the form may be language -

dependent). Understanding spoken language thus requires recognition of the 

individual words which the speaker has uttered.  

Laboratory tasks via which this type of processing has been investigated over 

the past four decades fall into two main groups: tasks which require attention to 

sublexical units, and tasks which require attention to words. The first category 

includes the detection of target phonemes or fragments (e.g. "press the button when 

you hear a word containing /b/" or "... containing bot -"), or the categorization of 

phonemes ("does this syllable begin with /d/ or /t/"?). The second category includes 

lexical decision ("is this a real word or not?"), word spotting ("press the button when 

you hear any real word in this input"), word reconstruction, mispronunciation 

detection and phoneme restoration (all tasks which require finding the word which 

most closely matches a slightly distorted input), and various adaptations or 

combinations of these (e.g. priming tasks, in which for instance a lexical decision on a 

second word may be affected by a preceding first word), as well as decisions about 

semantic properties of words ("abstract or concrete?"). All these tasks can involve 

measurement of response time; further, accuracy rates may also be informative, and in 

phoneme categorization the nature of the decision is crucial. For an overview of the 

tasks see Grosjean and Frauenfelder (1997). 

Via such research methods, an enormous amount of knowledge has been 

garnered which can guide neuroimaging approaches to prelexical and lexical 

processing in listening. Briefly summarized, research on spoken-word recognition has 

produced no agreement on the nature of the prelexical representations (if any) 
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involved in listening, but almost unanimous agreement on the following premises: (1) 

speech information is continuously mapped to the lexicon; (2) speech input can 

activate multiple candidate words simultaneously, including partial activation of 

words with partial support from the input; (3) concurrently active word candidates 

compete with one another for recognition. Continuity is supported by evidence that 

coarticulatory information for upcoming phonemes can constrain lexical activation 

(e.g. Streeter and Nigro, 1979; Whalen, 1991; Marslen-Wilson and Warren, 1994; 

McQueen, Norris, and Cutler, 1999); multiple activation is supported by evidence that 

word fragments activate multiple possible completions (e.g. Zwitserlood, 1989; 

Connine, Blasko, and Wang, 1994; Zwitserlood and Schriefers, 1995; Soto-Faraco, 

Sebastian-Galles, and Cutler, 2001) and by evidence of activation of words only 

spuriously present in the speech input, such as lips in tulips (Gow and Gordon, 1995; 

Tabossi, Burani, and Scott, 1995; Vroomen and De Gelder, 1997; Luce and Lyons, 

1999); and competition is supported by evidence that the more words are potentially 

compatible with the input, the harder recognition of any one of them becomes 

(McQueen, Norris, and Cutler, 1994; Norris, McQueen, and Cutler, 1995; Vroomen 

and De Gelder, 1995; Soto-Faraco et al., 2001). A recent review of the evidence is 

presented by McQueen, Dahan, and Cutler (2003). 

Agreement on the nature of prelexical representations is lacking because there 

is evidence compatible (a) with continuous cascade of information through 

intervening levels at which, for instance, discrete phonemic representations play a 

role, (b) with alternative abstract representations such as syllables or featural bundles, 

or (c) with a model involving no intervening representations, where lexical mapping is 

achieved via computation of similarity to previously encountered acoustic forms. 

Of course, behavioral tasks do not tap directly into the necessary processing 

steps involved in speech recognition; they all involve some decision component, so 

that observed effects could arise at the decision level rather than at levels normally 

involved in recognition. Thus le xical effects in phoneme-level tasks need not imply 

that the prelexical evaluation of speech signals is directly influenced by lexical 

knowledge; it could be that explicit decisions about phonemic identity are informed 

by lexical information (see Norris, McQueen, and Cutler, 2000, for further 
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discussion). It is for this reason necessary, and indeed standard, in behavioral research 

to seek converging evidence from a wide variety of tasks with differing behavioral 

profiles, and thanks to this strategy these tasks have provided a wealth of evidence 

concerning lexical processing.  

Neurophysiological and neuroimaging techniques attempt to achieve an 

unmediated reflection of processing. In this respect reliance on the behavioral tasks 

normally used in spoken-word recognition research introduces potentially serious 

complications. In a previous contribution to this series, Norris and Wise (2000) 

pointed out that the problem-solving and decision aspects of the most widely-used 

tasks in this area of cognitive neuroscience, such as phoneme detection, lexical 

decision or semantic categorization, may recruit many cognitive subsystems beyond 

those involved in speech processing, and that observed contrasts may reflect 

differences in secondary tasks rather than in relevant underlying processes. Giraud 

and Price (2001) made similar cautionary remarks. 

In the present review, therefore, we endeavor to summarize what can be 

learned about prelexical and lexical processing from neuropsychological, 

neurophysiological and neuroimaging studies in the absence of task confounds. To 

this purpose we assembled all available evidence uncontaminated by potential 

artifacts due to secondary task, as we describe below. We extended the scope of this 

evidence beyond studies involving just sublexical and lexical stimuli, by including 

tone stimuli (to assess the involvement of simple auditory processing) and sentence 

stimuli (to assess the linguistic processing of which prelexical and lexical processing 

form a part). 

 

 

2. Cerebral regions involved in language perception – a meta -analysis 

2.1. Procedures 

Data set. We queried the Current Contents and Medline publication databases using 

the following combination of search terms: (PET OR Positron Emission Tomography 

OR fMRI OR functional Magnetic Resonance Imaging OR MEG OR 

Magnetencephalography OR magnetencephalographic) AND (auditory OR voice OR 
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language OR sound OR speech). This query resulted in a set of 1,058 neuroimaging 

studies using linguistic and non-linguistic auditory stimuli (December 19, 2002). 

Based on the abstracts, 463 potentially relevant publications were selected. Among 

these, 36 publications (marked by * in the reference list) presenting 55 experiments 

met the following criteria: (1) there was no task other than listening to the auditory 

stimuli, (2) the activations were reported in Talairach coordinates or an equivalent 

coordinate system. In more than half of these experiments (see Table 1), auditory 

stimuli were compared to a condition in which no acoustic stimuli other than the 

inevitable background noise of the PET or fMRI scanning procedure were presented 

(henceforth called 'silent' control condition). Given this constant control condition, we 

assumed that activations from similar stimuli should similarly reflect acoustic and 

linguistic properties of the stimuli. Using a reliability estimate, we assessed the degree 

of anatomical overlap of activation areas in four experiments presenting sentences, ten 

experiments presenting words, four experiments presenting pseudowords or 

meaningless syllables (monosyllabic pseudowords), and ten experiments presenting 

non-linguistic tone stimuli. Note that a silent rest baseline is not without problems, 

since some brain regions seem to be activated during such a baseline. Binder et al. 

(1999) examined hemodynamic activations of silent rest compared to a simple 

perceptual task (listening to tones), and found significant blood flow increases in the 

left posterior frontal lobe, the left angular gyrus, and the bilateral cingulate gyri. This 

means that activations of auditory stimuli in these areas may be at least in part 

obscured when compared to silent rest. Binder et al. (1999) report that silent rest does 

not seem to activate the temporal lobes more strongly than tone stimuli do. Shulman 

et al. (1997) found greater temporal activation in left BA 20 for a silent fixation 

condition compared to passive viewing of non-linguistic visual stimuli, but not 

compared to passive viewing of linguistic stimuli. Thus although there may be some 

temporal lobe activation during silent rest, it is too weak to obscure hemodynamic 

responses during passive listening.  

 



 

Study Stimulus # in Figure 2 
Belin 1998 200ms frequency transition, 60/min 1 
Belin 1998 40ms frequency transition, 60/min 2 
Belin 1999 synthetic diphthong, 6/min 3 
Binder 2000 tones, different frequencies, 90/min 4 
Bookheimer 1998 pseudowords, 9/min 5 
Celsis 1999 syllables, 180/min 6 
Celsis 1999 tones, 500 + 700Hz, 180/min 7 
di Salle 2001 tones, 1000Hz, 6/min 8 
Engelien 1995 environmental sounds, 10/min 9 
Fiez 1996 pseudowords, 60/min 10 
Fiez 1996 words, 60/min 11 
Giraud 2000 vowels vs. expecting vowels, 120/min 12 
Holcomb 1998 tones, 1500Hz + lower tones, 30/min 13 
Jäncke 1999 tones, 1000Hz, 60/min 14 
Lockwood 1999 tones, 500 + 4000Hz, 60/min 15 
Mellet 1996 words, 30/min 16 
Mirz 1999 music 17 
Mirz 1999 sentences 18 
Mirz 1999 tones, 1000Hz 19 
Mirz 1999 tones, 1000 + 4000Hz 20 
Mirz 1999 words 21 
Müller 1997 sentences, 12/min 22 
Petersen 1988 words, 60/min 23 
Price 1996 words, 40/min 24 
Price 1996 words, different rates 25 
Suzuki 2002a words, 60/min 26 
Suzuki 2002b tones, 1000Hz, 60/min 27 
Thivard 2000 tones with spectral maxima, 60/min 28 
Warburton 1996 words, 4/min 29 
Wise 1991 pseudowords, 40 or 60/min 30 
Wong 1999 reversed sentences, 30/min 31 
Wong 1999 sentences, 30/min 32 
Wong 1999 words, 30/min 33 
Wong 2002 reversed words, 15/min 34 
Wong 2002 sentences, 12/min 35 
Wong 2002 words, 15/min 36 

 

Table 1. Overview of passive listening experiments with silent control conditions that 

contributed to the meta-analyses (Table 3 and Figure 1) and the localization synopsis 
in Figure 2. All experiments except numbers 3, 9, 12, 17, 31, and 34 were entered in 

the reliability analyses. Data from experiments 1 and 2 as well as 19 and 20 were 
collapsed in the reliability analyses, since the experiments were not independe nt. 
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Study Stimulus vs. control stimulus # in Figure 3 
Benson 2001 CVC > CV > V 1 
Binder 1996 words vs. tones 2 
Binder 2000 pseudo vs. tones 3 
Binder 2000 reversed words vs. tones 4 
Binder 2000 words vs. tones 5 
Giraud 2000 amplitude modulated noise vs. noise 6 
Giraud 2000 sentences vs. vowels 7 
Giraud 2000 words vs. vowels 8 
Hall 2002 frequency modulated vs. static tone 9 
Hall 2002 harmonic vs. single tone 10 
Jäncke 2002 syllables vs. 350 ms white noise bursts 11 
Jäncke 2002 syllables vs. steady state portion of vowel 12 
Jäncke 2002 syllables vs. tones 13 
Müller 2002 90% 1000Hz + 10% 500Hz vs. 1000Hz 14 
Mummery 1999 words vs. signal correlated noise 15 
Price 1996 words vs. reversed words 16 
Schlosser 1998 sentences vs. unknown language 17 
Scott 2000 sentences vs. rotated sentences 18 
Thivard 2000 frequency transition vs. stationary tone 19 

 
 

 

The remaining studies (see Table 2) investigated the neural substrate of specific 

aspects of the auditory stimuli presented in the active condition in comparison to 

various auditory control stimuli. Since in this subset no two studies used the same 

combination of active and control stimuli, we refrained from testing anatomical 

overlap between experiments, and present the activation foci reported in these studies 

descriptively. 

 

Table 2. Overview of passive listening experiments with heterogeneous auditory 
control conditions that contributed to the localization synopsis in Figure 3. 

 

 

 

Anatomical coding. The reported activation foci were coded in two ways to account 

for global activation patterns on a whole-brain level as well as for finer-grained 

anatomical differences within the temporal lobe. At the whole -brain level, the 

reported foci were entered in an anatomical reference system of 92 cortical regions 

based on the parcellation of the cerebral cortex described by Rademacher et al. 

(1992), plus 16 subcortical and cerebellar regions. At the fine-grained level, the foci 

were entered in a coordinate system with millimeter resolution covering the temporal 

6
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lobes. Activation foci reported in MNI-coordinates were converted to the Talairach 

and Tournoux (1988) space using the nonlinear algorithm of Brett (1999, available at 

www.mrc-cbu.cam.ac.uk/Imaging/mnispace.html). 

 

Reliability estimate . Reliability estimates were calculated using the procedure of 

Indefrey and Levelt (2000, 2003). For any subset of experiments to be compared at 

the whole -brain level, we divided the average number of activated regions per 

experiment by the number of regions to obtain the chance probability for any 

particular region to be reported in one experiment. Assuming this probability, the 

chance level for a region to be reported as activated in a number of experiments is 

given by a binomial distribution. If this level was below 5%, we rejected the 

possibility that the agreement of reports about a given region was due to chance. Note 

that the studies were not assigned weights reflecting design or number of subjects, so 

that activation overlaps which are reliable according to our criterion cannot 

necessarily be interpreted as statistically significant. 

At the fine-grained level, we applied a similar reliability criterion to the 

reported locations of temporal lobe activation maxima on the lateral temporal planes. 

Assuming a two-dimensional cortical layer, we ignored location differences in the 

medial-lateral dimension, except for the most medial (absolute value of the x-

coordinate < 40) activation foci located on the superior temporal plane, which were 

analysed separately. Due to anatomical variability between subjects, the location of 

activation maxima may shift by several millimetres to over a centimetre between 

studies even if identical or highly similar experimental paradigms are used 

(Stromswold et al., 1996; Caplan et al., 1998, 2000; Indefrey et al., 2003). To account 

for this variability, all reported activation foci were converted to focal activation areas 

extending plus or minus five millimetres from the original coordinates in the dorsal-

ventral and the rostral-caudal dimensions. Dividing the mean focal activation area per 

experiment by the approximate total area of the lateral temporal plane, 3500 mm2, we 

obtained an estimate for the chance probability of every 1-mm2 pixel to be activated 

in a single experiment. Note that for smaller sets of experiments the statistical power 

decreases, such that a relatively larger number of positive reports is required for an 
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above -chance decision. The procedure controlled for the fact that the average number 

of activation foci may differ across stimuli, increasing the chances of coincidental 

agreements of findings between studies. 

The reliability criterion we applied does not entail that atypical findings of 

activations in any single study are necessarily due to chance. The number of 

experiments not reporting activations was insufficient to consider a region as inactive 

at the chosen error probability level. Isolated observations therefore do not exclude 

the possibility that a region is active. They may, for example, reflect smaller 

activations only detectable with refined techniques or better scanning devices. 

Furthermore, the nature of the data does not allow interpretation in terms of relative 

strengths of activations of certain areas. Parameters such as item duration and 

frequency strongly influence activation patterns (Price et al., 1994, Price, Moore, and 

Frackowiak, 1996). 

 

Table 3. Brain regions found activated in more than one out of 28 experiments 
comparing passive listening to a silent control condition. Cells show the number of 

experiments reporting a given region in relation to the number of experiments 
covering it (in brackets). Reliable activations are shaded in gray. Following 

Rademacher et al. (1992), the border between anterior and posterior temporal regions 
was located at the rostrolateral end of the first transverse sulcus, corresponding 

approximately to y = -12 in the coordinate system of Talairach and Tournoux (1988). 

   

Frontal lobes Right inferior frontal gyrus, pars triangularis 0 (4) 0 (10) 0 (4) 2 (10) 
  inferior frontal gyrus, pars opercularis 0 (4) 0 (10) 0 (4) 3 (10) 
 Left inferior frontal gyrus, pars triangularis 0 (4) 2 (10) 0 (4) 0 (10) 
  inferior frontal gyrus, pars opercularis 0 (4) 0 (10) 0 (4) 2 (10) 
  inferior frontal gyrus, frontoorbital 3 (4) 0 (10) 0 (3) 0 (7) 

 
Temporal lobes Right anterior superior temporal gyrus 2 (4) 5 (10) 2 (4) 3 (10) 
  posterior superior temporal gyrus 3 (4) 8 (10) 4 (4) 9 (10) 
  anterior middle temporal gyrus 3 (4) 5 (10) 0 (4) 0 (10) 
  posterior middle temporal gyrus 3 (4) 5 (10) 2 (4) 2 (10) 
 Left anterior superior temporal gyrus 4 (4) 4 (10) 2 (4) 2 (10) 
  posterior superior temporal gyrus 4 (4) 8 (10) 4 (4) 10 (10) 
  anterior middle temporal gyrus 4 (4) 3 (10) 1 (4) 0 (10) 
  posterior middle temporal gyrus 4 (4) 6 (10) 1 (4) 1 (10) 
 

 

 

 
 
 
 

   sentences words pseudowords tones 
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2.2. Whole–brain level results 

Overall, the brain activations observed during the presentation of auditory stimuli 

involve primarily the temporal and posterior inferior frontal lobes. Taking into 

account the complete data set from all 55 experiments, only 13 (5 frontal, 8 temporal) 

of 108 regions were found to be activated in more than one study. Table 3 summarizes 

for these 13 regions the findings of the 28 experiments using sentences, words, 

pseudowords, or tone stimuli compared to silent control conditions. The table lists the 

number of experiments reporting a certain region as activated in relation to the 

number of experiments in which this region could have been found given that it was 

covered by the field-of-view. Regions that by our criterion have been reliably 

replicated are marked in gray. For auditorily presented sentences and words, these 

include the bilateral anterior and posterior superior temporal gyri and the bilateral 

anterior and posterior middle temporal gyri. Sentences and words seem to differ, 

however, with respect to involvement of the left inferior frontal cortex. Whereas for 

sentence presentation activation of the left fronto-orbital cortex (BA 47) was reliably 

replicated, this region was not reported for auditorily presented words. Conversely, 

the pars triangularis (BA 45) of the left inferior frontal gyrus was found in two of ten 

experiments on word listening. Based on experiments with silent baseline conditions 

alone, this proportion is not reliable; however BA 45 was also found in two (Binder et 

al., 1996; Price et al., 1996) of five experiments using acoustically more complex 

control conditions. For passive listening to sentences, the pars triangularis was only 

reported by Schlosser et al. (1998), where the control condition was listening to an 

unknown language. Frontal regions were not reliably replicated for experiments in 

which subjects listened to pseudowords or meaningless syllables. Only one study 

(Binder et al., 2000, comparing pseudowords to tones) found bilateral activation of the 

pars opercularis (BA 44). Temporal regions reliably found for pseudoword and 

syllable presentation are the bilateral anterior and posterior superior temporal gyri and 

the right posterior middle temporal gyrus. In contrast to linguistic stimuli, tone stimuli 

of varying spectral complexity seem to reliably activate the superior temporal gyri 

bilaterally, but not the middle temporal gyri. The reports of frontal activations elicited 
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by tone stimuli agree to a reliable extent on the pars opercularis (BA 44) of the right 

inferior frontal gyrus. 

 

2.3. Fine-grained analysis of the temporal lobes 

In a finer-grained analysis of the patterns of reported activation foci in the temporal 

lobes, we first present the areas that, to date, can be considered as reliable focal 

activation areas (Figure 1 (p. 33)) for different kinds of stimuli. This reliability 

estimate is based on overlap of reported activation maxima from experiments with 

silent baseline conditions (Table  1, Figure 2 (p. 34)). We then describe the patterns of 

reported activation maxima obtained in experiments using acoustically or 

linguistically more complex control conditions (Table  2, Figure 3 (p. 35)). 

 

2.3.1. Sentences 

Silent control. Both temporal lobes exhibit an anterior and a posterior region of 

reliable overlap of activation maxima (red areas in Figure 1). In the z-dimension 

(ventral-dorsal), these areas are approximately centered on the superior temporal 

sulcus. The posterior regions reach dorsally into the primary auditory cortex, but 

extend for the greater part more ventrally. In the right temporal lobe, the posterior 

activation maxima cluster (Figure 2, red) less tightly than in the left. 

 

Acoustic or linguistic control. The control conditions used in three studies on passive 

sentence listening (Schlosser et al., 1998: unknown language; Giraud et al., 2000: 

vowels; Scott et al., 2000: spectrally rotated sentences) shared the acoustic and 

phonological properties of sentences to different extents, but did not involve semantic 

or syntactic processing. The resulting patterns of activation foci (Figure 3, red foci) 

differ in hemisphere-specific ways from those found with a silent baseline (Figure 2, 

red foci). In the right temporal lobe, no anterior temporal activation maxima are 

reported, and the maxima tend to cluster around the primary auditory cortex; in the 

left temporal lobe, roughly the opposite pattern is observed. Two studies (Schlo sser et 

al., 1998; Giraud et al., 2000) report more posterior activation foci along the superior 

temporal sulcus than found in studies using a silent baseline. 
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2.3.2. Words  

Silent control. As with sentences, passive listening to words seems to reliably elicit 

activation foci in two areas of both temporal lobes (Figure 1, yellow). On the left, 

these two areas are posteriorly adjacent to the sentence areas. On the right, the 

posterior area largely overlaps with the sentence area and, in addition, includes the 

primary auditory cortex. Although some word foci (Figure 2, yellow) have been 

reported as far anterior as sentence foci (Figure 2, red), the area of reliable overlap 

reaches less rostrally than the sentence area. 

 

Acoustic or linguistic control. Activation foci (Figure 3, yellow) shift towards the 

superior temporal sulcus in both hemispheres. It is mainly on the left that even more 

ventral activation foci in the middle and inferior temporal gyri are reported (Binder et 

al., 1996; Price et al., 1996). Similar to the pattern observed for sentences, anterior 

temporal activations are reported with acoustically complex control conditions on the 

left (Price et al., 1996) but not on the right. 

 

2.3.3. Pseudowords/meaningless s yllables  

Silent control. The reported activation foci overlap reliably in the posterior primary 

auditory cortex and the adjacent superior temporal gyri in both temporal lobes 

(Figures 1 and 2, green). These overlap areas are similar to those observed for words. 

On the left, a second more anterior area of overlap is caudally adjacent to that found 

for words. More anterior temporal activation of the right superior temporal lobe has 

been found in one study (Bookheimer et al., 1998), and is, to date, not reliable. 

 

Acoustic or linguistic control. The use of control conditions, such as tones (Binder et 

al., 2000; Jäncke et al., 2002), noise bursts (Jäncke et al., 2002), or vowels (Benson et 

al., 2001; Jäncke et al., 2002), leads to a shift of activation maxima (Figure 3, green) 

away from the auditory cortex. Activation foci are more frequently found in the 

posterior superior temporal planes than in studies of word or sentence listening. In 

contrast to word listening maxima, activation maxima for pseudowords are only 
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observed more ventrally than the superior temporal sulcus on the right, not on the left 

(Jäncke et al., 2002; Benson et al., 2001). 

 

2.3.4. Tones 

Silent control. Activation maxima cover both auditory cortices and the posteriorly 

adjacent superior temporal cortices (Figures 1 and 2, blue). This also holds for medial 

superior temporal lobe activation maxima, which were analyzed separately (not 

shown in Figure 1). 

 

Acoustic control. Comparing frequency- or amplitude-modulated tones to stationary 

stimuli strongly reduces the number of activation foci (Figure 3, blue) found near the 

posterior superior temporal planes, suggesting that this part of the superior temporal 

gyrus does not specifically respond to such modulations. Similar to the linguistic 

stimuli, activation maxima for non-linguistic auditory stimuli tend to be observed 

nearer to the superior temporal sulcus when compared to tone stimuli than when 

compared to silence. However, their reported location tends to be less ventral than that 

of linguistic stimuli, and to respect the superior temporal sulcus as a ventral border in 

both hemispheres. 

 

3. Structure-function relationships 

3.1. General observations 

Our synopsis suggests that no brain areas other than the posterior inferior frontal and 

the temporal cortex are reliably activated during passive listening to speech. As has 

been previously observed (Mazoyer et al., 1993; Binder et al., 1996), the temporal 

cortex activation areas for different kinds of auditory stimuli seem to show roughly 

the subset-superset relationships one might expect from the hierarchical organisation 

of the acoustic, phonological, lexical semantic, and syntactic stimulus properties (see 

Table 3). All auditory stimuli reliably activate the central and posterior parts of the 

superior temporal gyri. With increasing linguistic complexity, more ventral and 

anterior parts of the temporal lobes are recruited. This hierarchical relationship is not 
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as clearly observed in the frontal lobes. For example, the right posterior inferior 

frontal gyrus, which is reliably activated by tone stimuli, is typically not activated by 

pseudoword, word, and sentence stimuli, although the latter kinds of stimuli have, 

besides their additional linguistic properties, many properties in common with the 

simpler acoustic stimuli.  

Our meta-analysis of the overlap of activation maxima (as opposed to total 

activation areas) shows that there is also a systematic deviation from this expected 

subset-superset relationship in the temporal lobes. Rather than showing ever larger 

areas of reliable focal activation as one proceeds from non-linguistic stimuli to stimuli 

with increasingly linguistic properties, the hemodynamic activation maxima observed 

for different kinds of auditory stimuli are clustered in a stimulus-dependent way on 

the lateral temporal plane of both hemispheres. This is most clearly seen in the 

anterior left temporal lobe, where the activation maxima for sentences, words, 

pseudowords, and tones are ordered along an anterior-to-central dimension. In the 

posterior left temporal lobe, activation maxima for pseudowords and syllables but not 

for words are reported in the superior temporal plane. Activation maxima for words 

but not for sentences are reported in the posterior middle/inferior temporal gyri. 

Considering that words share all the acoustic and linguistic properties of 

pseudowords, and sentences all the acoustic and linguistic properties of words, these 

patterns of reported activation maxima do not seem to follow a “subtraction logic” 

according to which foci observed for listening to sentences compared to a silent 

baseline should reflect acoustic or phonological processing as well as semantic or 

syntactic processing. These findings suggest that the brain response to a particular 

auditory stimulus property is not uniform, but actively adapted to the other properties 

of the stimulus. They can only be accounted for by assuming that those neuronal 

populations of the temporal cortex that are sensitive to the ‘highest’ linguistic 

property of an auditory stimulus show the strongest and most consistent hemodynamic 

response, thus determining the location of the statistical activation maxima. 

According to this reasoning, the stimulus-specific patterns of reported activation 

maxima in passive listening experiments with a silent baseline condition provide 

information on the stimulus properties that particular cortical areas are sensitive to. In 
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the following sections, we will attempt to draw some tentative conclusions about the 

temporal cortex regions subserving different levels of linguistic processing. To this 

end we will also take into account the spatial distribution of activation foci found in 

comparisons with control conditions other than silence, as well as 

electrophysiological, MEG, and clinical data.  

 

3.2. Acoustic processing  

In both hemispheres, activation maxima for non-linguistic acoustic stimuli compared 

to silence are reported in the primary auditory cortex and the posterior superior 

temporal plane, suggesting a role of these regions in acoustic processing. Activation 

of these areas starts already 20-80 ms after the onset of pure tone stimuli (Yvert et al., 

2001). The precise location of activation maxima within these regions depends on 

acoustic properties such as sound pressure (Bilecen et al., 2002) and frequency 

(Lauter et al., 1985; Wessinge r et al., 1997; Bilecen et al., 1998; Talavage et al., 2000; 

Le et al., 2001; Engelien et al., 2002; Schönwiesner, von Cramon, and Rübsamen, 

2002). Activation of these regions is rarely observed for words or sentences when 

compared to tones, so that these regions do not seem to be related to word level 

processing (Binder et al., 1996). When spectrally or temporally more complex 

acoustic stimuli are compared to simpler ones, more ventral activation foci near the 

central (on the left also posterior) superior temporal sulcus are observed, so that a role 

of this part of the superior temporal sulci in acoustic processing is probable.  

 

3.3. Phonetic/phonological processing  

At present, neuroimaging data do not allow for a distinction between phonetic and 

phonological processing. Throughout this paper, we use the term 'phonological 

processing' in the loose sense of a processing level operating on discrete categories. 

Although it is as yet unclear whether and how lexical access indeed involves discrete 

intermediate representations (see section 1), there is clear evidence for categorical 

perception of speech sounds and for language-specific phonological constraints in 

speech processing (see Phillips, 2001, for a discussion of acoustic, phonetic and 

phonological processing levels). 
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Pseudowords have all the properties of real words except for meaning. One 

might therefore assume phonological processing to be involved in activation observed 

with pseudoword presentation. At the same time, though, pseudowords are also 

acoustically more complex than most control stimuli that have been used (see Scott 

and Wise, 2003, for a detailed discussion of different control stimuli), so that stronger 

activation of a neural population for pseudowords as compared to non-linguistic 

stimuli is a necessary but not a sufficient condition for a role of this population in 

phonological processing. For this reason, we will have to consider additional evidence 

to achieve a tentative conclusion as to the neural structures involved in phonological 

processes. 

In both hemispheres, activation maxima for pseudowords are reported in the 

central to posterior dorsal aspect of the superior temporal gyri (Wernicke's area), 

when compared to silent rest. Activation of the bilateral posterior superior temporal 

plane and the right central middle temporal gyrus by monosyllabic pseudowords does 

not seem to be cancelled out by tone, noise or phonologically simpler control stimuli 

(Benson et al., 2001; Jäncke et al., 2002), suggesting a function in the processing of 

complex acoustic properties underlying linguistic stimuli or a phonological processing 

function. Furthermore, it is possible that the right and left temporal lobes differ in the 

kind of processing they support. Left hemispheric dominance for phonemes as 

opposed to non-linguistic acoustic stimuli has been observed in a number of mismatch 

negativity (MMN), mismatch field (MMF) and dipole modelling studies (e.g. 

Näätänen et al., 1997; Alho et al., 1998; Gootjes et al., 1999; Rinne et al., 1999; 

Szymanski, Rowley and Roberts, 1999; Szymanski et al., 2001; also see Shtyrov et 

al., 1999, for converging evidence). While these findings suggest some specialisation 

for language stimuli in the left temporal lobe, they do not prove phonological 

processing in the left superior temporal lobe nor exclude phonological processing in 

the right temporal lobe (see Phillips, 2001, for detailed discussion of 

electrophysiological findings). 

To distinguish between acoustic and phonological processing, Phillips et al. 

(2000) exploited phonemic category perception effects in an elegantly designed MEG 

study. Using stimuli from a /tæ -dæ/ voice onset time (VOT) continuum, they elicited a 
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MMF response to infrequent /t/ phonemes with long VOTs when frequent stimuli 

with shorter VOTs varied acoustically within the phonemic category /d/ but not when 

the same amount of acoustic variation occurred across the phonemic /d-t/ boundary, 

preventing the perception of a standard phoneme. The MMF response occurred in a 

time window of 150-200 ms post stimulus onset. The response had its source in the 

left auditory cortex (the right temporal lobe was not measured). In a near -infrared 

spectroscopy (NIRS) experiment, Minagawa-Kawai et al. (2002) demonstrated 

hemodynamic activation of the left auditory cortex and the adjacent planum temporale 

for between-category compared to equidistant within -category vowel-length contrasts. 

The effect was bilateral in some subjects, but never right-lateralized. Although it is 

debatable whether the observed category effects refle ct phonological rather than 

phonetic categories, the effects clearly show that the processing of linguistic stimuli in 

the left auditory cortex, possibly also the adjacent posterior temporal plane and right 

homologue areas, goes beyond acoustic representations. Further electrophysiological 

evidence for phonological processing comes from a study by Dehaene -Lambertz, 

Dupoux, and Gout (2000), who showed that MMN responses can be sensitive to 

language-specific phonotactic constraints. 

Note that the set of phonetic features studied so far is limited and does not 

allow the conclusion that all phonetically relevant distinctions are processed in the 

temporal lobes. In a recent fMRI study, Mathiak et al. (2002) compared the 

hemodynamic responses to two categorical perception tasks in which the identity of a 

word-medial consonant was either signalled by voice onset time or by the length of 

the preceding word-medial pause (closure time, CLT). In direct comparisons, they 

found stronger activation of the left supratemporal plane in the VOT condition, and 

stronger frontal and cerebellar activation in the CLT condition. The latter finding 

confirmed clinical findings in patients with cerebellar atrophy, who did not show 

categorical perception for the CLT contrast (Ackermann et al., 1997). Clinical 

observations also suggest an involvement of the posterior superior temporal lobes in 

phonological processing. Bilateral lesions of the posterior superior temporal lobes (in 

some cases also left unilateral lesions, see Griffiths, Rees, and Green, 1999) may 

result in word deafness, an impairment of language perception with relatively spared 
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processing of non-linguistic auditory stimuli (Buchman et al., 1986; Griffiths, Rees, 

and Green, 1999; Poeppel, 2001). Unilateral lesions of the dominant posterior 

superior temporal gyrus, as in Wernicke’s aphasia, may cause more subtle 

phonological processing deficits, such as problems with the discrimination of 

phonological contrasts, in particular place of articulation (Blumstein, 1995). 

In sum, there is good evidence for a role of the central to posterior superior 

temporal gyri in phonetic or phonological processing. The left posterior superior 

temporal gyrus seems to be dominant. In contrast to the robust findings from studies 

using phoneme discrimination or monitoring tasks (Demonet et al., 1992, 1996) there 

is, to date, little evidence for an involvement of the left posterior frontal cortex in 

phonological processing during passive listening. 

 

3.4. Lexical processing  

Words and pseudowords activate wholly or partially matching candidate words; non-

linguistic stimuli do not. Activation of a word form can also make available 

conceptual information, so that syntactic and semantic properties of multiple lexical 

candidates may also be simultaneously active. Brain areas that are activated by 

pseudowords may thus to some extent reflect conceptual processing. Nonetheless, 

words differ from pseudowords in that there is a winner of the lexical competition 

process, and the successful retrieval of a lexical entry is necessary for word 

recognition to occur. It may therefore be assumed that brain areas that are activated 

more strongly for words than for pseudowords reflect additional syntactic and 

semantic processes involved in or subsequent to lexical recognition. 

Activation foci for all linguistic stimuli but not for non-linguistic stimuli are 

mainly reported for anterior and posterior parts of the left superior temporal sulcus 

(see also Giraud and Price, 2001), both compared to silent rest and to acoustic control 

conditions. These areas may therefore be considered as candidates for involvement in 

lexical access and competition processes. There is evidence that lexical access may be 

affected in patients with fluent aphasia, many of whom have lesions of the posterior 

part of the left  superior temporal sulcus. In such patients, Milberg, Blumstein, and 

Dworetzky (1988) observed enhanced semantic facilitation by phonologically 
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distorted primes (not only ‘cat’, but also the pseudoword ‘wat’ primed ‘dog’). Since 

these pa tients can indeed discriminate ‘cat’ from ‘wat’, Blumstein and Milberg (2000) 

locate the effect at the lexical level, assuming a lower threshold for the activation of 

lexical entries or a general “overactivation” of lexical entries. 

Regions in which activation maxima are found for words but not for 

pseudowords are the most likely candidates for a role in the retrieval of lexically 

stored information after resolution of the competition process. Compared to silent rest, 

reliable word activation maxima are found more ventrally and anteriorly than 

pseudoword maxima in both hemispheres. Due to a broader distribution of 

pseudoword foci, these location differences disappear with acoustic control conditions 

in the right hemisphere, but not in the left. Here word activation foci are found more 

anteriorly (Price et al., 1996; Mummery et al., 1999) and postero-ventrally (Binder et 

al., 1996; Price et al., 1996) than pseudoword foci. A possible relation of these areas 

to semantic processing has been suggested by a number  of authors (for an overview 

see Price, Indefrey, and van Turennout, 1999). More recently, Scott et al. (2000) 

assigned a particular role for the processing of “intelligible” speech to a left anterior 

superior temporal pathway, whereas Hickok and Poeppel (2000) suggested that the 

auditory-conceptual interface involves a posterior pathway to the left temporal-

parietal-occipital junction. Rather than supporting an exclusive role of anterior or 

posterior temporal structures in semantic processing, the data reviewed here suggest 

that different parts of the left middle and inferior temporal gyri may be involved in 

lexical semantic (but possibly also lexical syntactic) processing during passive 

listening. In addition, Broca's area, in particular BA 45, seems to be  involved in the 

retrieval of lexical information (Binder et al., 1996; Price et al., 1996). This rather 

broad distribution of brain areas associated with lexical processing is also reflected in 

the heterogeneity of clinical findings. Auditory language comprehension deficits in 

Wernicke’s aphasia do not seem to be strongly related to phonological deficits 

(Blumstein, 1995; Hickok and Poeppel, 2000). In patients with impaired 

comprehension, the lesions are typically not confined to the left superior temporal 

gyrus but extend ventrally and caudally into the middle temporal gyrus and the 

inferior parietal lobe (Damasio, 1992). Impairments of language comprehension with 
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a relatively preserved ability to repeat heard words, suggesting intact word form 

representations, are found in transcortical sensory aphasia (TCSA) and semantic 

dementia. TCSA may result from lesions of the left temporo-parietal or anterior 

temporal/inferior frontal cortex (Damasio, 1991; Berthier, 1999). Semantic dementia 

is a neurodegenerative disease affecting the left anterior and inferior medial temporal 

cortex. While the observed impairments suggest that the left anterior temporal lobe is 

necessary for language comprehension, Scott and Wise (2003) point out that surgical 

removal of this region in epileptic patients does not seem to result in a semantic 

processing deficit (see also Hagoort et al., 1999). Although the neural substrate of 

language functions may of course have been altered in epileptic patients, the 

observation suggests that the TCSA and dementia data should be interpreted with 

caution.  

In sum, the available evidence suggests that lexical processing involves 

anterior and posterior parts of the left superior temporal sulcus. Based on the 

differences observed between word and pseudoword activation patterns it can be 

assumed that there are additional lexical retrieval processes for items that are 

recognized (win the lexical competition). These processes seem to recruit the left 

posterior inferior frontal gyrus as well as more anterior and postero-ventral temporal 

areas reaching into the middle and inferior temporal gyri. It should be noted that this 

picture is almost certainly incomplete considering the available data on category-

specific semantic representations which were not targete d by the experiments 

analyzed here (see Caramazza and Shapiro, this volume). 

 

3.5. Sentence level processing  

Reliable focal activation areas for sentences but not words compared to silent rest are 

the temporal poles and the central regions of the middle temporal gyri as well as the 

left posterior inferior frontal gyrus. With acoustic or phonological control conditions, 

left temporal pole activation has been confirmed by Scott et al. (2000), whereas the 

other regions are either no longer found or found for other stimuli as well. These 

findings suggest the left temporal pole as the best candidate area for sentence-level 

processing in the temporal lobes. They do not allow a decision as to whether syntax, 
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sentence-level meaning, or prosody is processed. Mazoyer et al. (1993), who were the 

first to observe bilateral temporal pole activations for sentences, found similar 

activations for meaningless pseudoword and syntactic prose sentences. Friederici, 

Meyer, and von Cramon (2000) also report bilateral anterior temporal lobe activation, 

although more dorsally, for normal and pseudoword sentences. These findings suggest 

a syntactic rather than semantic function - a view that is also advocated by Dronkers 

(1994) on the basis of clinical data. For aphasic patients with syntactic processing 

impairments (agrammatism) she found a common lesion area in the anterior temporal 

lobe that was spared in aphasic patients, who were not agrammatic. By contrast, 

Hagoort et al. (1999) did not find any syntactic deficit in epileptic patients who 

underwent anterior temporal lobe surgery. Such conflicting findings again point to the 

necessity of interpreting structure-function relations in clinical populations with 

caution given that neural reorganisation may have occurred to an unknown extent. If 

the left anterior temporal pole indeed has a syntactic function, one would expect this 

area to be more strongly activated for sentences than for words. Wong et al. (1999), 

however, did not find temporal pole activation but posterior inferior frontal (BA 47) 

activation in a direct comparison of sentences and words. The latter area was also 

found to be reliably activated in our comparison of sentences to silent rest, so that it 

probably subserves a syntactic or semantic sentence-level processing function. BA 47 

is ventrally adjacent to Broca’s area (BA 44/45), which is typically found to be active 

in experiments using syntactic violation or judgement tasks (see Kaan and Swaab, 

2002, as well as Friederici, this volume, for an overview of frontal and temporal 

activations observed with such paradigms). Considering that persisting syntactic 

processing deficits seem to require frontal lesions that go beyond BA 44 and 45 

(Mohr et al., 1978), BA 47 may well play a role in syntactic processing. Considering 

further that syntactic processing deficits can also occur after posterior superior 

temporal lesions (Caplan, Hildebrand, and Makris, 1996), neither the left anterior 

temporal lobe nor the left inferior frontal lobe seem sufficient for syntactic natural 

language processing.  
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In sum, there is evidence suggesting involvement of the left temporal pole and 

the left posterior inferior frontal gyrus in sentence-level processing. To date, however, 

the exact role of these two areas is unclear. 

 

4. Conclusions 

Auditory language input is processed in a left posterior frontal and bilateral temporal 

cortical network. Within this network, no processing level is related to a single 

cortical area. Although auditory language processing activates both temporal lobes, 

they are not equipotential. In the right temporal lobe, activation foci for different 

auditory stimuli are found in largely overlapping areas and there is to date no clear 

evidence for hemodynamic activation related to postlexical linguistic processing. In 

the left temporal lobe, the reported activation foci for different kinds of auditory 

stimuli show clearly distinguishable patterns, and areas that seem to be specialized for 

phonological (posterior superior temporal gyrus), lexical (anterior and posterior 

superior temporal sulcus/middle temporal gyrus, posterior inferior frontal gyrus), and 

sentence-level (temporal pole, posterior inferior frontal gyrus) processing can be 

identified with some confidence on the basis of the available evidence. 
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Figure 1 (p. 33). Meta-analysis results for passive listening experiments with silent 

control conditions. Colors indicate the areas of reliable overlap of activation foci for 
the different stimuli. Results are projected onto sagittal slices of the temporal lobe at 

Talairach x-coordinates -51 (upper panel) and +51 (lower panel). To facilitate 
orientation, the approximate contours of the 50-75 % probability volumes of the 

primary auditory cortices (Penhune et al., 1996) at x = -51 and x = +51 are indicated 
by a black line. (SY = sylvian fissure, STS = superior temporal sulcus, ITS = inferior 

temporal sulcus) 

 

Figure 2 (p. 34) . Synopsis of hemodynamic activation foci reported for passive 
listening experiments with silent control conditions. Numbers refer to the experiments 

listed in Table 1. To facilitate orientation, the approximate contours of the 50-75 % 
probability volumes of the primary auditory cortices (Penhune et al., 1996) at x = -51 

and x = +51 are indicated by a black line. (SY = sylvian fissure, STS = superior 
temporal sulcus, ITS = inferior temporal sulcus) 

 

Figure 3 (p. 35) . Synopsis of hemodynamic activation foci reported for passive 

listening experiments with heterogeneous auditory control conditions. Numbers refer 
to the experiments listed in Table 2. To facilitate orientation, the approximate 

contours of the 50-75 % probability volumes of the primary auditory cortices 
(Penhune et al., 1996) at x = -51 and x = +51 are indicated by a black line. (SY = 

sylvian fissure, STS = superior temporal sulcus, ITS = inferior temporal sulcus) 
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