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Diffusion-influenced reactions can often be described with simple kinetic models, whose
basic features are a spherically symmetric potential, a distance-dependent relative dif-
fusion coefficient, and a distance-dependent first-order rate coefficient. A new algorithm
for the solution of the corresponding Smoluchowski equation has been developed. Its
peculiarities are: (1) A logarithmic increase of the radius; (2) the systematic use of
numerical fundamental solutionsw of the Smoluchowski equation; (3) the use of poly-
nomials of up to the 8th degree for the definition of the first and second partial derivatives
of w with respect to the radius; (4) successive doubling of the total diffusion time. The
power of the algorithm is illustrated by examples. In particular its usefulness for the
combination of a short-range potential with a large radial range is demonstrated. Some
aspects of the algorithm are explained in the context of one-dimensional diffusion. Dif-
fusion in a harmonic potential (Ornstein-Uhlenbeck process) and in a double-minimum
potential is treated in detail. It is shown that a detailed balance will in general not lead
to the best approximation of the time-dependence of a distribution.

1. Introduction

Diffusion-influenced reactions can often be described with simple kinetic
models, whose basic common feature is the relative diffusive motion of a
particle B in the spherically symmetric potential of a particle A [1220].
For an ensemble of A· · ·B pairs, the average relative motion of A and B
and the disappearance of A· · ·B pairs by a reaction of A or B can be de-
scribed with the Smoluchowski Eq. (1):
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ρ is a probability density (often normalized fort 5 0), r is the distance
between the centers of A and B,t is the time,D is the distance-dependent
relative diffusion coefficient of A and B,kB is the Boltzmann constant,T is
the temperature,U is a spherically-symmetric potential, andk is a distance-
dependent first-order rate coefficient. The partial differential Eq. (1) is to be
solved numerically for a given initial conditionρ(r, 0), subject to adequate
boundary conditions.

The development of the present algorithm started from a specific prob-
lem, which is described in the Appendix. Technically this problem is
characterized by the combination of a short-range deep potential with a
large radial range. The basic assumption has been that a standard algorithm
would not yield sufficiently accurate numerical solutions of problems of
this kind within an acceptable computation time. In view of the lot of sys-
tematic work on the development of efficient diffusion algorithms [628,
13220], the publication of a new algorithm requires a justification. In par-
ticular it should become evident that the new algorithm incorporates fea-
tures that are of interest beyond the specific kinetic problem, for whose
solution its has been designed. This justification is given in part in the
following items and in part in the Discussion in section 4.

Dimension.It has been customary to treat one-dimensional diffusion,
circularly symmetric two-dimensional diffusion, and spherically symmetric
three-dimensional diffusion formally in the same way by using general for-
mulae, in which the dimension is specified by a dimension variabled (cf.
for instance ref. [19, 20]). The present algorithm was originally developed
only for spherically symmetric diffusion. Later it turned out that some pecu-
liarities of the algorithm are most easily explained and tested in the context
of one-dimensional diffusion, and for this reason one-dimensional diffusion
has been also included. Circularly symmetric diffusion has not been taken
into account, but its treatment by the present algorithm should offer no
difficulties.

Discretization of space coordinate.A short-range potential requires
small radial steps∆r, which are unsuitable for the coverage of large radial
ranges (R0, RN), whereR0 is the inner radius andRN is the outer radius of
the spherical shell, to which the motion of the center of B relative to the
center of A is confined. Different strategies were developed to solve this
problem: (a) Different constant values of∆r are used in sub-intervals of the
total range (R0, RN) [6, 19]. (b) The discrete radius is logarithmically in-
creased:ri11 5 ri3(1 1 q) with 0 , q 5 const.! 1, andz 5 ln r is
introduced as new independent spatial variable [14]. (c) The independent
variabler is transformed by means of an isomorphism onto thefinite range
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of a new variablez(r). By a suitable choice of the functionz(r), an equidis-
tant discretization ofz gives an optimal representation of the potential [17,
18]. The strategy of the present algorithm is in part similar to strategy (b).
It will be shown that very large radial ranges can be covered by using a
very small valueq1 in the near zone and a larger valueq2 in the far zone
with a smooth transition fromq1 to q2. In contrast to the strategy (b), the
radiusr is retained as independent spatial variable.

Partial derivatives.In all diffusion algorithms, the first and the second
partial derivatives of the distribution functionρ with respect tor at discrete
radii ri, ρ′(r i, t) and ρ″(ri, t), are needed, directly or indirectly. The usual
procedures for calculating these partial derivatives are based on finite differ-
encing, which is related to polynomial interpolation. The present procedure
employs direct polynomial interpolation [21223]: The polynomialY(r )
of degree 2J, centered atri and passing throughρ(ri2J, t), . . ., ρ(ri, t), . . .,
ρ(ri1J, t), is calculated and the required partial derivatives are defined by
ρ′(ri, t ) < Y′(ri) andρ″(ri, t ) < Y″(ri). With this procedure also the partial
derivatives of a numericalδ-function are obtained, which is defined by

w(ri, 0| rn) 5 V21
n δin , (2)

whereVn is the volume of then-th spherical shell,rn is its mean radius, and
δin is the Kronecker delta (δin 5 1 if i 5 n andδin 5 0 if i ? n).

Unsuitability of standard algorithms.A standard algorithm for the solu-
tion of Eq. (1) can be characterized as follows [24226]: By using a finite
difference procedure, the partial derivativesρ′(r i, t) andρ″(ri, t ) in Eq. (1)
are replaced by linear combinations ofρ(ri, t ) and two or more of its neigh-
boring valuesρ(ri 6 j, t ) with j $1. Thus a single partial differential equation
is replaced by a system ofN coupled ordinary differential equations, to
which Runge-Kutta methods can be applied [21226]. It can be easily shown
that a standard algorithm of this type is unsuitable for the solution of the
present problem [23]. For a pure diffusion problem and in the absence of a
potential, the total time range of interest is of the orderttot < (RN 2R0)2/D.
In the presence of a short-range potential, the radial step∆r 5 ri112 ri in
the vicinity of the greatest slope of the potential is limited by the acceptable
ratio of neighboring equilibrium valuesρeq,

σ21 # ρeq(ri11)/ρeq(ri) # σ , (3)

with the value ofσ depending on the particular algorithm and the desired
accuracy of the numerical solution; in generalσ will be in the range1 , σ
, 2. If the maximum value of∆r is fixed according to Eq. (3), then the
maximum time step∆t in a Runge-Kutta procedure is∆t < (∆r)2/D (in the
case of aδ-function w(ri, 0| rn), w(rn, ∆t | rn) must remain positive). Thus
the total number of time steps is of the order ofttot/∆t < (RN/∆r)2. The
problem described in the Appendix would requirettot/∆t $ 431010, which
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means that it cannot be easily solved with a standard method. With the
present algorithm problems of this kind can be solved without difficulty. In
section 3 an extreme example with (RN/∆r)2 < 2.531017 will be presented.

Conservation of total probability.An acceptable numerical algorithm
must conserve thetotal probability in the absence of a reaction. In the case
of a numericalδ-function w(ri, 0| rn) that means with respect to the first
time step that the weighted loss of probability density atrn is exactly equal
to the sum of the weighted gains of probability density at the neighboring
grid pointsrn6 j with j 5 1, 2, . . ., J. The present polynomial interpolation
yields an exact conservation of total probability in the following special
case: One-dimensional diffusion, constant steps∆x, and a potential defined
by a polynomial of a degree#2J 1 1. In the case of spherically symmetric
relative diffusion and logarithmically increasing radii, the total probability
is no longer exactly conserved, but the relative error can be made extremely
small in the absence of a potential. Ifq in the radial increment factor
(1 1 q) is small and constant, the relative error is approximately pro-
portional toq2J12. For instance, withq 5 0.02 andJ 5 4, the total prob-
ability is virtually exactly conserved within the limits of double-precision
calculations. In the presence of a potential, the deviations from the exact
probability conservation remain very small, if the ratioσ of neighboring
equilibrium valuesρeq is small enough, for instanceσ < 1.5 for J 5 4. The
required conservation of total probability can be always achieved by a very
small correction.

Detailed balance.In the case of reflecting boundaries and in the absence
of reactions, the final stationary numerical solutionρstat(ri ) should beclose
to the theoretical equilibrium distributionρeq(ri ). In some algorithms the
exactequality ρstat(ri ) 5 ρeq(ri ) is implemented by adetailed balance[15,
16, 19]. Its meaning is most easily understood in the case of a Monte-Carlo
algorithm [13, 15] : In the simplest case of one-dimensional diffusion with
equidistant grid points, diffusion is characterized by the frequencyΩij of
hopping fromxi to xj. In this case,detailed balancemeans that the frequen-
ciesΩij exactlysatisfy the equilibrium conditionΩij ρeq(ri ) 5 Ω ji ρeq(r j ). A
detailed balance seems to be regarded by some authors [15, 16, 19] as a
necessarycondition for a good numerical algorithm. The present algorithm
does not satisfy this condition, and for this reason alone it might be con-
sidered inferior to other algorithms. However, by the example of one-di-
mensional diffusion in a harmonic potential (Ornstein-Uhlenbeck process
[13, 19, 27]) it will be demonstrated that, by requiring a detailed balance,
not the best numerical approximation of theevolutionof a distribution func-
tion is obtained.

Time propagation.With respect to time propagation, two types of algo-
rithms can be distinguished. In algorithms of the first type, the time step∆t
is small and constant either during the whole time range of interest or at
least during rather large time intervals [20]. During each time step, the
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transfer of probability density is restricted to neighboring grid points. The
upper limit of ∆t is roughly given by the requirement that the transfer of
probability density from a grid pointri to its two adjacent grid points must
not lead to a negative probability density atri itself. In algorithms of the
second type, the so-called Chebyshev time propagation is applied, which
permits large time steps and involves simultaneous changes ofρ in many
or even all grid points [16, 19]. This method is similar to a propagation
scheme for the time-dependent Schrödinger equation [28230]. As far as
very long time propagations are of interest, an algorithm of the second type
might be the first choice among the known algorithms, for a kinetic problem
described like that described in the Appendix. The present algorithm be-
longs to the first type with respect to the first time step, with the difference
that 2J$2 instead of 2 neighboring points are involved. With respect to
the further time propagation, the present algorithm seems to be new. The
basic idea is the systematic use ofnumericalfundamental solutionsw(ri , t|
rn), in analogy to the use ofanalytical fundamental solutionsg(ri , t| rn) in
the analytical treatment of diffusion problems [1, 2, 4, 5]. Let theN funda-
mental solutions at timet, w(ri , t | rn) (n 5 1, 2, . . ., N) and the initial
conditionρ(r i , 0) be known.ρ(ri , t ) is then given by

ρ(r i , t ) 5 o
N

n51

[ ρ(rn, 0)3Vn] 3w(ri , t| rn) . (4)

Eq. (4) is applied also to the fundamental solutions themselves. By succes-
sive doubling of the total diffusion timet, each fundamental solution at the
time 2t, w(ri , 2t| rn), can be expressed as the weighted sum of allN funda-
mental solutions at the timet, w(ri , t| rl) (l 5 1, 2, .. ., N). Since with this
procedure the computation time becomes proportional to the logarithm of
the total diffusion time, the computation ofρ(ri , t) can be always extended
to the attainment of the final stationary distributionρstat(ri ) (in the absence
of reactions and with reflecting boundaries).

Duration of the first time step.In algorithms of the first type, the total
computation time is inversely proportional to the time step∆t. Hence, in
general∆t should be as large as possible, and for this reason an algorithm
that is of second order with respect to time is preferable to one that is only
of first order with respect to time like the present algorithm. However, in
connection with successive time-doubling, the limitation to first order is no
real disadvantage. For very short timest, most elements ofw(ri , t| rn) are
either equal to zero or can be equated with zero because of their extreme
smallness; by limiting all numerical operations to elements ofw(ri , t | rn)
that are not equal to zero, the computation time for the initial time-doubling
cycles becomes very short. Therefore∆t can be chosen almost arbitrarily
small without appreciably increasing the total computation time. Finally it
is to be mentioned that the algorithm is completely stable also with large
values of∆t like the algorithms of the first type.
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Boundary conditions.The present numerical implementation of re-
flecting or absorbing boundaries is completely analogous to Smoluchow-
ski’s theoretical treatment of boundaries [1, 2, 4, 31]. The first J numerical
δ-functionsw(ri , 0| rn) (n 5 1, 2, . . ., J) are supplemented by their mirror
imagesw(ri , 0| rn) (n 5 0, 21, . . ., 2J 11). In the case of a reflecting
boundary, the transfer of probability through the boundary during the first
time step is exactly compensated by the inverse transfer of probability from
the mirror image. In the case of an absorbing boundary, the same mirror-
image numericalδ-functions are used, but now with a negative sign. Other
boundary conditions (radiation, constant concentration) are implemented in
a similar way.

Reactions.In a standard algorithm, a reaction (the sink termk(r) in
Eq. (1)) is taken into account simultaneously with diffusion. In the present
algorithm, a reaction is taken into account by a single, very small change
of the fundamental solutions at a suitable diffusion time, which is much
shorter than (kmax)21.

Examples.The efficiency of the present algorithm is demonstrated by
five examples with an adequate representation of relative errors: (1) One-
dimensional diffusion in a harmonic potential (Ornstein-Uhlenbeck pro-
cess); (2) one-dimensional diffusion in a double-minimum potential that is
defined by a polynomial of the 8th degree; (3) three-dimensional diffusion
without potential in a large radial range with constant radial increment fac-
tor (11q) and a reflecting or absorbing inner boundary; (4) three-dimen-
sional diffusion with a short-range potential barrier, a distance-dependent
relative diffusion coefficient, a small radial range with a constant radial
increment factor (11q), and reflecting boundaries; (5) three-dimensional
diffusion with the same short-range potential barrier and the same distance-
dependent relative diffusion coefficient and also with reflecting boundaries,
but with a very large radial range with a variable radial increment factor
(11q).

The structure of the article is as follows: In section 2, the main features
of the algorithm are treated in the context of one-dimensional diffusion. In
particular it will be shown that the new algorithm permits the numerical
solution of the Ornstein-Uhlenbeck problem with high accuracy. In sec-
tion 3, three-dimensional diffusion, reactions, and computational aspects of
the algorithm are treated. In section 4, the merits and deficiencies of the
algorithm are discussed. In section 5 the basic features of the algorithm are
summarized.

2. One-dimensional diffusion
2.1 Definition of intervals and boundaries

Let diffusion be restricted by boundaries atx 5 X0 andx 5 XN and let the
interval (X0, XN) be divided intoN intervals of equal widthh 5 (XN2X0)/
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N. In standard algorithms, the interval boundariesXn 5 X0 1 hn (n 5 0,
1, . . ., N) are the grid points. To each inner grid pointXn belongs a sym-
metrical interval (Xn2h/2, Xn 1 h/2). The disadvantage of this definition
of grid points is that the associated intervals of the boundaries (X0, X0 1 h/
2) and (XN2h/2, XN), are smaller and unsymmetrical. The ensuing concep-
tual and mathematical difficulties are avoided by choosing thecenters xn of
the N intervals as grid points:xn 5 X0 1 h (n2 1

2) with (n 5 1, 2, . . .,N).

2.2 Initial condition and fundamental solutions

In the case of one-dimensional diffusion with a constant relative diffusion
coefficient and in the absence of a reaction, the one-dimensional analogue
of the partial differential Eq. (1) is

∂ρ(x, t)

∂ t
5 D S∂2ρ(x, t)

∂ x2
1

du(x)

d x

∂ρ(x, t )

∂ x
1

d2u(x)

d x2
ρ(x, t)D , (5)

where u(x) ; U(x)/kBT is a reduced potential. Let the initial condition
ρ(x, 0) be numerically given by a normalized set ofN valuesρ(xn, 0):

o
N

n51

ρ(xn, 0)h 5 1 . (6)

The evolution ofρ, ρ(xi , t ), is completely defined by the evolution of theN
fundamental solutions,w(xi , t | xn). For the moment it is sufficient to calcu-
latew(xi, ta| xn), that is, the result of the first diffusion step of durationta ;
∆t on w(xi , 0| xn). The procedure for calculatingw(xi , ta| xn) is essentially
the same as that, which one would apply in the direct numerical solution of
the partial differential Eq. (5). For arbitraryt, ρ(x, t 1 ∆t) can be calculated
from ρ(r, t ) by using Euler’s method [24] :

ρ(x, t 1 ∆t) < ρ(x, t) 1
∂ρ(x, t)

∂ t
∆t . (7)

For the calculation of∂ρ(x, t )/∂t with Eq. (5), one has to know the first and
the second partial derivativesρ′(x, t) ; ∂ρ(x, t )/∂x andρ″(x, t) ; ∂2ρ(x, t )/
∂x2. If ρ(x, t) is known only for discrete valuesxn with xn,xn11, one way
of calculatingρ′(xn, t) andρ″(xn, t) is to calculate a suitable differentiable
function Yn(x) passing throughρ(xn, t ) and its 2J neighboring pointsρ(xn61,
t), ρ(xn62, t ), . . ., ρ(xn6J, t), and having the propertyY′n(xn) < ρ′(xn, t ) and
Y″n (xn) < ρ″(xn, t ) [21223]. If Yn(x) is a polynomial of the degree 2J (J 5
1, 2, . . .), then its minimum degree is 4, if inflection points are to be ac-
counted for. The present algorithm is based on the use of polynomials up
to the degree 2J 5 8.

2.3 Definition of fundamental solutions by polynomials

Let {yn,n+j (x)} be a set of 2J11 polynomials of the degree 2J, centered at
xn (first subscript), with the property
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yn,n+j (xn+i) 5 δij (2J # i #J) , (8)

whereδij is the Kronecker delta.Yn(x) can be written as the weighted sum
of these polynomials:

Yn(x) 5 o
J

j52J

ρ(xn1j , t) yn,n1j(x) . (9)

Eq. (9) is equivalent to Lagrange’s interpolation formula [21223]. The first
and the second partial derivatives ofρ with respect tox at xn are then
approximately given by

ρ′(xn, t) < Y′n(xn) 5 o
J

j52J

ρ(xn1j , t ) y′n,n1j (xn) , (10)

ρ″(xn, t ) < Y″n (xn) 5 o
J

j52J

ρ(xn1j , t ) y″n,n1j(xn) . (11)

The same procedure is applied to the formal calculation ofw′(xi , 0| xn) and
w″(xi , 0| xn) for i 5 n, n 61, . . .,n 6J. The only difference is that for each
i the sum of 2J 11 terms in Eqs. (10) and (11) reduces to a single term:

w′(xn1j , 0| xn) 5 h21 y′n1j,n(xn1j) , (12)

w″(xn1j , 0| xn) 5 h21 y″n1j,n(xn1j) . (13)

The equality signs in Eqs. (12) and (13) have the meaning of definitions
depending on the degree of the polynomials.

A necessary condition for any diffusion algorithm is the conservation of
total probability in the absence of reactions. With respect to the numerical
δ-functionsw(xi , 0| xn) that means, the weighted decrease ofw in the n-th
interval must be equal to the weighted gains ofw in the 2J neighboring
intervals or, in other words, the normalization condition is to be satisfied :

h o
J

j52J

w(xn1j , ta|xn) 5 1 . (14)

As a corollary of the definition ofw′(xi , 0| xn) andw″(xi , 0| xn) by Eqs. (12)
and (13), the condition of probability conservation (14) is exactly satisfied,
firstly, for free diffusion for arbitraryJ and, secondly, for diffusion in a
potential that is given by a polynomial up to the degree 2J 11.

It is advantageous to prove the correctness of the first preceding state-
ment first forJ 5 2 (the simplest nontrivial case). For the formal calculation
of the partial derivativesw′(xi , 0| xn) andw″(xi , 0| xn), a polynomial of the
4th degree, centered atxi , is calculated. The following five polynomials are
needed:

yn,n(x) 5 1(4h4)21 (x 2 xn 1 2h) (x 2 xn 1 h) (x 2 xn 2 h)
(15)(x 2 xn 2 2h)

yn11,n(x) 5 2(6h4)21 (x 2 xn 1 h) (x 2 xn 2 h) (x 2 xn 2 2h)
(16)(x 2 xn 2 3h)

Bereitgestellt von | MPI fuer biophysikalische Chemie
Angemeldet

Heruntergeladen am | 29.02.16 16:15



A New Algorithm for the Numerical Solution of Diffusion Problems . . . 761

yn21,n(x) 5 2(6h4)21 (x 2 xn 1 3h) (x 2 xn 1 2h) (x 2 xn 1 h)
(17)(x 2 xn 2 h)

yn12,n(x) 5 1(24h4)21 (x 2 xn 2 h) (x 2 xn 2 2h) (x 2 xn 2 3h)
(18)(x 2 xn 2 4h)

yn22,n(x) 5 1(24h4)21 (x 2 xn 1 4h) (x 2 xn 1 3h) (x 2 xn 1 2h)
(19)(x 2 xn 1 h) .

The first and second derivatives of these polynomials at their respective
centersxn1j are:

y′n,n(xn) 5 0 (20a)

y″n,n(xn) 5 2
5

2h2
(20b)

y′n61,n(xn6h) 5 7
2

3h
(21a)

y″n61,n(xn6h) 5 1
4

3h2
(21b)

y′n62,n(xn62h) 5 6
1

12h
(22a)

y″n62,n(xn62h) 5 2
1

12h2
. (22b)

The probability is exactly conserved for arbitraryta,

(D h ta)3 o
J

j52J

y″n1j,n(xn 1 hj) 5 0, (23)

with J 5 2 in the present case.
The proof of the validity of Eq. (23) for arbitraryJ $1 runs as follows.

In the special case ofρ(xn1j, 0) 5 1 for 2J # j #J, the analogues of
Eqs. (9)2(11) are

Yn(xn) 5 o
J

j52J

yn,n1j (xn) 5 1 , (24)

Y′n(xn) 5 o
J

j52J

y′n,n1j(xn) 5 0, (24a)

Y″n(xn) 5 o
J

j52J

y″n,n1j(xn) 5 0. (24b)

The terms of the sum in Eq. (24b) can be written in a different form:

y″n,n1j (xn) 5 y″n−j,n(xn2hj) . (25)
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Table 1.First and second derivatives of the polynomialsyn1j, n(x) of the degree 2J at their
centersxn 1 jh (2J # j # J). If the terms in the rows 3 to 6 are multiplied by 2, the
sum of the terms in each column is equal to zero.

J 1 2 3 4

y″n,n(xn) 2
2

h2
2

5

2h2
2

49

18h2
2

205

72h2

y″n61,n(xn6h) 1
1

h2
1

4

3h2
1

3

2h2
1

8

5h2

y″n62,n(xn62h) 2
1

12h2
2

3

20h2
2
1

5h2

y″n63,n(xn63h) 1
1

90h2
1

8

9 · 35h2

y″n64,n(xn64h) 2
1

16 · 35h2

y′n,n(xn) 0 0 0 0

y′n61,n(xn6h) 7
1

2h
7

2

3h
7

3

4h
7

4

5h

y′n62,n(xn62h) 6
1

12h
6

3

20h
6
1

5h

y′n63,n(xn63h) 7
1

60h
7

4

105h

y′n64,n(xn64h) 6
1

280h

That means, the set of terms in Eq. (24b) is identical with that in Eq. (23) ;
only the order of the terms in one sum is inverted relative to the order of
the terms in the other sum. In Table1 all terms y′n1j,n(xn1hj) and
y″n1j,n(xn1hj) are listed forJ 5 1, 2, 3, 4.

The total probability is also exactly conserved, if the reduced potential
u(x) is given by a polynomial of the degreem#2J 11 and1#J#4:

u(xn 1 hj) 5 o
m

k50

Ak(xn 1 hj)k , (26)

u′(xn 1 hj) 5 o
m

k51

kAk(xn 1 hj)k21 , (26a)

u″(xn 1 hj) 5 o
m

k52

k 21) Ak(xn 1 hj)k22 . (26b)

The probability conservation is exact, because for each term of the poly-
nomialu(x) the following relation holds:
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k(k 2 1)xk22
n yn,n(xn) 1 o

J

j52J

k(xn 1 hj)k21 y′n1j,n(xn 1 hj) 5 0

(27)(0#k#2J 11) .

The correctness of Eq. (27) has been proved forJ 5 1, 2, 3, 4. Eq. (27)
probably holds for arbitraryJ$1, but no serious attempt has been made by
the author to prove its validity forJ .4.

2.4 Fundamental solutions for the first diffusion step

For the calculation of the fundamental solutionsw(xn1j , ta| xn) with j 5 0,
61, . . ., 6J with Eq. (7), the quantities

Hn, j ; h [∂w(x, t| xn)/∂t] x5xn1j, t50 (28)

are needed, which are according to Eqs. (5), (12) and (13):

Hn, j 5 D [y″n1j,n(xn1j) 1 u′(xn1j) y′n1j,n(xn1j) 1 u″(xn1j) yn1j,n(xn1j)] . (29)

For calculating the result of the first diffusion step, it is advantageous to
define the changesbn, j of w(xn1j , 0| xn) relative tow(xn, 0| xn) :

bn,0 5 11 Hn,0 ta, (30)

bn, j 5 Hn, j ta ( j 5 61, 62, . . .,6J) . (31)

A practical upper limit of ta is obtained by requiring 0.5#bn,0,1 or
0, |Hn,0 ta| #0.5. If boundary conditions are neglected, then the effect of
the first diffusion step onw(xi, 0| xn) is

w(xn1j, ta| xn) 5 w(xn, 0| xn)3bn, j for j 50, 61, . . .,6J, (32)

w(xn1j , ta| xn) 5 0 for | j | .J. (33)

The quantitiesbn, j contain all the information that is needed for calculating
the evolution of the fundamental solutions in the absence of reactions.

2.5 Boundary conditions

Two boundaries are of interest: Aleft boundary atX0 and aright boundary
atXN. In the following, first the two limiting cases of a completely reflecting
boundary and a completely absorbing boundary are treated. The left re-
flecting boundary is defined by [4]

S∂ρ(x,t)

∂ x D
x 5 X0

5 0, (34)

Sdu(x)

d x Dx 5 X0

5 0, (35)

and the left absorbing boundary is defined by

ρ(X0, t ) 5 0 for t .0. (36)
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These boundary conditions are numerically implemented as follows. First,
2J additional intervals are defined with indicesn 5 0, 21, . . ., 2(2J 21)
and center valuesxn 5 x1 1 h(n21). Second, theJ additional sets of quan-
tities Hn, j, bn, j (n 5 0, 21, . . ., 2J 1 1) are calculated. Third, in the case
of a reflecting left boundary, the loss of probability density in the intervals
1, 2, .. ., J due to diffusion from right to left through the left boundary
is exactly balanced by the gain of probability density due to diffusion
from left to right through the left boundary from the intervals 0,21, . . .,
2(J 21), which are symmetrical to the intervals1, 2, . . ., J with respect
to the reflecting boundary atX0. The following equations refer to the case
J52:

b1,21 1 b1,22 5 c0 (b0,11 1 b0,12) , (37)

b2,22 5 c21 b21,12. (38)

The factorsc0 andc21 are equal to unity in the absence of a potential and
close to unity in the presence of a potential. The final values ofb1, j and
b2, j, referring to a particular boundary condition (BC), are

(b1,0)BC 5 b1,0 1 b0,113c03cBC, (39)

(b1,11)BC 5 b1,11 1 b0,123c03cBC, (40)

(b2,21)BC 5 b2,21 1 b21,123c213cBC, (41)

(b1,21)BC 5 (b1,22)BC 5 (b2,22)BC 5 0. (42)

The factorcBC specifies the particular boundary condition:cBC is equal to
11 for a reflecting boundary and equal to21 for an absorbing boundary.
The present implementation of the two boundary conditions is the complete
analogue of the analytical procedure (cf. refs. [1, 2, 4, 31]). A reflecting or
absorbingright boundary is implemented in the same way by defining the
corresponding quantities (bN, 0)BC, (bN, 21)BC, (bN21, 11)BC, and (bN, 11)BC 5
(bN, 12)BC 5 (bN21, 12)BC 5 0. In the following the subscript “BC” will be
omitted, and it will be always assumed that the quantitiesb1, j , b2, j and
bN, j , bN21, j are defined in accord with the chosen boundary condition.

The extension of the definition of the boundary conditions to arbitrary
J$1 is straightforward. With these redefinitions of the quantitiesb1, j , b2, j ,
. . ., bJ, j andbN, j , bN21, j , . . ., bN2J11, j , Eq. (32) can be applied to the whole
range1#n#N, if the range of the indexj is appropriately restricted in the
vicinity of a boundary:

w(xn1j , ta| xn) 5 w(xn, 0| xn)3bn, j for j1# j # j2, (43a)

w(xn1j , ta| xn) 5 0 for j , j1 or j . j2, (43b)
where

j1 5 2J and j2 5 1J for J11#n #N 2J, (44a)

j1 5 12n and j2 5 1J for 1#n #J, (44b)

j1 5 2J and j2 5 N 2n for N 2J11#n #J. (44c)
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Two other boundary conditions are of general interest: Aradiation bound-
ary can be defined by a linear combination of a reflecting boundary with
an absorbing boundary. In practice that means, the factorcBC in Eqs. (39)2
(41) may have arbitrary values in the interval21#cBC# 11. A constant-
concentrationboundary can be implemented as follows. In contrast to the
analytical definition,ρ or w is kept constant not atX0 or XN but atx1 or xN.
The definition of the quantitiesHn, j is the same as before. In the special
caseJ 5 2, the conditionw(x1, ta| xn) 5 w(x1, 0| xn) is satisfied, if the
Eqs. (37) and (38) are replaced by the equations

b1,0 1 s1,0 b0,11 5 1 , (37a)

b2,21 1 s2,21 b0,11 5 0, (38a)

b3,22 1 s3,22 b21,12 5 0. (38b)

Thus the new definitions of the quantitiesbn, j for n 5 1, 2, 3 are:

(b1,0)BC 5 b1,0 1 b0,113s1,0, (39a)

(b1,11)BC 5 b1,11 1 b0,123s1,0, (40a)

(b2,21)BC 5 b2,21 1 b0,113s2,21 5 0, (41a)

(b2,0)BC 5 b2,0 1 b0,123s2,21 , (41b)

(b3,22)BC 5 b3,22 1 b21,123s3,22 , (41c)

(b1,21)BC 5 (b1,22)BC 5 (b2,22)BC 5 0. (42a)

The extension of this implementation of a constant-concentration boundary
to arbitraryJ offers no difficulties.

2.6 The second and subsequent diffusion steps:
Successive time doubling

The fundamental solutionsw(xi , ta m| xn) and arbitrary distribution functions
ρ(xi , ta m) with m$2 can be calculated with one of three different pro-
cedures:

Procedure (I). w(xi , ta m| xn) or ρ(xi , ta m) is calculated by repeatedly
using the quantitiesbl, j :

w(xi , ta m| xn) 5 o
j2

j5j1

w(xi1j , ta(m21) |xn)3bi1j,2j . (45)

Procedure (I) corresponds to standard procedures. It is the fastest one if
only a single fundamental solution is needed and the number of diffusion
steps is not extremely large.

Procedure (II).For very long diffusion times it is advantageous, to cal-
culatew(xi , t | xn) not by successive application of the same time stepta, but
by successivedoublingof the time, and by defining each fundamental solu-
tion at the timetm11 5 ta 2m as a linear combination of allN fundamental
solutions at the timetm 5 ta 2m21 :
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w(xi , ta32m|xn) 5 o
N

l51

[w(xi , ta32m21 |xn)3h] 3w(xi , ta32m21|xl) . (46)

The term in brackets is the probability of finding a particle at the timetm 5
ta32m21 in the l-th interval, if it has been in then-th interval at timet0 5 0
with unit probability. In the following examples always procedure (II) was
used.

Procedure (III).In typical applications, theevolutionof ρ, ρ(xi , tc ν), is
of interest, where the constant time steptc is much longer than the first time
stepta. The calculation ofρ(xi , tc ν) by procedure (III) consists of two parts.
First, theN fundamental solutionsw(xi , tc| xn) are calculated with procedure
(II). Second,ρ(xi , tc ν | xn) with ν 5 1, 2, . . . is calculated by repeatedly
using the fundamental solutionsw(xi , tc| xn) :

ρ(xi , tc ν) 5 o
N

l51

[ρ(xl , tc (ν 2 1))3h] 3w(xi , tc|xl) . (46a)

2.7 Example 1: Diffusion in a harmonic potential
(Ornstein-Uhlenbeck process)

For one-dimensional diffusion in a harmonic potentialu 5 A x2 the analyti-
cal solution of Eq. (5) is known [13, 19, 27] :

g(x,t|xn) 5
exp(2A[(x2xn exp(22ADt)]2 [12exp(24ADT)]21)

!π[12exp(24ADt)]/A
. (47)

The following computations were performed withA 5 4 nm22, xn 5 8 nm,
D 5 63109 nm2 s21, h 5 0.01 nm, X0 5 25.005 nm,XN 5 9.005 nm,N 5
1401, and reflecting boundaries atX0 and XN. The initial speed of com-
putation was strongly enhanced by equating all extremely small values of
w(x, t| xn) with zero and by limiting all summations to terms that differed
from zero. The smallest equilibrium value wasgeq(xN) < 2.193102141 nm21.
After each time-doubling cycle,w(xi , t| xn) was equated with zero if
|w(xi , t| xn)| was smaller than102150 nm21.

In the steady state,geq(x) ; g(x, `| xn) is a Gaussian centered atx 5 0.
geq(x) is shown in Fig.1a on a logarithmic scale. The stationary numerical
solutionswstat(x) ; w(x, tstat| xn) obtained withJ 5 1, 2, 3, 4 are compared
with the exact solutiongeq(x) (tstat is the time at which allN fundamental
functions are equal within a specified accuracy). The relative deviationF
of w from g is defined by

F 5 (w/g)21 . (48)

SinceF changes sign and|F | extends over10 orders of magnitude and,
the following quantityz is used for the graphical representation of relative
deviations:
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Fig. 1. Example1: One-dimensional diffusion in a reduced harmonic potentialu(x) 5
A x2 with A 5 4 nm2 and D 5 63109 nm2 s21 (h 5 0.01 nm, reflecting boundaries at
X0 5 25.005 nm andXN 5 9.005 nm). (a) Equilibrium distributiongeq(x), calculated with
Eq. (47). (b) Relative deviationsF (see Eq. (48)) of numerical stationary distributions
wstat(x) from the equilibrium distributiongeq(x) in the z-representation (see Eq. (49));
wstat(x) depends on the degree 2J of the interpolation polynomials; forJ 5 4, the four
leftmost pointszi (i 5 1, 2, 3, 4) are represented by open circles.wstat(x) is independent
of the start positionxn and the length of the first time stepta (as long asta is below the
stability limit) with an accuracy of13 digits. wstat(x) is reached at the timetstat 5 ta3218

< 1.12 ns (ta < 4.27 fs).
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z5 sign(F)3|F |s, (49)
with s5 0.1 in the present paper. A table with selected values ofz andF(z)
is shown as inset in Fig.1b. For simplicity, the quantityzwill be also called
relative deviation.

In Fig. 1b the quantityz(x) is shown forJ 5 1, 2, 3, 4. Atx 5 0 nm,
an increase ofJ by 1 reducesF roughly by a factor of1023 and increases
the number of intersections ofz with the linez 5 0 by 2.wstat(x) is indepen-
dent of the length of the first time stepta. The present data were obtained
with ta < 4.27 fs, which corresponds forw(0, 0| 0) to a decrease from
100 nm21 to < 48.8 nm21. At the timetstat5 ta3218 < 1.12 ns the numerical
curvesw(x, tstat| xn) were independent ofxn with an accuracy of13 digits.

Independently of the neglect of extremely small terms, the accuracy of
the computation ofw(x, t| xn) is limited by the accumulation of round-off
errors, which entails a deviation of the normalization sums,Snorm, from
unity. In the present case, attstat < 1.12 ns, the deviation ofSnorm, from
unity, Snorm21 < 3310212, is about150 times larger than the true value of
F(0) < 2310214 for J 5 4. This error is corrected for by a renormalization
of the numerical fundamental solutions after every10 time-doubling cycles.

With J 5 4, the relative deviation|F| is less than1024 in a range ofgeq

of about 62 orders of magnitude (z(6 nm) 5 0.4 corresponds toF (6 nm) <
131024 in Fig. 1b andgeq(6 nm)/geq(0 nm) < 10262 in Fig. 1a). The only
strongly irregular data points are the four leftmost pointszi (i 5 1, 2, 3, 4),
which are represented by open circles in Fig.1b. They are a consequence
of the fact thatgeq does not conform to the boundary condition Eq. (34).
Finally, this computation illustrates the numerical stability of the algorithm
for a value ofta close to the upper stability limit.

The present algorithm is only of first order with respect to time. Hence
one may expect a strong increase of accuracy by reducing the length of the
first time step ta. Let (ta)m be defined by (ta)m 5 (ta)0322m, where (ta)0

is the time step used in the calculation ofwstat(x) in Fig. 1 and m 5 0, 1,
2, .. . In Fig. 2 the results are shown forJ 5 4 and a rather short time
t < 1.07 ps, when the center ofg(x, t| xn) (<7.6 nm) is still close to the
start positionxn 5 8.0 nm. The pattern of the relative deviationsz(xi) ini-
tially strongly changes with increasingmand finally becomes virtually con-
stant for m$24. |F | is less than1024 in a range of about 8 orders of
magnitude ofg(x, t| xn). Close to the center ofg(x, t| xn), |F | is ,1028.

The analogous results fort < 8.53 ps are shown in Fig. 3. Relative to
the results in Fig. 2, withm 5 36 a much shorter first time step is needed
for the attainment of a constant pattern ofz, and at the same time|F | is less
than1024 in a range of about 34 orders of magnitude ofg(x, t| xn). Close
to the center ofg(x, t | xn), |F| is ,10211. Finally it should be noted that
g(x, t| xn) in Fig. 3 approximately corresponds to the rightmost curve in
Fig. 1 of ref. [19], where the same example is used for the illustration of
the gain of accuracy by the so-called virtual gridding technique.
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Fig. 2. Example1: One-dimensional diffusion in a reduced harmonic potentialu(x) 5
A x2 with A 5 4 nm2 and D 5 63109 nm2 s21 (h 5 0.01 nm, reflecting boundaries at
X0 5 25.005 nm andXN 5 9.005 nm). (a) Fundamental solutiong(xi , t| xn), calculated
with Eq. (47) withxn 5 8 nm andt < 1.07 ps. (b) Relative deviations of the numerical
fundamental solutionw(xi , t | xn) from g(xi , t | xn). w(xi , t | xn) was calculated withJ 5 4
and different values ofta 5 (ta)0322m, where (ta)0 < 4.27 fs. The numbers in frames are
the values ofm.
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Fig. 3. Example1: One-dimensional diffusion in a reduced harmonic potentialu(x) 5
A x2 with A 5 4 nm2 and D 5 63109 nm2 s21 (h 5 0.01 nm, reflecting boundaries at
X0 5 25.005 nm andXN 5 9.005 nm). (a) Fundamental solutiong(xi , t| xn), calculated
with Eq. (47) withxn 5 8 nm andt < 8.53 ps. (b) Relative deviationsz of the numerical
fundamental solutionw(xi , t | xn) from g(xi , t | xn). w(xi , t| xn) was calculated withJ 5 4
and different values ofta 5 (ta)0322m, where (ta)0 < 4.27 fs. The numbers in frames are
the values ofm.
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2.8 Negative effect of detailed balance on the accuracy of the algorithm

As already mentioned in the Introduction, theexactdetailed balance is con-
sidered by some authors [15, 16, 19] to be a necessary condition for a good
diffusion algorithm. In the case of a harmonic potential it can be easily
demonstrated that, on the contrary, the enforced detailed balance leads to
completely wrongnumerical solutions, if the potential range of interest is
very large like in example1. Two sets of numerical curvesw were computed
with J 5 1. The first set corresponds to the present algorithm. The second
set satisfies the additional requirement of detailed balance, which is easily
implemented by a redefinition of the quantitiesHn, j. By assigning the index
n 5 0 to x 5 0, the new set ofHn, j is obtained by the identity

(H0, j)new5 (H0, j)old ( j 5 0, 61) , (50)

and the recursion formulae:

(Hn11,21)new exp(2A x2
n11) 5 (Hn,11)new exp(2A x2

n) (n $0) , (51a)

(Hn11,21)new 5 (Hn,11)new exp(1Ah2(2n 1 1)), (51b)

η 5 (Hn11,21)new/(Hn11,21)old, (51c)

(Hn11, j)new 5 (Hn11, j)old3η ( j 5 0, 61) . (51d)

The calculation of (Hn, j)new with n # 21 is analogous.
In Fig. 4 the results are shown. Quantities referring to detailed balance

are labeled with an asterisk. In the logarithmic plot of Fig. 4a, the curvesw
andg virtually coincide in the upper range of two orders of magnitude and
cannot be distinguished from each other for arbitrary|xn| # 8 nm andt #
1.07 ps. The curvesw* differ already significantly from the curvesg for
xn 5 24 nm and are completely wrong forxn 5 8 nm. The latter wrong
result is not surprising because of the accumulation of a very large system-
atic error in the quantities (Hn, j)new. In Fig. 4a the ratioη is plotted (see
Eq. (51c)): η < 0.75 for xn 5 24 nm andη < 1022 for xn 5 18 nm. In
Fig. 4b and 4c the relative deviationsz of w from g are shown forxn 5
8 nm andxn 5 24 nm. The smallest deviations are always found close to
the maximum of each curveg (the three open circles correspond to the
indicesimax, imax 610).

With xn 5 0 nm, the initial differences betweenw andw* are very small.
Significant differences betweenz and z* occur only at times, whenw is
already very close to the stationary distributionwstat. The final stationary
distribution w*stat is reached at the timet13 < 8.74 ns and agrees withgeq

with a relative error|F| ,10212 in the whole range ofxi except for the
three rightmost points (i 5 N22, N21, N), where|F | ,10210 (note that
the range ofg covers140 orders of magnitude!). For comparison, the final
stationary distributionwstat is reached already after1.09 ns (wstat is indepen-
dent ofxn with an accuracy of13 digits).
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Fig. 4. Example1: One-dimensional diffusion in a reduced harmonic potentialu(x) 5
A x2 with A 5 4 nm2 and D 5 63109 nm2 s21; negative effect of adetailed balanceon
the accuracy of the numerical fundamental solutions calculated withJ 5 1. (a) Three sets
of curves are shown, referring to the start positionsxn 5 8 nm,xn 5 24 nm (underlined
numbers), andxn 5 0 nm (numbers in frames). The numbersm 5 0, 3, 5, 7,13 refer to
the timestm < 1.0732m ps. The curvesg (––––) andw (· · · · ·)virtually coincide and
cannot be distinguished from each other; the curves corresponding tot7 virtually coincide
with the stationary distribution (thick solid curve). The curvesw* (– – –) correspond to
a detailed balance.η is defined by Eq. (51c). (b) Relative deviationz of w from g for
xn 5 8 nm. (c) Relative deviationz of w from g for xn 5 24 nm. (d) Relative deviations
z (- - - -) and z* (––––) of w and w* from g for xn 5 0 nm. The stationary distribution
w*stat was reached att13 < 8.74 ns; the corresponding data pointsz*stat are statistically
distributed relative toz 5 0 with |z*stat| < 0.05.
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2.9 Example 2: Diffusion in a double-minimum potential
with reflecting boundaries

A double minimum potential with reflecting boundaries atx 5 X0 andx 5
XN 5 2X0 is defined by a symmetrical polynomial of the 8th degree:

u(x) 5 u(0) [128 (x/XN)2 1 20 (x/XN)4216 (x/XN)6 1 4 (x/XN)8] . (52)

(This polynomial is easily obtained by a transformation of the Chebyshev
polynomial T8(x) [21, 23].) The following computations were performed
with X0 5 28.005 nm,XN 5 8.005 nm,N 5 1601, h 5 0.01 nm, andu(0)
<34.539, which corresponds to an equilibrium distribution extending over
15 orders of magnitude. The results in Fig. 5 illustrate four aspects of the
algorithm:

(a) The probability conservation remains exact if the potential is given
by a polynomial of a degree#2J 1 1.

(b) The systematic errors of the stationary numerical solution close to a
reflecting boundary are very small, if the potential at the boundary satisfies
Eq. (35).

(c) If the barrier between the two potential minima is high, two very
different time scales can be distinguished (as is well known from Kramers’s
work [31, 32]). If x1#xn ,0 nm, then in the left part of the potential a
quasi-stationary distribution is attained in about1 ns. The attainment of the
final equilibrium distribution is extremely slow: Close to the left potential
minimum, the differencew(xi , t| xn) 2wstat(xi) decays exponentially almost
exactly, with a time constantτstat < 7.283104 s. At the time tstat <
2.463106 s < 33.8τstat, all N fundamental solutionsw(xi , t | xn) were equal
with an accuracy of13 digits. The last time step of1.233106 s was by
a factor of 2108 < 3.24531032 longer than the first time step,ta < 3.793
10227 s. Note that this problem cannot be solved with a standard method,
since even in the most favorable case, whereta < 4.27310215 s is already
close to the stability limit of the algorithm andtstat < 5τstat < 3.643105 s,
about1020 time steps would be needed.

(d) The agreement of the stationary numerical distribution,wstat(x), with
the exact equilibrium distribution,geq(x), is very good.|F| is less than10211

in the vicinity of the maxima ofgeq(x), less than10210 in a range of more
than 5 orders of magnitude ofgeq(x), and less than1028 everywhere except
for x1 andxN, whereF < 331028. The lack of complete mirror symmetry
of the curvez(x) in Fig. 5b is caused by the insufficient numerical accuracy.

3. Spherically symmetric three-dimensional diffusion
The treatment of spherically symmetric three-dimensional diffusion is es-
sentially analogous to that of one-dimensional diffusion. Therefore, in the
following only the peculiar aspects of three-dimensional diffusion are
treated in detail.
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Fig. 5. Example 2: One-dimensional diffusion in a reduced double minimum potential
u(x) defined by Eq. (52):X0 5 28.005 nm,XN 5 8.005 nm,N 5 1601, h 5 0.01 nm,
u(0) < 34.539,D 5 63109 nm2 s21. (a) Numerical fundamental solutionsw (first time
step ta < 3.79310227 s). (b) Reduced potentialu(x) and relative deviationzstat of the
stationary distributionwstat from the equilibrium distributiongeq.

3.1 Definition of spherical shells and mean radii

Let a sphere of radiusR0 be surrounded by a series of concentric spherical
surfaces with increasing radiiR1, R2, . . ., Ri , . . ., RN21, RN with

Ri 5 Ri213fi . (53)
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The volume of thei-th spherical shell between the radiiRi21 andRi is

Vi 5 (4π/3) (R3
i 2R3

i21) . (54)

As effective radiusri of the i-th spherical shell the mean radius of the shell
is chosen:

ri 5 krlVi
5

4π

3Vi

e
Ri

Ri21

r3dr . (55)

In the important special case of constantf, Eqs. (53) to (55) can be written
as follows:

Ri 5 R03f i , (53a)

vi 5 (4π/3) R3
0 f 3i23( f 321) 5 Vi f 3i23, (54a)

ri 5 R0S3(f 421)

4(f 321)
D f i21 5 krlV1 f i21 . (55a)

If the initial radial increments must be very small and the maximum radius
rN is very large, different values off can be used for the near zone and for
the far zone :f1 5 1 1 q1 and f2 5 1 1 q2 with q1 , q2. Let f 5 f (i ) be a
continuous function of the indexi. A necessary condition for a smooth
transition fromf1 to f2 is that the second derivative off (i ) with respect toi
be continuous. The following functionf (i ) has this property and turns out
to be flexible enough for the present purpose:

f (i ) 5 f11 ( f22 f1) (12exp(2(i/i122)[12exp(2i/i122)]κ)). (56)

Here the indexi122 roughly defines the beginning transition fromf1 to f2

and the exponentκ defines the steepness of that transition. An application
of Eq. (56) is presented in section 3.6 (the corresponding functionf (i ) is
shown in Fig. 9b). Other functionsf (i ) were also tested. A single poly-
nomial and a combination of two polynomials (for different ranges ofi )
turned out to be unsuitable.

3.2 Fundamental solutions and probability conservation

Let a fundamental solution at the timet 5 ta, w(ri , ta| rn), be defined by
Eq. (57) :

w(ri , ta| rn) < w(ri , 0| rn) 1 S∂w(r i , t | rn)

∂ t D
t 50

3ta. (57)

w(ri , 0| rn) is defined by Eq. (2) and [∂w(ri , t| rn)/∂t] t5 0 is calculated with
Eq. (1). The required first and second derivatives with respect tor, w′(ri, 0|
rn) and w″(r i, 0| rn), are again defined by a set of 2J 1 1 polynomials
yn1j,n(r) of the degree 2J with j 5 0, 61, . . ., 6J:
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w′(rn1j, 0| rn) 5 V21
n y′n1j,n(rn1j) , (58)

w″(rn1j, 0| rn) 5 V21
n y″n1j,n(rn1j) . (59)

With J 5 2, the 2J 11 5 5 polynomials are

yn,n(r) 5 An,0 (r 2 rn22) (r 2 rn21) (r 2 rn11) (r 2 rn12) , (60)

yn11,n(r) 5 An,11 (r 2 rn21) (r 2 rn11) (r 2 rn12) (r 2 rn13) , (61)

yn21,n(r) 5 An,21 (r 2 rn23) (r 2 rn22) (r 2 rn21) (r 2 rn11) , (62)

yn12,n(r) 5 An,12 (r 2 rn11) (r 2 rn12) (r 2 rn13) (r 2 rn14) , (63)

yn22,n(r) 5 An,22 (r 2 rn24) (r 2 rn23) (r 2 rn22) (r 2 rn21) . (64)

The factorsAn, j are obtained from the condition that all five polynomials
pass through the pointyn,n(rn) :

yn1j,n(rn) 5 yn,n(rn) 5 1 ( j 5 0, 61, 62) . (65)

For the calculation of the fundamental solutionsw(rn1j, ta| rn) with j 5 0,
61, . . ., 6J, the quantities

Hn, j ; Vn [∂w(r, t| rn)/∂t] r 5rn1j , t 50 (66)

are needed, which are according to Eq. (1) and withu ; U/kBT andk 5 0:

Hn, j 5 D(rn1j) y″n1j,n(rn1j) 1 [(2/rn1j)D(rn1j) 1 D′(rn1j)
1 D(rn1j) u′(rn1j)] y′n1j,n(rn1j) 1 [(2/rn1j) D(rn1j) u′(rn1j) (67)
1 D′(rn1j) u′(rn1j) 1 D(rn1j) u″(rn1j)] yn1j,n(rn1j) .

In the special case of a constant potential and a constant relative diffusion
coefficient, Eq. (67) reduces to

Hn, j 5 D[y″n1j,n(rn1j) 1 (2/rn1j) y′n1j,n(rn1j)] . (68)

The probability balance is now defined by

Sn 5 o
1J

j52J

Hn, j Vn1j . (69)

In contrast to one-dimensional diffusion with constant intervals∆x, the
probability balanceSn is no longer exactly equal to zero. The relative devi-
ation of Sn from zero is defined by

ωn 5 Sn/ |Hn,0Vn| . (70)

In the special case of constantu andD (cf. Eq. (68)) and a constant radial
increment factorf ; 1 1 q, ω is independent ofn. By using the definitions
of Vi and ri in Eqs. (54a) and (55a), the following expressions forωn can
be derived forJ 5 1, 2:
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Table 2. Relative deviation (ωn)2J (J 5 1, 2, 3, 4) of the three-dimensional diffusion
balance from zero for different values ofq. (ωn)2 and (ωn)4 were calculated with Eqs. (71)
and (72), respectively. The values of (ωn)6 and (ωn)8 are the results of purely numerical
calculations.

q (ωn)2 (ωn)4 (ωn)6 (ωn)8

0.001 29.98310213 16.38310218

0.002 21.59310211 14.07310216

0.003 28.05310211 14.62310215

0.004 22.54310210 12.59310214

0.006 21.2831029 12.93310213

0.008 24.0331029 11.64310212

0.010 29.8031029 16.21310212

0.015 24.9231028 16.98310211

0.020 21.5431027 13.86310210 21.9 310212

0.025 23.7231027 11.4531029 21.10310211

0.030 27.6431027 14.2831029 24.64310211 18. 310213

0.040 22.3731026 12.3431028 24.48310210 11.41310211

0.060 21.1631025 12.5331027 21.0831028 17.55310210

0.080 23.5331025 11.3531026 21.0131027 11.2531028

0.100 28.3431025 14.9331026 25.7031027 11.1031027

0.150 23.9031024 15.0631025 21.3031025 15.6331026

0.200 21.1531023 12.6031024 21.1931024 19.4031025

0.250 22.6131023 19.2331024 26.7031024 18.7831024

(ωn)2J52 5
2q4

1 1 2q2q3
, (71)

(ωn)2J54 5
32q6(114q122

3 q218q31271
48 q4121

8 q5125
32q6113

96q71 1
96q8)

5(11q)3(11q11
2q

2)(11q11
3q

2)(112q26
5q

22 11
5 q32 3

5q
4)

.

(72)

In Table 2 values of (ωn)2J are listed forJ 5 1, 2, 3, 4 and different
values ofq. For J $2, (ωn)2J is extremely small in the whole range ofq
that is of practical interest. The purely numerically calculated values of
(ωn)6 and (ωn)8 become rather inaccurate and finally meaningless with
decreasingq (as a result of insufficient numerical accuracy). Nevertheless
one may estimate that (ωn)6 and (ωn)8 are approximately proportional toq8

and q10, respectively, for small values ofq. Thus, for small values ofq,
(ωn)2J seems to be approximately proportional toq2J12 for arbitraryJ $1.

In the general case ofu 5 u(ri ), D 5 D(ri ), and f 5 f (i ), additional
systematic errors are introduced in the probability balance. However, by a
suitable choice off 5 f (i ) and withJ 5 4, |(ωn)8| can be kept very small.
For instance, in the example in section 3.6, the relation|(ωn)8| & 1.231029

was always satisfied.
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The very small error in the probability balance is corrected for by intro-
ducing correction factorsφ. Since it is unknown how the deviation from the
exact probability conservation is distributed over the central termHn,0Vn on
the one hand and the 2J other termsHn, jVn1j with j ?0 on the other hand,
the following symmetrical definition ofφ is preferred:

Hn,0Vn3φn,0 1 (Sn 2Hn,0Vn)3φn, j ?0 5 0 (73)

or

φn,0/φn, j ? 0 5 12 [Sn/(Hn,0Vn)] . (74)

The corrected values ofH are: (Hn,0)corr 5 Hn,03φn,0 and (Hn, j ? 0)corr 5
Hn, j ? 03φn, j ? 0 with j 5 61, 62, . .., 6J. Three possibilities were tested:
(a) φn,0 5 1 and φn, j ?0 ? 1; (b) φn,0 ? 1 and φn, j ?0 5 1; (c) φn,0 5
1/φn, j ? 0. In practice it turned out that the final results were almost inde-
pendent of the specific correction procedure (in the examples 3, 4, and 5,
always the correction (c) was applied). Asymmetric corrections, in which
either the termsHn, j $1 or the termsHn, j #21 were multiplied by a correction
factor, gave nearly the same results. In the following the subscript “corr” is
omitted, since always corrected values ofHn, j are implied.

3.3 The first diffusion step and boundary conditions

For calculating the result of the first diffusion step of durationta, relative
changesbn, j of w(rn1j , 0| rn) are again defined by Eqs. (30) and (31), but
with the quantitiesHn, j now given by Eq. (67) and corrected according to
Eq. (73). The boundary conditions in Eqs. (34)2(36) remain also valid ifx
and X0 are replaced byr and R0. The only essential change concerns the
numerical implementation of the boundary conditions. Since the constant
interval ∆x 5 h is replaced with the variable volumeVi of the spherical
shells, Eqs. (37) and (38) are to be replaced by the equations

b1,213V0 1 b1,223V21 5 c0 (b0,113V1 1 b0,123V2) , (75)

b2,223V0 5 c21 (b21,123V1) . (76)

The definition of a constant-concentration boundary by Eqs. (37a)2(42a)
remains unchanged.

3.4 Example 3: Free diffusion near a reflecting
or absorbing spherical surface

Let the inner boundary be again specified (as in section 2.5) by the param-
etercBC with cBC 5 11 for reflection andcBC 5 21 for absorption. Then,
with constant potential and constant relative diffusion coefficient, the com-
mon theoretical fundamental solution can be written in the form [4, 33]:
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g(ri , t| rn) 5
1

8πri rn !πDt
FexpS2(ri 2 rn)2

4Dt D1 cBC expS2(ri 1 rn22R0)2

4Dt D
3S12

2(11cBC) !Dt

R0

e
`

0

expS2x222F!Dt

R0

1
(ri 1rn22R0)

2!Dt
GxDdxDG.

(77)

Eq. (77) is obtained from Eq. (24) in ref. [4] by equatingkact 5 0 and in-
sertingcBC before the second term and (1 1 cBC)/2 before the integral, and
finally by transforming the complementary error function into the present
integral. (The computational disadvantage of the complementary error func-
tion is the simultaneous appearance of an exponential function with a posi-
tive exponent, which makes it impossible to calculateg(ri , t| rn) for large
values ofri 1 rn or Dt. The integral was calculated with a numerical accu-
racy of15 digits for arbitrary values of the bracketed term in the integrand.)

For the comparison of theoretical curves with numerically calculated
curves it is advantageous to apply to theoretical curvesg the same normal-
ization as to numerical curvesw. This is achieved by introducing a factor
(1 1 ε), which is defined by the equation

(1 1 ε(t ))3o
N

i 5 1

g(r i , t | rn) Vi 5 4π e
`

R0

g(r, t| rn)r2dr . (78)

In the following the symbolg* ; (1 1 ε) g is used. In the present example,
ε is almost independent of time in the time range of interest (from 4 ps to
4 ns) :ε < 1.24431025. The notation for the fundamental solutions is sim-
plified. Since the values ofw and g* always refer to specified values oft
andrn, the simplified notation isg*i ; g*( ri , t | rn) andwi ; w(ri , t | rn).

In Fig. 6a six pairs of theoretical curvesg*i are shown, which were
calculated withR0 5 0.8 nm, f 5 1.005, rn < 2.00 nm,n 5 184, rN <
2319 nm, N 5 1600, D 5 63109 nm2 s21. The solid curves refer to a
reflecting boundary atR0 (cBC 5 11 in Eq. (77)), and the dashed curves
refer to an absorbing boundary atR0 (cBC 5 21 in Eq. (77)). The curves
cover the time range from<4 ps (curves 0) to 4 ns (curves10) in steps of
a factor of 4. The four leftmost data points of the dashed curves 0, 2, and
4 are represented by circles.

The numerical fundamental solutionsw(ri , t | rn) were computed with
J 5 4. In the case of a reflecting boundary atR0, a very small value ofta

(<4.136310234 s) was used, and the fundamental solutionsw(ri , t | rn) were
renormalized after every10 time-doubling cycles. The relative deviationsF
of w from g* are defined in analogy to Eq. (48) and again given in thez-
representation (see Eq. (49)) in Fig. 6b. Curve 0 shows the typical limiting
pattern ofz for J 5 4 with nine intersections with thez 5 0 line; a further
reduction of ta would leavez(r) virtually unchanged. The only irregular
points are the four leftmost points of each curve, due to the imperfect nu-
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Fig. 6. Example 3: Spherically symmetric three-dimensional diffusion with constant po-
tential and constant relative diffusion coefficient. Parameters:R0 5 0.8 nm,f 5 1.005,rn

< 2.00 nm,n 5 184, rN < 2319 nm,N 5 1600,D 5 63109 nm2 s21 ; reflecting boundary
at RN. (a) Theoretical fundamental solutionsg*i (see Eqs. (77) and (78)) referring to a
reflecting boundary (––––) or absorbing boundary (– – –) atR0; the curves cover the time
range fromt0 < 4 ps (curves 0) tot10 5 4 ns (curves10) in steps of a factor of 4. The
four leftmost points of the dashed curves 0, 2, and 4 are represented by open circles. For
a better distinction of the curves close to the boundary or the coverage of a larger range
of g*, the curves with indexm 5 2, 6, 8,10 have been multiplied by suitable factors
10p. (b) Reflecting boundary : Relative deviationsz of w from g* (first time step ta <
4.136310234 s, renormalization of allw after every10 time-doubling cycles). (c) Absorb-
ing boundary, relative deviationsz of w from g* ( ta < 1.164310219 s, no renormali-
zation).
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merical implementation of the boundary condition.|F | is less than1024 in
a range of15.7 orders of magnitude form5 0 and in a range of 31.4 orders
of magnitude form 5 10. At the right side of each curve,z 5 20.4 or
F < 21024 corresponds tog*i11/g*i < 0.5.

In the case of an absorbing boundary atR0, a correction for the accumu-
lation of round-off errors by renormalization can no longer be applied.
Therefore, a 248 < 2.8131014 times larger value ofta was chosen:ta <
1.164310219 s. The values ofz are shown in Fig. 6c. The only strongly
irregular value ofz, z1 < 20.537, corresponds toF1 < 22.031023 and is
practically independent of time. This rather large value ofF1 is not surpris-
ing in view of the large ratiog*2 /g*1 < 3. The accumulation of round-off
errors becomes apparent in thez-curves form 5 6, 8,10.

3.5 Example 4:u = u(r), D = D(r), small radial range
with constant ratio ri +1/ri

For the present test calculations an arbitrary potential function was chosen:

u(r) 5 u(R0)3exp[2ln(2)|(r 2R0)/Γ |npot]3[11 fpot ln(2)|(r 2R0)/Γ |npot] .
(79)

The second factor is a good approximation to a box potential for high pow-
ersnpot. The last factor allows one to introduce additionally a potential bar-
rier. Γ is the halfwidth of the potential iffpot 5 0. For the relative diffusion
coefficient the simple expression proposed by Northrup and Hynes [11] was
used,

D(r) 5 D(`) [12 adiff exp(2(r 2 R0)/R0)] , (80)

with 0 # adiff , 1. The following computations were performed withR0 5
0.8 nm,RN < 1.78 nm,u(R0) 5 214.39, npot 5 4, Γ 5 0.2 nm, fpot 5 2,
D(`) 5 63109 nm2 s21 andadiff 5 0.5. The corresponding functionu(r) is
shown in Fig. 7. The present values ofR0, u(R0), andD(`) roughly corre-
spond to the formation and dissociation of pyrene excimers in a fluid sol-
vent like hexane at room temperature (cf. the Appendix).

Starting fromf 5 1.002,N 5 400 and polynomials of the degree 2J 5 4,
the numerical accuracy was increased either by a reduction off (and a
corresponding increase ofN) or by an increase ofJ. Two sets of compu-
tations were performed, whose main results are presented in Fig. 8. The
computations of the first set had 2J 5 4 and ta < 1.421310223 s in com-
mon, and the values off andN were varied:f 5 1.002,N 5 400; f 5 1.0021/2

< 1.001, N 5 800; f 5 1.0021/4 < 1.0005,N 5 1600. The computations of
the second set hadf 5 1.002,N 5 400, andta < 3.638310221 s in common,
and the degree of the polynomials was varied: 2J 5 4, 6, 8. The final
stationary distributions were independent of the value ofta. tstat 5 512 ns
was a practically infinitely long time:w(ri , tstat| rN) agreed withw(ri , tstat|
r1) with an accuracy of13 digits.
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Fig. 7. Reduced potentialu(r), calculated with Eq. (79) and the parametersR0 5 0.8 nm,
u(R0) 5 214.39,npot 5 4, Γ 5 0.2 nm, andfpot 5 2. The ratio of successive equilibrium
values ofg, geq(ri11)/geq(ri ) 5 exp(2[u(ri11)2u(r i)]), was calculated with the radial in-
crement factorsf 5 1.002,1.001, and1.0005.

The increase of numerical accuracy by a reduction ofq 5 f21 is dem-
onstrated in Fig. 8b. The almost constant systematic errorF for r . 1.05 nm
ranges from<1.8331025 for q <0.0005 to< 4.7531023 for q 5 0.002
and is rather accurately proportional toq4. The irregular systematic errorF1
due to the imperfect implementation of the boundary condition ranges from
<5.131026 for q < 0.0005 to<1.9931024 for q 5 0.002 and is rather
accurately proportional toq.

In Fig. 8c the increase of numerical accuracy by the increase of the
degree of the interpolation polynomials is demonstrated. In order to elimin-
ate the irregularities due to the boundaries, the difference (F3902F11) is
taken as a measure for the attainable accuracy: (F3902F11)J52 < 4.753
1023, (F3902F11)J53 < 21.3631024, (F3902F11)J54 < 3.723026. Thus, in
the present example, an increase of the degree of the polynomials by 2
entails a reduction of the systematic error due to the potential to<1/36.

3.6 Example 5:u = u(r), D = D(r), very large radial range
with increasing ratio ri +1/ri

The last example differs from the preceding one in two respects: First,q 5
f21 is gradually increased fromq1 < 0.002 to the final valueqN < 0.02
(see Fig. 9b). Second, the radial range is extremely large:R0 5 0.8 nm and
RN < 83105 nm (N 5 1409). As a representative example, the evolution
of the fundamental solution withrn < 800 nm (n 5 1043) is shown in
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Fig. 8. Example 4: Relative diffusion in a small radial range with a reduced potential
u 5 u(r) (cf. Fig. 7),D 5 D(r) (adiff 5 0.5, D(`) 5 63109 nm2 s21; cf. Eq. (80)) and
reflecting boundaries atR0 5 0.8 nm andRN < 1.78 nm. (a)w was calculated withf 5
1.002,N 5 400, ta < 1.084310228 s, andJ 5 4. The timestm 5 2m214 ns for the curves
in the figure range fromt0 < 61 fs to t16 5 4 ns. The solid curve with the label̀ is the
stationary distribution, which is reached attstat 5 t23 5 512 ns (wstat is independent ofrn

with an accuracy of13 digits). (b) J 5 2: Effect of radial increment factorf on the
relative deviationz of wstat from the equilibrium distributiong*eq ( f 5 1.002, N 5 400;
f 5 1.0021/2 < 1.001, N 5 800; f 5 1.0021/4 < 1.0005,N 5 1600). The three leftmost
and the three rightmost points of eachz-curve are represented by separate symbols. (c)
f 5 1.002, N 5 400: Effect of the degree 2J of the interpolation polynomials on the
relative deviationz of wstat from the equilibrium distributiong*eq. TheJ 1 1 leftmost and
J 1 1 rightmost points of eachz-curve are represented by separate symbols.
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Fig. 9. Example 5 : Relative diffusion with the same reduced potentialu(r) and relative
diffusion coefficient as in Example 4 (Fig. 8), but with a very large radial range:R0 5
0.8 nm andRN < 83105 nm (f1 5 1.002, f2 5 1.02, N 5 1409, transition fromf1 to f2
with Eq. (56) andκ 5 16 and i122 5 300, r1 < 0.8008 nm,rN < 8.0053105 nm, ta <
1.084310228 s). All curves refer to a start positionrn < 800 nm (n 5 1043). The abscissa
is linear from 0.7 to1.2 nm and logarithmic from1.2 to 106 nm. (a) Numerical funda-
mental solutionsw (––––): The timestm 5 2m19 ns for the curves in the figure range from
t0 5 512 ns tot29 5 tstat < 275 s (thick solid curve,m 5 29). Since for timest8 , tm ,
t24 the shape of the curvesw(r i , tm| rn) remains virtually constant in the range 0.8 nm,
ri , 1.2 nm (only the amplitude decreases), these curves are not shown. For comparison
the theoretical curvesg* (– – –) were calculated for the timest0 to t16 with Eqs. (77) and
(78), D 5 D(`), andu 5 0. (b) Relative deviationz of w from g* (m # 16, ri . 1.2 nm,
thin curves) and ofwstat from the equilibrium distributiong*eq (thick solid curve) ; the four
rightmost points ofzstat are represented by open circles. The curveq 5 f21 was calcu-
lated with Eq. (56) and the parameter values given above. (c) Relative deviationz of w
(computed also withD 5 D(`) and u 5 0) from g*; the thick solid curve is identical
with curve 29 in Fig. 9b.
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Fig. 9a. The scale for the radius is linear from 0.7 to1.2 nm and logarithmic
from 1.2 to106 nm. Since the initial evolution takes place in the radial range
whereu andD are virtually constant,w(ri , t| rn) can be compared with the
theoretical curvesg*( ri, t | rn), calculated with Eqs. (77) and (78) (the value
of ε ranged from1.6231024 with curve 0 to1.8431024 with curve 16).
The main results are:

(a) TheN numerical fundamental solutionsw(ri , t | rn) were equal within
13 digits at the timetstat 5 ta32101 < 2.7493102 s (ta < 1.084310228 s).
Thus the last time step (<1.3743102 s) was by 30 orders of magnitude
longer than the first time step.

(b) The maximum relative errorF of about1.831024 appears now in
the near zone at<1 nm. This is a consequence of the large radial range
and the increasing factorf. Therefore, although the equilibrium probability
density in the first shell is by a factor of1.83106 greater than that in the
N-th shell, the equilibrium probabilityVN geq(rN) < 5.6731022 is about
5.531012 times larger than the equilibrium probabilityV1 geq(r1) <
1.04310214.

(c) For large radii, where the potentialu and the relative diffusion coef-
ficient D are virtually constant, the relative deviationF of w from the theo-
retical curvesg* is small (see Fig. 9b).

(d) The analogous computations were performed with constant potential
u and constant relative diffusion coefficientD 5 D(`). The corresponding
relative deviationsz of w from the theoretical curvesg* are shown in
Fig. 9c. Between 0.8 and 23104 nm, curve16 in Fig. 9c virtually coincides
with curvezstat of Fig. 9b. That means, ifq is virtually constant in the near
zone and the degree of the polynomials is high enough as in this example,
the contribution of the near zone to the total systematic error remains
small.

3.7 Implementation of reactions

The effect of a distance-dependent rate coefficientk on a distribution
ρ(ri , t ) can be taken into account in different ways. The simplest way
is its implementation in the fundamental solutions. Let1/k be in the range
τmin # 1/k # τmax and let the timestb, tc, td satisfy the relation

ta # tb # tc ! τmin # τmax , td < 7τmax. (81)

tb is the time at which the reaction is taken into account for the first time.
tc is the adequate time step for calculating the course of the reaction, andtd

is the longest time of interest for the given kinetic problem. Ifw(ri , tb| rn)diff

is a fundamental solution implying pure diffusion, then the corresponding
fundamental solution implying also reaction is given by

w(ri , tb| rn)react< w(ri , tb| rn)diff 3exp[2k(ri)tb] . (82)
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The further evolution of the fundamental solutions is calculated as before
up to the timetc. Finally, when the timetc < 0.01 τmin is reached, the evolu-
tion of the distribution functionρ is calculated with procedure (III) with
constant time stepstc up to a timetd (cf. section 2.6):

ρ(r i , (ν 11)3tc) 5 o
N

n51

[ρ(rn, ν tc)3Vn] 3wn(ri , tc| rn) . (83)

Note that the computation time needed for each time step of lengthtc is
only 1/N of the time needed for computing theN fundamental solutions in
a time-doubling cycle (if all elements of all fundamental solutions signifi-
cantly differ from zero).

Within the frame of double-precision computations, the practical choice
of tb is governed by two conditions. First,tb/τmin should be very small, and
in this respecttb 5 ta would be the best choice, if the effect of round-off
errors is neglected. Second,tb/τmax must be large enough, e.g.tb/τmax $ 10210,
in order that the round-off error in the computation ofw(ri , tb| rn)react remain
small enough for arbitraryri. Obviously both conditions can be simul-
taneously satisfied as long as the ratioτmax/τmin is not extremely large (e.g.
#106).

3.8 Computational aspects

The numerical calculations were performed on a personal computer with
128 MB random-access memory and a 366 MHz Intel Pentium II processor.
The computer programs were written in FORTRAN 90 (compiler: Absoft
Pro Fortran, version 6.2). The computer memory requirements are almost
completely given by two two-dimensional arrays ofN2 double-precision
floating-point numbers for the storage of theN fundamental solutions and
a buffer for the intermediate storage of a new set of them. Thus, forN 5
1000, roughly16 MB of random-access memory are required. The length
of the executable programs was kept below1 MB by defining most large
arrays as allocatable arrays. No special efforts were made to optimize the
computer programs. WithN 5 1000, one cycle of time-doubling tooktcycle

< 4 min, whenall N elements ofall N fundamental solutions were signifi-
cantly different from zero.

The interpolation polynomials were calculated with Newton’s method
[21, 22], which yields the polynomials in a form that is very suitable for
calculating their first and second derivatives. Most of the mathematical op-
erations can be formulated as matrix operations. From a practical point of
view the present use of explicit summations seems to be preferable, because
it is better suited for limiting all summations to those terms that are signifi-
cantly different from zero. At least in the initial time-doubling cycles, the
speed of the computation ofw(ri , t| rn) is enhanced by several orders of
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magnitude, if all extremely small elementsw(ri , t | rn) are equated with zero
and only the remaining elements are taken into account. The computation
of the curves in Fig. 8a may serve as an example (N 5 1600 andtcycle <
16 min). The initial speed of computation was strongly enhanced by equat-
ing all w(ri , t | rn),10250 geq(ri ) with zero and by limiting all summations
to terms that differed from zero. Curve 2 in Fig. 8a is the last one (t <
244 fs), in which part of the valuesw(ri , t | r1) are equal to zero. The 56
cycles needed for computing curve 2 required 38 min. The remaining 21
cycles for computing the stationary distribution (tstat 5 512 ns) required
340 min.

4. Discussion

4.1 Merits and deficiencies of the algorithm

The present algorithm was criticized in several respects. Part of the criticism
has been already answered in the Introduction and by the numerical solution
of the Ornstein-Uhlenbeck problem in section 2.7. Some other points of the
criticism, however, deserve an explicit discussion and are treated in the
following items.

Comparison with other algorithms.One may ask whether the present
algorithm permits one to solve diffusion problems of interest with higher
accuracy and in shorter time than any other known algorithm. This question
cannot be definitively answered by the author for two reasons. First, the
algorithms of most interest [16219] are mathematically complex, and their
implementation would have been difficult for the author. Moreover, the pub-
lished details are not always sufficient for writing the pertinent program
code [16, 19]. Second, although general statements on the accuracy of algo-
rithms can be found in the literature, there is a lack of illustrative examples
that demonstrate the range of application and achievable accuracy of a par-
ticular algorithm. For these reasons an alternative procedure is suggested.
A reader may apply the algorithms at his disposal to the diffusion problems
in examples1 to 5. If he will be able to surpass the present results with
respect to numerical accuracy and speed of computation, then the present
algorithm will be of no interest to him. To facilitate this comparison, in
particular the relative deviations of numerical solutions from exact solutions
are shown in a suitable form.

Time-doubling.The repeatedtime-doublingin the present algorithm may
look similar to thedoubling-timein the boundary-doubling methoddevel-
oped by Kimet al. [20]. The meaning of the termdoubling-timeis, how-
ever, completely different from the meaning of the termtime-doublingin
the present algorithm. The doubling-time in ref. [20] is the time at which
theouter boundaryis doubled. If simultaneously the radial step width∆r is
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doubled, then the time step∆t can be quadrupled (adaptive step size control
by step doubling). After each adaptation of step size, however,∆r and ∆t
remain constant for many successive steps.

Interpolating functions.In certain diffusion or heat-conduction prob-
lems, an exponential approximation closely corresponds to the local concen-
tration or temperature profile in a space layer and seems to give the best
results [34]. For this reason it was argued that a polynomial interpolation
cannot be advantageous for the present purpose. However, close to minima
or maxima of a distribution, an exponential approximation can be no longer
optimal and is likely to be inferior to the present polynomial approximation,
apart from the loss of mathematical simplicity.

Degree of the polynomials.The very small relative error over many
orders of magnitude of the numerical fundamental solutionsw is perhaps
the most surprising result of the present investigation and not yet completely
understood. The strong increase of numerical accuracy with increasing de-
gree of the polynomials can be easily understood (cf. pp.1982200 in ref.
[21]). One may ask which gain in accuracy is expected by using poly-
nomials of higher degree than 8. Probably, within the limitations of double-
precision calculations, it will not be possible to calculate the required first
and second derivatives of the polynomials with sufficient accuracy, if the
polynomials are calculated with Newton’s algorithm [21] as in the present
computer program. The calculation of the data in Table1 revealed that the
smallest terms in a column are sums of large terms with alternating signs.
In conclusion, within the limitations of double-precision accuracy, poly-
nomials of the 8th degree seem to be an optimum. Finally it should be noted
that the total computation time is virtually independent of the degree of the
polynomials.

Boundaries.Another limitation of the attainable accuracy results from
the present implementation of a reflecting or absorbing boundary. The sys-
tematic errors resulting from this imperfect implementation are not reduced
by increasing the degree of polynomials. One might expect that these sys-
tematic errors are smaller, when (∆r)i 5 r 2 ri21 is constant near the bound-
aries. In this connection a smooth transition from (∆r)2 to (∆r)N with
(∆r)2 ! (∆r)N has been of interest. The pertinent computations yielded,
however, no significant reduction of the systematic error.

Detailed balance.Nadler and Schulten [15] have shown that the ap-
proximate calculation of partial derivatives with a finite-difference method
guarantees neither probability conservation nor a detailed balance. They and
some of their successors [16, 19] emphasized the importance of a detailed
balance for a good diffusion algorithm. The author has not been able to
share this view. On the contrary, it seems to him more likely that, by im-
plementing a detailed balance, in general one cannot obtain an optimal al-
gorithm for theevolutionof a distribution function. Apart from the illus-
tration of this statement in section 2.8 and Fig. 4, the following consider-
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ation may be helpful. The numerical solution of a pure diffusion problem
can be compared with the fitting of a function to a set of data points. Equat-
ing the stationary distribution with the equilibrium distribution by the en-
forced detailed balance corresponds to forcing the fitted function to pass
exactly through one of the data points. In general the fitted function thus
obtained will not be the optimal function for the whole data set. In the case
of a detailed balance, the equality of the stationary distribution with the
equilibrium distribution is only a necessary condition for a correct program
code, but contains no information on the quality of the algorithm. Without
an exact detailed balance, the deviation of the stationary distribution from
the equilibrium distribution already contains information on the quality of
the algorithm.

Nonnegativity.Physically, negative probability densities have no mean-
ing and should not occur in a good diffusion algorithm that involves only
transfer of probability density toadjacentgrid points. This is also true for
the present algorithm with polynomials of the second degree. With higher
polynomials (J $ 4), negative probability densities occur at the relative
positions j 5 62, 64, . . . (see Table1). In the actual calculation of the
numerical fundamental solutionsw, negative values occur only in those
ranges ofx or r, where exact valuesgi andgi11 differ by an order of magni-
tude or more.

Restriction to first order with respect to time.The restriction to first
order with respect to time would indeed be a disadvantage of an algorithm
working with constant time stepsta. The distinctive feature of the present
algorithm is, however, that the time needed for the computation ofρ(ri , t)
in the time range of interest is almost independent of the lengthta of the
first time step. Henceta can be chosen almost arbitrarily short, and nothing
would be gained by a second-order procedure with respect to time.

Stability of first-order scheme.The fact that in general an extremely
short first time stepta has been used was misinterpreted as evidence for a
numerical instability of the algorithm in the case of larger values ofta. The
opposite is true, as is illustrated by example1 and Fig.1 : In the absence of
reactions, the stationary numerical distributionwstat is independent ofta as
long asta is below the sharp stability limit. The unavoidable accumulation
of round-off errors is not a peculiarity of the present algorithm but results
from the limitations imposed by double-precision accuracy (cf. e.g. section
1.3.4 in ref. [24]).

Renormalization of the numerical fundamental solutions.Any numerical
procedure will in the end be limited by the accumulation of round-off errors.
This limitation will be the more obvious the more accurate the given pro-
cedure is. Moreover, example 3 in section 3.4 shows that even without
renormalization a very high numerical accuracy is achieved. An unavoid-
able numerical error results from the combination of a large radial range
with a very short first time stepta. In example 5, for instance,w(rN, t | rN)
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remains constant in the whole time range fromt 5 0 to t 5 ta3239 <
2.98310217 s, whereas the ratiow(rN21, t| rN)/w(rN, t | rN) steadily increases
from 0 to <10215 in the same time range.

Renormalization of the theoretical fundamental solutions.The present
use of renormalized theoretical fundamental solutionsg* is consistent with
the normalization of the theoretical equilibrium distributions, which is tacit-
ly applied in other algorithms.

Corrections.The correction of the quantitiesHn, j (see Eq. (67)) accord-
ing to Eq. (73) is to some degree arbitrary and therefore unsatisfactory.
However, this correction can easily be kept very small, and it is completely
negligible in comparison to the large systematic errors that would be intro-
duced by using the recommended detailed balance [15, 16, 19]. Moreover,
the very weak dependence of the numerical fundamental solution on the
particular correction of the quantitiesHn shows that the correction for prob-
ability conservation is not a limiting factor in the application of the algo-
rithm (as long as this correction is very small).

Control parameters.An ideal algorithm should contain control param-
eters that limit the maximum deviation of the numerical solution from the
true solution of a partial differential equation. Admittedly, for the present
algorithm no control parameters are given. However, this should not seri-
ously limit its usefulness. The practical application of the algorithm to three-
dimensional diffusion is governed by a few rules:

Rule 1.If possible, a constant radial increment factorf 5 1 1 q with
q & 0.02 should be used.

Rule 2.The maximum acceptable value ofq is obtained from the limits
σ21 andσ for the acceptable ratio of neighboring equilibrium valuesρeq, (cf.
Eq. (3)).

Rule 3.The ratioσ can be the greater the higher the degree 2J of the
interpolation polynomials. For this reason, 2J 5 8 will be in general the
best choice.

Rule 4.If a variable radial increment factorfi 5 1 1 qi is needed, the
best results are obtained, ifq is virtually constant in the effective range of
the potential. The relative errorωn in the probability conservation during
the first time step (cf. Eq. (70)) should be extremely small in the whole
radial range, e.g.|ωn|,1028.

Rule 5.In the case of reflecting boundaries, the first time stepta can be
made extremely short, for instance by a factor10212 shorter than the maxi-
mum (ta)max corresponding to the limit of numerical stability. The concomi-
tant accumulation of round-off errors is corrected for by a renormalization
of all N fundamental solutions after every ten time-doubling cycles up the
diffusion time tb, when the reaction termk(r) is taken into account (cf.
section 3.7).

Rule 6. In the case of absorbing or constant-concentration boundaries,
the accumulation of round-off errors can no longer be corrected for by a
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renormalization. Therefore the first time stepta should not be made ex-
tremely short, but still much shorter than (ta)max.

Rule 7.The convergence of the algorithm with decreasingq should be
checked.

Waste of computer resources.This objection would have been justified
in 1980, when the present computations would have required a large com-
puter, shared by a community of researchers. At the end of the year1999,
when the typical random-access memory of a new personal computer was
64 MB, this objection did not make sense anymore.

Soft-sphere approximations.The relative ease, with which the combi-
nation of a short-range potential with a large radial range can be treated,
offers the possibility to overcome the limitations of hard-sphere models. A
suitable repulsive potential is introduced, and the inner reflecting boundary
is shifted to a smaller radius, where the repulsive term of the potential
already strongly dominates (and where the equilibrium probability density
is already much smaller than in the potential minimum). Example1 in sec-
tion 2.7 has shown that the present implementation of a reflecting boundary
yields acceptable results even if the potential does not satisfy Eq. (35).

4.2 On the most efficient algorithm for long time propagations

The allegedslownessof the present algorithm was perhaps the main objec-
tion against it. The argument is simple: If onlyonedistribution function at
a single time t is needed, it is an enormous waste of computation time to
computeN distribution functions instead of one. In practice, however, near-
ly always theevolution of a distribution function is of interest and, for
instance,100 to 1000 distributions with constant time stepstc are needed
(cf. section 3.7).

The computation time needed for a time-doubling cycle,tcycle, is pro-
portional to the third power of the number of the fundamental solutions,N,
if all elements ofeachfundamental solution significantly differ from zero.
Obviously, due to this fact, the present algorithm is very slow ifN is large.
For instance, withN 5 1600 (cf. section 3.8) and without parallel comput-
ing, it would be difficult to fit the parameters of a kinetic model to exper-
imental data within a reasonable time. However, in many cases, values of
N in the range100 & N & 200 will be sufficient and the timetd, up to
which the distributionρ(ri , t) is to be calculated, may be much shorter than
the time needed for complete equilibration in the absence of a reaction. In
such cases the time for the computation of the wholeevolutionof ρ reduces
to about1 min or less, and the present algorithm becomes applicable as part
of a curve-fitting procedure.

In a comparison of different algorithms that allow the application of
very large constant time stepstc, the distinction between two different com-
putation times is important. The first computation time is the time needed
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for computingρ(ri , tc), which requires in the present algorithm the compu-
tation ofN fundamental solutionsw(ri , tc| rn). The second computation time
is the time needed for computingνd distribution functionsρ(ri , tcν) with ν 5
1, 2, .. .,νd and td 5 tcνd. With respect to the second computation time, the
present algorithm seems to the most efficient one, because there is no sim-
pler solution for this problem than the summation ofN weighted funda-
mental solutions. The first computation time will be in general longer than
the second computation time. For instance, ifνd 5 N andw(ri , tc| rn) ? 0
for arbitraryn and i, then the time needed for computing theνd distribution
functionsρ(r i , tcν) would be equal to be the time needed for computing a
new set ofN fundamental solutionsw(ri , 2tc| rn).

With the algorithm in refs. [16, 19] the situation is reversed. Due to the
direct computation of the distributionρ(r i , tc), the first computation time
can be rather short. On the other hand, the same procedure is to be repeated
(νd21) times; hence, even in the most favorable case, the second compu-
tation time will be at least (νd21) times longer than the first computations
time. An advantage of that algorithm is that the time step need not be
constant.

It is not a priori evident, which of the two algorithms is more efficient
in computing theevolutionof a distribution function. Finally, if for some
problems of interest the present algorithm will turn out to be the only practi-
cable one, slowness will be no longer an argument.

5. Summary
With the present algorithm, the Smoluchowski equation of a spherically
symmetric three-dimensional diffusion problem can be numerically solved
with high accuracy even in the unfavorable case of a short-range potential
barrier in combination with a large radial range. The basic features of the
algorithm are :

(a) A series ofN spherical shells of volumeVi is defined by the radii
R0, R1, . . ., Ri , . . ., RN with Ri11/Ri 5 1 1 q, whereq is either constant or a
slowly increasing function ofi. The mean radiiri of the spherical shells are
taken as grid points.

(b) Numerical fundamental solutionsw(ri , t | rn) are defined.w(ri , 0|
rn) 5 V21

n δin is the numerical analogue of aδ-function. All that is needed
for the calculation ofw(ri , t | rn) is the set of fundamental solutionsw(ri , ta|
rn), whereta is the duration of the first diffusion step.

(c) The first and second derivatives of the numericδ-function w(ri , 0|
rn) with respect tor at ri are defined by the respective derivative of a poly-
nomial of the degree 2J (J 5 1, 2, 3, 4), centered atri. In the calculation of
w(ri , ta| rn), the error in probability conservation becomes very small in the
range ofq that is of practical interest (q & 0.02). For very smallq, the
probability error is approximately proportional toq2J12.
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(d) A reflecting inner boundary is implemented by compensating the
loss due to diffusion from the shells1, 2, . . ., J through the boundary by
the gain due to the opposite diffusion from the auxiliary shells 0,21, . . .,
2J 1 1 through the boundary. An absorbing inner boundary is implemented
by the same terms, but with opposite signs. Radiation and constant-concen-
tration boundaries are implemented in a similar way. The treatment of outer
boundaries is analogous.

(e) By successive doubling of the total diffusion timet, each funda-
mental functionw(ri , 2t| rn) can be expressed as the weighted sum of allN
fundamental solutionsw(ri , t| r l) (l 5 1, 2, .. ., N). Since the total compu-
tation time is roughly proportional to the logarithm of the total diffusion
time, the stationary distributionwstat can be always computed (in the case
reflecting boundaries and in the absence of reactions).

(f) The evolution of an arbitrary distributionρ can be calculated, starting
from an initial conditionρ(r i , 0), in time steps of the lengthtc by repeatedly
applying the set of fundamental solutionsw(ri , tc| rl).

(g) A distance-depending rate coefficientk can be taken into account
by multiplying at a time t2 ! k21

max all N2 values w(ri , t2| rn) with
exp[2k(ri ) t2].

(h) Within the limits of double-precision computations, the best results
were obtained with polynomials of the degree 8 (the highest degree tested).

(i) The exact equality of the stationary distribution with the equilibrium
distribution (enforced by a detailed balance) will in general not lead to the
best approximation of theevolutionof a distribution.

(j) With increasingqi (qN < 10 q1), a radial range of six orders of mag-
nitude can be covered with a maximum relative error ofw of less than
231024.

Acknowledgements

The author thanks Professor J. Troe for support of this work and Dr. W.
Naumann for long discussions on diffusion-influenced reactions and for the
theoretical treatment of some problems in the kinetics of triplet-triplet an-
nihilation. The author also thanks Professor N. Ernsting, Dr. G. Käb, and
Professor R. Schinke for explaining to him the Chebyshev time propagation.
Finally, the detailed comments by a referee were helpful in writing the final
version of this paper.

Appendix

The need of a new algorithm appeared in connection with a well-known
special case of reversible excimer formation [10, 35237]: The lowest ex-
cited singlet state1A* of an aromatic hydrocarbon A is populated by triplet-
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triplet annihilation3A* 1 3A* → 1A* 1 1A. The subsequent reversible
formation of excimers,1A* 1 1A < 1(AA)*, and the observable intensity
ratio of delayed monomer fluorescence and delayed excimer fluorescence
depend on the initial spatial distributionρ(r, 0) of 1A* relative to 1A, on an
effective potentialU(r) for the attraction between1A* and 1A, and on the
rate constants for the radiative and nonradiative decays of1A* and 1(AA)*
to the respective ground state or triplet state. In the case of pyrene (the
classic example of delayed excimer fluorescence [35]), the numerical solu-
tion of the corresponding Smoluchowski Eq. (1) has to satisfy the following
requirements:

(a) U(r) is a short-range potential. Hence the radial steps∆r must be
small, e.g.∆r < 1023 R0 or less, whereR0 is the contact distance between
A and B.

(b) The radial range is large with a maximumrN < 100 R.
(c) The potential minimum isU(R0) < 2hc33000 cm21.
(d) The temperature range of interest (Tmax < 300 K, Tmin < 120 K)

corresponds to the range14 & |U(R)| /kBT & 36.
(e) The relative diffusion coefficientD ranges from<531028 cm2 s21

at the lowest temperature to<531025 cm2 s21 at the highest temperature.
(f) The constant time step is&10216 s; the longest time of interest is

<531026 s.
(g) The deviation of the numerical solution from the exact solution of

Eq. (1) must be less than1% in the time range of interest for all tempera-
tures.
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