




boundaries (Fig. 2).
The only homeobox gene known to be expressed during the

preimplantation phase is Oct-4, a transactivating transcription factor
belonging to the POU family (35). Its gene products were detected
by RNA analysis in situ and gel shift assays in the cell lineage
consisting of the oocyte, inner cell mass, primordial germ cells of
developing testes and ovaries, and female germ cells (35). Oct-4
gene products are, however, not detectable in sperm. Shortly after
gastrulation Oct-4 is transcribed throughout the neuroectoderm,
but by day 8.5 is restricted to primordial germ cells. It is possible
that Oct-4 may act at the beginning of a cascade of control events.
The Evx-I gene is expressed immediately after gastrulation,

beginning on day 7 of gestation. RNA can be detected at the
posterior end ofthe embryo within the primitive ectoderm, and later
in mesoderm and neuroectoderm as well (27). After neurulation, in a
second phase of expression, Evx- 1 transcripts are found along the
length of the neural tube posterior to the rhombencephalic isthmus,
as are Pax 2 and Pax 3 transcripts. Pax 3 RNA, however, is also
found further rostral, in the midbrain. A more specific pattern is
observed in cross-sections of the neural tube, where different zones
of the neuroepithelium or mantle layer are labeled by Pax 2, Pax 3,
and Evx-I probes (27, 31). Specific states of differentiation and
proliferation during neurogenesis seem to be marked by these genes.
A feature peculiar to the paired box gene Pax 1 is the absence of

transcription in the developing neuroectoderm, the major expres-
sion domain being the anlagen of the intervertebral discs (12). Like
the other Pax genes, however, Pax 1 is expressed along the complete
axis.
An En-I expression domain at day 12.5 ofgestation extends from

the midbrain down the entire spinal cord. However, at earlier stages,
the En-i expression more closely resembles the restricted pattern of
En-2, in that it is expressed in a band around the midbrain-
hindbrain junction (26). Both Hox-2.9 and the zinc finger gene
Krox-20 have restricted expression domains in the segmented
rhombencephalon (Fig. 2), the Hox-2.9 domain in rhombomere 4

being flanked by the two Krox-20 domains in rhombomeres 3 and 5
(37, 38). As with En-i, Hox-2.9 RNA is also found in later stages in
more posterior regions of the neural tube (37).
The expression patterns ofmost of the Hox genes seem to follow

similar principles. They typically begin to be expressed during early
gastrulation, when the first mesoderm cells leave the primitive streak
(day 7.5 to 8.5 of gestation). Most Hox genes are expressed in the
mid-gestation phase (day 9 to 12), a time when organogenesis
prevails (39). A characteristic expression domain is the neural tube,
the only exception being Cdx-1 (28). In addition, most genes are
also expressed in the somites and sclerotomes. A relatively sharp
anterior border of expression and a less well-defined posterior
boundary are typical in ectoderm and mesoderm. Thus, different
overlapping regions along the anteroposterior axis are characterized
by different transcribed sets of Hox genes (Fig. 2).
The generation of such expression patterns has been studied in

transgenic mice (40, 41). A detailed study of the dynamics of the
expression was carried out with constructs representing fusions
between Hox promoter sequences and a reporter ,B-galactosidase
gene (Hox-1.1-lacZ) (41). The transgene is initially (day 7.5 to 8)
expressed in the allantois, subsequently in neuroectoderm, and later
also in mesoderm. The anterior boundaries of expression are
established very early. In situ analyses indicate that patterns of
expression may follow a general principle in that boundaries ofHox
expression that extend more anteriorly in the mesoderm seem to
reflect earlier initiation and cessation of expression. Thus, for
example, the period of transcription of the very anteriorly expressed
genes Hox-1.6 and Hox-2.9 is earlier than, for example, that of
Hox-2.5, and Hox-1.6 and Hox-2.9 RNAs are no longer detectable
at later stages (day 12) (42).
The linear order of the clustered Hox genes along the chromo-

some correlates with the spatial order of their anterior borders of
expression (Fig. 2) (24). The more 5' a gene lies, the more posterior
its boundary is located. The only exceptions seem to be the most 3'-
located genes Hox-1.6 and Hox-2.9. This rule also holds for the

Metameric nlits
rhombomeres cervical thoracic

2 3 4 5 6 7 8 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 10 11
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Neural tube

En-2
En-l
IPax3
IPax2
IEvx I
Krox-20
Hox-2.9
Hox-2.8
IHox-2.7
IHox-2.6
Hox-2.1
Hox-2.2

iHox-2.3
IHox-2.4
IHox-2.S

Hox-1.6 Fig. 2. Anterior expression boundaries in the
Hox-1.S neuroectoderm. The indicated anterior borders

IHox-1 .4 have not been obtained at the same embryological
IHox-1.2 stage in each study (24-27, 31, 37-39, 41, 43).
Hox-1.1 However, they reflect in principle the boundaries

characterizing a gene at its major expression time
Hox-3.3 (usually day 12.5 of gestation, except Hox-1.6
Hox-3.1 and Hox-2.9). Assignment to specific rhombo-

meres (day 9.5) has only been obtained for Hox-2
Hox-4.2 genes and Krox-20 (37, 38). Metameric units are
Hox-4.4 given as the levels of prevertebrae on day 12.5 or
Hox-4.S as rhombomeres on day 9.5.
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Drosophila genes after alignment of the clusters. Posterior body
regions are specified by 5' genes like abdominal B, and 3' genes like
labial specify anterior parts (9). Anterior borders of the paralogous
Hox-1.4, -2.6, and -5.1 genes have been demonstrated to be almost
identical (43). In a different group, consisting of the paralogous
Hox-1.7, -2.5, -3.2, and -5.2 genes, however, quite divergent
boundaries have been observed (44).
A characteristic of Hox and Pax 1 expression patterns is their

transcription in segmented tissues such as the prevertebrae or the
rhombomeres. In the midgestation mouse embryo, the paraxial
mesoderm is the most obviously segmented structure. The initial
metameric unit is the somite, which differentiates into sclerotome
and dermomyotome, then forms the vertebrae, dermis, and muscles.
In situ analysis of many Hox RNAs has demonstrated segmental
expression of representatives of each of the four Hox clusters in the
mesoderm-derived somites and sclerotomes (39). Hox RNA is
always detected several metameric units more caudal in mesoderm
than in ectoderm derivatives (39).
At day 9.5 of gestation, segmentation can also be detected in the

neuroectoderm, where the developing hindbrain is segmented into
eight rhombomeres. The anterior expression borders of the five
Hox-2 genes from the 3' end of the cluster fall on rhombomere
boundaries, while the other four Hox-2 genes have borders in the
neural tube, where no metameric units are detectable (37).
Hox genes can be induced with gene-specific kinetics by retinoic

acid (RA) in teratocarcinoma cells, either transcriptionally or post-
transcriptionally (45). The correlation of the position of a gene in
the cluster with a specific order of the expression patterns has been
demonstrated for the human Hox-2 genes in the teratocarcinoma
cell line NT2 (46). The Hox-2 gene located most 3' responds to low
concentrations of RAA, while increasingly higher concentrations are
needed to turn on successively more 5' positioned genes. At a given
concentration of RA, the 3' genes are induced very rapidly, while
RNAs from genes positioned successively more 5' appeared after a
few days of treatment. This slower rate of onset for the 5' genes
raises questions about the primary events preceding Hox gene
activation. Growth factors such as FGF and TGF-P2 and their
respective receptors may be involved in the tempered control. From
studies in Xenopus laevis it is known that these growth factors are
involved in mesoderm induction, which is accompanied by activa-
tion of homeobox genes (15, 47). Genes involved in the transmit-
tance of signals from cell to cell may represent an earlier phase in a
hierarchical cascade regulating development than the nuclear tran-
scriptional regulators.

It is striking that the correlation between expression domains and
locations of a Hox gene in the cluster can also be followed in a small
morphogenetic field, the developing limb. The expression of Hox-
4.2, -4.4, -4.5, -4.6, and -4.7 have been compared in the developing
limb bud, a tissue derived from lateral mesoderm (48). A dynamic,
temporally restricted pattem of expression was observed in the
posterior limb area, where RNA from 3' genes appeared earlier and
more proximal, and 5' genes later and more distal. Among other
genes expressed in the limb are Hox-1.1 and Hox-7 (29). The only
Hox gene product found predominantly in the anterior zone of the
limb bud is the murine equivalent of Hox-3.3, which was studied in
the mouse limb with antibodies to the Xenopus protein (49). The
expression ofHox genes can also be correlated with other functional
parameters, such as the ability of retinoic acid to act as a potential
morphogen in the limb bud (50). Retinoic acid can mimic the
activity of the zone of polarizing activity, which generates the
correct positional information for limb formation by secreting a
diffusible morphogen. Thus, the close connection between RA and
Hox gene expression is now evident from in vitro and in vivo
systems. The role of morphogens in the regulation of development

will be a major focus of future research.
The expression of many Hox and Pax genes is not restricted to

embryonic central nervous system and prevertebrae. Other expres-
sion domains include the developing kidney (Hox-l.1, -2.3, -1.3, -
2.1, Cdx-l, Pax 2), the lung (Hox-1.3, -2.1), testes (Hox-1.4),
intestine (Hox-1.4 and -1.6), thymus, sternum (Pax 1), and germ
cells (Oct-4) (12, 28, 31, 35, 39). The significance ofthese expression
sites remains unclear, and more precise analyses of expression
including antibody and whole-mount in situ techniques are manda-
tory.
The interpretation of complex expression patterns, while difficult,

can sometimes be facilitated by the study of perturbations of the
normal paths of development. Historically, the amphibian Xenopus
and the chick have been used as experimental systems accessible for
embryonic manipulations, whereas rodents were preferred for tera-
tologic studies. Today, classical experiments are being repeated to
analyze the behavior of homeobox genes in such defined systems.

Reversed Genetics
How can the developmental functions of the growing number of

murine candidate genes be determined? Initial steps are definition of
the murine gene products on the basis of cDNAs, determination of
the chromosomal localization, and establishment of expression
patterns. Often, important aspects of the homologous gene in other
species are already known or can be obtained, as genetics has been
intensively studied in Drosophila and embryological aspects in Xeno-
pus. Thus it was obvious from the beginning that many of the Hox,
Pax, and POU genes encode DNA binding proteins, with helix-
turn-helix domains (10). As predicted from the extreme conserva-
tion of the homeodomain recognition helix, even such diverse
proteins as engrailed and evenskipped bind to very similar sequences all
ofwhich contain a core sequence ofATTA. What structural features
are required to achieve further specificities remain to be determined
(10, 51).

Several known transcription factors turned out to be encoded by
homeobox genes. This was taken as supportive evidence that, in
general, a function of homeodomain proteins is to modulate
transcription. Activation or repression of transcription has been
demonstrated by cotransfection of reporter and expression vectors
for Drosophila homeobox genes and for octamer factor genes (10,
33), and may be the same for murine Hox and Pax genes. The
establishment of such assays will facilitate study of molecular
function, including mutational analyses, analysis of cooperating
factors, and identification of target genes.
To understand the developmental function of a gene, it is

necessary to look at the whole embryo. A genetic analysis studying
the effects of absence (loss of function) or misregulation (gain of
function) of a gene is required.
Of the murine genes mentioned above, only the Pax 1 gene could

be correlated with a known developmental mutant (52). Pax 1 is an
exception in that it lacks a homeodomain and is not expressed in
neuroectoderm. Its main expression domain at day 12 of gestation
includes the intervertebral discs, the sternum, and the thymus (12).
The chromosomal location of Pax 1 is very close to the position of
the skeletal mutant undulated. These mice suffer from pathological
development of intervertebral discs, which is visible as a kinky tail in
homozygotes. With the use of restriction length polymorphisms,
cloning by the polymerase chain reaction, and sequencing, a point
mutation was demonstrated in the Pax 1 paired-box specific for
undulated mice (52). Prooffor Pax 1 mutations being responsible for
the undulated phenotype was recently obtained from two indepen-
dent allelic mutants (53). All three undulated mutants show abnor-
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malities in the major expression domain of the Pax 1 gene. This
allelic series of Pax 1 mutants will be ideal for the elucidation of the
role of Pax 1 during sclerotome differentiation.
Although each newly mapped gene has to be tested for the

availability of a mutant, the matching pairs are not likely to be
found. Introduction ofmanipulated genes into the germ line ofmice
is a way to reverse genetics and generate a mutant for a particular
gene. Numerous transgenic mice have been described that bear
random integrations of transgenes in their genome. Expression is
dependent on site of integration, choice of promoter or enhancer,
and presence of regulatory signals, which may lie unrecognized in
untranslated 5' and 3' regions, introns, or coding sequences.
Because of this complexity, specific regulation, which should opti-
mally be inducible at a desired time point, is not readily obtainable
for most transgene expression systems.

Transgenic mice have been used to generate gain-of-function
mutants for the Hox- 1.4 and the Hox- 1.1 genes. The Hox- 1.4 gene
under its own promoter was modified by exchanging the 3'
untranslated region for SV40 viral sequences (54). The rationale was
to stabilize the message and thus achieve overexpression in tissues
where the Hox-1.4 promoter is active. These altered mice had a
functional stenosis of the colon, a disease known as megacolon. The
cause is improper innervation ofthe colon, probably due to the lack
of ganglia of the enteric plexi responsible for the peristaltic activity.
These ganglia are derivatives of the neural crest, which may be the
site of interference of the transgene with proper development.
However, further study will be necessary to establish the function of
Hox-1.4, as it is also expressed in the gut mesenchyme.
An expression vector consisting of the ,-actin promoter linked to

genomic Hox- 1.1 sequences was used to generate a Hox- 1.1 gain of
function mutant (55). As predicted, the ubiquitously active actin
promoter directed expression of Hox- 1.1 in practically all tissues,
albeit at relatively low levels. The consequences of this expression are
lethal, with transgenic mice surviving only shortly after birth. Mice
were born with a consistent phenotype, open eyelids, malformed
external ears, and cleft secondary palate. The cause ofthese craniofa-
cial abnormalities was tentatively assigned to disruptive interferences
with programs directing cranial neural crest cells. The relevant
neural crest cells are all derived from a narrow region of the crest at
the level of rhombomeres 2 and 3, from which cells migrate
predominantly to the first branchial arch. A similar craniofacial
phenotype results from teratological doses of RA, again an indica-
tion of the close connection of the putative morphogen with a
developmental control gene.
More recently, variations in mesodermal derivatives were ob-

served in Hox- 1.1 transgenics (56). In normal mice the first cervical
vertebra (atlas) contains no vertebral body, while the second
vertebra (axis) possesses an additional ossification centre (dens axis).
Transgenic atlas and axis each possess one vertebral body, which
makes them similar to more posterior cervical vertebrae. Moreover
these mice have an additional intervertebral disc and an additional
vertebra (proatlas) at the cranio-cervical transition. The cause of
these variations probably is incorrect programming during somite
differentiation and can be traced back to the postimplantation phase
around day 9 of gestation, a timing similar to that postulated for the
Hox- 1.1 transgene effect on the ectoderm. Both in the neuroecto-
derm and in the somitic mesoderm the abnormalities occur anterior
of the normal boundaries of Hox- 1.1 expression. The vertebral
variations resemble posterior transformations, which according to
the model of E. B. Lewis are predicted for a gain-of-function mutant
of a homeotic gene (57). In conclusion, reverse genetics has revealed
some intrinsic capacities of Hox- 1.1 for regulatory control func-
tions, which may be defined in future experiments on the embryonic
level.

378

A procedure to produce targeted loss-of-function mouse mutants
has recently been elaborated and the key steps have been demon-
strated successfully (58). A sequence is inserted into a target gene by
homologous recombination in embryonic stem cells (ES cells),
thereby deleting the functional information. After isolating the
mutated ES cells with the desired recombination, a few cells are
injected into blastocysts and contribute to the generation of a
chimaeric mouse. If they also contribute to the germ line, heterozy-
gous and homozygous mice can be bred. A growing number of
genes have been inactivated in ES cells by such approaches, includ-
ing En-2, Hox-1.1, and other genes of the Hox clusters (59).
Recently, transmission through the germ line was reported for
inactivating mutations of the HPRT-gene, the protooncogene c-abl,
the 32-microglobulin, and the En-2 genes (60).
The specificity of mutations generated by reverse genetics is

technically and conceptually still limited. Severe mutations may be
lethal, and loss-of-function mutants may give information on the
first vital function only. On the other hand the duplication of genes
may also provide redundant genetic material, which may substitute
for an inactivated copy. It may turn out, therefore, that quite
sophisticated mutations have to be introduced in order to appreciate
the tremendous possibilities of this approach.

Conclusion
We have described structures, expression patterns, and functional

aspects of murine Pax, Hox, and POU genes. Extensive parallels
between Drosophila and mouse genes indicate that the same basic
genetic principles apply to these diverse species. In both organisms,
the definition of the rostrocaudal axis is tightly connected with
segmentation. While in insects this is obvious throughout life, in
mammals it is most evident in embryonic stages. Early in develop-
ment, segmentation in the mammalian head is dominated by the
neuroectoderm. The rhombomeric divisions of the neural tube
correlate with the segmented anatomy ofthe branchial arches. In the
trunk, segmentation is overt only in the paraxial mesoderm, while
the ectodermal spinal cord is not segmented. In higher vertebrates
the formation oflimbs from unsegmented lateral mesoderm requires
the definition of secondary axes after the major embryonic decisions
along the rostrocaudal axis of the body have been carried out.
The role of the mammalian Pax, Hox, and POU genes in these

processes is still not entirely known. Positional information along
the rostrocaudal as well as the limb axes seems to be provided by
morphogens like retinoic acid and growth factors. The zone of
polarizing activity at the posterior limb margin has been discussed as
a source area, from which a morphogen gradient is established (48).
Developmental control genes apparently interpret such information,
as indicated by their overlapping expression patterns along the
anteroposterior axis and their response to morphogens in model
systems (45-50). Some genes could be involved in the initial
establishment of the axes which may include the generation of
segments, while others could specify segment or cell identities.
Inductive interactions, possibly homeogenetic inductions across
germ layers, may further be involved in the definition of body
regions (61). Cell fates and programs may finally be specified by the
combination of developmental control proteins present in the
nucleus. Expansion from one Hox cluster to four by duplication
may be an evolutionary strategy required in order to achieve the
complexity levels of higher vertebrates.
Undoubtedly more members of more gene families will be

isolated. The study oftheir molecular function will include biochem-
ical techniques and transgenic mice. Improvement ofmouse embryo
culture will allow the application of refined manipulative method-
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ology, and study of zebrafish genetics will help close the gap
between insects and mammals. Chemical approaches as well as the
described techniques of reversed genetics in transgenic animals
should increase the number of available mouse mutants. It seems
within reach that the knowledge of "molecular functions" and
"developmental functions" will merge into an understanding of the
genetic networks, hierachies, or programs directing embryonic
development in higher vertebrates.
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