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Cooperative action of antioxidant defense systems in Drosophila
Fanis Missirlis*, John P. Phillips† and Herbert Jäckle*

Molecular oxygen is key to aerobic life but is also Results and discussion
A putative GR-coding gene of Drosophila was previouslyconverted into cytotoxic byproducts referred to as

reactive oxygen species (ROS) [1]. Intracellular identified by comparative genome sequence analysis and
named gr [10]. However, subsequent biochemical charac-defense systems that protect cells from ROS-

induced damage include glutathione reductase (GR), terization of the gene product revealed that it exhibits
TrxR instead of GR activity; therefore, the gene wasthioredoxin reductase (TrxR), superoxide

dismutase (Sod), and catalase (Cat) [2]. Sod and Cat renamed dmtrxr-1 [12]. This finding, in conjunction with
the apparent absence of a bona fide GR in Drosophila,constitute an evolutionary conserved ROS defense

system against superoxide; Sod converts superoxide suggests that, in flies, the recycling of GSH from GSSH
is carried out principally by the thioredoxin system ratheranions to H2O2, and Cat prevents free hydroxyl

radical formation by breaking down H2O2 into oxygen than by GR [12]. If TrxR plays the dominant role in GSH
recycling, we would predict that genetic impairment ofand water [2]. As a consequence, they are

important effectors in the life span determination of this thiol-based GSH recycling system would have serious
debilitating consequences on the organism under nor-the fly Drosophila [3–7]. ROS defense by TrxR and

GR is more indirect. They transfer reducing moxic conditions. To test this prediction, we generated
and analyzed mutations in dmtrxr-1. We also used a loss-equivalents from NADPH to thioredoxin (Trx) and

glutathione disulfide (GSSG), respectively, resulting of-function dmtrxr-1 mutation to determine the functional
relationship between the Trx/TrxR system and the Sod1/in Trx(SH)2 and glutathione (GSH), which act as

effective intracellular antioxidants [2, 8]. TrxR and Cat system of ROS metabolism; mutations of sod1 and
cat were shown previously to produce complex mutantGR were found to be molecularly conserved [9].

However, the single GR homolog of Drosophila [10, phenotypes including a severe reduction of the life span
[3, 4].11] specifies TrxR activity [12], which compensates

for the absence of a true GR system for recycling
GSH [12]. We show that TrxR null mutations reduce In order to visualize the predominant sites of expression
the capacity to adequately protect cells from of genes specifying the two antioxidant defense systems,
cytotoxic damage, resulting in larval death, we performed in situ hybridization of antisense RNA
whereas mutations causing reduced TrxR activity probes for dmtrxr-1, sod1, and cat to whole-mount prepara-
affect pupal eclosion and cause a severe reduction tions of embryos at different stages of development [13].
of the adult life span. We also provide genetic Figure 1 shows that the different transcripts are expressed
evidence for a functional interaction between TrxR, maternally and that they are highly enriched in overlap-
Sod1, and Cat, indicating that the burden of ROS ping spatial patterns throughout embryogenesis, includ-
metabolism in Drosophila is shared by the two ing the developing and mature midgut. dmtrxr-1 and sod1
defense systems. are coexpressed in the germline progenitor cells, whereas

cat is expressed in the fat bodies and the oenocytes (Figure
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The dmtrxr-1 gene is located at polytene chromosome
position 7D on the X chromosome [10]. In order to obtain
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mutants for the gene, we performed P element insertion
mutagenesis screens [18], resulting in four independent

Current Biology 2001, 11:1272–1277 single P element insertions (Figure 2a). Since all four
insertion mutations caused the same hypomorphic mutant

0960-9822/01/$ – see front matter phenotype (see below), we continued to work with the
 2001 Elsevier Science Ltd. All rights reserved.

semilethal P element insertion line l(1)G0481, termed
dmtrxr-1481 mutation. Remobilization of the inserted P
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Figure 1

Expression of dmtrxr-1, sod1, and cat
transcripts during Drosophila
embryogenesis as revealed by RNA in situ
hybridization to whole-mount preparations
[13]. The top rows in (a)–(c) show lateral views
of the embryos, anterior is left, and dorsal is
top; stages according to [28]. (a) dmtrxr-1
expression showing that the transcript is
provided maternally (stage 1); zygotic
expression occurs in germ cell progenitors
(stage 9; arrow), the developing midgut
(stages 14, 16), hindgut, and proventriculus
(stage 16; arrows). (b) Sod1 transcripts are
provided maternally (stage 1) and continue
to accumulate in essentially the same spatial
and temporal patterns as DmTrxR-1
transcripts. (c) Cat transcripts are provided in
low amounts maternally (stage 1). Zygotic
expression occurs in the same portions of the
gut as observed with dmtrxr-1 and sod1, but
not in the germ cell precursors. Additional sites
of cat expression are the fat bodies (stage
14; arrow), oenocytes (stage 16; arrowheads),
and anal pads (stage 16; asterisk).

element caused a reversion to wild-type, indicating that instar larvae without showing morphologically discernible
phenotypes. This pattern of mortality suggests that thethe insertion was the cause of the mutant phenotype

(see below). Furthermore, imprecise P element excisions viability of dmtrxr-1�1 mutants as embryos and first larval
instars depends on TrxR function supplied by maternally-caused small deletions within the dmtrxr-1 open reading

frame, resulting in dmtrxr-1 lack-of-function alleles such derived dmtrxr-1 transcripts (see above). In contrast, all
dmtrxr-1481 mutants develop into third instar larvae andas dmtrxr-1�1 (Figure 2a).
75% become pupae. Most dmtrxr-1481 mutant individuals
die as normal-appearing pharate adults in the pupal casesThe dmtrxr-1 mutants present a set of complex pheno-

types. Embryonic development was normal, and virtually (Figure 2b) or during the process of eclosion (Figure 2c).
Only about 20% eclose into normal-appearing adults, theall dmtrxr-1�1 mutant larvae hatched. About 70% of these

larvae survive to the first instar stage, only to die as second majority of which die within 2–3 days (Figure 2d; also
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Figure 2

The Drosophila gene dmtrxr-1, P element
insertion mutants, and their effect on pupal
eclosion and life span. (a) A physical map of
the dmtrxr-1 locus, the P-lacW insertion sites
[29], the two alternatively spliced transcripts
(4 exons each; boxes), and the location within
AE003443 DNA (in 7D18–20 of the X
chromosome [30], as revealed by plasmid
rescue of P element adjacent fragments and
sequencing of both genomic and cDNAs
[31]). Note the P element insertion I(1)G0481
that represents the dmtrxr-1481 allele and the
lack-of-function mutation dmtrxr-1�1. The two
transcripts code for different 5� regions,
resulting in different amino-terminal ends of
the deduced protein (red and gray boxes,
respectively). Remobilization of the P elements
caused reversion of the mutant phenotype to
wild-type, indicating that the insertion is the
cause of the mutant phenotype [32]. (b)
About 75% of the hemizygous dmtrxr-1481

males die as pharate adults or (c) during
eclosion (see Table 1). (d) The life span of
wild-type (red crosses) and hemizygous
dmtrxr-1481 males (black triangles),
hemizygous dmtrxr-1481 males ubiquitously
expressing the biochemically characterized
TrxR cDNA [12] (gray squares), as well as
hemizygous dmtrxr-1481 males ubiquitously
expressing cat cDNA (blue circles). Note that
the life span of the eclosed hemizygous dmtrxr-
1481 males is severely reduced (black
triangles) and that their shortened life span
was rescued in response to transgene-
dependent TrxR (light and dark gray boxes
represent two independent insertion sites on
the second chromosome). Transgene-derived
ubiquitous TrxR expression was achieved by
the Gal4/UAS system [20] using the act5C-
Gal4 driver [21] in combination with
UASdmtrxr-1 cDNA (genotype: dmtrxr-1481/Y;;
UASdmtrxr-1/�;; act5C-Gal4/�). Cat
expression was achieved with the same driver
in combination with UAScat (genotype:
dmtrxr-1481/Y;; UAScat/�;; act5C-Gal4/�).
dmtrxr-1 cDNA (LD21729 [33]) was
subcloned into the PUAST vector using XhoI
and BglII sites; PUASdmtrxr-1 was used for
transformation of w1 flies as described [34].

see below). Despite their shortened life span, adult mu- results suggest that the dmtrxr-1�1 mutation is a null allele,
whereas the dmtrxr-1481 mutation provides sufficient resid-tant flies are able to mate and give progeny. No significant

difference in pupal mortality and shortened adult life span ual TrxR activity for incomplete development into pupae
and even a few short-lived adults. To demonstrate thatwas observed between homozygous dmtrxr-1481 females

and hemizygous dmtrxr-1481 males (data not shown). These these effects are indeed caused by impaired activity of
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Table 1

Effects of altered sod and cat expression on hemizygous dmtrxr-1481 males.

Genotype

X chromosome
� dmtrxr-1481

/ /
n (%) n (%)

X
⇁ ;

�

�
;

�

TM3
456a (100) 117 (25.6)

X
⇁ ;

�

�
;

sodn108

TM3
628a (100) 15 (2.4)

X
⇁ ;

�

�
;

cat n1

TM3
497a (100) 47 (9.5)

X
⇁ ;

�

�
;

act Gal4
�

540b (100) 93 (17.2)

X
⇁ ;

UASdmtrxr-1
�

;
act Gal4

�
346b (100) 427 (123)

X
⇁ ;

UAShsod1
�

;
act Gal4

�
337b (100) 9 (2.7)

X
⇁ ;

UAScat
�

;
act Gal4

�
232b (100) 82 (35.3)

a X � white.
b X � FM6.
Hemizygous dmtrxr-1481 males derived from either w1, dmtrxr-1481/ chromosome (100%) relative to males bearing the dmtrxr-1481

w1;;***/TM3 � w1/Y;;***/TM3 or w1, dmtrxr-1481/FM6;***/*** � y, mutant X chromosome in an otherwise identical genetic
w1/Y;;act5C-Gal4/TM6B parents (chromosome *** is indicated). background. Balancer chromosomes and mutations are
Eclosion rate of males containing a dmtrxr-1 wild-type X described [35].

TrxR-1, we expressed the biochemically characterized mutant flies dies within 2–3 days [3]. In contrast, sod1n108

heterozygotes eclose normally into adults with a normalTrxR-1 enzyme [12] from an actin-Gal4/UAS-driven
cDNA-containing transgene [20] in the dmtrxr-1481 mu- life span [3]. However, only 2.4% (p � 0.001; chi-square

analysis) of heterozygous sod1n108, hemizygous dmtrxr-1481tants. The transgene-bearing hemizygous dmtrxr-1481

males develop into normal, healthy-looking adults. Irre- mutant individuals eclose (Table 1). The significantly
lower eclosion rate indicates that a partial reduction ofspective of the chromosomal location of the actin-Gal4-

driven transgene, which provides ubiquitous and constitu- sod1 activity in dmtrxr-1 mutants impacts pupal eclosion
even more severely than either the complete absence oftive TrxR-1 activity [21], the life span of the rescued flies

is in the range of the wild-type life span (Figure 2d). sod1 or the partial reduction of dmtrxr-1 activity alone.
Likewise, only 9.5% (p � 0.001; Table 1) of heterozygous
catn1, hemizygous dmtrxr-1481 mutant individuals eclose.The results obtained with the hypomorphic allele, dmtrxr-

1481, suggest that impairment of TrxR activity has severe Furthermore, hemizygous dmtrxr-1481 males, which are
also homozygous for catn1 or sod1n108, die as pharate adultsconsequences on pupal mortality and adult life span simi-

lar to those reported earlier for mutants affecting the Sod/ and never reach adulthood. This indicates that the double
mutant defects are dependent on the gene dose of catCat-dependent ROS defense system [3, 4, 19] (see above).

Because a functional reduction of each of the two antioxi- and sod1 in conjunction with dmtrxr-1481. Virtually the
same result was obtained with different sod1 and cat allelesdant defense systems confers a similar visible mutant

phenotype, we sought to determine by genetic means generated in different chromosomal backgrounds, indicat-
ing that the observed interactions with dmtrxr-1481 arewhether the two systems cooperate in vivo. We generated

genetic strains containing the dmtrxr-1481-bearing X chro- neither allele-specific nor background-dependent effects.
Collectively, these results indicate that the Sod1/Cat andmosome in different genetic backgrounds that include

heterozygosity for null mutations of the sod1 and cat genes, the Trx/TrxR systems share the burden of ROS defense.
It should be noted that another important biological re-respectively (Table 1). The scoring of the mutant effect

was based on the frequency of eclosed adult males relative ductant in Drosophila, namely urate, plays an important
antioxidant role in the crisis of oxidative stress that hasto the eclosion of males that contain the corresponding

wild-type X chromosome. Table 1 shows that, depending been suggested to occur during late metamorphosis and
eclosion [22].on the chromosomal background, the eclosion rate of hem-

izygous dmtrxr-1481 individuals varied between 17.2% and
25.6% as compared to dmtrxr-1� siblings. Similarly, only In addition to mutant analysis, we also performed gain-

of-function studies to express human Sod1, previously27% of homozygous sod1n108 mutant individuals eclose
(data not shown), and, as observed with hemizygous shown to substitute for the lack of sod1 activity in the fly

[6] (data not shown), and Drosophila Cat in hemizygousdmtrxr-1481 individuals, the majority of the eclosed sod1n108
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dmtrxr-1 males. Sod1 and Cat were expressed from UAS- far-reaching effects on both preadult development and
on adult life span.cDNA-containing transgenes in response to a Gal4 driver

under the control of the constitutively active actin pro-
moter [21]. Overexpression of human Sod1 reduced the Acknowledgements
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