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ABSTRACT 

This paper presents the first application of polynomial model-

ing as a means for validating phonological pitch accent labels 

to German data. It is compared to traditional phonetic analysis 

(measuring minima, maxima, alignment). The traditional 

method fares better in classification, but results are compara-

ble in statistical accent pair testing. Robustness tests show that 

pitch correction is necessary in both cases. The approaches are 

discussed in terms of their practicability, applicability to other 

domains of research and interpretability of their results. 

1 Introduction 

In intonation research, we are interested in the types of accents 

of a given language, or in a certain linguistic context. For 

many languages, descriptions of intonational grammars (e.g., 

in the auto-segmental metrical framework) have been pro-

posed, and are widely used in the research community. The 

standard way of annotating intonation data is to label manually 

pitch tracks according to pre-specified labeling guidelines 

(e.g., ToBI, GToBI). However, it often remains unclear to 

what extent these labels are empirically valid. The standard 

procedure of multiple labelers can test their coding reliability, 

yet it cannot provide support for the labels’ validity. The ques-

tion is whether the assumed categories do actually constitute 

distinct classes. Can the theoretically postulated labels be 

clearly connected to measurable properties of the speech sig-

nal? 

There might be more phonetic classes than phonological ones. 

We might find seven different distinct accent types, and that 

two or more of those are perceptually equivalent for speakers 

of that language. What should not be the case, however, is that 

researchers postulate accent classes for which we cannot find 

corroborative acoustic or perceptual evidence. 

One way to validate labels is to take a number of phonetic 

measures (like f0 excursion or alignment of peaks and valleys 

with the segmental string) and to test whether the assumed 

phonological categories differ from each other in these meas-

ures (e.g., [6]). Problems arise where pitch events like turning 

points cannot be unambiguously located because of microper-

turbations due to voiceless phonemes, for example. Here la-

belers have to make decisions, which are sometimes arbitrary, 

of where to locate the turning points. 

A different approach is to model intonation contours mathe-

matically, using polynomials (e.g., [1, 5, 7]). [7] used polyno-

mials to describe entire intonational phrases, while in this 

study I am interested in individual pitch accents. Therefore, I 

follow the approach used by [5], where third order orthogonal 

polynomials (Fig.1) are used to model pitch accents. 

Statistical analyses showed that the majority of the hand-

labeled accent types differed significantly from each other in 

at least one coefficient. The authors conclude that polynomial 

modeling can provide intonational phonologists with a tool to 

empirically test linguistic descriptions of intonation (p.299). 

In the present study, I use a corpus of German data to compare 

the two approaches. For reasons of brevity, I will refer to the 

first-mentioned approach as “LH” (low-high), and to the poly-

nomial approach as “PN”. I test how useful these methods are 

in validating phonological labels. 

 

 
Figure 1: Legendre polynomials L0-L3 (from [5], p. 288). 

 

At the same time, I evaluate their practicability, and test how 

robust they are when faced with only minimally pre-processed 

data. Thirdly, I discuss the two approaches in terms of the 

interpretability of their results. Finally, I consider their poten-

tial for intonation research in other domains of linguistic re-

search. It would be desirable if these methods were also to 

provide us with a method to detect accent classes in produc-

tion data more objectively and efficiently.  

I first describe the procedure of determining the parameters for 

modeling f0 for both methods (section 3). In section 4, I use 

these parameters in classification trees to predict phonological 

(GToBI) labels, and perform statistical analyses to see whether 

the parameters distinguish relevant dimensions for categoriza-

tion. In section 5, I discuss the advantages and problems of 

both models in more detail. 

2 Data 

The data consisted of 135 utterances, spoken by 31 adult na-

tive speakers of German (6 male, 25 female). The recordings 

were made in an unechoic chamber, using a condenser micro-

phone (Audio Technica AT4033A) and a DAT recorder (Tas-

cam DA-45HR) at a sampling rate of 44 kHz (16 bit format). 

About half of the utterances (63) were spontaneous produc-

tions from an elicitation task ([6]), the other half (72) were 

read-out sentences. The analyzed target words were all disyl-

labic, mainly sonorant words with stress on the first syllable 

(e.g., Biene (['bi:n��] ‘bee’). I only chose words that occurred 

intonation-phrase (IP-) finally (presence of a boundary tone 

and a pause of at least 25 ms). 

3 Representation of accents 

3.1 Pre-processing and phonological annotation 

The data were annotated and analyzed using Praat ([3]). For 

both methods, the IP was first segmented at the syllable level. 
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For one condition (section 4.1.1), the pitch tracks were manu-

ally corrected for octave errors. To test the robustness of the 

two models (section 4.1.2), I also kept a set of uncorrected 

pitch files. In the next step, intonation of the target words was 

labeled following GToBI guidelines ([4]).  

In order to be able to normalize for differences in f0, I calcu-

lated each speaker’s mean by taking the average f0 of the first 

unstressed syllables of each utterance. 

3.2 LH-method 

The onset and offset of the stressed syllable (SS) were marked. 

Then, the absolute position and value of local f0 maximum 

(max) and minimum (min) were determined manually. The 

domain in which these landmarks were identified consisted of 

the SS, the preceding syllable (PRE-S) and the syllable fol-

lowing it (POST-S). Note that for H+!H*, the max was taken 

to be the high on PRE-S, while min was set at the peak in the 

SS, if there was a clear ‘bump’. If not, the middle of the SS 

was marked. I then normalized all f0 values by dividing them 

by the speaker mean. The f0 excursion was calculated as the 

absolute difference between the minimum and the maximum. 

Alignment values were calculated relative to the duration of 

the SS. The parameters that were used to describe a given 

intonation contour were: 

• Normalized f0 maximum (NORMMAX) 

• Normalized f0 minimum (NORMMIN) 

• Excursion (absolute value of norm. f0 maxi-

mum – norm. f0 minimum, in Hz, EXC) 

• Relative position of f0 maximum (POSMAX) 

• Relative position of f0 minimum (POSMIN) 

3.3 PN-method 

To ensure comparability, the procedure was kept similar to the 

one described in [5], but simplified in certain aspects, in par-

ticular weighting. Like in [5], my model was specified by a set 

of coefficients, ci, that multiply the different Legendre poly-

nomials before they are added together: 
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F0 was measured in steps of 5ms. Before fitting the data, I 

applied two normalization procedures: All f0 values were di-

vided by the speaker mean f0, and the time axis of the analysis 

domain (voiced region, see specifications below) was shifted 

and scaled to values between -1 and 1, which is a prerequisite 

for modeling using Legendre polynomials. 

For the estimation of the coefficients of the Legendre polyno-

mials that best describe a given intonation contour, I used 

Polyfit, a customized computer program written in C++ ([8]). 

The program reads in normalized f0 values and a weighting 

parameter (described below) and calculates those Legendre 

coefficients that minimize the difference between the pre-

dicted polynomial and the original pitch contour as estimated 

by Praat’s pitch tracking algorithm. The quantity that is mini-

mized is a chi-square related merit function:  
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where wi is a weighting quantity indicating the relative contri-

bution of data point i to the merit function. The program uses a 

well-known General Linear Least Squares algorithm based on 

normal equations and Gauss-Jordan elimination, and is de-

scribed in detail in [9]. 

The weighting parameter w combines intensity and a periodic-

ity measure (harmonics-to-noise ratio, HNR) to give more 

weight to loud and sonorant regions. A higher w for a certain 

time window forces the algorithm to model f0 values in this 

region with more precision. I determined intensity and HNR 

(in dB) at each point at which f0 was measured. Intensity was 

normalized by dividing each value by the mean intensity of 

the voiced parts of the entire utterance. Unlike intensity, HNR 

values usually cover a wider range of values and can also be 

negative, in cases where there is more noise than harmonics in 

the signal. I normalized the HNR measures using a sigmoid 

function, which transforms all possible values (from � to -�) 

into values from 0 to 1. Hence negative HNR values receive a 

low score near 0, whereas positive ones receive a score closer 

to 1. I calculated the parameter k using the criterion that a 

value of 15dB (roughly equal to 97% energy from the har-

monic part, cf. Praat manual on “harmonicity”) receives an H-

score of 0.75. The resulting coefficient k is 0.02453. 
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The weighting parameter w used in the fitting program was the 

product of normalized intensity (�) and the standardized HNR 

value (H): 

  Hw �= �  

 
As with the LH-method, the domain for pitch measurements 

consisted of three syllables: PRE-S, SS and POST-S. How-

ever, unvoiced regions (like devoiced vowels) at the beginning 

or the end of the domain can be problematic. When the pro-

gram determines the coefficients to model the intonation con-

tour, it mainly fits the polynomials to the voiced parts while 

the polynomials can take any form for unvoiced regions. This 

is not harmful for voiceless regions in the middle of a voiced 

region, assuming that the f0 contour constitutes a smooth func-

tion. However, for voiceless regions before pitch onset or after 

pitch offset, the fitting becomes unpredictable. Note that 

weighting alone cannot solve this problem, as a very low w 

would still ‘allow’ the program to fit almost any curve. To 

avoid this problem, I set the domain to start at the first voiced 

frame within the original three-syllable domain, and to end at 

the last one. 

4 Analysis and results 

4.1 Classification 

4.1.1 Corrected pitch 

From both methods I obtained a data set with 135 data points 

and four parameters each: EXC, POSMAX, POSMIN and 

NORMMAX in the case of the LH-model, and the coefficients 

of the first four Legendre polynomials, L0, L1, L2 and L3 for 

PN-model. For reasons of clarity, I will refer to the four coef-

ficients as AVERAGE, SLOPE, PARABOLA and WAVE, 

following the naming convention used by [5]. 

I then investigated to what extent the class of a given data 

point (i.e., its phonological label) can be predicted from those 

parameters. Classification trees were built using the Recursive 

Partitioning and Regression Trees function in R ([10]) to pre-

dict GToBI labels (Fig. 2).  
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The resulting trees for both methods look very similar. Deac-

centuation, H+!H* and H* cluster together in the left major 

branches of the tree, while the rising accents L* and L*+H are 

found in the right-hand branch. The classification algorithm 

that uses the LH data needed three parameters (EXC, POS-

MAX, and POSMIN), for the PN-based algorithm two pa-

rameters (SLOPE and PARABOLA) suffice. 

The accent type H+L* cannot be predicted from the PN data 

set, but from the LH set, and two other accent types (which 

occur less than 7% of the cases) do not show up as terminal 

leaves in either tree (!H* and L+H*). Overall, the LH-based 

algorithm is more successful in predicting GToBI labels: On 

average, 71% of a given accent type was correctly classified 

by the LH-model, as compared to 62% for the PN-model. The 

mean classification error for the LH-model was 38%, while it 

was 47% for the PN-model. (This is because GToBI descrip-

tions are based on the LH-type analysis, see Discussion.) 

4.1.2 Uncorrected pitch 

I also tested how both models performed in classifying accents 

when they had to deal with uncorrected pitch. The same pro-

cedure was applied as before, but this time global min and 

max were marked automatically in the voiced region for the 

LH-analysis. This was to test the model in the worst-case sce-

nario (uncorrected pitch, automatic annotation). 

In the case of LH, the number of leaves was reduced from six 

to four; the accent types H+L* and L* could no longer be 

predicted. In contrast, the PN-model-based tree had now more 

terminal leaves (7) than in the pitch-corrected case (5), which 

was due to now three terminal nodes that predicted deaccentu-

ation (instead of one). The PN-model’s overall hit rate in clas-

sifying a given accent decreased from 64 to 53%, while the 

LH-model’s rate improved slightly from 71 to 73%. It should 

be borne in mind that fewer leaves increased the possibility of 

classifying an accent correctly merely by chance (25%). 
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Figure 2: Classification trees (pruned) for both methods, with 

stylized accent shapes. Numbers indicate the overall % of 

correct classification of the accent (first row) and the purity of 

the leaf (i.e., the proportion of that accent type; second row). 

4.2 Accent pair contrasts 

I also carried out statistical analyses with R ([10]) comparing 

all accents with each other, similar to [5]. Linear mixed effects 

(LME) models were built, using subject and word as crossed 

random factors (where applicable), and the three parameters 

that turned out to be relevant each as fixed factors. These were 

EXC, POSMAX and POSMIN in the LH-model, and SLOPE, 

PARABOLA and WAVE in the PN-model. The associated p-

values were obtained by Markov chain Monte Carlo sampling 

and adjusted using Holm’s correction for multiple compari-

sons. 

Figure 3 gives an overview of the differences. No differences 

were found between H* and L*, and between H* and H+L* in 

the PN-model. Neither model found any differences between 

L*, L*+H and L*+H. The PN-model found a significant dif-

ference between H* and L+H*, while this was not the case in 

the LH-model. 
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Figure 3: Matrix of differences found between accent types 

using LME-models. Black/striped indicates p<0.01, 

gray/gray-striped indicates p<0.05. 

5 Discussion 

Both methods delivered comparable results and appear suit-

able to empirically test linguistic descriptions of intonation, 

that is, accent type labels. By and large the models picked up 

most of the differences one would expect. 

It is not surprising that the LH-approach fared better in pre-

dicting the GToBI labels, as the data were labeled using LH-

model parameters implicitly as criteria. Still, the classification 

shows that the PN-method, too, yields data that can be used to 

automatically form sensible groupings of accents.
1
 The finding 

is interesting given that the PN-model worked with less ‘lin-

guistic’ information. Features like alignment (here operation-

alised as POSMIN, POSMAX) seem to be determined 

phonologically (see e.g., [2]), yet the lack of such information 

did not seem to impede the performance of the PN-model 

dramatically. The model’s failure to distinguish L* and H* in 

the accent contrasts remains puzzling, but this is not caused by 

the absence of alignment information. Another unexpected 

finding is that the LH-model did not find any differences be-

tween L*, L*+H and L+H*, three accent types for which 

POSMIN should be the discriminating feature [4]. 

I will now discuss the other aspects mentioned in the introduc-

tion in turn.  

                                                
1 Note that unlike [5], I also included deaccentuation in my data set. 

The results show that it is possible to characterize deaccentuation in 

terms of the PN-model 
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5.1 Robustness 

Both models’ success in predicting phonological labels suf-

fered from uncorrected pitch, though in different ways: The 

LH-model was not able to predict more than four accent types, 

while the PN-model’s overall accuracy was reduced. It should 

be pointed out that for the LH-method, I compared the best-

case scenario (hand-corrected pitch, manually labeled 

min/max) with the worst-case scenario (uncorrected pitch, 

automatic detection of min/max). Intermediate solutions (e.g., 

corrected pitch, manually set min/max) may offer an accept-

able trade-off between time invested and accuracy. For the 

PN-model, the use of corrected pitch tracks seems advisable. 

5.2 Practicability 

The LH-approach is straightforward and easy to apply. Pitch 

values and timing information for maxima and minima need to 

be extracted. However, the hand-correction of pitch and turn-

ing points is a time-consuming process, which often seems 

necessary (see 5.1). In the case of turning points in particular 

this process is not only slow, but also problematic, in that the 

labelers tacitly smooth out the pitch curve, thereby making the 

exact location of the minimum or maximum uncertain. Yet in 

my study it was above all the alignment of those points that 

was critical in the LH-approach for categorizing accents. 

This tedious task is not necessary in the PN-approach. Here, f0 

irregularities are smoothed out by the curve-fitting algorithm. 

Still, even though microperturbations have not to be taken into 

consideration, correcting octave errors improves classification 

success considerably, so that this step also seems necessary in 

this approach. Furthermore, the PN-method requires a custom-

ized program and scripts to calculate the weighting parameter, 

resources which may not be accessible to everyone. 

On the whole, the LH-approach takes more time for pre-

processing of the data, while the PN-approach is more costly 

in terms of “tool development” time. Once these tools are up 

and running, however, the PN-method can swiftly be applied 

to larger amounts of data. It remains a problem for both ap-

proaches that the same phonological category is often realized 

differently depending on the (phonetic) context. Therefore 

some a priori decisions, like the choice of the analysis domain, 

will have to be taken. 

5.3 Applicability 

Both methods can help validate postulated categories. How-

ever, not always are the underlying categories known. This is 

the case for example with learner’ speech (both first and sec-

ond language acquisition), or prosodically undescribed lan-

guages. The LH-approach may prove less useful here, as the 

acoustic measurements and segmental landmarks important 

for the prosodic system in question are largely unknown. One 

would have to label (and correct) a larger number of parame-

ters and see to what extent these can be used to form sensible 

groups of accents (e.g., by clustering). These choices need not 

be made when polynomial modeling is used. The dimensions 

that describe a contour mathematically are defined by the 

model. At the same time, potentially important linguistic in-

formation gets lost. However, in this study at least, this did not 

seem to be a problem. 

Another domain of application for the data is speech synthesis, 

both for commercial purposes and for the use in linguistic 

perception experiments. Here the PN-approach has an advan-

tage: An intonation curve can be fully reconstructed from the 

polynomial function. In order to do this from LH-data, one 

needs at least five measurements: POSMIN, POSMAX, EXC, 

NORMMAX (or NORMMIN), and pitch offset. 

5.4 Interpretability 

LH-parameters like excursion and relative position of min and 

max are easily visualized and understood. As explained in [5] 

(p. 289), the first coefficients of the PN-model can be linked 

directly to physical properties of the (pitch) curve. However, 

these are not expressed in the units well known to linguists, 

which may make their interpretation initially more difficult.  

6 Conclusion 

In this paper I have applied two different methods of validat-

ing phonological pitch accent type labels, labeling minima and 

maxima, as well as third order polynomials. 

Both in classification and in the pair-wise comparison, the 

standard model fares better compared to the polynomial 

model. From this point of view, the LH method is more useful 

to the researcher who wants to check that a given set of label-

ing criteria was applied appropriately. On the other hand, I 

have shown that the polynomial model avoids some of the 

pitfalls that come with the ‘traditional’ analysis, such as the 

location of minima and maxima. Polynomial fitting also seems 

to be more efficient when larger amounts of data are analyzed, 

because it relies less on annotation by hand. It may therefore 

also be useful for explorative analyses of prosodic data. 

The PN-method has only recently been introduced to the field 

of intonational phonology. My preliminary conclusion is that 

it can be a useful tool in this area, but more research will be 

needed to put it to the test. Future versions may increase so-

phistication by incorporating linguistic information and may 

turn out to be more powerful than the traditional method. 
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