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Abstract. Molecular dynamics (MD) simulations of proteins provide descriptions
of atomic motions, which allow to relate observable properties of proteins to micro-
scopic processes. Unfortunately, such MD simulations require an enormous amount
of computer time and, therefore, are limited to time scales of nanoseconds. We
describe first a fast multiple time step structure adapted multipole method (FA-
MUSAMM) to speed up the evaluation of the computationally most demanding
Coulomb interactions in solvated protein models, secondly an application of this
method aiming at a microscopic understanding of single molecule atomic force mi-
croscopy experiments, and, thirdly, a new method to predict slow conformational
motions at microsecond time scales.

1 Introduction

In many cases the detailed knowledge of dynamic processes at the atomic level
is essential to understand protein function, e.g., ligand binding or enzymatic
reactions. Through a microscopic description of interatomic forces [1] and
atomic motions, molecular dynamics (MD) simulations [2, 3] can serve as
a tool to interpret experimental data and to make predictions, which can
guide future experiments. In such simulations, the motions are computed by
numerically solving Newton’s equations. Here, the forces are derived from an
empirical energy function accounting for chemical binding forces as well as
van der Waals and electrostatic interactions between partially charged atoms.

For the study of protein dynamics quite large simulation systems — typ-
ically comprising several 10,000 atoms — are required. The system must be
that large because the native protein environment (water or lipids) strongly
affects the dynamics of the protein [4, 5, 6, 7, 8] and, therefore, has to be in-
cluded into the simulation system. The large number of atoms provides a first
reason why MD simulations of proteins pose a computational challenge. A
second reason is that femtosecond integration time steps are necessary to en-
able sufficiently smooth descriptions of the fastest degrees of freedom. Thus,
MD simulations of such systems are currently limited to nanoseconds (i.e., a
few million integration steps) even if the most powerful supercomputers and
efficient algorithms are used. Although there are a number of biochemically
important processes which occur at such very fast time scales and have been
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successfully studied by MD simulations [9, 10], most biochemical processes
occur at much slower scales and, therefore, are currently inaccessible to con-
ventional MD methods. This technical limitation motivates substantial efforts
taken by many groups to determine suitable approximations which ideally
should allow more efficient simulations without seriously affecting relevant
features of the system, which may be grouped into specialized integration
schemes and multiple time stepping [11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] (see also the chapter by Schlick and
Berne within this book), multipole methods [32, 33, 34, 35, 36, 37, 38|, as
well as grid and Ewald methods [39, 40, 41, 42]. Most of the efforts focus on
the efficient computation of the electrostatic interactions within the protein
and between protein and solvent, since, typically, this is the computationally
most demanding task.

As an example for an efficient yet quite accurate approximation, in the
first part of our contribution we describe a combination of a structure adapted
multipole method with a multiple time step scheme (FAMUSAMM — fast
multistep structure adapted multipole method) and evaluate its performance.
In the second part we present, as a recent application of this method, an
MD study of a ligand-receptor unbinding process enforced by single molecule
atomic force microscopy. Through comparison of computed unbinding forces
with experimental data we evaluate the quality of the simulations. The third
part sketches, as a perspective, one way to drastically extend accessible time
scales if one restricts oneself to the study of conformational transitions, which
are ubiquitous in proteins and are the elementary steps of many functional
conformational motions.

2 Efficient MD-Simulation Methods

In order to solve the classical equations of motion numerically, and, thus, to
obtain the motion of all atoms the forces acting on every atom have to be
computed at each integration step. The forces are derived from an energy
function which defines the molecular model (1, 2, 3]. Besides other important
contributions (which we shall not discuss here) this function contains the
Coulomb sum
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over all pairs of atoms (i,7) with partial charges ¢; at positions r;. The
evaluation of this sum dominates the computational effort in MD simulations
as it scales quadratically with the number N of charged particles.

A very simple — and in fact quite widely used — approximation com-
pletely neglects long range electrostatic interactions beyond a certain cut-off
distance [43] of typically 8 — 15 A. For systems which are significantly larger
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than this cut-off distance the computation of the remaining Coulomb inter-
actions then scales with N instead of N2. However, such truncation leads to
serious artifacts concerning the description of the structure and dynamics of
proteins [44, 24, 45], and more accurate methods which include the long range
interactions should be preferred. Multipole methods and multiple-time-step
methods are well established and widely used for this purpose. We briefly
sketch both methods and subsequently show how their combination allows
highly efficient simulations.

2.1 Efficient Multipole Methods

Multipole methods approximate the long-range forces originating from a
group of point charges by truncated multipole expansions of their electrostatic
potential. Using a hierarchy of grids for subdivision of space, nested at multi-
ple scales, and a corresponding hierarchical organization of charge groups and
multipole expansions [33] a computational complexity of O(NlogN) can be
achieved. By additionally using a hierarchy of local Taylor expansions for the
evaluation of the electrostatic potential in the vicinity of a group of particles
Greengard and Rokhlin have constructed the so-called fast multipole method
(FMM) that even scales with O(NN) for large systems [34, 35].

For MD simulations of biomolecules the FMM-type grouping of charges,
defined by a fixed and regular subdivision of space, requires multipole ex-
pansions of rather high order (more than 6 terms of the expansion) as to
achieve sufficient numerical accuracy [34]. If, instead, as shown in Figure 1,
the charge grouping is adapted to specific structural and dynamical proper-
ties of the simulated biomolecules, the multipole expansions can be truncated
at quite low orders, e.g., after the second order, while maintaining sufficient
accuracy [36, 37, 38].

In the FAMUSAMM framework, e.g., we have grouped locally stable
groups of typically three to ten covalently bound atoms into so-called struc-
tural units (level 1 in Fig. 1). By construction, these structural units either
carry integer elementary charges or are uncharged, but dipolar. Test sim-
ulations show that for distances > 10 A already the lowest non-vanishing
multipole moments of these structural units provide a sufficiently accurate
description of the electrostatic forces within biomolecules with an error below
2%. The objects of the next hierarchy level (level 2 in the figure) are formed by
grouping structural units into clusters. For interaction distances > 15 A the
electrostatic potential of those objects, again, can be approximated by their
lowest multipole moment. Extending this scheme to higher hierarchy levels,
such a structure adapted multipole method (SAMM) provides a substantial
speed-up for MD simulations as compared to the conventional, grid-based
methods (38, 46].

The performance of this first version of SAMM [36] can be further en-
hanced by additionally utilizing FMM-strategies [34, 38]. Here, in the vicinity
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Fig. 1. Structure adapted hierarchical description of Coulomb interactions in bi-
ological macromolecules. Filled circles (level 0) represent atoms, structural units
(level 1) are surrounded by a single-line border, and clusters (level 2) are surrounded

by a double-line border.

of a given object (e.g., a structural unit or a cluster) the electrostatic poten-
tial originating from distant charge distributions is approximated by a local
Taylor expansion. Specifically, the basic tasks involved in the FMM aspect of

SAMM are:

Task 1: Calculate the first non-vanishing multipole moment of the electro-
static potential of composed objects (i.e., structural units and clus-

ters).

Task 2: Add up electrostatic potential contributions to local Taylor expan-
sions of all objects on each hierarchy level. (Contributions to the local
Taylor expansion of a selected object arise from all other objects on
the same hierarchy which fulfill the distance criterion given in Fig. 1.)
Task 3: Transform (“inherit”) local Taylor expansions from a upper hierarchy

level to the next lower hierarchy level.

Task 4: Explicitly calculate the Coulomb interactions between atoms which

are closer than about 10 A.

81

In the next section we will illustrate how to further speed up the SAMM
method by introducing multiple-time-stepping.
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2.2 SAMM with Multiple-Time-Stepping

In general, multiple-time-step methods increase computational efficiency in
a way complementary to multipole methods: The latter make use of regu-
larities ¢n space, whereas multiple-time-stepping exploits regularities in time.
Figure 2 illustrates the general idea:

As sketched in the right part of the figure, forces between distant atoms
generally exhibit slower fluctuations than forces between close atoms. There-
fore, without significant loss of accuracy, the more slowly fluctuating forces
may be computed using larger integration step sizes. As shown in the left part
of the figure, the required classification of forces can be implemented, e.g., by
grouping atom pairs into distance classes. The slowly fluctuating forces aris-
ing from outer distance classes may then be evaluated less frequently (filled
squares) than the fast ones and, instead, are extrapolated (open squares)
from previously computed forces at the time steps in between.

| | | | 1 | 1 1 |

Integration time step T

Fig. 2. Distance classes j = 0,1,2,... (left) are defined for an atom (central dot)
by a set of radii Rjt1; the right curves sketch the temporal evolution of the total
force F(9) acting on the selected atom originating from all atoms in distance class
J; shown are the exact forces (solid line), their exact values to be computed within
the multiple time step scheme (filled squares), linear force extrapolations (dotted
lines), and resulting force estimates (open squares).

This hierarchical extrapolation procedure can save a significant amount of
computer time as it avoids a large fraction of the most time consuming step,
namely the exact evaluation of long range interactions. Here, computational
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speed is gained at the cost of an increased demand for memory, e.g., for each
atom and each distance class two previously computed forces have to be kept
in memory.

In the framework of the fast structure adapted multipole method the
memory demand could be drastically reduced. This was achieved by applying
the multiple-time-step scheme (we used the so-called DC-1d scheme [24]) to
the interactions between charge groups (structural units and clusters) rather
than to the forces acting on individual atoms. In the following we give a short
description of this tight and efficient combination. We termed the result-
ing algorithm FAMUSAMM (multiple-time-step structure-adapted multipole
method) [46, 47].

A detailed analysis of fast SAMM has shown [47] that the most time
consuming tasks are task 2 and task 4 described above. In task 2 for each
hierarchy level (except for level 0) a local Taylor expansion is calculated for
each object. Note that here we refer to expansions which comprise only con-
tributions from objects of the same hierarchy level which, in addition, fulfill
the distance criterion given in Fig. 1. From each of these local expansions,
approximated electrostatic forces F@) acting on the atoms contained in the
associated object could be computed and, in analogy to the exact forces
F() used in the multiple time step scheme described above (see Fig. 2), the
multipole-derived forces FU) could be extrapolated by multiple time step-
ping. We further improved that obvious scheme, however, in that we applied
multiple time step extrapolations to the coefficients of the local Taylor expan-
sions instead. That strategy reduces memory requirements by a significant
factor without loss of accuracy, since the number of local Taylor coefficients
that have to be kept for the extrapolation is smaller than the number of
forces acting on all atoms of the respective object.

Additionally, to optimize task 4, we applied a conventional, atom pair
interaction based multiple-time-step scheme to the force computation within
the innermost distance class. Here, for atom pairs closer than 5A, the
Coulomb sum is calculated every step, and for all other atom pairs the
Coulomb sum is extrapolated every second step from previously explicitly
calculated forces. ,

This completes the outline of FAMUSAMM. The algorithm has been im-
plemented in the MD simulation program EGO_VIII [48] in a sequential and
a parallelized version; the latter has been implemented and tested on a num-
ber of distributed memory parallel computers, e.g., IBM SP2, Cray T3E,
Parsytec CC and ethernet-linked workstation clusters running PVM or MPL.

2.3 Computational Performance

Here we want to document that FAMUSAMM actually provides an enhanced
computational efficiency both as compared to SAMM as well as to the refer-
ence method which is characterized by exact evaluation of the Coulomb sum.
To that aim we have carried out a series of test simulations for systems of
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varying size ranging from 500 to 40,000 atoms. We used the sequential ver-
sion of EGO_VIII. All simulations were executed on a DEC-ALPHA 3300L
(175 MHz) workstation equipped with 96 MB RAM. Figure 3 shows that the
average computation time required for one MD integration step scales linearly
with system size for systems comprising more than about 1,000 atoms.

0 L] R v L] L] L] Ll

0 5000 10000 15000 20000 25000 30000 35000 40000

Number of atoms

Fig. 3. Average computation time for one step using EGO_VIII on a DEC-Alpha
3300L workstation (175 MHz) for simulation systems of varying size. The insets
show some of the protein-water systems used for the benchmark simulations.

For large systems comprising 36,000 atoms FAMUSAMM performs four
times faster than SAMM and as fast as a cut-off scheme with a 10 A cut-off
distance while completely avoiding truncation artifacts. Here, the speed-up
with respect to SAMM is essentially achieved by the multiple-time-step ex-
trapolation of local Taylor expansions in the outer distance classes. For this
system FAMUSAMM executes by a factor of 60 faster than explicit evalu-
ation of the Coulomb sum. The subsequent Section describes, as a sample
application of FAMUSAMM, the study of a ligand-receptor unbinding pro-
cess.

3 Microscopic Interpretation of Atomic Force
Microscope Rupture Experiments

That simulation study [49] aimed at a microscopic interpretation of single
molecule atomic force microscope (AFM) experiments [50], in which unbind-
ing forces between individual protein-ligand complexes have been measured
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(Fig. 4. top). In particular we asked, what interatomic interactions cause the
experinentally observed unbinding forces.

Fig. 4. Typical AFM rupture experiment (top): Receptor molecules are fixed via
linker molecules to a surface (left); in the same way, ligand molecules are connected
to the AFM cantilever (right). When pulling the cantilever towards the right, the
pulling force applied to the ligand can be measured. At the point of rupture of
the ligand-receptor complex the measured force abruptly drops to zero so that the
rupture force can be measured.

Computer rupture simulation (bottom): In the course of an MD simulation of the
ligand-receptor complex at atomic detail the ligand is pulled towards the right
with a ‘computer spring’, while the receptor (drawn as a ribbon model) is kept in
place. From the elongation of the ‘spring’ the pulling force during the unbinding
process is computed, and, thereby, a ‘force profile’ is obtained. The rupture force
is interpreted as the maximum of this force.

Both the AFM rupture experiments as well as our simulation studies
focussed on the streptavidin-biotin complex as a model system for specific
ligand binding. Streptavidin is a particularly well-studied protein and binds
its ligand biotin with high affinity and specificity [51]. Whereas previous
experiments (see references in Ref. [49]) and simulation studies [52] referred
only to bound/unbound states and the associated kinetics, the recent AFM
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rupture experiments have provided a new and complementary perspective on
ligand binding by focussing at atomic details of binding/unbinding pathways:
The former were described in terms of binding free energies as thermodynamic
quantities, which are independent of the particular reaction pathway; the
latter relate to forces, which actually depend on details of the unbinding
reaction path and, therefore, can provide new insights into these details.

To enable an atomic interpretation of the AFM experiments, we have de-
veloped a molecular dynamics technique to simulate these experiments [49].
From such ‘force simulations’ rupture models at atomic resolution were de-
rived and checked by comparisons of the computed rupture forces with the
experimental ones. In order to facilitate such checks, the simulations have
been set up to resemble the AFM experiment in as many details as possible
(Fig. 4, bottom): the protein-ligand complex was simulated in atomic detail
starting from the crystal structure, water solvent was included within the
simulation system to account for solvation effects, the protein was held in
place by keeping its center of mass fixed (so that internal motions were not
hindered), the cantilever was simulated by use of a harmonic ‘spring poten-
tial’ and, finally, the simulated cantilever was connected to the particular
atom of the ligand, to which in the AFM experiment the linker molecule was
connected.
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Fig. 5. Theory vs. experiment: rupture forces computed from rupture simulations at
various time scales (various pulling velocities vcant) ranging from one nanosecond
(Veane = 0.015A/ps) to 40 picoseconds (veans = 0.375 A/ps) (black circles) com-
pare well with the experimental value (open diamond) when extrapolated linearly
(dashed line) to the experimental time scale of milliseconds.

However, one significant difference between the AFM experiment and its
simulations cannot be avoided at present: Whereas the AFM experiment
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takes place at a millisecond time scale, our simulations had to be completed
within the nanosecond time scale. So, in fact, in the simulation the pulling
velocity had to be chosen about six orders of magnitude larger than in the
AFM experiment!

In a first attempt to bridge these six orders of magnitude, we performed a
series of rupture force simulations using pulling velocities ranging from 0.375
t0 0.015 A/ps. As can be seen in Fig. 5, we observed a linear dependency of the
computed rupture forces in the velocity range between 0.15 and 0.015 A/ ps.
This suggests that simple friction dominates the non-equilibrium effects in
this regime described by a friction coefficient of 20 pN s/m. A simple linear
extrapolation of the computed rupture forces to the experimental time scale
shows agreement between theory and experiment. Clearly, this first step has
not yet solved the question how to bridge the six orders of magnitude gap
between theory and experiment (cf. also [53]). To answer that question, a
better understanding of the physics of rupture experiments using simplified
models on the one hand (cf., e.g., Ref. [54]) and, on the other hand, a careful
analysis of the atomic processes which cause the velocity dependent rupture
forces is necessary.

One of the results of an MD rupture simulation is the pulling force as a
function of time or cantilever position zcant(t), called the force profile. Figure 6
shows an example, derived from an extended 1 ns-simulation, where a pulling
velocity of 0.015 A/ ps was used. The apparent multitude of force maxima
mirrors the complexity of the energy landscape traversed by the biotin on
its way out of the binding pocket. The peaks of this force profile can be
attributed to the rupture and formation of individual hydrogen bonds and
water bridges shown in the snapshots of Fig. 7, which characterize the main
steps of the rupture process. The rupture forces in Fig. 5 are the maxima of
the corresponding force profiles.

We will not discuss here in detail our atomic model of the unbinding
process derived from our simulations and sketched in Fig. 7, but restrict our-
selves to two unexpected features. One is that the rupture of the initially very
strong hydrogen bonds between the ligand and the residues of the binding
pocket (Fig. 7 A) does not entail immediate unbinding. Rather, the com-
plex is stabilized by a transient network of water bridges and other transient
hydrogen bonds, which form during the unbinding process (Fig. 7 B and
C). Only after subsequent rupture of these hydrogen bonds the maximum
force — the rupture force — is reached and the biotin rapidly moves out of
the entry of the binding pocket (Fig. 7 D). As another feature we observed,
towards the end of the unbinding process, a second force maximum, which
we attribute to a strong transient hydrogen bond and several water bridges
between biotin and the entry of the binding pocket (Fig. 7 E). Crossing of
that second barrier, which cannot yet be resolved in the AFM experiment,
completes the unbinding process. N

In summary, our simulations provided detailed insight into the complex
mechanisms of streptavidin—biotin rupture. They attribute the binding force
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Fig. 6. Force profile obtained from a one nanosecond simulation of streptavidin-
biotin rupture showing a series of subsequent force peaks; most of these can be
related to the rupture of individual microscopic interactions such as hydrogen bonds
(bold dashed lines indicate their time of rupture) or water bridges (thin dashed
lines).

to a network of hydrogen bonds between the ligand and the binding pocket
and show that water bridges substantially enhance the stability of the com-
plex. Good agreement with experimental results was obtained. Further ‘force
simulations’ of various systems, e.g., an antigen-antibody complex, are in
progress.

4 Conformational Flooding

The previous application — in accord with most MD studies — illustrates the
urgent need to further push the limits of MD simulations set by todays com-
puter technology in order to bridge time scale gaps between theory and either
experiments or biochemical processes. The latter often involve conformational
motions of proteins, which typically occur at the microsecond to millisecond
range. Prominent examples for functionally relevant conformational motions
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Fig. 7. ‘Snapshots’ of rupture taken (A) at the start of the simulation (zcant = 0),
(B) at zcant = 2.8 A, (C) at zcant = 4.1 A, (D) at zcant = 7.1 A, and (E) at zcant =
10.5 A. The biotin molecule is drawn as a ball-and-stick model within the binding
pocket (lines). The bold dashed lines show hydrogen bonds, the dotted lines show
selected water bridges.

are the opening and closing of ion channels or, as proposed by Griffith [55]
and Prusiner [56], pathogenic conformational transitions in prion proteins,
the putative agents of mad cow and Creutzfeldt-Jacob diseases. Conforma-
tional motions often involve a complex and concerted rearrangement of many
atoms in a protein from its initial state into a new conformation. These rear-
rangements, called conformational transitions, exhibit a multi-rate behaviour,
which is is captured by the concept of “hierarchical conformational substates”
introduced by Hans Frauenfelder [57]. According to that concept the free en-
ergy landscape of a protein exhibits a large number of nearly isoenergetic
minima corresponding to the conformational substates, which are separated
by barriers of different height [58].
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Fig. 8. ‘Conformational flooding’ lowers free energy barriers of conformational tran-
sitions and thus accelerates such transitions. The figure shows a one dimensional cut
through the high dimensional free energy landscape F' (bold line) along a particular
conformational coordinate ¢;. During an MD simulation the protein remains in the
initial configuration (local minimum in the free energy), since the high barrier to
the right cannot be overcome on an MD time scale. However, the MD simulation
can serve to approximate the free energy harmonically in the vicinity of the initial
configuration (dotted line) in order to derive an artificial ‘flooding potential’ V4
(dashed line). Inclusion of this potential (thin line) in subsequent MD simulations
reduces the barrier height by an amount of AF and thereby destabilizes the initial
configuration.

Figure 8 shows a one-dimensional sketch of a small fraction of that energy
landscape (bold line) including one conformational substate (minimum) as
well as, to the right, one out of the typically huge number of barriers sep-
arating this local minimum from other ones. Keeping this picture in mind
the conformational dynamics of a protein can be characterized as “jumps”
between these local minima. At the MD time scale below nanoseconds only
very low barriers can be overcome, so that the studied protein remains in
or close to its initial conformational substate and no predictions of slower
conformational transitions can be made.

In order to make such predictions possible, we have developed the con-
formational flooding (CF) method, which accelerates conformational transi-
tions [59] and thereby brings them into the scope of MD simulations (“Hood-
ing simulations”). The method is a generalization of the “local elevation
method” [60] in that it rests on a quasi harmonic model for the free energy
landscape in the vicinity of the minimum representing the initial (known)
conformational state. This model is derived from an ensemble of structures
generated by a conventional MD simulation as will be described below and
is shown in Fig. 9. From that model a “flooding potential” Vj is constructed
(dashed line in Fig. 8), which, when subsequently included into the poten-
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Fig. 9. Two-dimensional sketch of the 3N-dimensional configuration space of a pro-
tein. Shown are two Cartesian coordinates, 1 and z2, as well as two conformational
coordinates (c1 and c2), which have been derived by principle component analysis
of an ensemble (“cloud” of dots) generated by a conventional MD simulation, which
approximates the configurational space density p in this region of configurational
space. The width of the two Gaussians describe the size of the fluctuations along
the configurational coordinates and are given by the eigenvalues A;.

tial energy function of the system, raises the minimum under consideration
(thin line in Fig. 8) and thereby lowers the surrounding free energy barriers
by an amount AF' without severely modifying the barriers themselves. As a
result, transitions over these barriers are accelerated by approximately the
Boltzmann factor exp( é—?) In detail, the following steps are necessary to
perform a CF simulation:

Step 1: A short conventional MD simulation (typically extending over a few
100 ps) is performed to generate an ensemble of protein structures {x € R3"}
(each described by N atomic positions), which characterizes the initial confor-
mational substate. The 2-dimensional sketch in Fig. 9 shows such an ensemble
as a cloud of dots, each dot x representing one “snapshot” of the protein.

Step 2: This ensemble is subjected to a “principal component analysis”
(PCA) [61] by diagonalizing the covariance matrix C € {R3" x R3N},

C:={x-x)(x-%)7T) with x=(x)
C=Q747'Q

with orthonormal Q and A = (&;;\;) € {R3" x R3N}, where (...) denotes
an average over the ensemble {x}.

Step 3: The eigenvectors of C define 3N — 6 collective coordinates (quasi
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particles) q := Q(x — X), where we have eliminated the six rotational and
translational degrees of freedom. From these 3N — 6 degrees of freedom we
select a number m < 3N — 6 conformational coordinates ¢ = (ci, ... ,cm)T
associated to the largest eigenvalues. Thus, the conformational coordinates
cover most of the atomic fluctuations occurring at the 100 ps time scale. These
m degrees of freedom are expected to dominate (not necessarily exclusively)
conformational motion also at slower time scales [62, 63, 64].

Step 4: This PCA defines a multivariate Gaussian model p°,
7°(c) o exp [—cT Ace/2]

of the conformational space density p(c), from which the quasi harmonic
approximation of the energy landscape,

F(c) = —kpTn[p(c)] = %kBTcTACc

is derived (see Ref. [59)]).

Step 5: From that model of the current substate we construct the flooding
potential Vg of strength Fq,

1 kgTcT A

Va = Eq exp [_5_—Eﬂ—:| )

which is included in a subsequent MD simulation within the energy function
used in the conventional MD simulation before (see Fig. 8), thereby causing
the desired acceleration of transitions.

As a sample application we describe simulations suggesting possible con-
formational transitions of the protein BPTI (Bovine Pancreatic Trypsin In-
hibitor) at a time scale of several 100 nanoseconds (see Fig. 10). First we
carried out a conventional MD simulation of 500 ps duration (no explicit
solvent included), during which the protein remained in its initial conforma-
tional substate CS 1. The upper left part of the figure shows several snapshots
of the backbone taken from that simulation; the lower left shows a projection
of the 500 ps trajectory onto the two conformational coordinates with largest
eigenvalues (corresponding to Fig. 9). From that ensemble we constructed a
flooding potential as described above (dashed contour lines, superimposed to
the CS 1-trajectory, bottom right). The flooding potential was subsequently
switched on and rapidly induced a conformational transition (to the right in
the figure) into another energy minimum, CS 2. After switching off the flood-
ing potential the new conformational state of the protein remained stable,
indicating that, indeed, the new minimum is separated from CS 1 by a large
energy barrier. Using multi-dimensional transition state theory [59] we could
estimate that in an conventional (i.e., unperturbed) MD simulation that con-
formational transition would have been observed only after several hundred
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molecular dynamics conformational flooding

Fig.10. ‘Conformational flooding’ accelerates conformational transitions and
makes them accessible for MD simulations. Top left: snapshots of the protein back-
bone of BPTI during a 500 ps-MD simulation. Bottom left: a projection of the
conformational coordinates contributing most to the atomic motions shows that,
on that MD time scale, the system remains in its initial configuration (CS 1). Top
right: ‘Conformational flooding’ forces the system into new conformations after
crossing high energy barriers (CS 2, CS 3, ... ). Bottom right: The projection visu-
alizes the new conformations; they remain stable, even when the applied flooding
potentials (dashed contour lines) is switched off.

nanoseconds. As shown in Fig. 10, the CF method can be applied iteratively
to systematically search for further conformational substates, CS 3, CS 4 etc.
‘The upper right part of the figure shows the backbone configuration of BPTI
corresponding to the new substates.

MD simulations are valuable tools if one wants to gain detailed insight into
fast dynamical processes of proteins and other biological macromolecules at
atomic resolution. But since conventional MD simulations are confined to the
study of very fast processes, conformational flooding represents a complemen-
tary and powerful tool to predict and understand also slow conformational
motions. Another obvious application is an enhanced refinement of Xray- or
NMR-structures.
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