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Algorithm / Smoluchowski Equation / Diffusion-Influenced Reactions

Diffusion-influenced reactions can often be described with simple kinetic models, whose
basic features are a spherically symmetric potential, a distance-dependent relative dif-
fusion coefficient, and a distance-dependent first-order rate coefficient. A new algorithm
for the solution of the corresponding Smoluchowski equation has been developed. Its
peculiarities are: 1) A logarithmic increase of the radius; (2) the systematic use of
numerical fundamental solutiog of the Smoluchowski equation; (3) the use of poly-
nomials of up to the ‘8degree for the definition of the first and second partial derivatives

of w with respect to the radius; (4) successive doubling of the total diffusion time. The
power of the algorithm is illustrated by examples. In particular its usefulness for the
combination of a short-range potential with a large radial range is demonstrated. Some
aspects of the algorithm are explained in the context of one-dimensional diffusion. Dif-
fusion in a harmonic potential (Ornstein-Uhlenbeck process) and in a double-minimum
potential is treated in detail. It is shown that a detailed balance will in general not lead
to the best approximation of the time-dependence of a distribution.

1. Introduction

Diffusion-influenced reactions can often be described with simple kinetic
models, whose basic common feature is the relative diffusive motion of a
particle B in the spherically symmetric potential of a particle A-p0].

For an ensemble of A - B pairs, the average relative motion of A and B
and the disappearance of A---B pairs by a reaction of A or B can be de-
scribed with the Smoluchowski Eqt)(
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o)y _ 10 (, op(r, 1) 1 du(r) B
at _r26r<r D(r)[ or kT dr Mm)]) k(r)p(r't)(;)

p is a probability density (often normalized for= 0), r is the distance
between the centers of A and Bjs the time,D is the distance-dependent
relative diffusion coefficient of A and Bk is the Boltzmann constari, is
the temperaturd) is a spherically-symmetric potential, akds a distance-
dependent first-order rate coefficient. The partial differential Epig to be
solved numerically for a given initial conditign(r, 0), subject to adequate
boundary conditions.

The development of the present algorithm started from a specific prob-
lem, which is described in the Appendix. Technically this problem is
characterized by the combination of a short-range deep potential with a
large radial range. The basic assumption has been that a standard algorithm
would not yield sufficiently accurate numerical solutions of problems of
this kind within an acceptable computation time. In view of the lot of sys-
tematic work on the development of efficient diffusion algorithms-§&
13—20], the publication of a new algorithm requires a justification. In par-
ticular it should become evident that the new algorithm incorporates fea-
tures that are of interest beyond the specific kinetic problem, for whose
solution its has been designed. This justification is given in part in the
following items and in part in the Discussion in section 4.

Dimension.It has been customary to treat one-dimensional diffusion,
circularly symmetric two-dimensional diffusion, and spherically symmetric
three-dimensional diffusion formally in the same way by using general for-
mulae, in which the dimension is specified by a dimension varidh{ef.
for instance ref. 19, 20]). The present algorithm was originally developed
only for spherically symmetric diffusion. Later it turned out that some pecu-
liarities of the algorithm are most easily explained and tested in the context
of one-dimensional diffusion, and for this reason one-dimensional diffusion
has been also included. Circularly symmetric diffusion has not been taken
into account, but its treatment by the present algorithm should offer no
difficulties.

Discretization of space coordinatéd short-range potential requires
small radial stepd\r, which are unsuitable for the coverage of large radial
ranges R, R.), whereR, is the inner radius an®, is the outer radius of
the spherical shell, to which the motion of the center of B relative to the
center of A is confined. Different strategies were developed to solve this
problem: (a) Different constant values Af are used in sub-intervals of the
total range R,, R\) [6, 19]. (b) The discrete radius is logarithmically in-
creasedr,., = rX(1 + q) with 0 < q = const.< 1, andz = Inr is
introduced as new independent spatial variall].[(c) The independent
variabler is transformed by means of an isomorphism ontofthiée range
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of a new variable(r). By a suitable choice of the functiar), an equidis-

tant discretization of gives an optimal representation of the potentidl,[

18]. The strategy of the present algorithm is in part similar to strategy (b).
It will be shown that very large radial ranges can be covered by using a
very small valueq, in the near zone and a larger valggin the far zone
with a smooth transition frong, to g.. In contrast to the strategy (b), the
radiusr is retained as independent spatial variable.

Partial derivatives.In all diffusion algorithms, the first and the second
partial derivatives of the distribution functignwith respect ta at discrete
radii r;, p'(r;, t) and p"(r;, t), are needed, directly or indirectly. The usual
procedures for calculating these partial derivatives are based on finite differ-
encing, which is related to polynomial interpolation. The present procedure
employs direct polynomial interpolation [2—23]: The polynomial Y(r)
of degree 3, centered at; and passing througp(r,_,, t), ..., p(ri, ), ...,
p(ri.; t), is calculated and the required partial derivatives are defined by
p'(ri, t) = Y'(r) andp"(r;, t) = Y'(r;). With this procedure also the partial
derivatives of a numerical-function are obtained, which is defined by

W(riy Ol rn) = V;I 5inu (2)

whereV, is the volume of thea-th spherical shell, is its mean radius, and
o is the Kronecker deltad, = 1 if i = nandd,, = 0 if i # n).

Unsuitability of standard algorithm#\ standard algorithm for the solu-
tion of Eg. (1) can be characterized as follows [226]: By using a finite
difference procedure, the partial derivativé§, t) andp”(r;, t) in Eq. (1)
are replaced by linear combinationsgf;, t) and two or more of its neigh-
boring values(r;.;, t) with j=1. Thus a single partial differential equation
is replaced by a system d&f coupled ordinary differential equations, to
which Runge-Kutta methods can be applieti{26]. It can be easily shown
that a standard algorithm of this type is unsuitable for the solution of the
present problem [23]. For a pure diffusion problem and in the absence of a
potential, the total time range of interest is of the ortdgr= (R, — R,)%D.

In the presence of a short-range potential, the radial Ateg= r,., —r, in
the vicinity of the greatest slope of the potential is limited by the acceptable
ratio of neighboring equilibrium values.,

0 = ped(liv)lpedli) = o, 3

with the value ofe depending on the particular algorithm and the desired
accuracy of the numerical solution; in genesalill be in the rangel < o

< 2. If the maximum value ofAr is fixed according to Eq. (3), then the
maximum time stept in a Runge-Kutta procedure /& = (Ar)?/D (in the
case of ad-functionw(r;, 0| r,), w(r,, At| r,) must remain positive). Thus
the total number of time steps is of the ordertgfAt = (RJAr)% The
problem described in the Appendix would requiggAt = 43X 10°, which
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means that it cannot be easily solved with a standard method. With the
present algorithm problems of this kind can be solved without difficulty. In
section 3 an extreme example witR(Ar)? = 2.5X 10'” will be presented.

Conservation of total probabilityAn acceptable numerical algorithm
must conserve thtotal probability in the absence of a reaction. In the case
of a numericald-function w(r,, 0| r,) that means with respect to the first
time step that the weighted loss of probability density,dt exactly equal
to the sum of the weighted gains of probability density at the neighboring
grid pointsr,.; with j = 1, 2, ...,J. The present polynomial interpolation
yields an exact conservation of total probability in the following special
case: One-dimensional diffusion, constant st&psand a potential defined
by a polynomial of a degree 2J + 1. In the case of spherically symmetric
relative diffusion and logarithmically increasing radii, the total probability
is no longer exactly conserved, but the relative error can be made extremely
small in the absence of a potential. df in the radial increment factor
(1 + q) is small and constant, the relative error is approximately pro-
portional tog®*2. For instance, withg = 0.02 andJ = 4, the total prob-
ability is virtually exactly conserved within the limits of double-precision
calculations. In the presence of a potential, the deviations from the exact
probability conservation remain very small, if the ratoof neighboring
equilibrium values., is small enough, for instanee= 1.5 forJ = 4. The
required conservation of total probability can be always achieved by a very
small correction.

Detailed balanceln the case of reflecting boundaries and in the absence
of reactions, the final stationary numerical solutjpg(r;) should beclose
to the theoretical equilibrium distributiop.(r;). In some algorithms the
exactequality p..{ri) = ped(ri) is implemented by aletailed balancd15,
16, 19]. Its meaning is most easily understood in the case of a Monte-Carlo
algorithm [13, 15]: In the simplest case of one-dimensional diffusion with
equidistant grid points, diffusion is characterized by the freque@gyof
hopping fromx, to x. In this casedetailed balancameans that the frequen-
cies2; exactlysatisfy the equilibrium conditio®2; p.o(r;) = 2; pedr;). A
detailed balance seems to be regarded by some auttmrd§, 19] as a
necessaryondition for a good numerical algorithm. The present algorithm
does not satisfy this condition, and for this reason alone it might be con-
sidered inferior to other algorithms. However, by the example of one-di-
mensional diffusion in a harmonic potential (Ornstein-Uhlenbeck process
[13, 19, 27]) it will be demonstrated that, by requiring a detailed balance,
not the best numerical approximation of #neolutionof a distribution func-
tion is obtained.

Time propagationWith respect to time propagation, two types of algo-
rithms can be distinguished. In algorithms of the first type, the time Atep
is small and constant either during the whole time range of interest or at
least during rather large time intervals [20]. During each time step, the
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transfer of probability density is restricted to neighboring grid points. The
upper limit of At is roughly given by the requirement that the transfer of
probability density from a grid point; to its two adjacent grid points must
not lead to a negative probability densityrattself. In algorithms of the
second type, the so-called Chebyshev time propagation is applied, which
permits large time steps and involves simultaneous changgsromany

or even all grid points 16, 19]. This method is similar to a propagation
scheme for the time-dependent Schrédinger equation-328. As far as

very long time propagations are of interest, an algorithm of the second type
might be the first choice among the known algorithms, for a kinetic problem
described like that described in the Appendix. The present algorithm be-
longs to the first type with respect to the first time step, with the difference
that 21=2 instead of 2 neighboring points are involved. With respect to
the further time propagation, the present algorithm seems to be new. The
basic idea is the systematic usemfmericalfundamental solutions(r;, t|

r.), in analogy to the use adnalytical fundamental solutiong(r;, t| r,) in

the analytical treatment of diffusion problemis R, 4, 5]. Let theN funda-

mental solutions at timé, w(r;, t| r.) (n = 1, 2, ..., N) and the initial
conditionp(r;, 0) be knownp(r;, t) is then given by
P 1) = 25 [p(ra, O)X VX W tl ). (4)

Eq. (4) is applied also to the fundamental solutions themselves. By succes-
sive doubling of the total diffusion timg each fundamental solution at the
time 2t, w(r;, 2t| r.), can be expressed as the weighted sum o dlinda-
mental solutions at the timew(r;, t| r,) (I = 1, 2, ...,N). Since with this
procedure the computation time becomes proportional to the logarithm of
the total diffusion time, the computation pfr;, t) can be always extended

to the attainment of the final stationary distributipn.(r;) (in the absence

of reactions and with reflecting boundaries).

Duration of the first time stepn algorithms of the first type, the total
computation time is inversely proportional to the time step Hence, in
generalAt should be as large as possible, and for this reason an algorithm
that is of second order with respect to time is preferable to one that is only
of first order with respect to time like the present algorithm. However, in
connection with successive time-doubling, the limitation to first order is no
real disadvantage. For very short timegsnost elements ofv(r;, t| r,) are
either equal to zero or can be equated with zero because of their extreme
smallness; by limiting all numerical operations to elementsvof, t| r.)
that are not equal to zero, the computation time for the initial time-doubling
cycles becomes very short. Therefeke can be chosen almost arbitrarily
small without appreciably increasing the total computation time. Finally it
is to be mentioned that the algorithm is completely stable also with large
values ofAt like the algorithms of the first type.
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Boundary conditions.The present numerical implementation of re-
flecting or absorbing boundaries is completely analogous to Smoluchow-
ski’s theoretical treatment of boundarids P, 4, 31]. The firstJ numerical
o-functionsw(r;, 0| r.) (n = 1, 2, ...,J) are supplemented by their mirror
imagesw(r;, O] r,) (n = 0, —1, ..., —=J+1). In the case of a reflecting
boundary, the transfer of probability through the boundary during the first
time step is exactly compensated by the inverse transfer of probability from
the mirror image. In the case of an absorbing boundary, the same mirror-
image numericab-functions are used, but now with a negative sign. Other
boundary conditions (radiation, constant concentration) are implemented in
a similar way.

Reactions.In a standard algorithm, a reaction (the sink tek(m) in
Eq. (1)) is taken into account simultaneously with diffusion. In the present
algorithm, a reaction is taken into account by a single, very small change
of the fundamental solutions at a suitable diffusion time, which is much
shorter thank,..) .

Examples.The efficiency of the present algorithm is demonstrated by
five examples with an adequate representation of relative erroy<Orfe-
dimensional diffusion in a harmonic potential (Ornstein-Uhlenbeck pro-
cess); (2) one-dimensional diffusion in a double-minimum potential that is
defined by a polynomial of the"8degree; (3) three-dimensional diffusion
without potential in a large radial range with constant radial increment fac-
tor (1 +q) and a reflecting or absorbing inner boundary; (4) three-dimen-
sional diffusion with a short-range potential barrier, a distance-dependent
relative diffusion coefficient, a small radial range with a constant radial
increment factor {+ q), and reflecting boundaries; (5) three-dimensional
diffusion with the same short-range potential barrier and the same distance-
dependent relative diffusion coefficient and also with reflecting boundaries,
but with a very large radial range with a variable radial increment factor
(1+q).

The structure of the article is as follows: In section 2, the main features
of the algorithm are treated in the context of one-dimensional diffusion. In
particular it will be shown that the new algorithm permits the numerical
solution of the Ornstein-Uhlenbeck problem with high accuracy. In sec-
tion 3, three-dimensional diffusion, reactions, and computational aspects of
the algorithm are treated. In section 4, the merits and deficiencies of the
algorithm are discussed. In section 5 the basic features of the algorithm are
summarized.

2. One-dimensional diffusion
2.1 Definition of intervals and boundaries

Let diffusion be restricted by boundaries»at X, andx = X, and let the
interval (%, X\) be divided intoN intervals of equal widthth = (X, — X,)/
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N. In standard algorithms, the interval boundangs= X, + hn (n = 0,

1, ..., N) are the grid points. To each inner grid poit belongs a sym-
metrical interval X,—h/2, X, + h/2). The disadvantage of this definition
of grid points is that the associated intervals of the boundaXgs<, + h/

2) and ¥y —h/2, X\), are smaller and unsymmetrical. The ensuing concep-
tual and mathematical difficulties are avoided by choosingctrgters x of
the N intervals as grid pointsx, = X, + h (n—%) with (n =1, 2, ...,N).

2.2 Initial condition and fundamental solutions

In the case of one-dimensional diffusion with a constant relative diffusion
coefficient and in the absence of a reaction, the one-dimensional analogue
of the partial differential Eq.1) is

t 2 2
dp(x, t) - D 0%p(x, 1) N du(x) dp(x, t) N d2u(x) o 1), 5)
ot 0 X2 dx 0dx dx
whereu(x) = U(X)/ksT is a reduced potential. Let the initial condition
p(x, 0) be numerically given by a normalized setNfvaluesp(x,, 0):

FCHULESE (6)

The evolution ofp, p(x, t), is completely defined by the evolution of the
fundamental solutionsy(x, t| x,). For the moment it is sufficient to calcu-
latew(x, t.| x,), that is, the result of the first diffusion step of duratigr=

At onw(x;, 0] x,). The procedure for calculating(x, t.| x,) is essentially

the same as that, which one would apply in the direct numerical solution of
the partial differential Eq. (5). For arbitratyp(x, t + At) can be calculated
from p(r, t) by using Euler’s method [24]:

9P o
ot

pX T+ At) = p(x, t) + @)

For the calculation oBp(x, t)/0t with Eq. (5), one has to know the first and
the second partial derivatives(x, t) = dp(x, t)/ox andp"(x, t) = *p(x, t)/

0xX2. If p(x, t) is known only for discrete values, with x,<x,.,, one way

of calculatingp'(x,, t) andp"(x,, t) is to calculate a suitable differentiable
function Y,,(x) passing through(x,, t) and its 2 neighboring pointe(x,..,,

), p(Xoazy 1), ..., p(Xaes t), @and having the property,(x,) = p'(X. t) and

Yo (X)) = p" (% t) [21—23]. If Y,(X) is a polynomial of the degreeldJ =

1, 2, ...), then its minimum degree is 4, if inflection points are to be ac-
counted for. The present algorithm is based on the use of polynomials up
to the degree 2= 8.

2.3 Definition of fundamental solutions by polynomials

Let {Y...;(X)} be a set of 3+ 1 polynomials of the degreeJ2centered at
X, (first subscript), with the property
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yn.n+j (Xn+i) = 6ij (_J = I = J) ’ (8)
whereg; is the Kronecker deltaY,(x) can be written as the weighted sum
of these polynomials:

Yo = 20 p0is 1) Yones (0. 9)

j=-3

Eq. (9) is equivalent to Lagrange’s interpolation formul&a{23]. The first

and the second partial derivatives pfwith respect tox at x, are then
approximately given by
J

P00 ) = Vil = 2 p06s 1) Yomss (4, (10)

P00 1) = Y00) = 25 0 1) Yooy (). (1)

The same procedure is applied to the formal calculatiow £, 0| x,) and
w'(%, O] x,) fori =n,n=1,...,n*=J. The only difference is that for each
i the sum of 4 +1 terms in Egs.10) and (1) reduces to a single term:

\N’(Xnﬂ’ Ol Xn) = h71 Yn+j,n(xn+j); (12)

W,(Xnﬂ! ol Xn) = h_1 y;1'+j,n (Xn+j) . (13)

The equality signs in Eqs12) and @3) have the meaning of definitions
depending on the degree of the polynomials.

A necessary condition for any diffusion algorithm is the conservation of
total probability in the absence of reactions. With respect to the numerical
J-functionsw(x;, 0| x,) that means, the weighted decreasendf the n-th
interval must be equal to the weighted gainswoin the 2] neighboring
intervals or, in other words, the normalization condition is to be satisfied:

J

h _ZJ W(Xn+j! talxn) =1. (14)

fr
As a corollary of the definition ofv'(x;, 0| x,) andw"(x;, 0| x,) by Egs. (2)
and (13), the condition of probability conservation4() is exactly satisfied,
firstly, for free diffusion for arbitraryJ and, secondly, for diffusion in a
potential that is given by a polynomial up to the degrdet2.

It is advantageous to prove the correctness of the first preceding state-
ment first forJ = 2 (the simplest nontrivial case). For the formal calculation
of the partial derivativesv(x, 0| x,) andw"(x, O] x,), a polynomial of the
4" degree, centered &, is calculated. The following five polynomials are
needed:

Vor(¥) = +(40) "1 (X — X, + 2h) (X — X, + h) (x — %, — h)
(X — %, — 2h) (15)

Yor1n(¥) = —(BN) 7" (X = % + h) (X =% = h) (X = X% = 2h)
(X — %, — 3h) (16)
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Yo-1a(¥) = —(60) 7" (X = X, + 3h) (X — %, + 2h) (X = X, + h)
(X =%, —h) (17)
Var2n(X) = +(240%) 7" (X — X, — h) (X — X, — 2h) (x — X, — 3h)
(X — X, — 4h) (18)
Voo2n(X) = +(240%) 71 (X — X, + 4h) (X — X, + 3h) (X — X, + 2h)
x—x,+h. (19
The first and second derivatives of these polynomials at their respective
centersx,.,; are:

Yon(X2) =0 (20a)
5
(X)) = — —— 20b
Yan(Xo) P (20Db)
Voot h) = T2 (21a)
o 3h
Vil h) = + o (21b)
o 3re
1
ean(X = 2h) = £ — 22a
Yhs20(% = 2) on (22a)
1
Yo 2n(Xn ) 1212 (22b)
The probability is exactly conserved for arbitrary
J
(Dht)X ) Yayalk + hi) =0, (23)
j=-3

with J = 2 in the present case.

The proof of the validity of Eq. (23) for arbitrary=1 runs as follows.
In the special case op(x..;, 0) = 1 for —J=<j=J, the analogues of
Egs. (9)-(11) are

V0D = 2 Yo () = 1, (24)
Yi(x,) = ;J Yons (%) = 0, (24a)
Yi(%) = > Yanes(%) = 0. (24b)

j=—3

The terms of the sum in Eq. (24b) can be written in a different form:
yx.nﬂ (Xn) = y'rz—j,n(xn - hJ) . (25)
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Table 1. First and second derivatives of the polynomigls; .(x) of the degree 2at their
centersx, + jh (=J = j = J). If the terms in the rows 3 to 6 are multiplied by 2, the
sum of the terms in each column is equal to zero.

J 1 2 3 4
60 2 5 4 205
e h? 2h? 18h? 7212
Yn-1.4(X0 £ D) e = = 2
he 3h? 2t? 5re
1 3 1
(X = 20 _— - _—
Yozl ) 12h? 2002 5r?
1 8
" an(X, = 3N 4+ +
saol ) 90 9387
1
" an(X, =4h _
Yazan( ) 16357
Yon(X) 0 0 0 0
1 2 3 4
n*lnxnth — +— +— +—
Vo100 1) “on T3n " an “5h
1 3 1
! on(Xn = 2N +— +— + —
Yoszal ) 12h 20h 5h
1 4
n= aniSh > =-_
Yozarl ) " 60h *10sh
1
hean(Xn = 40 +
Ynean( ) 28th

That means, the set of terms in Eq. (24b) is identical with that in Eq. (23);
only the order of the terms in one sum is inverted relative to the order of
the terms in the other sum. In Tableall terms y;.;.(x,+hj) and
Yaiin(X, + hj) are listed ford = 1, 2, 3, 4.

The total probability is also exactly conserved, if the reduced potential
u(x) is given by a polynomial of the degree=2J+1 and1=J=4:

m

u(x, + hj) = E a(% + hj)<, (26)
U (x, + hj) = 2 ka(x, + hj)< ", (26a)
u'(x, + hj) = i K—1) afx, + hj)<=2. (26b)

The probability conservation is exact, because for each term of the poly-
nomial u(x) the following relation holds:
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k(k — 1)X<2 yo (%) + EJ KX, + hj)< " Yo n(Xe + j) = 0
“~
O=k=2J+1). 27)

The correctness of Eq. (27) has been provedJfer 1, 2, 3, 4. Eq. (27)
probably holds for arbitrary = 1, but no serious attempt has been made by
the author to prove its validity fod > 4.

2.4 Fundamental solutions for the first diffusion step

For the calculation of the fundamental solution§x,.;, t.l x,) with j = 0,
*1, ..., xJwith Eq. (7), the quantities

Haj = h [ow(X, t| X)/0t] ., =0 (28)
are needed, which are according to Egs. (52) @nd (13):
Hn = D [Yainasg) T U (ag) Yoein(Xoe) + U (Xoe)) Yasin(Xas)] - (29)

For calculating the result of the first diffusion step, it is advantageous to
define the changeds,; of w(x,.;, 0| x,) relative tow(x,, 0| x.):

bn,O = 1 + Hn,O tal (30)

by, =Hyt(j=*1,%2,...,%J). (31)
A practical upper limit oft, is obtained by requiring 05b,,<1 or
0<|H,, t.l =0.5. If boundary conditions are neglected, then the effect of
the first diffusion step omv(x, 0| x,) is

W(Xasj, tal X)) = W(X,, O %) Xb,; for j=0,%1,...,%], (32)

W(Xoj, tal %) =0 for [j|>J. (33)
The quantitied,, ; contain all the information that is needed for calculating
the evolution of the fundamental solutions in the absence of reactions.

2.5 Boundary conditions

Two boundaries are of interest: l&ft boundary aiX, and aright boundary

at Xy. In the following, first the two limiting cases of a completely reflecting
boundary and a completely absorbing boundary are treated. The left re-
flecting boundary is defined by [4]

(ap (X't)> -0, (34)
0X Jiox
du(x) B
() -° %)

and the left absorbing boundary is defined by
p(X ) =0 for t>0. (36)
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These boundary conditions are numerically implemented as follows. First,
2J additional intervals are defined with indices= 0, —1, ..., —(2J—1)
and center valueg, = X, + h(n—1). Second, thd additional sets of quan-
titesH, ;, b,; (n= 0, —1, ..., —J + 1) are calculated. Third, in the case
of a reflecting left boundary, the loss of probability density in the intervals
1, 2, ..., J due to diffusion from right to left through the left boundary
is exactly balanced by the gain of probability density due to diffusion
from left to right through the left boundary from the intervals-01, ...,
—(J — 1), which are symmetrical to the intervals 2, ..., J with respect

to the reflecting boundary af,. The following equations refer to the case
J=2:

b1,—1 +b =0 (bo,+1 + Doi2), (37)
b2,—2 =C4 b—1,+2- (38)

The factorsc, andc_, are equal to unity in the absence of a potential and
close to unity in the presence of a potential. The final valueb,gfand
b, ;, referring to a particular boundary condition (BC), are

(b o)ec = byio + By 1 X Co X Cac, (39)
(01,4 )ec = by 1 + Do 2X CoX Cae, (40)
(- 1)ec = boy + by X € XCae, (41)
(0 —1)ec = (01, -2)sc = (02,2)sc = 0. (42)

The factorcgc specifies the particular boundary conditiony is equal to
+1 for a reflecting boundary and equal te1 for an absorbing boundary.
The present implementation of the two boundary conditions is the complete
analogue of the analytical procedure (cf. refs.4, 4, 31]). A reflecting or
absorbingright boundary is implemented in the same way by defining the
corresponding quantitied{ o)sc, (Bn, —1)sey (Pnoi, +1)sc, @Nd Oy, +1)ec =
(by, 12)sc = (bu-1, +2)sc = 0. In the following the subscript “BC” will be
omitted, and it will be always assumed that the quantities, b, ; and
by, by-1,; are defined in accord with the chosen boundary condition.

The extension of the definition of the boundary conditions to arbitrary
J=1 is straightforward. With these redefinitions of the quantibes, b, ;,
.. by andby;, byt gy --o busirj, EQ. (32) can be applied to the whole
rangel =n=N, if the range of the indekis appropriately restricted in the
vicinity of a boundary:

W(X,j, tal X,) = W(X,, 0| X,) Xb,; for j,=j=j,, (43a)

WX, tal X)) =0 for j<j, or j>j,, (43b)
where

jj=—J and j,=+J for J+1=n=N-J, (44a)

ji=1-n and j,=+J for 1=n=J, (44Db)

ji=-J and j,=N-n for N=-J+1=n=J. (44¢c)
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Two other boundary conditions are of general interestradiation bound-

ary can be defined by a linear combination of a reflecting boundary with
an absorbing boundary. In practice that means, the fagton Eqgs. (39)-

(41) may have arbitrary values in the intervall =czc = +1. A constant-
concentrationboundary can be implemented as follows. In contrast to the
analytical definition,p or w is kept constant not af, or Xy but atx, or X.

The definition of the quantitie$i,; is the same as before. In the special
caseJ = 2, the conditionw(x,, t,| x.) = w(x,, 0| x,) is satisfied, if the
Egs. (37) and (38) are replaced by the equations

Do+ Siobosi =1, (37a)
B, i+, b =0, (38a)
b3,—2 + S5 b—1,+2 =0. (38b)
Thus the new definitions of the quantitibg; for n = 1, 2, 3 are:
(B10)ec = bio + Do i1 XS0, (39a)
(b1 +1)sc = Biyy + Do i2X S0, (40a)
(02 )ec =02y + 05,1 Xs, =0, (41a)
(B20)ec = Do + Do XSy, (41b)
(05 -2)ec = b2 + by X5, (41c)
(b1 1)ec = (B, -2)sc = (D2, 2)ec = 0. (42a)

The extension of this implementation of a constant-concentration boundary
to arbitraryJ offers no difficulties.

2.6 The second and subsequent diffusion steps:
Successive time doubling

The fundamental solutions(x;, t, m| x,) and arbitrary distribution functions
p(%, t. m) with m=2 can be calculated with one of three different pro-
cedures:
Procedure (1). vx, t. m| x,) or p(x;, t. m) is calculated by repeatedly
using the quantitieb, ;:
12
WO, M) %) = D W, t(m— 1) %) XDy, (45)
1=h
Procedure (I) corresponds to standard procedures. It is the fastest one if
only a single fundamental solution is needed and the number of diffusion
steps is not extremely large.
Procedure (l).For very long diffusion times it is advantageous, to cal-
culatew(x;, t| x,) not by successive application of the same time gfeput
by successiveloublingof the time, and by defining each fundamental solu-
tion at the timet,., = t, 2™ as a linear combination of all fundamental
solutions at the timé,, = t, 2™ ':
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WX, t.X 27[x) = E [W(%, t.X 27 [x) X h] Xw(x, tLX2"1[x).  (46)

The term in brackets is the probability of finding a particle at the time
t.X2™ " in theI-th interval, if it has been in the-th interval at timet, = 0
with unit probability. In the following examples always procedure (II) was
used.

Procedure (ll1).In typical applications, thevolutionof p, p(x;, t. v), is
of interest, where the constant time stgs much longer than the first time
stept.. The calculation op(x;, t. v) by procedure (lll) consists of two parts.
First, theN fundamental solutiona/(x;, t.| x,) are calculated with procedure
(). Second,p(x, t. v| x,) with v = 1, 2, ... is calculated by repeatedly
using the fundamental solutiomgx;, t.| x.):

p(X, t.v) = Z [p(%, to (v — 1)) X h] XW(X;, t.]%). (46a)

2.7 Example 1: Diffusion in a harmonic potential
(Ornstein-Uhlenbeck process)

For one-dimensional diffusion in a harmonic potentiak « x* the analyti-
cal solution of Eq. (5) is knowni, 19, 27]:

exp(—af(x— x, exp(—2aDt)]? [1—exp(—4aDT)] ')
Jr[1—exp(=4aDt)]/a '

The following computations were performed with= 4 nm 2, x, = 8 nm,
D=6X1nm?s !, h = 0.0 nm,X, = —5.005 nm X, = 9.005 nmN =
1401, and reflecting boundaries & and X,. The initial speed of com-
putation was strongly enhanced by equating all extremely small values of
w(x, t| x,) with zero and by limiting all summations to terms that differed
from zero. The smallest equilibrium value was(xy) = 2.19X10 " nm™".
After each time-doubling cyclew(x, t| x,) was equated with zero if
|w(x;, t| x,)| was smaller thart0~'s°nm".

In the steady stat@.(X) = g(x, «| x,) is a Gaussian centered>at= 0.
04X is shown in Fig.1a on a logarithmic scale. The stationary numerical
solutionsw,(X) = W(X, ts.] X,) obtained withd = 1, 2, 3, 4 are compared
with the exact solutiorge(X) (L. is the time at which alN fundamental
functions are equal within a specified accuracy). The relative devi&tion
of wfrom g is defined by

F=(wg)—1. (48)

Since F changes sign an{F| extends overlO orders of magnitude and,
the following quantityz is used for the graphical representation of relative
deviations:

g(x.tlx,) = (47)
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Fig. 1. Example1: One-dimensional diffusion in a reduced harmonic poteni{s) =

a X with « = 4nnt andD = 6X10°nm? s ' (h = 0.01 nm, reflecting boundaries at
X, = —5.005 nm anc,, = 9.005 nm). (a) Equilibrium distributiog.{x), calculated with
Eq. (47). (b) Relative deviations (see Eq. (48)) of numerical stationary distributions
WsifX) from the equilibrium distributiong.(X) in the zrepresentation (see Eq. (49));
Wsia(X) depends on the degred 2f the interpolation polynomials; fal = 4, the four
leftmost pointsz (i = 1, 2, 3, 4) are represented by open circles.(X) is independent
of the start positiork, and the length of the first time stdp(as long a<. is below the
stability limit) with an accuracy ofi3 digits. w,(X) is reached at the timg,, = t,x 2'®

~ 1.12 ns (., = 4.27 fs).
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z = signfF) X |F[s, (49)
with s= 0.1 in the present paper. A table with selected valuezsaridF(2)
is shown as inset in Fig.b. For simplicity, the quantitg will be also called
relative deviation

In Fig. 1b the quantityz(x) is shown ford = 1, 2, 3, 4. Atx = 0 nm,
an increase of by 1 reduces roughly by a factor oft0~2 and increases
the number of intersections afwith the linez = 0 by 2. w,(X) is indepen-
dent of the length of the first time stdp The present data were obtained
with t, = 4.27fs, which corresponds fom(0, 0 0) to a decrease from
100 nnT ' to = 48.8 nn'. At the timet,,, = t.X2'® = 1.12 ns the numerical
curvesw(x, tu.d X.) were independent of, with an accuracy ol 3 digits.

Independently of the neglect of extremely small terms, the accuracy of
the computation ofv(x, t| x,) is limited by the accumulation of round-off
errors, which entails a deviation of the normalization su®s,. from
unity. In the present case, &t = 1.12 ns, the deviation 0§, from
unity, S.om— 1 = 3X107'? is about150 times larger than the true value of
F(0) = 2X 10 '“for J = 4. This error is corrected for by a renormalization
of the numerical fundamental solutions after evédytime-doubling cycles.

With J = 4, the relative deviatiof| is less thant0*in a range 0fg.,
of about 62 orders of magnitudg(§ nm) = 0.4 corresponds tB(6 nm) =
1X107* in Fig. 1b andg.(6 NnM)h.{(0 nm) = 10"°* in Fig. 1a). The only
strongly irregular data points are the four leftmost points = 1, 2, 3, 4),
which are represented by open circles in Rilg. They are a consequence
of the fact thatg., does not conform to the boundary condition Eq. (34).
Finally, this computation illustrates the numerical stability of the algorithm
for a value oft, close to the upper stability limit.

The present algorithm is only of first order with respect to time. Hence
one may expect a strong increase of accuracy by reducing the length of the
first time stept,. Let (t.)., be defined by t(),, = (t.)oX2™™, where {.),
is the time step used in the calculationwf.(X) in Fig.1 andm = 0, 1,

2, ... In Fig. 2 the results are shown fdr= 4 and a rather short time
t = 1.07 ps, when the center gfx, t| x,) (=7.6 nm) is still close to the
start positionx, = 8.0 nm. The pattern of the relative deviatior(x) ini-
tially strongly changes with increasimgand finally becomes virtually con-
stant form=24. |F| is less than10~* in a range of about 8 orders of
magnitude ofg(x, t| x,). Close to the center aj(x, t| x.), |[F|is <1072,

The analogous results far= 8.53 ps are shown in Fig. 3. Relative to
the results in Fig. 2, withm = 36 a much shorter first time step is needed
for the attainment of a constant patternzpfind at the same tim€ | is less
than10~* in a range of about 34 orders of magnitudeg@f, t| x.,). Close
to the center ofy(x, t| x,), |F| is <10-'". Finally it should be noted that
g(x, t| x,) in Fig. 3 approximately corresponds to the rightmost curve in
Fig. 1 of ref. [19], where the same example is used for the illustration of
the gain of accuracy by the so-called virtual gridding technique.
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1x10°

X/ nm

Fig. 2. Example1: One-dimensional diffusion in a reduced harmonic poteni{s) =

a ¥ with « = 4nnf andD = 6X10°nn¥ s' (h = 0.01 nm, reflecting boundaries at
X, = —5.005 nm andX, = 9.005 nm). (a) Fundamental solutiggx;, t| x,), calculated
with Eq. (47) withx, = 8 nm andt = 1.07 ps. (b) Relative deviations of the numerical
fundamental solutiomv(x, t| x,) from g(x, t| x.). w(x;, t| x,) was calculated witld = 4
and different values df, = (t,),x 2™, where (), = 4.27 fs. The numbers in frames are
the values ofm.
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Fig. 3. Example1: One-dimensional diffusion in a reduced harmonic poteni{s)

(t)ox 27™, where {.)o = 4.27 fs. The numbers in frames are

a X with « = 4nntf andD = 6X10°nm? s ' (h = 0.01 nm, reflecting boundaries at

X, = —5.005 nm andX, = 9.005 nm). (a) Fundamental solutiggx;, t| x,), calculated
with Eq. (47) withx, = 8 nm andt = 8.53 ps. (b) Relative deviatiorzsof the numerical

fundamental solutiomv(x, t| x,) from g(x, t| x,). w(x;, t| x,) was calculated witld = 4

and different values of,

the values ofmn.
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2.8 Negative effect of detailed balance on the accuracy of the algorithm

As already mentioned in the Introduction, tegactdetailed balance is con-
sidered by some author$H, 16, 19] to be a necessary condition for a good
diffusion algorithm. In the case of a harmonic potential it can be easily
demonstrated that, on the contrary, the enforced detailed balance leads to
completely wronghumerical solutions, if the potential range of interest is
very large like in examplé. Two sets of numerical curveswere computed

with J = 1. The first set corresponds to the present algorithm. The second
set satisfies the additional requirement of detailed balance, which is easily
implemented by a redefinition of the quantitids ;. By assigning the index

n = 0tox = 0, the new set oH, ; is obtained by the identity

(Ho)new= (Hoj)oa (] =0, %1), (50)
and the recursion formulae:

(Hor1-new XPa X511) = (Hos)new€XP(-aX?)  (N=0), (51a)

(Has 1~ Dnew = (Hn i )new €XP(+ah?(2n + 1)), (51b)

1= (Hoei - Dnew(Hns 1, 1ot (51c)

(Horidnew = (Hav1)oa X (j =0, %1). (51d)

The calculation of,, ;).ew With n = —1 is analogous.

In Fig. 4 the results are shown. Quantities referring to detailed balance
are labeled with an asterisk. In the logarithmic plot of Fig. 4a, the cuwes
andg virtually coincide in the upper range of two orders of magnitude and
cannot be distinguished from each other for arbitrfxry = 8 nm andt =
1.07 ps. The curvesy* differ already significantly from the curveg for
X, = —4nm and are completely wrong fo, = 8 nm. The latter wrong
result is not surprising because of the accumulation of a very large system-
atic error in the quantitiesH,, ;).... In Fig. 4a the ratio; is plotted (see
Eq. (51c)): # = 0.75 forx, = —4 nm andy = 102 for x, = +8 nm. In
Fig. 4b and 4c the relative deviatiomsof w from g are shown forx, =
8 nm andx, = —4 nm. The smallest deviations are always found close to
the maximum of each curvg (the three open circles correspond to the
indicesSimax imax £ 10).

With x, = 0 nm, the initial differences betweenandw* are very small.
Significant differences betweenand z* occur only at times, whenv is
already very close to the stationary distribution,. The final stationary
distribution wk, is reached at the timg; =~ 8.74 ns and agrees witly,
with a relative error|[F| <10-'2 in the whole range ok except for the
three rightmost pointsi(= N—2, N—1, N), where|[F| <107 '° (note that
the range ofy covers140 orders of magnitude!). For comparison, the final
stationary distributiorw,,, is reached already aftdr09 ns (v, is indepen-
dent ofx, with an accuracy of 3 digits).
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Fig. 4. Example1: One-dimensional diffusion in a reduced harmonic poteni{@) =

a X2 with « = 4nnt andD = 6 X10° nn? s '; negative effect of aletailed balanceon
the accuracy of the numerical fundamental solutions calculatedJwithi. (a) Three sets
of curves are shown, referring to the start positighs= 8 nm,x, = —4 nm (underlined
numbers), anc, = 0 nm (numbers in frames). The numbens= 0, 3, 5, 7,13 refer to
the timest,, = 1.07X 2" ps. The curvegy (——) andw (- - - - - )virtually coincide and
cannot be distinguished from each other; the curves correspondipgittually coincide
with the stationary distribution (thick solid curve). The curwes(——-) correspond to
a detailed balance; is defined by Eq. (bc¢). (b) Relative deviatiorz of w from g for
X» = 8 nm. (c) Relative deviatiom of w from g for x, = —4 nm. (d) Relative deviations
z(----) andz* (——) of w and w* from g for x, = 0 nm. The stationary distribution
Wt Was reached at; = 8.74 ns; the corresponding data poits, are statistically
distributed relative t@ = 0 with |z,| =~ 0.05.
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2.9 Example 2: Diffusion in a double-minimum potential
with reflecting boundaries

A double minimum potential with reflecting boundariesxat X, andx =
Xy = —X, is defined by a symmetrical polynomial of th& 8egree:

u(x) = u(0) [1—=8 (/Xy)* + 20 (/Xy)*— 16 (XX\)°® + 4 (X XW)T]. (52)
(This polynomial is easily obtained by a transformation of the Chebyshev
polynomial T¢(X) [21, 23].) The following computations were performed
with X, = —8.005 nm X, = 8.005 nm,N = 1601, h = 0.01 nm, andu(0)
=~ 34.539, which corresponds to an equilibrium distribution extending over
15 orders of magnitude. The results in Fig. 5 illustrate four aspects of the
algorithm:

(a) The probability conservation remains exact if the potential is given
by a polynomial of a degree2J + 1.

(b) The systematic errors of the stationary numerical solution close to a
reflecting boundary are very small, if the potential at the boundary satisfies
Eq. (35).

(c) If the barrier between the two potential minima is high, two very
different time scales can be distinguished (as is well known from Kramers’s
work [31, 32]). If x,=x,<0nm, then in the left part of the potential a
quasi-stationary distribution is attained in abduis. The attainment of the
final equilibrium distribution is extremely slow: Close to the left potential
minimum, the differencev(x;, t| x,) — Ws{X) decays exponentially almost
exactly, with a time constant,, = 7.28X10's. At the time t,, =
2.46X10° s = 33.87, all N fundamental solutions/(x, t| x,) were equal
with an accuracy ofi3 digits. The last time step of.23X10°s was by
a factor of 2% = 3.245X 10°2 longer than the first time step, = 3.79X
10~*"s. Note that this problem cannot be solved with a standard method,
since even in the most favorable case, where 4.27X 10 ' s is already
close to the stability limit of the algorithm artgd.. = 5tsa = 3.64X10° s,
about10? time steps would be needed.

(d) The agreement of the stationary numerical distributimp(x), with
the exact equilibrium distributiorg.{x), is very good|F| is less thanl0 "
in the vicinity of the maxima of.{X), less thanl0~'° in a range of more
than 5 orders of magnitude gf{x), and less than0~® everywhere except
for x, andxy, whereF = 3X1078. The lack of complete mirror symmetry
of the curvez(x) in Fig. 5b is caused by the insufficient numerical accuracy.

3. Spherically symmetric three-dimensional diffusion

The treatment of spherically symmetric three-dimensional diffusion is es-
sentially analogous to that of one-dimensional diffusion. Therefore, in the
following only the peculiar aspects of three-dimensional diffusion are
treated in detail.
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Fig. 5. Example 2: One-dimensional diffusion in a reduced double minimum potential

= —8.005 nm, Xy
nnm? s~ '. (@) Numerical fundamental solutions (first time

27s). (b) Reduced potential(x) and relative deviatiorz.... of the

stationary distributiomws... from the equilibrium distributiorge,

Let a sphere of radiuR, be surrounded by a series of concentric spherical
R =R_, Xf.

3.1 Definition of spherical shells and mean radii
surfaces with increasing radd,, R,, ..

u(x) defined by Eq. (52) %,
u(0) = 34.539,D = 6x10°
stept, = 3.79X 10~
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The volume of tha-th spherical shell between the ra&i ; andR is
Vi = (4n/3) (R°—R2)). (54)

As effective radiug; of thei-th spherical shell the mean radius of the shell
is chosen:

R
4n

=« =— redr. 55

) 3%[‘ (55)

In the important special case of constdnEgs. (53) to (55) can be written
as follows:

R = Ry Xfi, (53a)

Vv, = (47[/3) R3 f3i—3(f3_ 1) =V, f3-3, (543.)
R (3D e gy e

= Ro<4(f3_1)>f (v, f1. (55a)

If the initial radial increments must be very small and the maximum radius
rv is very large, different values dfcan be used for the near zone and for
the far zonef, = 1 + g, andf, = 1 + g, with q, < .. Letf = f(i) be a
continuous function of the indek A necessary condition for a smooth
transition fromf, to f, is that the second derivative 6fi) with respect ta

be continuous. The following functiof(i) has this property and turns out
to be flexible enough for the present purpose:

fi) =1 + (L—f.) (1—exp(—(i/i,-)[1—exp(ili,-5)]")). (56)
Here the index,_, roughly defines the beginning transition fromto f,
and the exponemnt defines the steepness of that transition. An application
of Eq. (56) is presented in section 3.6 (the corresponding fundiignis
shown in Fig. 9b). Other functioni) were also tested. A single poly-
nomial and a combination of two polynomials (for different ranges)of
turned out to be unsuitable.

3.2 Fundamental solutions and probability conservation

Let a fundamental solution at the timte= t,, w(r;, t.| r,), be defined by
Eq. (57):

Wt tl 1) = ., Ol 1) + <6W(ratt'”) xt,. (57)

w(r;, 0| r,) is defined by Eq. (2) andfw(r;, t| r.)/0t],—, is calculated with
Eq. (1). The required first and second derivatives with respect (r;, O|
r,) andw'(r;, 0| r,), are again defined by a set o 2+ 1 polynomials
Yoijn(r) Of the degree 2with j = 0, =1, ..., xJ:
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W (rns Ol 1) = Vi Yosin(nss) s (58)
W' (rneg, OF 1) = Vi Yosnlfosg)- (59)
With J = 2, the J +1 = 5 polynomials are
Yan(r) = Ano (r=Tn2) (F=roy) (T = Tost) (F = Tosa), (60)
Yor1n(1) = Anr (1= Tamd) (F=Taid) (F = Fai2) (F = Tosa), (61)
Yoo1n(r) = Anoy (F=Taog) (F=To2) (F=Toy) (F=Toii), (62)
Yor2n(r) = Anao (T = Toes) (F=Toi2) (F=Toia) (F—Toid), (63)
Yo-2n(r) = Ao (T = Toog) (F=Tag) (F = To2) (F=rooy). (64)

The factorsA,, ; are obtained from the condition that all five polynomials
pass through the poimt, (r.):

yn+i,n(rn) = yn,n(rn) =1 (J = 0’ * 1’ * 2) (65)
For the calculation of the fundamental solution§,..;, t.| r.,) withj = 0,
*1, ..., = J, the quantities

Haj= Vo, [ow(r, tlr)/ot] .. o (66)
are needed, which are according to Bqg.dnd withu = U/k;T andk = O:

anj = D(rnH) y'r:+j.n(rn+j) + [(Z/rn+j)D(rn+j) + D'(rnﬂ)

+ D(rns) U(Faip)] Yorin(Fass) + [(2/10s5) D(Fosy) U' (o) (67)

+ Do) U (M) + D(Mosg) U (N )] YorinlToss) -
In the special case of a constant potential and a constant relative diffusion
coefficient, Eq. (67) reduces to

Hnj = DIYnsin(fasi) + (2/ra1)) Yasin(fas)]- (68)
The probability balance is now defined by

S = 2 Hoj Vo, (69)

j=—J

In contrast to one-dimensional diffusion with constant intervais the
probability balances, is no longer exactly equal to zero. The relative devi-
ation of §, from zero is defined by

Wn = 31/ | Hn,Oan ' (70)

In the special case of constamtandD (cf. Eq. (68)) and a constant radial
increment factof = 1 + q, w is independent ofi. By using the definitions
of V, andr; in Egs. (54a) and (55a), the following expressionsdgrcan
be derived ford = 1, 2:
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Table 2. Relative deviation ,),, (J = 1, 2, 3, 4) of the three-dimensional diffusion
balance from zero for different values @f(w,), and (,), were calculated with Egs. (¥
and (72), respectively. The values of.Js and (.)s are the results of purely numerical
calculations.

q (@n)2 (@n)a (@n)s (@n)e
0.001 —9.98x10° " +6.38x10°'®
0.002 —1.59x 10" +4.07x10'®
0.003 —8.05X 10! +4.62x10° 15
0.004 —2.54x 101" +2.59%x 1014
0.006 —1.28X10°° +2.93x10° 3
0.008 —4.03x107° +1.64x10 "2
0.010 —9.80x10°° +6.21 X102
0.015 —4.92x10°® +6.98x 10
0.020 —1.54X 1077 +3.86x10°1° —-1.9 X102
0.025 —3.72X1077 +1.45X10°° —1.10X10 "
0.030 —7.64x107" +4.28x10°° —4.64x10°" +8. X10° "
0.040 —2.37x10°°¢ +2.34x10°® —4.48%x10°'° +1.41x10°"
0.060 —1.16X10°° +2.53X10°7 —1.08X10°® +7.55x 1010
0.080 —3.53X10°° +1.35X10°¢ —1.01 X107 +1.25X 102
0.100 —8.34X10°° +4.93x10°¢ —=5.70x107 +1.10X 107
0.150 —-3.90x 10 +5.06X10°° —1.30X10°° +5.63X10°°
0.200 —1.15x10°° +2.60x10°* —-1.19%x10* +9.40x10°°
0.250 —2.61x10°3 +9.23x10°* —6.70x10°* +8.78x10°*
_q4
Dp)pgep = ————, 71
(s = ™)

320°(1+ 4q+2 P+ BCP + 20 +3 0P+ 30°+ 1307+ 0°)

5(1+q)%(1+ g+ 19 (1+ q+409(1+2q —Eéqz—*;qS—éq“)(' )
.

In Table 2 values of &,)., are listed forJ = 1, 2, 3, 4 and different
values ofq. ForJ=2, (w,).; is extremely small in the whole range gf
that is of practical interest. The purely numerically calculated values of
(wn)s and g,)s become rather inaccurate and finally meaningless with
decreasing) (as a result of insufficient numerical accuracy). Nevertheless
one may estimate thats()s and (,)s are approximately proportional @
and q'°, respectively, for small values af. Thus, for small values 0§,
(wr)2; Seems to be approximately proportionalgtd™2 for arbitraryJ = 1.

In the general case af = u(r;), D = D(r;), andf = f(i), additional
systematic errors are introduced in the probability balance. However, by a
suitable choice of = f(i) and withd = 4, | (w,)s| can be kept very small.
For instance, in the example in section 3.6, the reldtion)s| < 1.2X10°°
was always satisfied.

(wn)zJ:4 =
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The very small error in the probability balance is corrected for by intro-
ducing correction factorg. Since it is unknown how the deviation from the
exact probability conservation is distributed over the central tdrgV, on
the one hand and theldther termsH, ;V,,; with j 0 on the other hand,
the following symmetrical definition of is preferred:

Hn,OVn X Pno + (S] - Hn,OVn) X (pn,j “0 — 0 (73)
or

g”n,o’(”n,i#o = 1 - [Sn/(HnOVn)] . (74)

The corrected values dfi are: H.o)ecor = HnoX@no and H, j<o)cor =
HoioX@nj=oWithj = =1, £2, ..., = J. Three possibilities were tested:
@) poo = 1 and g, ;o # 1; 0) g0 # 1 and ¢, ;=0 = 1; (C) ¢no =

1/¢,, ;=0 In practice it turned out that the final results were almost inde-
pendent of the specific correction procedure (in the examples 3, 4, and 5,
always the correction (c) was applied). Asymmetric corrections, in which
either the termséi,, ;—, or the term$H, ;-_, were multiplied by a correction
factor, gave nearly the same results. In the following the subscript “corr” is
omitted, since always corrected valuesHf; are implied.

3.3 The first diffusion step and boundary conditions

For calculating the result of the first diffusion step of duratignrelative
changes, ; of w(r,,;, O] r,,) are again defined by Egs. (30) andl)3but

with the quantitiesH,,; now given by Eq. (67) and corrected according to
Eq. (73). The boundary conditions in Egs. (3436) remain also valid ik
and X, are replaced by andR,. The only essential change concerns the
numerical implementation of the boundary conditions. Since the constant
interval Ax = h is replaced with the variable volun¥é of the spherical
shells, Eqgs. (37) and (38) are to be replaced by the equations

b1.—1 XV, + b1.—2XV—1 =G (b0,+1 XV, + bo,+2><V2)r (75)
by »XVo=C (b1 .2XV.). (76)

The definition of a constant-concentration boundary by Egs. #9a)
remains unchanged.

3.4 Example 3: Free diffusion near a reflecting
or absorbing spherical surface

Let the inner boundary be again specified (as in section 2.5) by the param-
etercgc with czc = +1 for reflection andczc = —1 for absorption. Then,
with constant potential and constant relative diffusion coefficient, the com-
mon theoretical fundamental solution can be written in the form [4, 33]:
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1 Grmj %Uﬁwﬂ@j
rivtl ry=——=|expl—— | + Cegc XY ——— ——
« ) 8nr;r, 7Dt [ 4Dt c 4Dt

« (1 _ 2(1 + Cec) \/a f EX[<—X2— 2[\/& n (ri+r,— 2R9]x>dx)]
Ro 5 Ro 2/Dt '
(77)

Eq. (77) is obtained from Eg. (24) in ref. [4] by equatikg, = 0 and in-
sertingcsc before the second term antl ¢ czc)/2 before the integral, and
finally by transforming the complementary error function into the present
integral. (The computational disadvantage of the complementary error func-
tion is the simultaneous appearance of an exponential function with a posi-
tive exponent, which makes it impossible to calculgte, t| r,) for large
values ofr; + r, or Dt. The integral was calculated with a humerical accu-
racy of 15 digits for arbitrary values of the bracketed term in the integrand.)
For the comparison of theoretical curves with numerically calculated
curves it is advantageous to apply to theoretical cugzdge same normal-
ization as to numerical curves. This is achieved by introducing a factor
(1 + &), which is defined by the equation

o

N
(1 + &)X > ol tIr) Vi = 4n [ gr, ] ryrecr. (78)
i=1 Ro

In the following the symbob* = (1 + ¢) gis used. In the present example,
¢ is almost independent of time in the time range of interest (from 4 ps to
4ns):e = 1.244X 1075 The notation for the fundamental solutions is sim-
plified. Since the values oiv and g* always refer to specified values of
andr,, the simplified notation igf = g*(r;, t| r.) andw, = w(r;, t| r.).

In Fig. 6a six pairs of theoretical curveg are shown, which were
calculated withR, = 0.8 nm,f = 1.005,r,, = 2.00nm,n = 184, r, =
2319 nm, N = 1600, D = 6X10°nn? s '. The solid curves refer to a
reflecting boundary aR, (czc = +1 in Eqg. (77)), and the dashed curves
refer to an absorbing boundary B (ccc = —1 in Eq. (77)). The curves
cover the time range fror 4 ps (curves 0) to 4 ns (curvd®) in steps of
a factor of 4. The four leftmost data points of the dashed curves 0, 2, and
4 are represented by circles.

The numerical fundamental solutiongr;, t| r,) were computed with
J = 4. In the case of a reflecting boundaryRy a very small value of,
(=4.136X 1034 s) was used, and the fundamental solutiefrs, t| r.) were
renormalized after everyO time-doubling cycles. The relative deviatioRs
of w from g* are defined in analogy to Eq. (48) and again given in zhe
representation (see Eq. (49)) in Fig. 6b. Curve 0 shows the typical limiting
pattern ofz for J = 4 with nine intersections with the= 0 line; a further
reduction oft, would leavez(r) virtually unchanged. The only irregular
points are the four leftmost points of each curve, due to the imperfect nu-
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Fig. 6. Example 3: Spherically symmetric three-dimensional diffusion with constant po-
tential and constant relative diffusion coefficient. Parametggs= 0.8 nm,f = 1.005,r,,

=~ 2.00 nm,n = 184,r, = 2319 nm,N = 1600,D = 6X10° nn? s !; reflecting boundary

at R.. (a) Theoretical fundamental solutiogs (see Egs. (77) and (78)) referring to a
reflecting boundary (: ) or absorbing boundary (- —-,athe curves cover the time
range fromt, = 4 ps (curves 0) td,, = 4 ns (curveslO) in steps of a factor of 4. The

four leftmost points of the dashed curves 0, 2, and 4 are represented by open circles. For
a better distinction of the curves close to the boundary or the coverage of a larger range
of g*, the curves with indexn = 2, 6, 8,10 have been multiplied by suitable factors
10°. (b) Reflecting boundary: Relative deviationof w from g* (first time stept, =
4.136X 1072* s, renormalization of allv after everyl0 time-doubling cycles). (c) Absorb-

ing boundary, relative deviatiors of w from g* (t. = 1.164X10 '®s, no renormali-
zation).
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merical implementation of the boundary conditidi] is less thant0~* in

a range oft5.7 orders of magnitude fon = 0 and in a range of 34 orders
of magnitude form = 10. At the right side of each curve,= —0.4 or
F =~ —10"* corresponds t@®.,/g* =~ 0.5.

In the case of an absorbing boundanRgta correction for the accumu-
lation of round-off errors by renormalization can no longer be applied.
Therefore, a 2 = 2.81 X10'* times larger value of, was chosent, =
1.164X 10" s. The values ok are shown in Fig. 6¢. The only strongly
irregular value ofz, z, = —0.537, corresponds t6, = —2.0X 102 and is
practically independent of time. This rather large valué-pfs not surpris-
ing in view of the large ratiagt/gf = 3. The accumulation of round-off
errors becomes apparent in theurves form = 6, 8, 10.

3.5 Example 4:u = u(r), D = D(r), small radial range
with constant ratio r;.,/r;

For the present test calculations an arbitrary potential function was chosen:

u(r) = u(Ro) X exp[=In(2)| (r — R)/I"["] X [1 + foor IN(2) | (r — R/ T[] .
(79)
The second factor is a good approximation to a box potential for high pow-
ersn,.. The last factor allows one to introduce additionally a potential bar-
rier. I" is the halfwidth of the potential if,.. = 0. For the relative diffusion
coefficient the simple expression proposed by Northrup and Hyrigsvias
used,

D(r) = D(=) [1 — aur exp(—(r — R)/R))], (80)
with 0 = a4 < 1. The following computations were performed wih =
0.8nm,Ry = 1.78 nm,u(R,) = —14.39,n,. = 4, I = 0.2 nm,f,. = 2,
D(«) = 6X10° nm? s ! anday; = 0.5. The corresponding functiar(r) is
shown in Fig. 7. The present values Rf, u(R,), and D(«) roughly corre-
spond to the formation and dissociation of pyrene excimers in a fluid sol-
vent like hexane at room temperature (cf. the Appendix).

Starting fromf = 1.002,N = 400 and polynomials of the degre& 2 4,
the numerical accuracy was increased either by a reductioh(ahd a
corresponding increase ®f) or by an increase od. Two sets of compu-
tations were performed, whose main results are presented in Fig. 8. The
computations of the first set hadl 2= 4 andt, = 1.421 X10"2*s in com-
mon, and the values dfandN were variedf = 1.002,N = 400;f = 1.002"
=~ 1.001, N = 800;f = 1.002"* = 1.0005,N = 1600. The computations of
the second set hdd= 1.002,N = 400, and, = 3.638<1072' s in common,
and the degree of the polynomials was varied:=2 4, 6, 8. The final
stationary distributions were independent of the valud,.of,., = 512 ns
was a practically infinitely long timew(r;, ts. rn) agreed withw(r;, to.d
r,) with an accuracy of 3 digits.
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Fig. 7. Reduced potential(r), calculated with Eq. (79) and the parametBs= 0.8 nm,
u(R,) = —14.39,n,,,= 4, I' = 0.2 nm, and,,, = 2. The ratio of successive equilibrium
values ofg, Qeo(li1)/0edri) = exp(=[u(ri.,) — u(r;)]), was calculated with the radial in-
crement factor§ = 1.002,1.001, and1.0005.

The increase of numerical accuracy by a reductiog ef f—1 is dem-
onstrated in Fig. 8b. The almost constant systematic &forr > 1.05 nm
ranges fromr=1.83x10"% for q =0.0005 to= 4.75X 102 for g = 0.002
and is rather accurately proportionaldb The irregular systematic erré,
due to the imperfect implementation of the boundary condition ranges from
~5.1%X10° for g = 0.0005 to=1.99x10“ for q = 0.002 and is rather
accurately proportional tq.

In Fig. 8¢ the increase of numerical accuracy by the increase of the
degree of the interpolation polynomials is demonstrated. In order to elimin-
ate the irregularities due to the boundaries, the differefige, F,,) is
taken as a measure for the attainable accura€ys, € F,);-. = 4.75X
1073, (Faso— Fi1)s=s = —1.36X 1074, (Fago— Fi1)y-4 = 3.72X 075 Thus, in
the present example, an increase of the degree of the polynomials by 2
entails a reduction of the systematic error due to the potentiad 136.

3.6 Example 5:u = u(r), D = D(r), very large radial range
with increasing ratio r.,./r;

The last example differs from the preceding one in two respects: §irst,
f—1 is gradually increased from, = 0.002 to the final valuey, = 0.02
(see Fig. 9b). Second, the radial range is extremely l&Rge= 0.8 nm and
R = 8X10°nm (N = 1409). As a representative example, the evolution
of the fundamental solution witlh, = 800 nm 6 = 1043) is shown in
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Fig. 8. Example 4: Relative diffusion in a small radial range with a reduced potential
u = u(r) (cf. Fig. 7),D = D(r) (ag« = 0.5,D(») = 6X10° nm? s ; cf. Eq. (80)) and
reflecting boundaries &, = 0.8 nm andRy = 1.78 nm. (a)w was calculated witli =
1.002,N = 400,t, = 1.084x 10 *®s, andJ = 4. The timed,, = 2™ '“ ns for the curves

in the figure range front, =~ 61 fs tot,s = 4 ns. The solid curve with the label is the
stationary distribution, which is reachedtat, = t,; = 512 ns (v, is independent of ,

with an accuracy oft3 digits). (b)J = 2: Effect of radial increment factof on the
relative deviatiorz of wg. from the equilibrium distributiorgs, (f = 1.002,N = 400;

f = 1.002"* = 1.001, N = 800;f = 1.002"* = 1.0005,N = 1600). The three leftmost
and the three rightmost points of eagleurve are represented by separate symbols. (c)
f = 1.002, N = 400: Effect of the degreeJ2of the interpolation polynomials on the
relative deviatiornz of w,,, from the equilibrium distributiorg?, TheJ + 1 leftmost and

J + 1 rightmost points of eaclk-curve are represented by separate symbols.
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Fig. 9. Example 5: Relative diffusion with the same reduced potentigl and relative
diffusion coefficient as in Example 4 (Fig. 8), but with a very large radial rafje=
0.8 nm andR, = 8x10°nm (f, = 1.002,f, = 1.02,N = 1409, transition fronf, to f,
with Eq. (56) andc = 16 andi,_, = 300,r, = 0.8008 nm[, = 8.005X10°nm,t, =
1.084x 1072%s). All curves refer to a start position = 800 nm @ = 1043). The abscissa
is linear from 0.7 to1.2 nm and logarithmic from.2 to 10° nm. (a) Numerical funda-
mental solutionsv (——): The times,, = 2™"° ns for the curves in the figure range from
t, = 512 ns tot,, = t,,, = 275 s (thick solid curvem = 29). Since for timed, < t, <
t,, the shape of the curves(r,, t.,| r.) remains virtually constant in the range 0.8 rm

ri < 1.2nm (only the amplitude decreases), these curves are not shown. For comparison
the theoretical curveg* (———) were calculated for the timdsto t,c with Egs. (77) and
(78), D = D(«), andu = 0. (b) Relative deviatioz of w from g* (m =< 16, r; > 1.2 nm,
thin curves) and ofv,,, from the equilibrium distributiom?, (thick solid curve); the four
rightmost points ofz, are represented by open circles. The cuyve f— 1 was calcu-
lated with Eq. (56) and the parameter values given above. (c) Relative deviatiow
(computed also wittb = D(«) and u = 0) from g*; the thick solid curve is identical
with curve 29 in Fig. 9b.
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Fig. 9a. The scale for the radius is linear from 0.7 & nm and logarithmic
from 1.2 to 10° nm. Since the initial evolution takes place in the radial range
whereu andD are virtually constant(r;, t| r,,) can be compared with the
theoretical curveg*(r;, t| r,), calculated with Egs. (77) and (78) (the value
of ¢ ranged from1.62X 10~* with curve 0 t01.84X 10~* with curve 16).
The main results are:

(a) TheN numerical fundamental solutiongr;, t| r.) were equal within
13 digits at the timd,, = t,X2'°" = 2.749X10°s (, = 1.084X 10 ?%s).
Thus the last time step<(1.374x 1(0? s) was by 30 orders of magnitude
longer than the first time step.

(b) The maximum relative errdf of about1.8X 10~ appears now in
the near zone at=1 nm. This is a consequence of the large radial range
and the increasing factdr Therefore, although the equilibrium probability
density in the first shell is by a factor df8Xx 10° greater than that in the
N-th shell, the equilibrium probabilitW/y ge(fn) = 5.67X 1072 is about
5.5X 10 times larger than the equilibrium probability, g.,(r,) =
1.04X 1074,

(c) For large radii, where the potentialand the relative diffusion coef-
ficient D are virtually constant, the relative deviatiénof w from the theo-
retical curvesg* is small (see Fig. 9b).

(d) The analogous computations were performed with constant potential
u and constant relative diffusion coefficiebt = D(e). The corresponding
relative deviationsz of w from the theoretical curveg* are shown in
Fig. 9c. Between 0.8 and>210* nm, curvel6 in Fig. 9c virtually coincides
with curve z,, of Fig. 9b. That means, ij is virtually constant in the near
zone and the degree of the polynomials is high enough as in this example,
the contribution of the near zone to the total systematic error remains
small.

3.7 Implementation of reactions

The effect of a distance-dependent rate coefficiknbn a distribution
p(r;, t) can be taken into account in different ways. The simplest way
is its implementation in the fundamental solutions. IL& be in the range
Tmin = 1/K = 1.and let the times,, t., t, satisfy the relation

ta = tb = tc < Tmin = Tmax < td = 7Tmax- (81)

t, is the time at which the reaction is taken into account for the first time.
t. is the adequate time step for calculating the course of the reaction, and
is the longest time of interest for the given kinetic problemw(f;, to| r.)qs

is a fundamental solution implying pure diffusion, then the corresponding
fundamental solution implying also reaction is given by

W(r, ol Fo)reace™= W(Ei, ol Fo)ain X €XPI—K(r)ty] . (82)
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The further evolution of the fundamental solutions is calculated as before
up to the timet.. Finally, when the time,. = 0.01 7, is reached, the evolu-
tion of the distribution functiory is calculated with procedure (lll) with
constant time steps up to a timet, (cf. section 2.6):

Pl 0+ )XY = 2 [t v XV XWi(r el 1) (83)

Note that the computation time needed for each time step of lendgsh
only 1/N of the time needed for computing tiefundamental solutions in

a time-doubling cycle (if all elements of all fundamental solutions signifi-
cantly differ from zero).

Within the frame of double-precision computations, the practical choice
of t, is governed by two conditions. Firdt/z..., should be very small, and
in this respect, = t, would be the best choice, if the effect of round-off
errors is neglected. Secongz..... must be large enough, etgz .. = 1071°,
in order that the round-off error in the computationwdf;, t,| r.),eac:F€mMain
small enough for arbitrary;. Obviously both conditions can be simul-
taneously satisfied as long as the ratiQ./7... iS not extremely large (e.g.
=109).

3.8 Computational aspects

The numerical calculations were performed on a personal computer with
128 MB random-access memory and a 366 MHz Intel Pentium Il processor.
The computer programs were written in FORTRAN 90 (compiler: Absoft
Pro Fortran, version 6.2). The computer memory requirements are almost
completely given by two two-dimensional arrays f double-precision
floating-point numbers for the storage of tNefundamental solutions and

a buffer for the intermediate storage of a new set of them. Thud\ fer

1000, roughly16 MB of random-access memory are required. The length
of the executable programs was kept belbWIB by defining most large
arrays as allocatable arrays. No special efforts were made to optimize the
computer programs. Withl = 1000, one cycle of time-doubling todk,.

=~ 4 min, whenall N elements ofall N fundamental solutions were signifi-
cantly different from zero.

The interpolation polynomials were calculated with Newton’s method
[21, 22], which yields the polynomials in a form that is very suitable for
calculating their first and second derivatives. Most of the mathematical op-
erations can be formulated as matrix operations. From a practical point of
view the present use of explicit summations seems to be preferable, because
it is better suited for limiting all summations to those terms that are signifi-
cantly different from zero. At least in the initial time-doubling cycles, the
speed of the computation @i(r;, t| r.) is enhanced by several orders of
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magnitude, if all extremely small element4r;, t| r,) are equated with zero
and only the remaining elements are taken into account. The computation
of the curves in Fig. 8a may serve as an example=( 1600 andt.,.. =

16 min). The initial speed of computation was strongly enhanced by equat-
ing all w(r;, t] r,)<10-%° g.{r,) with zero and by limiting all summations

to terms that differed from zero. Curve 2 in Fig. 8a is the last dne (

244 1s), in which part of the values(r;, t| r,) are equal to zero. The 56
cycles needed for computing curve 2 required 38 min. The remaining 2
cycles for computing the stationary distributiofy,.( = 512 ns) required

340 min.

4. Discussion
4.1 Merits and deficiencies of the algorithm

The present algorithm was criticized in several respects. Part of the criticism
has been already answered in the Introduction and by the numerical solution
of the Ornstein-Uhlenbeck problem in section 2.7. Some other points of the
criticism, however, deserve an explicit discussion and are treated in the
following items.

Comparison with other algorithm®ne may ask whether the present
algorithm permits one to solve diffusion problems of interest with higher
accuracy and in shorter time than any other known algorithm. This question
cannot be definitively answered by the author for two reasons. First, the
algorithms of most interest6—19] are mathematically complex, and their
implementation would have been difficult for the author. Moreover, the pub-
lished details are not always sufficient for writing the pertinent program
code [16, 19]. Second, although general statements on the accuracy of algo-
rithms can be found in the literature, there is a lack of illustrative examples
that demonstrate the range of application and achievable accuracy of a par-
ticular algorithm. For these reasons an alternative procedure is suggested.
A reader may apply the algorithms at his disposal to the diffusion problems
in examples1 to 5. If he will be able to surpass the present results with
respect to numerical accuracy and speed of computation, then the present
algorithm will be of no interest to him. To facilitate this comparison, in
particular the relative deviations of numerical solutions from exact solutions
are shown in a suitable form.

Time-doublingThe repeatetime-doublingin the present algorithm may
look similar to thedoubling-timein the boundary-doubling methodevel-
oped by Kimet al. [20]. The meaning of the terrdoubling-timeis, how-
ever, completely different from the meaning of the tetime-doublingin
the present algorithm. The doubling-time in ref. [20] is the time at which
the outer boundanyis doubled. If simultaneously the radial step widthis
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doubled, then the time steft can be quadrupledflaptive step size control
by step doubling After each adaptation of step size, howewvkr,and At
remain constant for many successive steps.

Interpolating functions.In certain diffusion or heat-conduction prob-
lems, an exponential approximation closely corresponds to the local concen-
tration or temperature profile in a space layer and seems to give the best
results [34]. For this reason it was argued that a polynomial interpolation
cannot be advantageous for the present purpose. However, close to minima
or maxima of a distribution, an exponential approximation can be no longer
optimal and is likely to be inferior to the present polynomial approximation,
apart from the loss of mathematical simplicity.

Degree of the polynomialsThe very small relative error over many
orders of magnitude of the numerical fundamental solutieris perhaps
the most surprising result of the present investigation and not yet completely
understood. The strong increase of numerical accuracy with increasing de-
gree of the polynomials can be easily understood (cf.1pf—200 in ref.

[21]). One may ask which gain in accuracy is expected by using poly-
nomials of higher degree than 8. Probably, within the limitations of double-
precision calculations, it will not be possible to calculate the required first
and second derivatives of the polynomials with sufficient accuracy, if the
polynomials are calculated with Newton'’s algorithmiJas in the present
computer program. The calculation of the data in Tdbtevealed that the
smallest terms in a column are sums of large terms with alternating signs.
In conclusion, within the limitations of double-precision accuracy, poly-
nomials of the 8 degree seem to be an optimum. Finally it should be noted
that the total computation time is virtually independent of the degree of the
polynomials.

Boundaries Another limitation of the attainable accuracy results from
the present implementation of a reflecting or absorbing boundary. The sys-
tematic errors resulting from this imperfect implementation are not reduced
by increasing the degree of polynomials. One might expect that these sys-
tematic errors are smaller, whefir), = r — r,_, is constant near the bound-
aries. In this connection a smooth transition frodr){ to (Ar), with
(Ar), < (Ar)y has been of interest. The pertinent computations yielded,
however, no significant reduction of the systematic error.

Detailed balance Nadler and Schulten1p] have shown that the ap-
proximate calculation of partial derivatives with a finite-difference method
guarantees neither probability conservation nor a detailed balance. They and
some of their successor$d, 19] emphasized the importance of a detailed
balance for a good diffusion algorithm. The author has not been able to
share this view. On the contrary, it seems to him more likely that, by im-
plementing a detailed balance, in general one cannot obtain an optimal al-
gorithm for theevolutionof a distribution function. Apart from the illus-
tration of this statement in section 2.8 and Fig. 4, the following consider-
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ation may be helpful. The numerical solution of a pure diffusion problem
can be compared with the fitting of a function to a set of data points. Equat-
ing the stationary distribution with the equilibrium distribution by the en-
forced detailed balance corresponds to forcing the fitted function to pass
exactly through one of the data points. In general the fitted function thus
obtained will not be the optimal function for the whole data set. In the case
of a detailed balance, the equality of the stationary distribution with the
equilibrium distribution is only a necessary condition for a correct program
code, but contains no information on the quality of the algorithm. Without
an exact detailed balance, the deviation of the stationary distribution from
the equilibrium distribution already contains information on the quality of
the algorithm.

NonnegativityPhysically, negative probability densities have no mean-
ing and should not occur in a good diffusion algorithm that involves only
transfer of probability density tadjacentgrid points. This is also true for
the present algorithm with polynomials of the second degree. With higher
polynomials § = 4), negative probability densities occur at the relative
positionsj = =2, =4, ... (see Tablé). In the actual calculation of the
numerical fundamental solutions, negative values occur only in those
ranges ofx or r, where exact valueg andg,., differ by an order of magni-
tude or more.

Restriction to first order with respect to timé&he restriction to first
order with respect to time would indeed be a disadvantage of an algorithm
working with constant time steps. The distinctive feature of the present
algorithm is, however, that the time needed for the computatign(rof t)
in the time range of interest is almost independent of the lenhgtt the
first time step. Hencé, can be chosen almost arbitrarily short, and nothing
would be gained by a second-order procedure with respect to time.

Stability of first-order schemeThe fact that in general an extremely
short first time stef, has been used was misinterpreted as evidence for a
numerical instability of the algorithm in the case of larger valuet.ofFhe
opposite is true, as is illustrated by exampland Fig.1: In the absence of
reactions, the stationary numerical distributien., is independent of, as
long ast, is below the sharp stability limit. The unavoidable accumulation
of round-off errors is not a peculiarity of the present algorithm but results
from the limitations imposed by double-precision accuracy (cf. e.g. section
1.3.4 in ref. [24]).

Renormalization of the numerical fundamental solutigxisy numerical
procedure will in the end be limited by the accumulation of round-off errors.
This limitation will be the more obvious the more accurate the given pro-
cedure is. Moreover, example 3 in section 3.4 shows that even without
renormalization a very high numerical accuracy is achieved. An unavoid-
able numerical error results from the combination of a large radial range
with a very short first time step.. In example 5, for instancey(ry, t| ry)
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remains constant in the whole time range frore= O tot = t,X2%° =
2.98x 107" s, whereas the ratia(r,_,, t| ro,)M(ry, t] ry) steadily increases
from 0 to =10-' in the same time range.

Renormalization of the theoretical fundamental solutiofise present
use of renormalized theoretical fundamental solutighss consistent with
the normalization of the theoretical equilibrium distributions, which is tacit-
ly applied in other algorithms.

Corrections.The correction of the quantitids, ; (see Eq. (67)) accord-
ing to Eq. (73) is to some degree arbitrary and therefore unsatisfactory.
However, this correction can easily be kept very small, and it is completely
negligible in comparison to the large systematic errors that would be intro-
duced by using the recommended detailed balahse1[6, 19]. Moreover,
the very weak dependence of the numerical fundamental solution on the
particular correction of the quantitié$, shows that the correction for prob-
ability conservation is not a limiting factor in the application of the algo-
rithm (as long as this correction is very small).

Control parametersAn ideal algorithm should contain control param-
eters that limit the maximum deviation of the numerical solution from the
true solution of a partial differential equation. Admittedly, for the present
algorithm no control parameters are given. However, this should not seri-
ously limit its usefulness. The practical application of the algorithm to three-
dimensional diffusion is governed by a few rules:

Rule 1.1f possible, a constant radial increment factor 1 + q with
g = 0.02 should be used.

Rule 2.The maximum acceptable value @fs obtained from the limits
o' andg for the acceptable ratio of neighboring equilibrium valpegs(cf.

Eq. (3)).

Rule 3.The ratios can be the greater the higher the degréeo®Rthe
interpolation polynomials. For this reason] 2 8 will be in general the
best choice.

Rule 4.If a variable radial increment factdr = 1 + q; is needed, the
best results are obtained,dfis virtually constant in the effective range of
the potential. The relative errap, in the probability conservation during
the first time step (cf. Eq. (70)) should be extremely small in the whole
radial range, e.gw,|<1078.

Rule 5.In the case of reflecting boundaries, the first time stegan be
made extremely short, for instance by a factdr'2 shorter than the maxi-
mum ¢.).ax COrresponding to the limit of numerical stability. The concomi-
tant accumulation of round-off errors is corrected for by a renormalization
of all N fundamental solutions after every ten time-doubling cycles up the
diffusion time t,, when the reaction terri(r) is taken into account (cf.
section 3.7).

Rule 6.In the case of absorbing or constant-concentration boundaries,
the accumulation of round-off errors can no longer be corrected for by a
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renormalization. Therefore the first time stépshould not be made ex-
tremely short, but still much shorter than) (...

Rule 7.The convergence of the algorithm with decreasinshould be
checked.

Waste of computer resourcebhis objection would have been justified
in 1980, when the present computations would have required a large com-
puter, shared by a community of researchers. At the end of the g,
when the typical random-access memory of a new personal computer was
64 MB, this objection did not make sense anymore.

Soft-sphere approximation3he relative ease, with which the combi-
nation of a short-range potential with a large radial range can be treated,
offers the possibility to overcome the limitations of hard-sphere models. A
suitable repulsive potential is introduced, and the inner reflecting boundary
is shifted to a smaller radius, where the repulsive term of the potential
already strongly dominates (and where the equilibrium probability density
is already much smaller than in the potential minimum). Exampie sec-
tion 2.7 has shown that the present implementation of a reflecting boundary
yields acceptable results even if the potential does not satisfy Eq. (35).

4.2 On the most efficient algorithm for long time propagations

The allegedslownesof the present algorithm was perhaps the main objec-
tion against it. The argument is simple: If ordye distribution function at
a singletime t is needed, it is an enormous waste of computation time to
computeN distribution functions instead of one. In practice, however, near-
ly always theevolutionof a distribution function is of interest and, for
instance,100 to 1000 distributions with constant time stepsare needed
(cf. section 3.7).

The computation time needed for a time-doubling cytlg,. is pro-
portional to the third power of the number of the fundamental solutiips,
if all elements okachfundamental solution significantly differ from zero.
Obviously, due to this fact, the present algorithm is very sloW if large.
For instance, witiN = 1600 (cf. section 3.8) and without parallel comput-
ing, it would be difficult to fit the parameters of a kinetic model to exper-
imental data within a reasonable time. However, in many cases, values of
N in the range100 =< N =< 200 will be sufficient and the timé,, up to
which the distributiorp(r;, t) is to be calculated, may be much shorter than
the time needed for complete equilibration in the absence of a reaction. In
such cases the time for the computation of the wigslelutionof p reduces
to aboutl min or less, and the present algorithm becomes applicable as part
of a curve-fitting procedure.

In a comparison of different algorithms that allow the application of
very large constant time stefsthe distinction between two different com-
putation times is important. The first computation time is the time needed
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for computingp(r;, t), which requires in the present algorithm the compu-
tation of N fundamental solutions(r;, t.| r,). The second computation time
is the time needed for computing distribution functions(r;, t.v) with v =
1, 2, ...,vq andty = tw, With respect to the second computation time, the
present algorithm seems to the most efficient one, because there is no sim-
pler solution for this problem than the summation Mfweighted funda-
mental solutions. The first computation time will be in general longer than
the second computation time. For instanceyit= N andw(r;, t.| r,) # 0
for arbitraryn andi, then the time needed for computing thedistribution
functionsp(r;, tov) would be equal to be the time needed for computing a
new set ofN fundamental solutions(r;, 2t,| r.).

With the algorithm in refs. {6, 19] the situation is reversed. Due to the
direct computation of the distributiop(r;, t.), the first computation time
can be rather short. On the other hand, the same procedure is to be repeated
(v4— 1) times; hence, even in the most favorable case, the second compu-
tation time will be at leasty, — 1) times longer than the first computations
time. An advantage of that algorithm is that the time step need not be
constant.

It is not a priori evident, which of the two algorithms is more efficient
in computing theevolutionof a distribution function. Finally, if for some
problems of interest the present algorithm will turn out to be the only practi-
cable one, slowness will be no longer an argument.

5. Summary

With the present algorithm, the Smoluchowski equation of a spherically
symmetric three-dimensional diffusion problem can be numerically solved
with high accuracy even in the unfavorable case of a short-range potential
barrier in combination with a large radial range. The basic features of the
algorithm are:

(a) A series ofN spherical shells of volum¥, is defined by the radii
R R, .., R, ...,Rywith R,,/R = 1 + q, whereq is either constant or a
slowly increasing function of. The mean radir; of the spherical shells are
taken as grid points.

(b) Numerical fundamental solutions(r;, t| r.) are definedw(r;, 0|
ro) = V.' d, is the numerical analogue ofa@afunction. All that is needed
for the calculation ofn(r;, t| r,) is the set of fundamental solutiongtr;, t.|
r.), wheret, is the duration of the first diffusion step.

(c) The first and second derivatives of the numekiunction w(r;, 0|
r.) with respect ta atr; are defined by the respective derivative of a poly-
nomial of the degree(J = 1, 2, 3, 4), centered at. In the calculation of
w(r;, t.| r.), the error in probability conservation becomes very small in the
range ofg that is of practical interestq(= 0.02). For very small, the
probability error is approximately proportional ¢3°*2



A New Algorithm for the Numerical Solution of Diffusion Problems ... 793

(d) A reflecting inner boundary is implemented by compensating the
loss due to diffusion from the shells 2, ...,J through the boundary by
the gain due to the opposite diffusion from the auxiliary shells-0, ...,

—J + 1 through the boundary. An absorbing inner boundary is implemented
by the same terms, but with opposite signs. Radiation and constant-concen-
tration boundaries are implemented in a similar way. The treatment of outer
boundaries is analogous.

(e) By successive doubling of the total diffusion tirheeach funda-
mental functionw(r;, 2t| r,) can be expressed as the weighted sum oNall
fundamental solutions/(r;, t| r) (I = 1, 2, ...,N). Since the total compu-
tation time is roughly proportional to the logarithm of the total diffusion
time, the stationary distributiow,,,. can be always computed (in the case
reflecting boundaries and in the absence of reactions).

(f) The evolution of an arbitrary distributiomcan be calculated, starting
from an initial conditionp(r;, 0), in time steps of the length by repeatedly
applying the set of fundamental solutiong;, t.| r,).

(g) A distance-depending rate coefficigdntcan be taken into account
by multiplying at a timet, < k.., all N2 valuesw(r;, t,| r,) with
exp[—k(r;) t;].

(h) Within the limits of double-precision computations, the best results
were obtained with polynomials of the degree 8 (the highest degree tested).

(i) The exact equality of the stationary distribution with the equilibrium
distribution (enforced by a detailed balance) will in general not lead to the
best approximation of thevolutionof a distribution.

() With increasingg, (qn = 10q,), a radial range of six orders of mag-
nitude can be covered with a maximum relative errorobf less than
2X1074
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Appendix

The need of a new algorithm appeared in connection with a well-known
special case of reversible excimer formatid®,[ 35-37]: The lowest ex-
cited singlet statéA* of an aromatic hydrocarbon A is populated by triplet-
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triplet annihilation®A* + °A* — 'A* + 'A. The subsequent reversible
formation of excimers;A* + 'A = '(AA)*, and the observable intensity
ratio of delayed monomer fluorescence and delayed excimer fluorescence
depend on the initial spatial distributigufr, 0) of 'A* relative to 'A, on an
effective potentiall(r) for the attraction betweetA* and 'A, and on the
rate constants for the radiative and nonradiative decayA®ofind '(AA)*
to the respective ground state or triplet state. In the case of pyrene (the
classic example of delayed excimer fluorescence [35]), the numerical solu-
tion of the corresponding Smoluchowski Ed)) bas to satisfy the following
requirements:

(&) U(r) is a short-range potential. Hence the radial stApsanust be
small, e.g.Ar = 1072 R, or less, whereR, is the contact distance between
A and B.

(b) The radial range is large with a maximum= 100R.

(c) The potential minimum i®¥(R,) = —hcx 3000 cnr.

(d) The temperature range of interedt.{, = 300K, T, = 120 K)
corresponds to the rangd < |U(R)|/k:T < 36.

(e) The relative diffusion coefficier® ranges from=5x 108 cm? s’
at the lowest temperature te5X 10 °>cm® s ' at the highest temperature.

() The constant time step is 10~ '®s; the longest time of interest is
~5X10°°s.

(g) The deviation of the numerical solution from the exact solution of
Eqg. (1) must be less tham% in the time range of interest for all tempera-
tures.
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