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Intestinal cells of C. elegans show an unexpectedly high
complexity of cytoplasmic intermediate filament (IF) proteins.
Of the 11 known IF genes six are coexpressed in the intestine,
i.e. genes B2, C1, C2, D1, D2, and E1. Specific antibodies and
GFP-promoter constructs show that genes B2, D1, D2, and E1
are exclusively expressed in intestinal cells. Using RNA
interference (RNAIi) by microinjection at 25 °C rather than at
20°C we observe for the first time lethal phenotypes for C1 and
D2. RNAIi at 25°C also shows that the known A1 phenotype
occurs already in the late embryo after microinjection and is
also observed by feeding which was not the case at 20 °C. Thus,
RNAI at 25 °C may also be useful for the future analysis of other
nematode genes. Finally, we show that triple RNAi at 20°C is
necessary for the combinations B2, D1, E1 and B2, D1, D2 to
obtain a phenotype. Together with earlier results on genes A1,
A2, A3, B1, and C2 RNAi phenotypes are now established for
all 111F genes except for the A4 gene. RNAi phenotypes except
for A2 (early larval lethality) and C2 (adult phenotype) relate
to the late embryo. We conclude that in C. elegans cytoplasmic
IFs are required for tissue integrity including late embryonic
stages. This is in strong contrast to the mouse, where ablation of
IF genes apparently does not affect the embryo proper.

D" Corresponding author: Prof. Dr. Klaus Weber, Max Planck Institute
for Biophysical Chemistry, Department of Biochemistry, Am Fassberg
11, D-37077 Goettingen, Germany, e-mail: office.weber@mpibpc.
gwdg.de, Fax: +495512011578.

Introduction

Most metazoan cells contain three major cytoskeletal poly-
mers: actin, microtubules and intermediate filaments (IFs). IF
proteins are highly conserved during evolution (Fuchs and
Weber, 1994; Erber et al., 1998). Two common traits define the
members of this diverse family. First, all exhibit a typical
tripartite organization. A central domain, highly conserved in
length is dominated by o-helices. This rod domain features
highly conserved signature motifs at its N- and C-terminal ends.
It is flanked by non-helical head and tail domains, which can
vary greatly in length and primary sequence. Second, all
cytoplasmic IFs can assemble into filaments, which are typically
about 10 nm thick. The highly conserved rod domain plays a
central role in this assembly process (for review see (Fuchs and
Weber, 1994; Parry and Steinert, 1995; Herrmann et al., 2003)).

In mammals there are about 70 different members in the IF
family (Hesse et al., 2001, 2004) which are subdivided into five
types on the basis of their sequences, gene structures, expres-
sion patterns, and biochemical properties. Type I and type II
keratins are the largest subfamilies and give rise to the
epithelial keratin filaments, which are based on obligatory
heteromeric double-stranded coiled coils formed by a type I
and a type II keratin. Type III covers four mesenchymally
expressed proteins which at least in vitro are able to form
homopolymeric IF. Type IV spans mainly neuronal IF proteins
while the type V covers the nuclear IF proteins, the lamins (for
review see (Fuchs and Weber, 1994; Parry and Steinert, 1995;
Herrmann et al., 2003)).

Orthologs of type I, II and III genes extend from the
vertebrates to the cephalochordate Branchiostoma (Karabinos
etal., 2002b) and several urochordates (Wang et al., 2002;
Karabinos et al., 2004). Neurofilament type IV proteins
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emerged probably with the vertebrate lineage while the lower
chordates have also some IF proteins without an obvious
vertebrate counterpart. In contrast, all cytoplasmic IF proteins
of protostomic animals relate more closely to the nuclear
lamins. They have the long coil 1b domain of lamins and often
display in addition a lamin homology segment in their tail
domains (Weber et al., 1989; Erber et al., 1998).

Mutations in at least 16 human epidermal keratin genes cause
various fragility syndromes of the skin (Irvine and McLean,
1999) and indicate that one function of IFs is connected with
cellular resistance to mechanical stress. In addition, they may
function as a scaffold allowing specific binding of some cellular
constituents (Ku et al., 1998; Coulombe and Omary, 2002).
Ablation of murine genes in general supports this view although
in some cases the phenotypes may be rather weak (see
(Hermann et al., 2003; Goldman, 2001)). Among the many
murine knockout experiments, embryonic lethality only emer-
ges in the case of double knockouts of either keratins 18 plus 19
(Hesse et al., 2000) or keratins 8 plus 19 (Tamai et al., 2000).
Since the Drosophila genome lacks genes for cytoplasmic IF
proteins (Goldstein and Gunawardena, 2000) the general
function of these proteins was questioned (Hynes and Zhao,
2000). However, using (dsRNA)-mediated interference
(RNAI) (Fire et al., 1998) on the nematode C. elegans allowed
us to identify 4 IF genes necessary for development (Karabinos
et al., 2001).

C. elegans has 11 genes encoding cytoplasmic IF proteins (A1
to A4, B1, B2, C1, C2, D1, D2, and E1). Some of these genes
give rise to alternative splice variants (Dodemont et al., 1994;
Karabinos et al., 2001; Woo et al., 2004). Previously, using
RNAIi at 20°C by microinjection on all 11 IF genes we observed
strong phenotypes for the genes A1, A2, A3,and B1;and aweak
phenotype for C2. The phenotypes range from embryonic
lethality (B1) and embryonic/larval lethality (A3) to larval
lethality (Al and A2). Using the RNAI feeding procedure
(Timmons et al., 2001) at 20°C phenotypes for B1 and A2 are
recorded, and the adult C2 phenotype becomes more severe
(Karabinos et al., 2003). The lack of phenotypes for Al and A3
upon feeding agrees with the view that RNAi delivery by
feeding may lose some early phenotypes but enhance some late
phenotypes (Timmons et al., 2001).

Phenotypes A2, A3 and B1 involve displaced body muscles
and paralysis. Since all three proteins are expressed in the
hypodermis, their phenotypes arise by the reduction of
hypodermal IF which participate in the transmission of force
from the muscle cells to the cuticle (Karabinos et al., 2001,
2003). Similar results were recently obtained by mutant IF
genes and/or by RNAIi experiments for A2 and A3 (Hapiak
et al., 2003), A3 and B1 (Woo et al., 2004) as well as for A2, B1
and C2 (Kamath et al., 2003) genes. Thus, at least five IF genes
are essential for C. elegans development.

The spatial and temporal pattern of expression of the five
essential cytoplasmic IF proteins Al, A2, A3, B1, C2 and the
two IF proteins A4 and B2 was determined using GFP-
promoter reporters and/or specific antibodies (Karabinos et al.,
2001,2002a,2003). These analyses revealed the existence of two
alternatively spliced variants for A1 (Ala and Alb) and Bl
(Bla and B1b) genes (Karabinos et al., 2003). Interestingly,
reduction of Bla by mutation or RNAi causes epidermal
fragility, abnormal epidermal morphogenesis and muscle
detachment while RNAI of B1b causes morphogenetic defects
and defective outgrowth of the excretory cells (Woo et al.,
2004). We found that one or both splice variants of the B1 gene

are always co-expressed in a tissue-specific manner with at least
one member of the A family in hypodermis, pharynx, pha-
ryngeal-intestinal valve, excretory cells, uterus, vulva, and
rectum (Karabinos etal., 2001, 2003). Using recombinant
proteins we defined a keratin-like obligatory heteropolymer
system by IF assembly in vitro in which B1 can form IFs when
mixed with any members of the A subfamily and showed by
RNAI that this system also holds in vivo. Proteins Al and B1
have a similar and rather slow recovery in photobleaching
experiments of the pharynx tonofilaments (Karabinos et al.,
2003). Finally, using an anti-C2 antibody we reported that C2 is
expressed in the cytoplasm and apical junctions of intestinal
cells and in the pharynx apical junction (Karabinos et al.,
2002a) while protein B2 is exclusively detected in the intestinal
cells by the monoclonal anti-B2 antibody MH33 (Francis and
Waterston, 1991; Karabinos et al., 2001; Segbert et al., 2004;
Bossinger et al.,, 2004). After B2 RNAi no phenotype is
observed (Karabinos etal., 2001; Bossinger et al., 2004)
although immunoreactivity of B2 is abolished (Bossinger
et al., 2004).

In the present study, we extended our analysis on the
expression and function of the C. elegans IF proteins with
special emphasis on proteins A4, B2, C1, D1, D2, and E1 which
thus far did not yield any obvious RNAi phenotypes by the
standard protocols (Karabinos et al., 2001, 2003; Kamath et al.,
2003). We report that the IF proteins B2, D1, D2, and E1 are
exclusively expressed in the intestine. Using RNAi at 25°C
rather than at 20°C we observe for the first time embryonic
lethality and early larval arrest for genes Cl and D2. In
addition, simultaneous inactivation of genes B2, D1 and El,
which individually are not affected by RNAI, gives rise to an
embryonic and postembryonic phenotype. Thus all C. elegans
IF genes, except the A4 gene, are connected to RNAIi
phenotypes.

Materials and methods

Nucleic acid techniques

C. elegans strain N2 Bristol was cultured and harvested as described
(Sulston and Hodgkin, 1988). The B2-, C1-, D1-, D2- and E1-promoter/
gfp constructs were prepared from DNA fragments amplified by PCR
on genomic DNA (Karabinos et al., 2001). The amplified B2 (1975 nt),
C1 (1260 nt), D1 (1782 nt), D2 (2213 nt) and E1 (2704 nt) PCR products
were ligated into the pEGFP-1 vector (Clontech, Heidelberg, Germany)
as HindIIl/BamHI (B2) and Xhol/BamH]I, (C1, D1, D2, E1) fragments.
The following primers were used: B2-promoter sense 5'-GAAATGT-
CAAAAAGCT TCCATAGGGAAATCGTGTTATC-3', antisense 5'-
GTGCATCGAATAACTAACCGCGGATCC GATGAAGTCGC-
TAA-3'; Cl-promoter sense 5-CTAAGAACTAGTAGGGCCTC-
GAGCATAG CCTAGCATTTAGC-3, antisense 5-CGGAATAC-
CTCCGTACAAGGATCCGACTGAAAATG AAAAATC-3; DI1-
promoter sense 5'-GTTTTGCACTGAAAGCACCGCTCGAGTGG-
CCGAT TGGTTAACGTTTAC-3, antisense 5-CTACACGAG-
GGTTGAGTTGGATCCTTTTTTAAAGC CTGGAATC-3'; D2-pro-
moter sense 5-CAAGTTACCAACTGTTCATCTCGAGCTTT-
GAGC TGTATAGAAG-3, antisense 5-GCGTTGGGTTGA-
GAGGGTGGATCCTGGCGTTTTTATT CTAG-3; El-promoter
sense 5'-GTTTTCAGAAATTGATAGCCTCGAGTTTTACTTGAA
TAATTTG-3', antisense 5-CCCTAGCGTTAGCGGAATGGAT-
CCGCTGAAACAGTAACCA TAAG-3'. The B2-, C1- and D2-pro-
moter/cDNA/gfp constructs were prepared by cloning the BamHI-,
BamHI- and Agel-digested coding regions of the B2, C1 and D2 cDNAs,
respectively, (Karabinos et al., 2001) into the BamHI-digested B2- and
Cl-promoter/gfp reporters and the Agel-digested D2-promoter/gfp
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reporters (see above). The coding regions were amplified using the
following primers: B2-cDNA sense 5-GTTTAACTTTAAGAAG-
GATCCGCCCTTCATATG TCG-3, antisense 5-CTTCGAATT-
GCCCTTTGGATCCGAAGAAGCGACCGTC-3; Cl1-cDNA sense
5-CTTTAAGAAGGAGGGATCCATATGTCCTTGTACG-3', anti-
sense 5'-GAATTCGCC CTTCTAGGGATCCGACGAAGAGTAG-
GAG-3; D2-cDNA sense 5-CGGAATTATCGATAA ACCGG-
TTTAAACCATGGC-3, antisense 5-CTAGAGGATCCCCGAC-
CGGTGAGCTCGGA TCCAC-3'. Microinjection or ballistic transfor-
mation of the B2-, C1-, D1-, D2-, and E1-promoter/gfp plasmids as well
asthe B2-, C1- and D2-promoter/cDNA/gfp plasmids were used to make
the unintegrated transgenic lines (Karabinos et al., 2001). These lines
were used for the characterization of GFP expression.

Cloning of the B2, C1, D1, D2, and E1 cDNAs and in vitro dsRNA
preparation, used for RNAi microinjection experiments, were as
described (Karabinos et al., 2001). For RNAI feeding experiments, the
cDNAs for A4, B2, C1, D1, D2, and E1 (Karabinos et al., 2001) were
ligated between the phage T7 promoters of the L4440 feeding vector
(Fraser et al., 2000). RNAi experiments by feeding were essentially as
described (Karabinos et al., 2003).

Protein and antibody techniques

Cloning, expression and purification of the recombinant IF proteins
Alb, A2, A3, A4, Bla, B2, C1, C2a, D1, D2, and E1 were reported
(Karabinos et al., 2001; 2003). Rabbit antisera were raised with the
following synthetic peptides as antigens (see Fig. 1): anti-B2 against the
B2 peptide CIEKRSHIQTTVASSR; anti-C1 against the C1 peptide
CSGDISAAGRHHESSY; anti-D2 against the D2 peptide CTSY-
HAYGSAYNDSLL; anti-E1 against the E1 peptide CWFVYTSN-
TEIGDADH. Prior to immunization the peptides were conjugated with
hemocyanin via their extra N-terminal cysteine. All antisera were
affinity purified on the corresponding peptides coupled to cyanogen
bromide-activated Sepharose beads (Pharmacia, Uppsala, Sweden).
The specificity of each antibody was verified by immunoblotting on
purified recombinant IF proteins and on a total C. elegans protein
extract as described (Karabinos et al., 2001). Indirect immunofluo-
rescence microscopy of the C. elegans embryos and larvae was
performed essentially as described (Karabinos et al., 2001, 2003). The
anti-B2 antibody was diluted 1 to 50, the anti-C1 antibody 1 to 5, the anti-
D2 antibody 1 to 50, the anti-E1 antibody 1 to 10, and the murine
monoclonal anti-B2 antibody MH33 (Developmental Studies Hybrido-
ma Bank, University lowa, USA) 1 to 50.

RNA interference mediated by microinjection
and feeding

RNAI experiments using the feeding or the microinjection techniques
were essentially as described (Karabinos et al., 2001, 2003). RNAi
experiments using the feeding plus microinjection techniques combined
and modified the original Fraser et al. (2000) and Fire et al. (1998)
protocols as follows. The 5-cm NGM plates containing carbenicillin
(25 pg/ml) and 1 mM IPTG were inoculated with 5 pl of the B2-, D1-,
D2- or E1-cDNA/L4440-transformed HT115(DE3) bacterial overnight
culture, or their double or triple mixtures, and left for six hours at room
temperature. The adult hermaphrodites (P0O) were washed with M9
medium and placed on the feeding plates and incubated for 72 hours at
20°C. The adult progeny (F1) was used for microinjection of the
corresponding dsRNA(s) as described (Karabinos et al.,2001). Injected
hermaphrodites were transferred to the corresponding NGM feeding
plates (see above) and their progeny (F2) growing at 20 °C was scored for
abnormalities by Nomarski microscopy.

Results

Immunoblot analysis of polyclonal IF
antibodies

To determine the expression patterns of the B2, C1,D1, D2 and
E1 proteins we raised five peptide antibodies (Fig. 1) in rabbits

and purified them by affinity chromatography (see Materials
and methods for details). The specificity of the antibodies was
demonstrated by immunoblot analyses on eleven recombinant
nematode IF proteins (Karabinos et al., 2001, 2003) and on a
total C. elegans protein extract (Fig. 2). As shown in Figure 2A,
the anti-B2, -C1, -D2, and -E1 antibodies recognized exclu-
sively the corresponding recombinant protein while the anti-D1
antibody displayed a number of strong cross-reactions (not
shown) and was removed from this study.

In the total protein extract of C. elegans the anti-B2 antibody
recognized a double band at approximately 60-62 kDa which
probably reflects the two alternatively spliced variants of the B2
gene (B2-H, 61695 Da; B2-L, 59856 Da) (Dodemont et al.,
1994). The lack of reactivity of the anti-Cl antibody on
immunoblotting of the total protein extract (Fig.2) is most
likely due to the small amount of C1 present in such extracts.
The D2-specific antibody recognized a polypeptide of approxi-
mately 50 kDa, which fits the calculated molecular mass from
the D2 sequence (D2, 51580 Da) (Karabinos et al., 2001).
Finally, the E1 antibody decorated in the total protein extract
two polypeptides of approximately 90 kDa and 58 kDa. The
higher mass is in good agreement with that calculated from the
E1sequence (89050 Da) while the smaller polypeptide (marked
with the asterisk in Fig. 2B) might represent a splice variant
lacking in part the central region of the long E1 tail sequence
(Fig. 1) (Karabinos et al., 2001). Results from the recent
genomic analysis of Caenorhabditis briggsae (Stein et al.,
2003) indicating the existence of two isoforms derived from
the E1 gene (CBP18554, CBP18555; www.wormbase.org/db/
seq/gbrowse/briggsae) support this view.

We also analyzed the specificity of the anti-C2 antibody
described previously (Karabinos et al., 2002a). In contrast to
previous results documenting only a single C2-positive poly-
peptide of about 55 kDa (Karabinos et al. 2002a), we now find
with a more concentrated antibody solution an additional C2-
positive band of about 66 kDa (marked with the asterisk in
Fig. 2B). This result supports the existence of two splice
variants C2-L and C2-H of the C2 gene (calculated protein
molecular weights 56207 and 70101 Da, respectively), as
predicted by Dodemont et al. (1994). We renamed these two
C2 splice variants C2a and C2b in agreement with the
nomenclature used on other IF genes (Karabinos et al., 2001,
2003).

Tissue-specific expression of IF proteins B2, C1,
D1,D2, and E1
Immunolocalization of proteins B2 and D2 was performed
using the B2-specific polyclonal antibody (see Fig. 2), the B2-
specific monoclonal antibody MH33 (Karabinos et al., 2001;
Bossinger et al.,2004) and the polyclonal anti-D2 antibody (see
Fig. 2). As shown in Figure 3A —C for B2, expression of both
proteins is exclusively seen in the terminal web of the intestinal
cells of the embryo starting in the bean developmental stage.
The same expression pattern of both proteins was also detected
in all larval developmental stages and in adults as documented
by the double staining experiment shown in Figure 3D —1. The
transformation experiments with the B2- and D2-promoter/gfp
reporters (data not shown) as well as with the B2- and D2-
promoter/cDNA/gfp reporters (Fig. 3J-M) fully confirmed
these results.

Double staining experiments with the Cl-specific rabbit
antibody (see Fig. 2) and the monoclonal antibody MH4, which
strongly reacted with recombinant IF proteins A1, A2 and A3
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Fig. 1. Sequence alignment of the six C. elegans IF proteins expressed
in the intestine. The three-domain structure of the typical IF protein
(head, rod, tail) is indicated. The ends of the rod subdomains (coils 1a,
1b, 2a and 2b) are marked by arrowheads above the amino acid
sequences. Asterisks (*) given below the amino acid sequences mark a
and d positions of the heptad repeat pattern with the stutter in coil 2b

in immunoblots (Karabinos et al., 2001), are provided in
Figure 4. These experiments showed coexpression of the C1
and the MH4 antigens in the dorsal and ventral hypodermis of
the bean (Fig. 4A - D), 1.5-fold (Fig. 4E, F) and 3-fold (Fig. 4G,
H) embryos, in the larvae (Fig.4I-K) and in adults (not
shown). However, in contrast to the MH4 staining pattern
(marked by the arrow in Fig. 4]) no visible C1 expression was
seen in the pharynx and also the intensity of C1 staining in the
larval and adult hypodermis was significantly weaker. C1
expression was detected weakly in the intestinal terminal web
of the embryos (not shown) and strongly in the same structure
of all larval developmental stages (Fig. 4K) and of the adults
(notshown). The expression of C1 in the intestinal terminal web
and in the hypodermis was also observed in worms transformed
with the Cl-promoter/cDNA/gfp reporter (Fig.4L-N; for
details see Materials and methods). Moreover, the C1-GFP
expression was also detected in cellular junctions of the
pharynx in the early larval developmental stage (Fig. 4L —P).
Finally, the expression patterns of genes D1 and E1 were
determined using the corresponding D1- and E1-promoter/gfp

(for details on IF structure see (Fuchs and Weber, 1994; Parry and
Steinert, 1995; Strelkov et al., 2003)). Dashes are used to optimize the
sequence alignment. Bold letters indicate residues in the rod domains
that are identical in all six proteins. Sequences of synthetic peptides
used for antibody production are boxed.

reporters and the El-specific antibody. As shown in Fig-
ure SA-D the DI1-promoter/gfp reporter was exclusively
detected in the intestine of late embryos, larvae and adults.
The same holds also for the E1-promoter/gfp-expressing worms
(Fig. 5G-17J). Immunofluorescence experiments using the E1-
specific antibody showed strong staining of the intestine
(Fig. 5SE). An additional staining in some non-identified
pharyngeal structure of embryos, larvae and adult (marked by
the arrow in Fig. 5E) is currently not understood.

RNAi analysis by microinjection for the 11 C.
elegans IF genes at 25°C

Since our previous RNAIi experiments on B2, C1, C2, D1, D2,
and E1 by microinjection and feeding at the standard tempera-
ture of 20°C did not reveal any phenotypes (Karabinos et al.,
2001, 2003) we decided to repeat the experiments at 25°C.
Using these conditions, we observed strong phenotypes for the
C1, C2 and D2 genes but no phenotypes for genes B2, D1 and
E1 (Tables 1 and 2).
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The C1 RNAI/25°C phenotype was characterized by late
embryonic lethality (7% compared to 2.5% of wild type at
25°C) and early larval arrest (16% compared to 1.5% of wild
type at 25°C). The arrested larvae exhibit abnormal epidermal

<« Fig. 2.

Immunoblot analyses of polyclonal rabbit antibodies to
proteins B2, C1, C2, D2, and E1. (A) Approximately equal amounts
of recombinant IF proteins Alb, A2, A3, A4,Bla, B2,C1,C2a,D1, D2,
and E1 (Karabinos et al., 2003) were separated by SDS-PAGE and
stained with Coomassie or blotted onto nitrocellulose membranes.
Blots were incubated with affinity-purified rabbit anti-B2, -C1, -D2,
and -E1 antibodies as indicated on the right of the panels. All four
antibodies recognized the corresponding recombinant protein. Molec-
ular mass standards (in kDa) are given on the left of the upper panel.
(B) Equal amounts of C. elegans total protein extract were separated by
SDS-PAGE, blotted onto nitrocellulose and stained with Ponceau S or
incubated with affinity-purified anti-B2, -C1, -C2, -D2, and -El
antibodies as indicated above the individual blot strips. The anti-B2
antibody recognized a double band at approximately 60-62 kDa (see
text). The lack of reactivity of the anti-C1 antibody in the total protein
extract is most likely due to the small amount of Cl present in the
extract. The anti-D2 antibody recognized a single polypeptide of
approximately 50 kDa while the anti-E1 antibody decorated in the total
protein extract two polypeptides of approximately 90 and 58 kDa (see
text). The anti-C2 antibody (Karabinos et al., 2002a) revealed two
polypeptides of approximate molecular masses of 55 kDa and 66 kDa
(marked with an asterisk) supporting the existence of the two splice
variants arising from the C2 gene (see text for details). Molecular mass
standards (in kDa) are given on the left.

morphology mostly in the head region and occasionally muscle
detachment defects throughout the body (Fig. 6). The C2 RNA{/
25°C phenotype was characterized by adult lethality (16%
compared to 2% of wild type at 25°C) mostly due to rupture of
the vulva and/or anus. Interestingly, a similar phenotype but with
much lower penetrance (3% ) was previously observed in the C2
RNAI feeding experiment at 20°C (Karabinos et al., 2003;
Kamath et al., 2003). Finally, the D2 RNAi/25°C phenotype
revealed late embryonic lethality in about 10% of the animals
and an increased early larval arrest (4% compared to 1.5% of
wild type at 25°C). Two of five arrested larvae displayed
abnormal intestine morphology (Fig. 6E). Some parts of the
intestine were thicker (marked with the arrowhead in Fig. 6E),
and we were unable to identify an intestinal lumen in these
regions (marked with arrows in Fig. 6E).

The temperature-dependent changes in the RNAi pheno-
types found for genes C1, C2 and D2 (see above) invited use of
the method on the five other C. elegans IF genes (A1, A2, A3,
A4, and B1). As shown in Table 1, microinjection and 25°C
shifted the A1 phenotype to an earlier developmental stage and
induced a higher penetrance of the known A2 and A3
phenotypes. Thus, in the Al RNAi/25°C experiments we
observed late embryonic lethality of 30% of the A1 RNAIi
animals in addition to the early larval arrest exclusively seen at
20°C (Karabinos et al., 2001). In the A2 RNAIi/25°C experi-
ments we found an increase of early larval lethality from 85%
(20°C; Karabinos et al., 2001; Hapiak et al., 2003) to 100%
(25°C). In the A3 RNAI/25°C experiments we observed an
increase of the late embryonic lethality from 25% (20°C;
Karabinos et al., 2001; Hapiak et al., 2003) to 75% (25°C;
Table 1). The previously reported late embryonic lethal B1
phenotype at 20°C (Karabinos et al., 2001; Woo et al., 2004)
remained unchanged at 25 °C. No phenotype was detected for
the A4 gene at 25°C (Table 1).

RNAi analysis of the 11 C. elegans IF genes by
feeding at 25°C

The RNAI feeding delivery method can be less effective than
microinjection in establishing early developmental RNAIi
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Fig. 3. Tissue-specific expression of proteins B2 and D2. Expression
of B2 protein, determined by monoclonal antibody MH33, is exclu-
sively seen in the intestinal terminal web of embryos (A - C), larva (D)
and adult (G). This holds also for protein D2, stained in the same
specimens (E, H) with the polyclonal anti-D2 antibody. Overlays of B2
(MH33) and D2 staining are shown in (F, I). The B2-promoter/cDNA/
¢fp (J) and the D2-promoter/cDNA/gfp (L) constructs localized the B2-
GFP and D2-GFP to the intestinal terminal web. Nomarski phase
contrast (K, M) was used to facilitate the identification of cells and
tissues. Scale bars represent 10 um for (A -C); 25 pm for D-F, G-1,J,
K); 5 pm for (L, M).
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Fig. 4. Tissue-specific expression of Cl protein. Whole-mount em-
bryos of the three developmental stages bean, 1.5-fold and 3-fold were
double labeled with affinity-purified anti-C1 antibody and with the
monoclonal anti-A1 to A3 IF antibody MH4. The C1 and MH4 antigens
are coexpressed in the dorsal and ventral hypodermis of the bean (A —
D), 1.5-fold (E and F) and 3-fold (G and H) embryos as indicated. The
MH4 antibody decorates in addition the pharyngeal tonofilaments of
the 3-fold embryo marked with the arrow (H). Whole-mount larvae of
the two developmental stages L1 (I, J) and L2/3 (K) were labeled with
affinity-purified anti-Cl1 antibody, and in the case of L1 larvae double-
labeled with the monoclonal anti-Al1-A3 IF antibody MH4. The C1
and MH4 antigens are coexpressed in the hypodermis while only the
anti-C1 antibody decorates the intestine of both larval developmental
stages (I, K) and adults. The MH4 antibody decorates in addition the
pharyngeal tonofilaments (marked with the arrow in (J)) and some
other structures (for detailed MH4 expression pattern see (Francis and
Waterston, 1991, Hresko et al., 1994; Karabinos et al., 2001, 2003)). The
Cl-promoter/cDNA/gfp transgenic larva showed C1-GFP expression
in the intestinal terminal web (L), the hypodermis (N) and in cellular
junctions of the pharynx (O). Nomarski phase contrast (M, P). Scale
bars represent 10 pm for (A-1J); 20 pm for (K); 15 pm for (L-P).
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Table 1. RNAi by microinjection of the 11 C. elegans IF genes at 20°C and 25°C.

Genes RNAI phenotype at 20°C* RNAi phenotype at 25°C
Al L1 arrest (100%) Late embryonic lethality (30%), L1 arrest (70%), (n =63)
A2 Early larval lethality (85%), late larval lethality Early larval lethality (100%), (n =90), excretory canals uneven, displaced body
(15%) muscles, paralysis
A3 Late embryonic lethality (25%), early larval leth- Late embryonic lethality (75%), early larval lethality (25%), (n = 48), excretory
ality (75%) canals uneven, displaced body muscles, hypodermis detached from the cuticle,
paralysis
A4 No phenotype No phenotype
B1 Late embryonic lethality (100%) Late embryonic lethality (100%), n= 72, from hypodermal to severe general
morphological defects
B2 No phenotype No phenotype
C1 No phenotype Late embryonic lethality (7%), early larval arrest (16%), (n =85), abnormal
epidermal morphology localized mostly to the head region and occasional
muscle detachment defects throughout the body
c2 Dumpy (10%) Adult lethality (16%), (n=55), rupture of vulva and/or anus
D1 No phenotype No phenotype
D2 No phenotype Late embryonic lethality (10%), early larval arrest (4%), (n = 140), morphological
defects
E1 No phenotype No phenotype

* For details see (Karabinos et al., 2001).

Table 2. RNAI by feeding of the 11 C. elegans IF genes at 20°C and 25°C.

Genes RNAi phenotype at 20°C* RNAI phenotype at 25°C

A1l No phenotype Late embryonic lethality (10%), early larval arrest (13%), slowly growing
larvae (13%), (n=280)

A2 Late larval and adult paralysis (30%) Late larval lethality (35%), (n = 120), excretory canals uneven, displaced
body muscles, paralysis

A3 No phenotype No phenotype

A4 No phenotype No phenotype

B1 Late larval and adult paralysis (35%) Late embryonic lethality (15%), early and late larval lethality (85%), (n=
145), excretory canals uneven, displaced body muscles, hypodermis
detached from the cuticle, paralysis

B2 No phenotype No phenotype

C1 No phenotype Early larval arrest (10%), (n =70), abnormal epidermal morphology
localized mostly to the head region and occasional muscle detachment
defects throughout the body

Cc2 Adult lethality (3%) Adult lethality (10%), rupture of vulva and/or anus

D1 No phenotype No phenotype

D2 No phenotype No phenotype

E1 No phenotype No phenotype

* The A1, A2, A3, B1, and C2 results at 20°C were previously reported (Karabinos et al., 2003).

phenotypes, while it can be more effective than microinjection
for late developmental stages (Timmons et al., 2001). In line
with this prediction we previously found a developmental shift
of the B1 phenotype from embryonic lethality to late larval/
adult lethality, and similar changes have been observed in the
A2 RNAI feeding experiment. Moreover, RNAI feeding at
20°C did not detect the embryonic and early larval phenotypes
of the A3 and Al genes observed by microinjection. On the
other side, the mild dumpy phenotype of RNAi-microinjected
C2 animals (Karabinos et al., 2001) changed to adult lethality
upon feeding (Table 2) (Karabinos et al., 2003; Kamath et al.,
2003). No phenotype was detected in the RNAi feeding
experiments at 20°C for genes A4, B2, C1, D1, D2 and E1
(Table 2) (see also (Kamath et al., 2003)).

In contrast to the RNAI feeding experiments at 20 °C strong
Al and C1 RNAI feeding phenotypes were seen at 25°C
(Table 2). The A1l phenotype was characterized by late
embryonic lethality (10%), early larval arrest (13%) and slow
larval growth (13%). The C1 phenotype showed early larval
arrest (10%) with epidermal defects and with muscle detach-
ments (Fig. 6; Table 2). In addition, the B1 RNAIi feeding
phenotype at 20°C involving late larval lethality (Karabinos
etal., 2003; Kamath et al.,, 2003) was shifted at 25°C to
embryonic lethality (15%). The 3%-penetrance of the adult
lethal C2 phenotype at 20°C (Karabinos et al., 2003; Kamath
et al., 2003) was shifted to 10% at 25°C. Finally, no phenotypes
were detected for the A4, B2, D1, D2, and E1 genes by feeding
at 25°C.
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Fig. 5. Tissue-specific expression of the D1- and El-promoter/gfp
reporter and E1 protein. Expression of D1-promoter driven GFP in the
adult, embryos (A, B) and the larva (C, D) was detected exclusively in
the intestine. Double staining with the affinity-purified anti-E1 anti-
body (E) and the monoclonal anti-B2 antibody MH33 (F) revealed
coexpression of E1 and B2 in the intestinal terminal web of the embryo.
In addition, the anti-E1 antibody detects some unidentified structures
in the pharynx (marked with the arrow in (E)). Expression of the E1-
promoter driven GFP was detected exclusively in the intestine of larvae
(G, H) and adults (I, J). Phase contrast (B, D, H, J) was used to facilitate
the identification of cells and tissues. Scale bars represent 100 um for
(A-D); 10 pm for (E, F); 50 um for (G, J).

Double and triple RNAi experiments by
microinjection plus feeding reveal essential
functions of the B2, D1 and E1 genes in worm
development

Of the four IF genes (B2,D1,D2,and E1), which are exclusively
expressed in the intestine, only D2 provided a detectable RNAi
phenotype (microinjection and 25°C; see Tables 1 and 2). To
investigate possible functions of the three remaining genes we
treated worms with double or triple mixtures of B2, D1, and E1
dsRNAs, which were delivered by the feeding plus microinjec-

D2(RNAi)

Fig. 6. Postembryonic phenotypes of C1 and D2 RNAi at 25°C.
Hypodermal defects of early larvae induced by C1 RNAIi microinjec-
tion at 25°C (A-D). Nomarski images of the early larvae document
abnormal epidermal morphology in the head regions (marked by
arrows in (A — C)) and muscle detachment defects throughout the body
(marked with the arrowhead in (C)). (B) is a higher magnification of
(A). (D) Nomarski image of a wild-type L1 larva. The early D2 RNAi
larva (E) displayed areas of abnormal intestinal morphology (arrow-
head) with nonvisible lumen (arrows). Scale bars represent 25 pm.

tion protocol at 20°C (see Materials and methods for details).
Of all possible mixtures of B2, D1, and E1 dsRNAs, the triple
RNAi experiments revealed the strongest phenotype. It
involved embryonic lethality (15%), slowly growing larvae
(10% ) and smaller adults (5% ) for the 110 animals scored. The
B2/D1/E1 (RNAI) embryos arrested at the 2—3-fold stage, had
visible vacuoles, mostly localized in the posterior region, and
often displayed ruptures (Fig. 7A). The smaller adults were
about 0.7 mm in length, had unusually high numbers of
undifferentiated germ cells in the last part of the ovary (marked
with arrows in Fig. 7E) and showed a reduced brood size (40—
80 compared to about 300 for the wild type). Interestingly, the
penetrance of this phenotype was significantly increased when
E1 dsRNA (but not B2 or D1 dsRNAs) was replaced by D2
dsRNA. In this triple RNAi experiment we observed lethality
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Fig. 7. Embryonic and postembryonic defects of B2, D1, E1 and B2,
D1, D2 (triple RNAi) animals. The B2, D1, E1 (A) and B2, D1, D2 (B)
embryos show ruptures resulting in loss of internal contents (white
arrows) and vacuoles (black arrowheads). For comparison, 1.5-fold (C)
and 3-fold (D) stage wild-type embryos are shown. The B2, D1, E1 (E)
and B2, D1, D2 (F) (triple RNAI) adults are smaller than the wild type
and display a higher number of undifferentiated germ cells in the ovary
(white arrows) just before the spermatheca (black arrowheads). (G)
Wild-type gonad with the spermatheca (black arrowhead). Scale bars
represent 10 pm for (A-E); 20 um for (F, G).

of 31% of the embryos (Fig. 7B), slow growth of 20% of the
scored larvae as well as 8% smaller adults (Fig. 7F). We note
that at 20°C none of the 3 genes is affected by single RNA..

Discussion

Using specific antibodies and GFP reporters we previously
analyzed the expression patterns of six (Al, A2, A3, A4, Bl,
and C2) of the 11 IF proteins present in C. elegans (Karabinos
et al.,2001,2002a, 2003). This study outlines the developmental
control of expression for the five remaining IF proteins (B2, C1,
D1, D2, and E1). Immunofluorescence microscopy and/or the
transgenic promoter-driven GFP-expressing worms reveal
coexpression of proteins B2, D1, D2, and E1 exclusively in
the intestinal terminal web. These patterns are seen already in

embryos and persist in all larval stages and the adults. In
contrast, protein C1 shows some interesting changes in expres-
sion during development. Protein C1 is strongly expressed in
the hypodermis and weakly in the intestine of the embryo while
the opposite situation seems to hold in the larva and adult
stages. Moreover, significant C1 expression was also seen in the
pharyngeal apical junctions of the early larva stage. Thus, C1
colocalizes with the related protein C2 at apical junctions
(Karabinos et al., 2002a). The hypodermal C1 expression
pattern strongly resembles that detected with the monoclonal
antibody MH4 which is specific for proteins Al, A2 and A3
(Karabinos et al.,2001). Thus, the four proteins B2, D1, D2, and
E1 are expressed exclusively in the intestine, which shows
additionally C1 (see above) and C2 (Karabinos et al., 2002a) at
least during some developmental stages.

Previous functional analyses using the standard RNAI
microinjection or feeding protocols at 20°C showed strong
phenotypes for Al, A2, A3, Bl, and C2 genes and no
phenotypes for genes A4, B2, C1, D1, D2, and E1 (Karabinos
et al., 2001, 2003) (see also (Hapiak et al., 2003; Woo et al.,
2004; Bossinger et al., 2004)). However, the RNAI analyses at
25°C, presented here, provided strong phenotypes also for
genes C1 and D2 (Fig. 6, Tables 1, 2) and shifted the known A1
phenotype achieved at 20 °C (Karabinos et al.,2001,2003) from
the early larva to the late embryo. Thus RNAi at 25 °C may also
be useful for the analysis of other nematode genes.

The C1 RNAIi/25°C phenotype induced by microinjection
was characterized by low penetrance late embryonic lethality
(7%) and an early larval arrest (16%), while only the
postembryonic phenotype was observed in experiments in
which the C1 dsRNA was introduced by feeding. The
morphological defects of the arrested C1 RNAi/25°C larvae
were mainly concentrated in the hypodermis of the head while
occasionally muscle displacement was seen throughout the
body muscle. This phenotype resembled the previously repor-
ted A2, A3 and B1 RNAIi phenotypes achieved at 20°C.
However, the penetrance and intensity were much stronger in
these 3 phenotypes (for details see (Karabinos et al., 2001, 2003;
Hapiak et al., 2003; Woo et al., 2004)). Thus, protein C1 seems
to be a component of the IF network responsible for the
mechanical integrity of the hypodermis. Future studies using
high-resolution immunoelectron microscopy may help to
understand the function of C1 and its relation to the main B1/
A3/A2 IF cytoskeleton of the hypodermis.

The second new RNAIi/25°C phenotype was induced by
microinjection of dsRNA specific to gene D2. It comprises a
low penetrance late embryonic lethality (10% ) and an approxi-
mately 2.5-fold increase of larval arrest over the wild-type
control at 25°C (Tables 1 and 2). Two of five arrested larvae
displayed abnormal intestinal morphology (Fig. 6E). Some
parts of the intestine were thicker and an intestinal lumen could
not be identified in these regions. It remains to be seen whether
this phenotype reflects morphological or proliferation defects
of the intestinal cells. Of the four IF genes expressed exclusively
in the intestine only gene D2 gave rise to an RNAi phenotype
which was observed only by the microinjection procedure and
not by the feeding delivery protocol (Tables 1 and 2).

The exclusive expression of genes B2, D1, D2, and E1 in the
intestine raised the question whether some IF proteins fulfilling
the same or very similar functions can substitute for each other.
This situation arose previously with mouse keratin genes
expressed in interior epithelia. While single gene ablation
provided no phenotype the simultaneous knockouts of 2 genes



466 A. Karabinos et al.

EJCB

revealed embryonic lethality (Hesse et al., 2000; Tamai et al.,
2000). We therefore explored double and triple RNAi using a
protocol based on microinjection plus feeding at 20°C. The
simultaneous inactivation of genes B2, D1 and E1 provided a
stronger phenotype than double RNAi combinations. The B2/
D1/E1 RNAi embryos arrested at the 2-3-fold stage with
visible vacuoles and often also revealed tissue ruptures
(Fig. 7A). The penetrance of the B2/D1/E1 phenotype was
significantly increased when the E1 dsRNA in the mixture was
replaced by D2 dsRNA.

The intestinal terminal web (known in nematodes as the
endotube) is a dense cytoskeletal layer which underlies the
apical microvilli of the epithelial cells and which is thought to
contain an extensive IF network (Munn and Greenwood, 1984;
Leung et al., 1999). The structure joins directly to the apical
junctions (CeAlJ), which are essential for integrity of adjacent
intestinal cells. In addition, the CeAl are sites of intensive
intercellular signalling, and defects in their organization may
result in apoptosis or uncontrolled cell division. There are two
independent protein systems operating in Ce AJ (for review see
(Chin-Sang and Chisholm, 2000; Michaux et al., 2001; Knust
and Bossinger, 2002)). The first comprises the E-cadherin, a-
catenin and 3-catenin homologues HMR-1, HMP-1 and HMP-
2, while the other includes proteins AJM-1 and DLG-1.
Mutations in the former protein system are lethal due to
defects in the actin cytoskeleton and its anchoring (Costa et al.,
1998), while disruption of the latter two proteins causes
disappearance of the electron-dense apical structures and
embryonic death (K6ppen et al., 2001). Removal of HMP-1,
AJM-1 or DLG-1 by RNAI has little effect on the overall
position of the terminal web. In contrast, removal of the LET-
413 protein, which is the homolog of the Drosophila Scribble
protein needed for proper localization of DLG-1 and AJM-1in
CeAlJ (Koppen et al., 2001; McMahon et al., 2001), leads to a
basolateral expansion of the terminal web (Bossinger et al.,
2004). Interestingly, the let-413 embryos show vacuoles, rup-
tures and no discernible lumen in the intestine (Legouis et al.,
2000) and thus resemble the D2 and B2/D1/E1 RNAi pheno-
types described above. On the other side, the reduced body and
brood size of the triple B2/D1/E1 knockdowns resemble the
phenotype of the recently described pep-2 mutant (Meissner
et al., 2004). The nematode PEP-2 protein is expressed along
the apical membrane of the intestinal cells and mediates the
uptake of peptides into the intestine. PEP-2 was shown to cross-
talk with both the C. elegans TOR and DAF/insulin signalling
pathways which regulate cell growth, proliferation and aging in
response to nutrients.

Although these results should help to define a model of how
CeAJ/IF complexes assemble and maintain cell integrity and
polarity (see also (Segbert et al., 2004)) the precise molecular
picture will probably require double immunoelectron micro-
scopical information of high resolution. It could define whether
there is only one or more populations of IFs and define the role
of the C2 protein, which by immunofluorescence seems present
in IFs of the terminal web but also strongly enriched at Ce AJ
(Karabinos et al., 2002a; Segbert et al., 2004). Interestingly,
there are at least 2 different C2 splice variants identified by
cDNA cloning (Dodemont et al., 1994) and immunoblotting
(Fig. 2B).

A better understanding of the intestinal IF can also be
expected from in vitro filament assembly studies using recom-
binant proteins. Preliminary work indicates that the individual
proteins B2, D1, D2, and E1 do not form IFs but yield only

aggregates. In contrast, the mixtures of B2 and D2 seem to form
IFs but electron micrographs indicate an inhomogenous
product of IFs and thicker ribbons of filaments. A solution of
this problem still requires a detailed analysis to define optimal
assembly conditions.

The 11 C. elegans IF proteins seem to form 3 groups. The first
IF group contains proteins Ala, Alb, A2, A3, A4, Bla, and
B1b. In this “B1/A” system one or both splice variants of the B1
gene is coexpressed with at least one A protein in several
epithelial organs including the hypodermis and the pharynx. B1
together with proteins Al, A2 or A3 forms long heterofila-
ments in vitro (Karabinos et al., 2003). Different RNAi and/or
genetic mutant experiments of B1 (Karabinos et al., 2001; Woo
et al., 2004), A1 (this study) and A3 (Karabinos et al., 2001;
Hapiak et al., 2003; Woo et al., 2004) genes result in embryonic
death in the 2 —3-fold stage as well as in postembryonic defects
in the hypodermis/muscle attachment, pharynx and excretory
canals. Similar experiments using A2, the larval stage up-
regulated IF gene (Karabinos et al., 2002a), show muscle
detachment and larval lethality (Karabinos et al., 2001; Hapiak
etal., 2003; Kamath et al., 2003) while no obvious RNAi
phenotype was so far observed for A4, the last member of the A
IF family (this study; Karabinos et al., 2001; Kamath et al.,
2003). Thus, the B1/A IFs represent an essential epithelial
keratin-like IF system necessary for the normal embryonic
development of the hypodermis which is a prerequisite for
elongation and locomotion of the worm (see also Introduction).
The second IF group comprises proteins B2, D1, D2, and E1,
which are exclusively expressed in the intestinal terminal web,
and form probably another heteropolymeric system. Function-
ally this “B2/D/E1” IF system is involved in formation and/or
regulation of the terminal web and possibly some other
intestinal structures necessary for the normal function and
development of one of the largest epithelial organs in C.
elegans. Finally, the third IF group covers proteins C1 and C2.
Both are the only IF proteins localized in the pharyngeal
cellular junctions, while C2 is also clearly enriched in cellular
junctions of the intestine (Karabinos et al., 2002a). In addition,
both C proteins are also integrated into the terminal web
possibly indicating their potential to serve as linkers connecting
the terminal web IF cytoskeleton to CeAl.

In conclusion, the work described here together with earlier
results (Karabinos et al., 2001, 2003) has allowed us to describe
the RNAI phenotype for 10 of the 11 C. elegans IF genes. A
functional analysis of the last gene A4 should be possible in the
future using transgenic animals expressing A4 dominant
negative mutations. Surprisingly, nearly all RNAi phenotypes
relate to the late embryo. Only A2 (early larval lethality) and
C2 (adult phenotype) affect a later developmental stage. Five of
the late embryonic lethal phenotypes (A1, A3, B1, Cl, and D2)
arise by single gene silencing. In contrast, in the mouse an
embryonic lethal phenotype was not obtained in many different
knockouts of IF genes. It was however observed when two
genes encoding keratins of interior epithelia were knocked out
simultaneously. Curiously, however, the defect involves fra-
gility of the trophoblast giant cells and not the embryo proper
(Hesse etal., 2000; Tamai et al., 2000) (see however also
(Jaquemar et al., 2003)). Why is the C. elegans embryo so
sensitive to loss of particular IF proteins? Part of the answer lies
in the unique function of the hypodermis. Nematode hypoder-
mal IFs are necessary for the strict coupling of hypodermal and
muscle development and are also necessary for locomotion due
to transmission of muscle force from the muscle to the cuticle
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(Francis and Waterson, 1991; Hresko et al., 1994, 1999), i.e. for
crucial functions of the C. elegans hypodermis. We previously
speculated that the lack of cytoplasmic IFs in Drosophila
reflects a cytoskeletal alteration in which bundles of micro-
tubules can substitute for IFs (Karabinos et al., 2001). Given
the lack of embryonic phenotypes in knockouts of various IF
genes in the mouse one also wonders whether the actin
microfilament system can at least in part substitute for IFs in
the mammalian embryo.
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