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Pax genes and their roles in cell differentiation and 
development 
Ahmed Mansouri*, Marc Hallonetl and Peter Gruss  

Members of the Pax gene family are expressed in various 
tissues during ontogenesis. Evidence for their crucial role 
in morphogenesis, organogenesis, cell differentiation and 
oncogenesis is provided by rodent mutants and human 
diseases. Additionally, recent experimental in vivo and in vitro 
approaches have led to the identification of molecules that 
interact with Pax proteins. 
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Abbreviations 
BMP bone morphogenetic protein 
En Engrailed 
FGF fibroblast growth factor 
sey small eye 
Shh Sonic hedgehog 

I n t r o d u c t i o n  
The  murine Pax gene family was identified on the basis 
of sequence homology with Drosophila segmentation genes 
[1,2] and now consists of nine members. All Pax proteins 
contain a paired-box, DNA-binding domain of 128 amino 
acids located at the amino-terminal end. This domain 
has been highly conserved during evolution and is found 
in Drosophila and in human, mouse, rat, chicken, quail 
and zebrafish genes. Distinct classes or subgroups of 
Pax genes are defined by the presence or absence of 
a paired-type homeobox and of an octapeptide coding 
region, in addition to the paired box (see Fig. 1) [3,4]. 
Paired box containing proteins are transcription factors, as 
they display sequence-specific DNA-binding activity and 
can regulate transcription [5,6]. 

Pax genes display dynamic expression patterns during 
ontogenesis in a large variety of tissues, and mutant 
phenotypes correlate very well with the expression 
patterns (see Fig. 2). For example, Pax1 is expressed 
in the sclerotome and is mutated in undulated mice 
suffering from skeletal abnormalities [7]. Pax3 is expressed 
in the limb muscle, neural tube and neural crest, and 
is mutated in Splotch mice and human Waardenburg 
syndrome in which malformations of all these structures 
occur [8,9]. Pax6 is expressed during eye formation and 
is mutated in small eye (sey) mice and rats [10-12], 

and in human aniridia [13]; in all of these, eye defects 
are displayed. Pax2 is expressed during eye and kidney 
development [14] and is mutated in a human family with 
kidney and eye abnormalities [15]. Pax genes clearly play 
important roles during the formation of many structures. 
Furthermore, deregulated expression of Pax genes may 
lead to oncogenesis [16-18]. 

In this review, we focus on recent data documenting the 
role of Pax genes, and the interaction of the Pax proteins 
with other transcription factors, in the development of the 
nervous system, in organogenesis and in cell proliferation 
and differentiation. 

P a x  g e n e s  in t h e  c e n t r a l  n e r v o u s  s y s t e m  
The roles of Pax genes are particularly documented at 
the level of the nervous system, which consequently may 
represent a model for the study of the function of the Pax 
genes. All Pax genes, except Pax1 and Pax9, are expressed 
in various restricted territories in the neural tube. Unlike 
Hox genes, Pax genes are found in the more rostral 
domains of the brain: Pax6 is found in the telencephalon 
[10,19], Pax3 and Pax7 in the mesencephalon [19-21], 
and Pax2, Pax5 and Pax8 at the midbrain-hindbrain 
boundary [19,22-24] (see Fig. 2). In the spinal cord, 
Pax genes display restricted expression patterns along the 
dorsoventral axis. 

In the brain, comparison of the expression domains of 
forkhead, Wnt, Engrailed (En), and Pax genes with sites of 
neuronal differentiation suggest that some Pax proteins are 
morphoregulators of development of the brain [19,25,26]. 
Several Pax6 semidominant mutations are documented 
in the mouse, rat and human, with various phenotypic 
severities. At the cellular level, Pax6 mutations cause a 
delay in neuronal migrations in a gene-dose-dependent 
manner, and impair axonal growth and differentiation [27]. 
In mouse sey mutants, Dlxl gene expression, which is 
normally specific for the ganglionic eminence, ectopically 
extends into the cortex, where Pax6 is normally expressed. 
Pax6 function is thus necessary for establishing and/or 
maintaining the frontier between two brain territories 
[28"]. Overexptession of the chicken Enl  gene in 
medulloblastoma cell lines results in the downregulation 
of PAX6 expression, thus suggesting that these genes are 
inversely regulated [29]. In addition, grafting experiments 
of an Engrailed-expressing midbrain-hindbrain piece of 
neuroepithelium in which fibroblast growth factor (FGF)8 
is expressed onto diencephalic structures can induce 
the expression of En2 in the host adjacent tissues 
[30]. Moreover, FGF8 has been recently proposed as 
an organizer of this brain region and could be a major 
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cture of the Pax proteins. All Pax proteins contain a paired-box, DNA-binding domain (paired domain) of 128 amino acids, located at 
amino-terminal ends. Distinct subgroups of proteins are defined by the presence or absence of a paired-type homeobox (HD) and of an 
peptide (OP) (related genes share the same patterning on the figure). In addition to the paired domain, Pax3, Pax4, Pax6 and Pax7 have 
cond DNA-binding domain, the paired-type homeobox (HD), at their carboxy-terminal ends. This homeobox is truncated and only carries 
first helix in Pax2, Pax5 and Pax8, and is totally absent in Pax1 and Pax9. In addition, all Pax proteins, except Pax4 and Pax6, carry an 
peptide of unknown function between the paired domain and the homeobox. Pax-related genes share overlapping expression patterns with 
1 other. Although some Pax genes may be present on the same chromosome, they are not clustered, as compared with the Hox genes 
:h are clustered. 

alator of this cascade of regulations, which regionalizes 
embryonic neuroepithelium [31"°,32]. 

'2, Pax5 and Pax8 are expressed at the midbrain-hindbrain 
mdary level, as are members of the Wnt, Engrailed, 
and FGF gene families [33°°]. Injection of antibodies 

ed against the zebrafish Pax[b] protein, a homologue 
Pax2, Pax5 and Pax8, causes specific and localized 
formations at this boundary that are associated with 
lecrease of Wntl and En2 RNA in this area [34]. 
lilarly, Pax5-knockout mice exhibit defects in tissues 
ived from the posterior midbrain region and the 
:ral hindbrain; the inferior colliculus is partially deleted 

and the foliation of the cerebellum is perturbed in 
these mice [35]. These results, and the phenotypes 
observed in Wntl-/- and Enl-4- mice, in which the caudal 
midbrain and cerebellum are severely affected [33°°], 
clearly indicate that Pax, Wnt and En act in concert during 
the development of the midbrain-hindbrain boundary 
region. 

In the developing eye, Pax2 is expressed exclusively in 
the optic stalk, and Pax6 in the eye cup [36]. That  
these two genes are inversely regulated is confirmed by 
ectopic overexpression of the ventralizing factor Sonic 
hedgehog (Shh) which leads to overexpression of Pax2 
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Schematic summary of the expression patterns of Pax genes, the structures affected by mutations in the Pax genes, and the molecules 
regulating or being regulated by the Pax proteins. The patterns of expression indicated in this table are a simplification of the complex expression 
patterns of the Pax genes. The thick black horizontal lines represent expression patterns of the Pax genes. The expression of Pax2, Pax5 and 
Pax8 is more expanded at the midbrain-hindbrain boundary. Derm, dermomyotome; DiE, diencephalon; Ended, endoderm; Mid, midbrain; 
Hemato, haematopoietic system; Hind, hindbrain; KO, knockout; Krd, kidney and retinal defects; ProsE, prosencephalon; Scler, sclerotome; SC, 
spinal cord; TelE, telencephalon; thyroglo, thyroglobuline; ThyroPerox, thyroperoxidase; un, undulated mouse mutant; WS, human Waardenburg 
syndrome; ?, putative interacting candidates; direct binding, target DNA is directly bound by Pax proteins (see text for details). *In this column, 
human syndromes or diseases are indicated in bold type before the colon, whereas mouse mutants are indicated in normal type before the 
colon. Affected structures are indicated after the colon. 

and downregulation of Pax6 and provokes hypertrophia 
of the optic stalk and reduction of pigment epithelium 
and neural retina [37e',38]. Pax2 and Pax6 are thus crucial 
morphoregulators of the eye and are both under the 
regulation of ventralizing agents. 

In the spinal cord, transplantation experiments in the 
chick indicate that the expression of Pax3, Pax7 and Pax6 
is regulated by the notochord via a secretion of Shh and 
probably also by the roof plate and overlaying ectoderm, 
possibly via a secretion of bone morphogenetic proteins 
(BMPs) 4 and 7 [39,40]. Pax3, Pax6 and Pax7 are expressed 
prior to neural differentiation in mitotically active cells, as 
opposed to Pax2, Pax5 and Pax8 which are not expressed 
at this time. It has been reported that ectopic expression 

of Pax3 in the entire spinal cord of the mouse, using 
the Hoxb4 enhancer, does not confer dorsal identities as 
expected but instead leads to lack of the floor plate in the 
affected areas of the spinal cord of the transgenic animals 
[41]. Pax genes may thus be important regulators of the 
dorsoventral patterning of the spinal cord. 

The  Pax3 gene is inactivated by deletions or point 
mutations in various murine splotch or human Waar- 
denburg syndrome semidominant alleles. Splotch mutants 
exhibit spina bifida, exencephaly, and neural-crest and 
limb-muscle defects [8,9,42]. Recent studies of splotch 
delayed, which produces a milder phenotype than other 
splotch alleles, revealed normal neuronal differentiation in 
dorsal and ventral regions of the affected neural tube 
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[43]. Similarly, Pax7-/- mice do not show any obvious 
neural tube defect [44°]. Functional redundancy between 
Pax3 and Pax7 could thus be responsible for the lack 
of abnormal neuronal differentiation phenotype in these 
mutants. 

The  Drosophila gooseberry (gsb) locus codes for two linked 
and structurally related genes, gsb-proximal and gsb-distal, 
which are homologues of the Pax3 and Pax7 genes 
(for review, see [45]). Experiments in which Drosophila 
embryos carried a deletion removing both gsb transcripts 
or in which embryos ectopically expressed only one 
of gsb-distal and gsb-proximal clearly indicate that Gsb 
specifies row five neuroblasts [46°,47]. Pax3 and Pax7 
may also specify neuronal identity in the spinal cord, and 
only double mutations of both Pax genes may give us a 
definitive answer about their respective functions. 

Pax genes in organogenesis 
Pax genes are also expressed outside the central nervous 
system during organogenesis: Pax1 is expressed in thymus, 
Pax2 and Pax8 in kidney, Pax8 in thyroid, Pax6 in 
pancreas and eye, and Pax4 in pancreas ([14,24,48,49]; 
B Sosa-Pineda, P Gruss, unpublished data). Mutation 
of the Pax1 gene in undulated mice leads to reduced 
thymus size and affects the maturation of the thymocytes 
[49]. Accordingly, Pax1 seems to be required in thymus 
epithelium differentiation and hence influences T-cell 
maturation [49]. 

Krd (kidney and retinal defects) mice with a deletion of a 
chromosomal segment that includes the Pax2 locus have 
kidney defects [50]. Kidney hypoplasia has been assoc- 
iated with heterozygosity of a human PAX2 point mutation 
[15]. Experiments using antisense oligonucleotides to 
Pax2 in kidney organ culture, and inactivation of Pax2 
by homologous recombination, demonstrate that this gene 
is essential for the development of the kidney epithelial 
components that are derived from the intermediate 
mesoderm [51,52°]. 

Pax8-/- mice suffer from a thyroid defect (A Mansouri, 
P Gruss, unpublished data). Pax4-/- mice suffer from a 
pancreas defect (B Sosa-Pineda, P Gruss, unpublished 
data). 

Targeted ectopic expression of cDNA encoding Drosophila 
eyeless or its murine homologue, Pax6, induces morpho- 
logically normal eyes in the wings, legs and antennae, 
demonstrating that eyeless is the master control gene for 
eye morphogenesis in Drosophila [53°,54]. Analysis of 
homozygous sey mice, and studies of chimeric mouse 
embryos composed of wild-type and sey-mutant cells, 
indicates that Pax6 acts directly and in a cell-autonomous 
manner in the optic cup and lens, and is essential 
for lens and nasal-placode specification from surface 
ectoderm [55,56°]. 

Pax proteins are thus crucial regulators of organogenesis in 
thymus, kidney, thyroid, pancreas and eye. 

Pax genes in cell differentiation 
Analysis of undulated mice demonstrates that Pax1 
is essential for the condensation of the mesenchymal 
sclerotome cells and for the initiation of chondrogenesis 
[57]. The  effect of Paxl on sclerotome differentiation is 
regulated by the notochord via secretion of Shh [58,59°]. 
Inactivation by gene targeting demonstrates that Pax5 is 
essential for early B-cell differentiation [35]. The  limb 
muscles, whose precursors express Pax3, are specifically 
disturbed in splotch mice [42]. Additionally, neural-crest 
derivatives, such as Schwann cells or melanocytes, are also 
affected in splotch mice [60-62]. In vitro experiments ind- 
icate that Pax3 is exclusively expressed in differentiating 
and nonmyelinating Schwann cells (see [63]). Accordingly, 
Pax3 in involved in the migration, differentiation and 
possibly the proliferation of the neural-crest cells and 
myoblasts. Also, Pax7 has been shown to play a role in 
cephalic neural crest specification, differentiation and/or 
proliferation [44"]. 

Pax genes, cell proliferation and oncogenesis 
Overexpression of Pax genes can transform fibroblasts 
into tumours in nude mice [18]. Similarly, the expression 
of PAX2 and the paralogous gene PAX8 are abnormally 
upregulated in Wilm's tumour, a paediatric renal carcinoma 
of mesenchymal origin [64,65]. 

Translocations of human PAX3 or PAX7 result in the 
expression of a PAX-forkhead fusion protein carrying 
the intact DNA-binding domains of the PAX3 or PAX7 
molecules that are probably responsible for the gener- 
ation of rhabdomyosarcoma [17,66]. In the case of the 
PAX3-forkhead fusion, the molecule produced is a more 
efficient transcription factor than PAX3 itself and would 
be expressed under the normal PAX3 promoter [67]. It has 
not, however, been directly demonstrated that the fusion 
protein is driven by the PAX promoter. 

Deregulation of PAX5 expression has been reported 
in humans in malignant astrocytomas [68] and medul- 
loblastomas [69]. In addition, the Pax5 promoter is 
modified in large-cell lymphomas by insertion of the 
potent E~t enhancer of the IgH gene [70]. It is not 
clear how Pax5 is acting in these tumours but it may 
be involved in regulating cell proliferation, as in vitro 
experiments indicate that Pax5 may regulate proliferation 
in B cells [71]. 

Thus, the overexpression of Pax genes in tissues in which 
they are normally expressed may lead to tumorigenesis, 
suggesting that doses of Pax proteins are critical for their 
normal function. 
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Pax protein target genes 
Little is known about Pax target genes. However, in 
vitro protein-DNA binding assays and in vivo expression 
analysis indicate that a 1.0 kilobase fragment of the En2 
enhancer contains binding sites for Pax2, Pax5 and Pax8 
[72"]. Mutation of these binding sites disrupts initiation 
and maintenance of expression of the [3-galactosidase 
reporter gene in the midbrain-hindbrain boundary of 
transgenic mice [72"]. 

Pax3 and the tyrosine kinase receptor for hepatocyte 
growth factor/scatter factor that is encoded by the c-met 
proto-oncogene are expressed in the lateral dermomyo- 
tome, that is, the progenitors of limb muscle [73]. Splotch 
mice display defects in neural-crest derivatives, failure 
of neural- tube closure and lack of l imb muscles [8,9,42]. 
Splotch and c-met-l- mice exhibit  the same phenotype in 
the limb. Furthermore,  c-met expression is greatly reduced 
in the dermomyotome of  splotch embryos. In addition, Pax3 
directly activates c-met expression by binding to the c-met 
promoter, thus demonstrat ing that c-met is a target gene of 
Pax3 [74",75]. 
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