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This paper explores the relationship between the acoustic duration of phonemic sequences and their
frequencies of occurrence. The data were obtained from large �sub�corpora of spontaneous speech
in Dutch, English, German, and Italian. Acoustic duration of an n-phone is shown to codetermine the
n-phone’s frequency of use, such that languages preferentially use diphones and triphones that are
neither very long nor very short. The observed distributions are well approximated by a theoretical
function that quantifies the concurrent action of the self-regulatory processes of minimization of
articulatory effort and minimization of perception effort.
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I. INTRODUCTION

Speech inherently unfolds in time and the acoustic du-
ration of speech units is one of the characteristics of speech
that is directly experienced by both speakers and listeners
�e.g., Ohala, 1996�. Research of the past decades has estab-
lished a large variety of phonological and prosodic factors
affecting acoustic duration of n-phones and syllables. For
instance, stressed syllables are realized longer than un-
stressed ones �e.g., Ladefoged, 1982� and words at the be-
ginning and the end of utterances show articulatory strength-
ening �e.g., Bell et al., 2003; Cambier-Langeveld, 2000;
Fougeron and Keating, 1997�. Furthermore, phonemes are
realized shorter the greater the number of syllables or seg-
ments in the word �Nooteboom, 1972�.

In addition, the variability in acoustic duration is code-
termined by the predictability of a speech unit given its pho-
nological, lexical, semantic, syntactic and discourse contexts
�e.g., Bard et al., 2000; Bolinger, 1963; Fowler and Housum,
1987; Jurafsky et al., 2001; Lieberman, 1963�. The more
predictable a phoneme, morpheme, syllable, or a word is in
its context, the less important the acoustic signal is for rec-
ognition of such a unit, and the shorter it is realized �e.g.,
Aylett and Turk, 2004, 2006; Van Son and Van Santen,
2005�. For example, function words are more likely to be
realized longer when they are unexpected, i.e., less predict-
able in the sentence �Bell et al., 2003�. Similarly, phonemes
that are important for word disambiguation and thus are less
predictable from the preceding phonemes are less reduced, as
indicated among others by their longer acoustic duration
�Van Son and Pols, 2003�.

Starting with Zipf �1929; 1935�, the frequency of occur-
rence of a speech unit has been considered as an important

codeterminer of its predictability and has been argued to en-
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ter into a negative �linear or nonlinear� relation with the de-
gree of articulatory complexity of that unit �cf. Pluymaekers
et al., 2005�. Since we consider acoustic duration as an ap-
proximation of articulatory complexity �see discussion be-
low�, Zipf’s �1935� approach can be reinterpreted such that
the frequency of a unit predicts its duration. Hence we label
this approach “frequency predicts duration” �FPD�.

The present paper explores an alternative view of the
relationship between acoustic duration and frequency of oc-
currence such that we consider frequency of use as a function
of acoustic duration and not vice versa. The advantages of
this approach, which we label “duration predicts frequency”
�DPF�, will be pointed out in the body of the paper.

The objects of this study are uniphones, and also larger
sequences of phones, i.e., diphones and triphones. Since ar-
ticulatory gestures typically stretch over the boundaries of
individual phones, larger phone sequences are more stable
units than uniphones and we may obtain more reliable results
for these longer speech units. Similar considerations have led
to the common use of diphones �or larger blocks of speech�
as basic units in automatic speech recognition �e.g., Richard-
son et al., 2003� and speech synthesis �e.g., O’Shaughnessy
et al., 1988�. We study n-phones in spontaneous speech, as it
is a more natural speech variety than, say, careful speech or
the speech production conditioned by experimental tasks.

We begin with reporting the consistent functional rela-
tionship between n-phone frequency and duration and show
that our approach yields a better approximation to empirical
data than Zipfian FPD models. Since acoustic duration is in
itself influenced by multiple factors, we then confirm that
this relationship also holds when effects of these predictive
factors are partialled out from our estimates of acoustic du-

ration.
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We studied n-phone frequencies in Dutch, English, Ger-
man, and Italian. The primary reason for selecting these lan-
guages was the availability of large �sub�corpora of sponta-
neous speech for those languages. Also, the languages
represent two language families, Germanic and Romance,
which allow for generalizability of the results. We note that
even though three of the languages we consider are Ger-
manic, they vary in the size of their phonemic inventories
�and thus in frequencies of individual phones�, as well as in
their phonologies �e.g., final devoicing in German and
Dutch, but not in English, which affects uniphone frequen-
cies in these languages�, as well as in their affixes and the
frequencies of these affixes, which affect the frequencies of
the n-phones �e.g., Baayen, 1994�.

In order to obtain a better understanding of the observed
cross-linguistic patterns, we model the relation between fre-
quency and acoustic duration of n-phones. We fit our data
with a model based on the interaction of the speaker’s ten-
dency to minimize articulatory effort �e.g., produce less clear
speech� and the listener’s tendency to minimize perception
effort �e.g., prefer clearer speech��Job and Altmann, 1985�.

II. METHODOLOGY

A. Corpora of spontaneous speech

The data for this study were obtained from four corpora
with extensive collections of spontaneous speech: The IFA
spoken language corpus of Dutch �IFA� �Van Son et al.,
2001�, the Buckeye speech corpus for American English,
version 1 �Buckeye� �Pitt et al., 2005�, modules Verbmobil-I
and -II of the Bavarian speech archive for German �BAS�
�Schiel et al., 1997�, and the spoken Italian varieties archive
for Italian �AVIP� �Scuola Normale Superiore di Pisa, 2001�;
see Table I for descriptions of these spontaneous speech
�sub�corpora. In these corpora, speakers were not forced to
use a very high or a very low speech rate, so we restrict our
findings to a “normal” self-paced range of speech rates.

The speech files of these corpora come with transcrip-
tions at the phone level. Moreover, these transcriptions pro-
vide temporal boundaries for each phone in the signal �i.e.,
phone-level aligned segmentation�. Except for the manually
aligned IFA corpus, all collections were labeled automati-
cally with subsequent manual verification of the alignment.

Our investigations assumed the segment inventories for
the four languages that formed the basis for the labeling con-
ventions used in the respective corpora. The only exception
was that we reclassified nasalized vowels in American Eng-
lish as oral vowels. This adjustment affected less than 0.5%

TABLE I. �Sub�corpora used for data collection.

Language Corpus Subco

Dutch IFA Spontaneous m
American English Buckeye Dialogues
German BAS German-Germ
Italian AVIP Dialogues betw
of the total number of phones in the Buckeye corpus.
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B. Variables

For each language, we calculated the frequency of oc-
currence of every uniphone in the respective corpus. This
measure, frequency, was considered as the dependent vari-
able. The main predictor of interest to us, duration, was es-
timated for each dataset as the average duration of the uni-
phone. The type of uniphone, vowel or consonant �type�,
served as a control variable. Each language was fitted with a
separate multiple regression model. We then extended our
survey to diphones and triphones, fitting one statistical model
to the diphones and one statistical model to the triphones in
every language.

We defined diphones �or triphones� as sequences of two
�or three� phones without an intervening pause, end of turn,
noise, laughter, a nonspeech sound, a phone marked as in-
comprehensible by the transcribers, or a segment extraneous
to the segment inventory of that language. Notably, in iden-
tifying the diphone or triphone sequences, we ignored word
or utterance boundaries. That is, we started from the first
diphone or triphone and moved through the whole corpus
shifting the sampling window one phone at a time. Thus, the
English word “cow” �ka*� in a corpus would give rise to
three uniphones ��k�, �a�, and �*��, two diphones ��ka� and
�a*�� and one triphone ��ka*��. This approach treats the
speech signal as a continuous stream, in which word seg-
mentation is not a given, but rather a task for the listener
�e.g., Cutler and Clifton, 1999�.

For the diphones and triphones, again, frequency was
the dependent variable, while the mean duration of the se-
quences, duration, was the key predictor. We also coded the
segments in the diphones as C �for consonant� or V �for
vowel�, which gave rise to four levels: CC, CV, VC, and VV.
The control variable type for triphones had eight levels.

III. RESULTS

In all analyses reported below, frequencies of occurrence
as well as durations were �natural� log transformed in order
to remove most of the skewness from the distributions. The
logged durations were subsequently normalized by subtract-
ing the minimum value of duration and dividing the differ-
ence by the maximum acoustic duration in the dataset: As a
result, acoustic durations ranged from 0 to 1.

A. Uniphones

For each of the four datasets with uniphones, we fitted a
stepwise multiple regression model with frequency as the
dependent variable. Data points that fell outside the range of

No.
of phonemes Hours Speakers

ogues 36 000 1 8
431 000 22 20

logues 1 976 000 54 1139
adults 28 000 0.6 22
rpus

onol

an dia
een
−2.0 to 2.0 units of standard deviation �SD� of duration or of
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frequency were excluded from the analysis prior to fitting the
models. After the initial fit, data points that had Cook’s dis-
tance �a measure of the effect of deleting a data point� ex-
ceeding 0.2 were removed and the models were refitted.

Table II �uniphones� summarizes the findings for the
uniphones in the four datasets. In the second column of this
table, the first number shows the total number of data points,
while the number in parentheses shows the number of data
points after removal of all outliers. The third and fourth col-
umns present the regression coefficients and p-values for du-
ration and the fifth and sixth presents F-values and p-values
for type, respectively. The last column in the table shows the
unique contribution of duration to the explained variance of
the model.

The predictivity of acoustic duration for the frequency
of the uniphones’ occurrences differs across languages.
Where such predictivity is statistically significant �English
and Italian�, our models replicate the findings by Zipf
�1935�: The articulatory complexity of a phoneme �approxi-
mated here as a phoneme’s acoustic duration� is inversely
related to its frequency of occurrence. That only two out of
the four languages demonstrate a significant correlation may
relate to the fact that the duration of a segment is codeter-
mined by the quality of its neighboring segments due to coar-
ticulation. We may therefore expect the diphones and triph-

TABLE II. Models of uniphone, diphone, and triphone frequencies. In colum
in parentheses show the numbers of data points remaining in the model after
durations, and the slopes for the first and the second coefficients of the restri
shows their p-values. Column “Type” presents the F-values for type and the
of duration to the explained variance of the model.

Language Count

Duration

��̂� p

Un
Dutch 37�33� −0.62 0.37
English 45�39� −2.01 �0.0001
German 40�37� −0.28 0.65
Italian 71�66� −1.67 0.01

Di
Dutch 1002�937� First: 1.34 0.004

Second: −2.71 �0.0001
English 1855�1763� First: 0.37 0.38

Second: −3.33 �0.0001
German 1390�1299� First: 4.54 �0.0001

Second: −8.37 �0.0001
Italian 939�851� First: 1.45 0.002

Second: −3.08 �0.0001

Tri
Dutch 6909�6212� First: 0.53 �0.0001

Second: −0.89 �0.0001
English 29804�26826� First: 1.16 �0.0001

Second: −2.01 �0.0001
German 18854�16944� First: 3.10 �0.0001

Second: −4.81 �0.0001
Italian 4425�4038� First: 0.89 �0.0001

Second: −1.58 �0.0001
ones to show more consistent correlations across languages.
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Throughout this paper we used a restricted cubic spline
with 3 knots �see, e.g., Harrell, 2001� to estimate nonlinear
relationships between duration and frequency. For the uni-
phones, we found none. Moreover, none of the models for
uniphones showed significant interactions between duration
and type.

B. Diphones

Multiple regression models were then fitted to the four
datasets of diphones. Data points that fell outside the range
of −2.0 to 2.0 units of SD of duration or of frequency were
again excluded from the analysis. For all data points, Cook’s
distance was less than 0.2. Table II �diphones� reports the
results of this model fitting.

The main variable of interest, duration, was a significant
nonlinear predictor of diphone frequency across all datasets.
In addition, type was significant. None of the models showed
significant interactions between these two predictors. Figures
1�a�–1�d� show the distributions of the frequencies of the
diphones over their durations in the four languages with ad-
dition of the polynomial regression lowess smoother lines
�Cleveland, 1979�.

Importantly, we find that in all datasets with diphones
�and in all regression models� the functional relation between

unt,” the first figure shows the total number of data points, while the figures
oval of outliers. Column “Duration” lists the regression slopes for uniphone
cubic spline for durations of diphones and triphones, while the next column
t column shows their p-values. Column �R2 shows the unique contribution

ype
alue� p R2

Residual
st. error D.f. �R2

es
0.02 0.89 0.0 0.92 30 0.0

18.56 �0.0001 0.41 0.59 36 0.38
3.72 0.06 0.06 0.88 34 0.0
0.81 0.37 0.11 1.78 63 0.09

es
47.72 �0.0001 0.15 1.22 931 0.03

112.99 �0.0001 0.19 1.57 1757 0.07

55.77 �0.0001 0.20 2.17 1293 0.06

16.87 �0.0001 0.09 1.25 845 0.05

es
47.46 �0.0001 0.06 0.57 6202 0.01

217.6 �0.0001 0.09 0.87 26816 0.04

76.62 �0.0001 0.08 1.48 16934 0.05

24.88 �0.0001 0.07 0.73 4028 0.03
n “Co
rem

cted
nex

T
�F-v

iphon

phon

phon
duration and frequency shows concave curves, rather than
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the monotonically decreasing curves predicted by Zipf’s
�1935� approach. The maxima of the curves are asymmetri-
cally shifted leftwards toward the shorter durations, in all
languages. In general, long and very short diphones are less
frequently used in the four languages than diphones from the
short-to-mid range of the durational spectrum.

The fact that the shortest diphones are not of a high
frequency hints at the sensitivity of speakers to the discrim-
inability of the speech signal: The shorter the duration, the
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FIG. 1. Distribution of the diphone
more effort is required for speech perception. At the same
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time, long diphones are disfavored, possibly since they may
take more effort to produce. We will return to this issue
below.

C. Triphones

Finally, we modeled for each of the four languages tri-
phone frequency as a function of acoustic duration and CV
type. Data points that fell outside the range of −2.0 to 2.0
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units of SD of duration or of frequency were excluded from
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the models. Cook’s distance was less than 0.2 for all data
points. Table II �triphones� reports the effects of the predic-
tors for frequency.

Duration was a significant predictor of triphone fre-
quency in all datasets as was type, without interactions. Fig-
ures 2�a�–2�d� plot the scatterplots for frequency and dura-
tion of triphones with addition of the polynomial regression
lowess smoother lines.

The nonlinear relations between frequency and duration
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FIG. 2. Distribution of the triphone
show concave curves for all four datasets with triphones. As
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with diphones, the inverse-U shape suggests that speakers
tend to avoid phonemic sequences that are either very long
or short. Again, this runs counter to the prediction one would
make on the basis of Zipf’s FPD approach �1935� that fre-
quency should decrease with duration.

IV. VALIDATION OF RESULTS AGAINST ZIPF „1935…

The relationship between the frequency of a speech unit
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and its acoustic duration can be explored from two view-
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points. In the DPF models that we presented above, acoustic
duration predicts frequency of occurrence. In the Zipfian
FPD models, the order is reversed: Acoustic duration is the
dependent variable, while frequency is considered as an in-
dependent variable.

To determine which of the two approaches yields better
approximation to the empirical data, we fitted two multiple
regression models �DPF and FPD based� to each of the 12
datasets described above. Each model contained only one
independent predictor, either frequency or duration, and each
correlation with the dependent variable was tested for sig-
nificant nonlinearities. If the predictors of both the DPF and
FPD models reached significance for a given dataset, we
identified the best performing model as the model explaining
the largest proportion of the variance, R2. The performances
of FPD and DPF models are mathematically identical only if
the dependent variable and the predictor show a linear rela-
tion.

As an example, Fig. 3 shows the results of the model
fitting to the dataset of German triphones. Figure 3�a� dis-
plays the scatterplot of duration as a function of frequency
�following the Zipfian FPD approach� and plots the linear
relation �R2=0.008� as well as the significantly stronger non-
linear relation �R2=0.012� between the two variables. Figure
3�b� swaps the axes in the scatterplot �following our DPF
account�, plotting frequency as a nonlinear function of dura-
tion. The amount of explained variance for this model is
0.04: It thus outperforms both the linear and the nonlinear
Zipfian approximations by at least a factor of 3.5.

In the Zipfian models �FPD�, frequency of occurrence
emerged as a significant linear predictor of acoustic duration
for English and Italian uniphones, and as a significant linear
or nonlinear predictor for the diphones and triphones of all
four languages. Similarly, in the corresponding DPF models,
duration reliably predicted frequency.

The DPF and FPD models performed identically for the
English and Italian uniphones, which is expected mathemati-
cally, given the linear relation between duration and fre-
quency in those two datasets. Crucially, however, for every
dataset with diphones or triphones, the amount of variance
explained by the FPD model with frequency of use as the
independent variable was significantly smaller than the

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

a. FPD models

Logged Frequency

N
or

m
al

iz
ed

D
ur

at
io

n

0.0 0.4 0.8

1
2

3
4

5
6

b. DPF model

Normalized Duration
Lo

gg
ed

F
re

qu
en

cy
FIG. 3. Function curves of linear and nonlinear FPD models �a� and of the
nonlinear DFP model �b� applied to German triphones.
amount explained by the corresponding DPF model, as es-
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tablished by the pairwise comparison of log likelihood ratios
of corresponding models. The average R2 value of the DPF
models was 2.6%, while the average R2 value of the FPD
models was 0.2%. DPF models retained their significant ad-
vantage over FPD models, when either log durations or log
frequencies were z transformed.

Moreover, for the datasets with Italian diphones, English
diphones, and German triphones the shape of the function of
the Zipfian FPD models is concave. In other words, the
shortest elements have the low-to-mid rather than the highest
frequency of occurrence. This finding is unexpected in the
Zipfian approach. We conclude that Zipf’s findings �1935�
cannot be extended from uniphones to diphones and triph-
ones and that models with the reverse direction of predictiv-
ity �DPF� give rise to qualitatively consistent results �e.g.,
similar shapes of regression curves� and explain variance in
the data better than Zipfian models.

V. CHECKING FOR ARTIFACTS IN THE DIPHONE AND
TRIPHONE FREQUENCY DISTRIBUTIONS

Our working assumptions and method of data collection
might have given rise to artifacts that produce frequency dis-
tribution patterns similar to the ones we observed for the
acoustic durations of the diphones and triphones in our
datasets. In this section we consider these potential artifacts
and demonstrate that none of them can �fully� account for the
observed functional relationship of acoustic duration and fre-
quency in the diphones and triphones.

A. Phonotactics

The phonotactics of a language contribute to the fre-
quencies of phonemes. In addition, since phone sequences
that violate phonotactic constraints have been shown to fa-
cilitate segmentation of continuous speech �e.g., McQueen,
1998�, “illegal” n-phones may also be realized longer than
legal ones so as to provide better perceptual cues. We set out
to validate whether the observed relations between acoustic
duration and frequency also hold once the language-specific
phonotactic wellformedness of diphones and triphones
within words is taken into account. For the diphones and
triphones in the Dutch, English, and German datasets we
established whether they occur within monomorphemic
words �using the CELEX lexical database �Baayen et al.,
1995�; we did not have access to a corpus of Italian carrying
the required information, so this language was left out of
consideration�. N-phones that occur within simplex words
were coded as “legal,” while the others were coded as “ille-
gal.” As expected, phonotactically illegal n-phones tended to
be longer and less frequent than phonotactically legal ones
�for each language, p�0.0001�. More importantly, the re-
gression analyses replicated the inverse-U concave curves of
frequency as a function of acoustic duration in all three lan-
guages for both the subset of phonotactically legal and the
subset of phonotactically illegal diphones and triphones. The
only exception was the English illegal diphones for which a
linear function with a negative slope was adequate. We con-
clude that the inverse-U shaped function predicting fre-

quency from duration is robust with regard to phonotactics.
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B. Predictors of acoustic duration

Research of the past decades has identified multiple fac-
tors that codetermine acoustic duration of n-phones. There is
a logical possibility then that the nonlinear relation between
acoustic duration and frequency of n-phones is, in fact, a
relation between a major predictor of an n-phone’s acoustic
duration �for instance, word frequency� and n-phone fre-
quency. To test this possibility, we fitted six multiple regres-
sion models to the acoustic durations �in milliseconds� of the
diphones and triphones in Dutch, English, and German. We
only considered n-phones that did not cross word or utter-
ance boundaries. All models included speaker as a random
effect to account for intersubject variability in speech rate as
well as the following fixed effects: log-transformed word fre-
quency, sum of mean durations of uniphones that constituted
the di- or triphone, position of an n-phone in the word and
the utterance �both with the levels “initial,” “internal,” and
“final”�; and mutual information of the uniphones in the
n-phone. The patterns of results were very similar across
languages and confirmed the known correlations of these
predictors with acoustic duration: n-phones are longer in
lower-frequency words, in the beginning and the end posi-
tions of both the word and the utterance, if the uniphones
they contained were longer, and if the mutual information of
these uniphones is larger �all p ’s�0.001�. We took the re-
siduals of these models as estimates of acoustic duration
from which the effects of these major predictors are re-
gressed out. For all six datasets, we plotted diphone or triph-
one frequency against the means of those residuals for each
n-phone. All resulting plots showed the inverse-U shaped
functional relation between the two variables �see Fig. 4�a�

FIG. 4. English diphone frequency as a function of �a� residual mean di-
phone duration, �b� simulated diphone duration, and �c� the difference be-
tween the residual and simulated diphone durations. �d� Approximation of
normalized English diphone frequency using the theoretical function �pa-
rameter values a=2.141, b=1.737, and K=7.447�, the nonlinear regression
model using restricted cubic splines, and the added lowess smoother line.
for English diphones�. We conclude that the patterns de-
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scribed in Sec. III are unlikely to be artifacts of a dependency
between n-phone frequency and one or several factors code-
termining acoustic duration of n-phones.

We then compared again the performance of nonlinear
FPD �Zipfian� and DPF models now using the mean residu-
alized duration of n-phones instead of the mere mean
n-phone duration. Across all subsets of Dutch, English, and
German diphones and triphones, our DPF models performed
significantly better than the Zipfian models �p�0.0001�, as
indicated by the pairwise comparison of their log likelihood
ratios. The average amount of explained variance by the DPF
models was 20% as opposed to 11% by the Zipfian FPD
models. Thus, acoustic duration is a better predictor of fre-
quency than frequency is of acoustic duration also when the
influence of several predictors on acoustic duration is re-
gressed out.

C. Sampling method

A frequency distribution in which extreme values of
acoustic duration have the lowest frequency is suspect to the
statistical phenomenon of sampling error. An n-phone mean
duration will be closer to the grand average duration com-
puted over all n-phones, the more frequent that n-phone is
�or, equivalently, the larger the sample size for that n-phone
is�, since it contributes more to the grand average. That is,
less frequent n-phones are predicted to occupy the extreme
positions in the distribution of n-phone frequencies over
n-phone durations, and more frequent n-phones are predicted
to be in the center of that distribution, by virtue of the chosen
sampling method. If the number of data points in a popula-
tion is large enough �like in our datasets�, the resulting dis-
tribution closely approximates the Gaussian distribution. We
investigated whether our sampling method can fully account
for the empirical patterns.

We considered the subsets of Dutch, English, and Ger-
man diphones and triphones, for which mean residual dura-
tions were computed �see above�. For each of the six subsets
we computed the grand average residual duration of all
n-phones ��� and their corresponding SD ���. If all n-phones
were approximately of the same duration, all tokens should
together form a Gaussian frequency distribution with the
mean ��� and the SD ���. For each n-phone in a subset we
then took a sample from the corresponding normal distribu-
tion �of durations� with � and � as parameters, and with the
sample size equal to the n-phone frequency. We computed
the mean duration for each n-phone sample and plotted it on
the x-axis and n-phone frequency on the y-axis to build the
simulated frequency distribution of durations. If the observed
frequency distributions of the n-phones are just due to sam-
pling error, then the simulated distributions would closely
approximate the empirical patterns. We ran 1000 simulations
for each subset of diphones and triphones, and we used the
Kolmogorov–Smirnov test to estimate the goodness of fit
between the simulated and empirical distributions. For all
subsets and for all simulations, the Kolmogorov–Smirnov
test indicated that the simulated distributions were signifi-
cantly �all p ’ s�0.00001� different from the observed ones.

Visual inspection of the simulated distributions �see Fig. 4�b�
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for a simulation of the distribution for English diphones�
shows that they have a much smaller variance than the em-
pirical ones �shown in Fig. 4�a��. Furthermore, diphone and
triphone frequencies plotted against the differences between
the observed and simulated durations show the familiar
inverse-U shape �see Fig. 4�c��.

We conducted similar simulations using normal distribu-
tions with the mean and the SD observed for the specific
n-phones �rather than � and � of the general data popula-
tion�. Again, for all six subsets and all simulations, the
Kolmogorov–Smirnov test showed significant differences
between the empirical distributions and the ones simulating
random sampling variation. We conclude that the attested
inverse-U shapes of n-phone frequency distributions are not
artifacts of our sampling procedure.

VI. SELF-ORGANIZATION IN SPEECH

The observed relation between the acoustic duration of
an n-phone and its frequency of occurrence may be ac-
counted for by the interacting processes of effort minimiza-
tion on the part of the speaker as well as on the part of the
listener �in some theories of speech production speakers
monitor their internal speech via proprioceptive feedback
and hence also function as listeners in preferring thorough
articulation, cf. e.g., Levelt, 1989�. According to the H&H
theory �Lindblom, 1990; cf. also Lindblom, 1983; Lindblom,
et al., 1984�, speakers adaptively balance between the costs
of careful speech production and the costs of deficient com-
munication that may come with sloppy pronunciation. This
theory has given rise to research on self-organizational prop-
erties in speech �De Boer, 2000; Köhler, 1987; Lindblom et
al., 1984; Oudeyer, 2005�. In what follows, we introduce a
theoretical function that quantifies the joint effect of the two
minimization processes on n-phone frequencies and we ex-
plore how well this function can approximate the observed
relation between acoustic duration of an n-phone and its fre-
quency of occurrence.

Several studies have shown that acoustic duration is a
measure of ease of speech perception. Longer realizations of
speech units tend to facilitate speech comprehension and di-
minish perceptual confusion �e.g., Janse et al., 2003; Janse,
2004; Kemps et al., 2005; Salverda et al., 2003; but see
Ernestus and Baayen, 2007�. Acoustic duration is also corre-
lated to ease of speech production. Shorter realizations in
general reflect smaller and shorter gestures, which implies
less muscular production effort �e.g., Browman and Gold-
stein, 1992�. In line with this notion, Smith et al. �1986�
demonstrated that subjects show faster production of those
uni- and bisyllabic stimuli that a priori were subjectively
considered as relatively easy. Likewise, Perkell et al. �2002�
showed that realizations requiring less articulatory effort
�measured as the peak movement speed� tend to be shorter.
There are, however, several counterexamples where shorter
durations do not always imply easier production �cf., e.g.,
Beckman and Edwards, 1992; Byrd and Saltzman, 2003�.
For instance, a shorter duration of a CVC syllable may indi-
cate reduced effort only if it is achieved by shortening its

steady state �cf. Nelson, 1983�.
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Even though the relation between acoustic duration and
effort is not straightforward and both articulatory and percep-
tual complexity are simultaneously affected by many more
factors than just duration, we will make for now the simpli-
fying assumption that shorter durations imply minimization
of the speaker’s articulatory effort and longer durations im-
ply minimization of the listener’s perception effort. This as-
sumption will allow us to test how well one can explain the
patterns in the empirical data by considering only one inher-
ently noisy dimension of complexity. More specifically, we
will investigate to what extent the two opposing tendencies
of effort minimization can account for the inverse-U shapes
observed in the frequency distributions of n-phones.

We model the tension between these two processes of
minimization by considering speech as a dynamic self-
regulating system in which a change in the articulatory effort
invested by a speaker modulates the effort required of the
listener. Both these changes in turn may lead to a change in
the frequencies with which speech sounds are used. In what
follows, we adopt the framework of Job and Altmann �1985�
and Köhler �1987�, who modeled the dynamics of sound
change as a function of the demands of speech production
and comprehension.1

The model can be specified in more than one way. For
instance, we can model the absolute value of a language
property �in this case, n-phone frequency itself, f�, or the
amount of change in n-phone frequency relative to the abso-
lute value of that frequency, df / f . We modeled the relative
amounts of change in frequency as we believe that they are
more directly influenced by the two opposing tendencies of
effort minimization than the frequencies themselves, which
are also affected by, for instance, inventory size, phonologi-
cal generalizations, etc. Furthermore, we assume the simplest
relation of direct proportionality between the relative amount
of change in frequency and the relative amounts of change in
the efforts for the speaker and the listener, df / f �dx, where x
is the total amount of effort defined for both interlocutors.
More formally, we hypothesize a complex function of effort
g�x� that maps the amount of change in the joint efforts of
interlocutors onto the relative amount of change in frequency

df

f
= g�x�dx . �1�

The goal of this modeling exercise is then to specify the
functional form of g�x� and validate its goodness of fit
against empirical data. Again, we opt for the simplest defi-
nitions of our parameters and of the mapping function to test
how far these basic assumptions can take us in accounting
for patterns observed across four languages.

The speaker’s production effort xs is easier to operation-
alize than the perception effort of the listener xl. Here we
approximate xs by the acoustic duration of n-phones. While
there is evidence that perception effort strongly correlates
with perceptual confusion �e.g., Lindblom, 1990�, we remain
agnostic as to whether this characteristic is the exhaustive
source of effort. To define xl, we follow Job and Altmann
�1985� in making the simplifying assumption that the amount
of perception effort is inversely correlated with the amount

of production effort, xl=1−xs. This assumption implements
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the insight that more careful and thus more effortful articu-
lation alleviates comprehension, while sloppy pronunciation
hinders it. We define the variable xs as the difference between
a given amount of effort �an n-phone duration� and the mini-
mal amount of effort �the duration of the shortest n-phone in
the dataset�, divided by the maximum amount of effort �the
duration of the longest n-phone in the dataset�. Thus, the
value of xs and of its complement 1−xs are constrained to the
interval �0, 1�. Since the effort of both the speaker and the
listener is now defined in terms of xs, we henceforth use x to
denote xs and we note that one unit of change is identical for
both interlocutors dxs=dxl=dx.

Recall our hypothesis that the amount of change in fre-
quency relative to the absolute value of frequency is a func-
tion of the relative amounts of change in effort for both the
speaker and the listener. The amount of change in articula-
tory effort relative to the absolute value of that effort is given
by gs�x�dx=b�dx� /x, where b is a positive coefficient. Like-
wise, the change in the amount of perception effort for the
listener is given by gl�x�dx=a�dx� / �1−x�, where a is a posi-
tive coefficient. Figure 5�a� illustrates the situation in which
the relative amount of change in frequency in Eq. �1� is only
affected by the amount of change in the speaker’s effort
gs�x�dx, as suggested by Zipf �1935�, or only by the change
in the listener’s effort gl�x�dx. The resulting frequency
curves are ideal for either the speaker, or the listener.

Yet we argue that both the speaker and the listener co-
determine through their efforts the distributions of n-phone
frequencies over n-phone durations. To express the notion of
a trade-off between efforts of interlocutors, gs�x�dx and
gl�x�dx, and their joint effect on the change in n-phone fre-
quency, we can model g�x�dx in Eq. �1� either as a difference
between the two terms or the division of the two terms. Our
further empirical validation showed that the former option
provides better fits to observed values; hence, we state that

df

f
= g�x�dx = �gs�x� − gl�x��dx = �b

x
−

a

1 − x
�dx . �2�

When the ideal frequency curves for speaker and listener
shown in Fig. 5�a� intersect, the difference between corre-
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FIG. 5. General shapes of the relation of frequency with articulatory effort
�x� and perception effort �1−x�. �a� Frequency as a function of two pro-
cesses of effort minimization, separately. �b� Solution for the differential
equation �3� with a=2.5, b=1.5, and K=150.
sponding efforts is equal to zero. In this case, speaker and
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listener are optimally attuned, and nothing changes in the
system. However, if speaker and listener are out of sync, one
of the interlocutors has to invest more effort, leading to a
difference in the ideal frequencies for the speaker and the
listener, and to a change in the likelihood that a given speech
sound is used.

The solution of the differential equation �2� is as fol-
lows:

log f = b log x + a log�1 − x� + c , �3�

where c is the constant of integration.
The exponential transformation of Eq. �3� yields the fol-

lowing formula for frequency:

f = Kxb�1 − x�a, �4�

where 0�xs�1, and a, b, and K are constants greater than
zero.

The curve produced by this function is concave �see Fig.
5�b�� and has its maximum at x=b / �a+b�. At this point the
frequencies ideal for the speaker and for the listener are
equal, and the optimal balance is reached for the system.

The curve is symmetrical if a=b. If a�b, the maximum
shifts leftwards. The area close to the maximum approxi-
mates the region of equilibrium where the frequency of a
speech sound is least likely to undergo change. In the prox-
imity of the maximum, speakers invest relatively little effort
into sound production and at the same time the perceptual
efort is relatively low. The position of the equilibrium �and
the parameters of this theoretical function� is language spe-
cific.

We fitted function �4� to the frequency distributions of
uniphones, diphones, and triphones in Dutch, English, Ger-
man, and Italian using the nls function in the statistical soft-
ware package R �R Development Core Team, 2007�. This
program estimated the three constants, a, b, and K, by means
of the least squares method. Since the models reported in
Sec. III were based on log-transformed values of frequency,
we also log-transformed the values of frequency, f , obtained
from the theoretical function in Eq. �4�. Each dataset was
divided into subsets by the levels of CV type, and the theo-
retical function was fitted to each subset individually. Since
our statistical models included CV type as a predictor, split-
ting of our datasets by CV type was necessary for better
accuracy of comparison. Thus, for each uniphone dataset, we
obtained two sets of parameters: one that provided the best
fit for the vowels and one for the consonants. Similarly, for
each diphone dataset, we obtained four such sets, and for
each triphone dataset �at most� eight.

The theoretical function did not provide good fits for any
of the uniphone datasets. We will therefore only discuss the
datasets with diphones and triphones. To estimate the overall
goodness of fit, we summed the squared deviations of the
fitted values of f from the actual values of frequency over the
subsets of each dataset. The resulting sums were then divided
by the number of data points in the respective datasets to
obtain the mean square errors �MSEs�: The smaller the MSE,
the closer the fit. We then compared these MSE values with

the MSEs of the respective regression models reported above
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�estimated as sums of squared residuals divided by the num-
ber of data points in the given dataset�. The results of the
comparison are summarized in Table III.

For the sake of brevity, this table lists the values of the
constants for the theoretical function fitted to the diphones of
the VC type and to the triphones of the CVC type. The re-
ported MSE values, however, are based on all subsets of the
datasets. The percents in parentheses estimate the perfor-
mance of the theoretical function as compared to the stan-
dard linear regression models for all subsets of the given
datasets. Thus, −4.3 for the Dutch diphones means that the
MSE of the fit to the four subsets of Dutch diphones is 4.3%
smaller for the theoretical function than for the regression
model.

Evidently, the fits to the diphone and triphone data pro-
vided by the theoretical function are equivalent to or better
than those provided by the standard multiple regression mod-
els that use the state-of-the-art approximation of nonlinear
functional relations with restricted cubic splines. This is re-
markable given that the theoretical function has a predefined
shape, which offers less flexibility in fitting than the cubic
splines. The two methods are equivalent in the number of
parameters they use. The equal or slightly better performance
of the theoretical function over regression models using re-
stricted cubic splines also holds when log frequency is nor-
malized and rescaled to the interval between 0 and 1. Figure
4�d� shows fits of the normalized frequency of English di-
phones of both CV types using the theoretical function and
the multiple regression models with restricted cubic splines.
We also added as a baseline the fit provided by the locally
weighted polynomial regression implemented in the lowess
smoother line. The theoretical function based on normalized
diphone duration provides a slightly better fit �by 0.4%� to
this �normalized� frequency distribution than the multiple re-
gression model.

Since the parameters and coefficients in Eq. �4� are de-
fined in linguistically meaningful terms �the effort of produc-
tion or perception�, this equation affords not only a better fit
but also suggests a better interpretability of our findings than
the multiple regression models. We conclude that the patterns
observed in the frequency distributions of diphones and tri-

TABLE III. Estimated parameters of theoretical func
the models fitted to the logged frequency values of the
type. In column “MSE,” the percents in parentheses
compared to the standard linear regression models fo
diphones means that the MSE of the fit to the four sub
function than for the regression model.

Dataset a

Dutch diphones 0.27
English diphones 1.34
German diphones 1.55
Italian diphones 0.35
Dutch triphones 0.23
English triphones 0.49
German triphones 0.56
Italian triphones 0.26
phones can be well described by a model that implements the
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self-regulatory balance in the articulatory and auditory de-
mands of production and comprehension. This strongly sug-
gests that the frequency distributions are codetermined by
these two opposing tendencies.

VII. CONCLUDING REMARKS

Across languages, we find significant dependencies be-
tween the frequency of occurrence of an n-phone and its
acoustic duration. In spontaneous speech in Dutch, English,
German, and Italian, speakers prefer diphones and triphones
that occupy the middle area of the durational range, and
avoid very short durations as well as very long durations.
These patterns were consistent across phonetically and pho-
nologically different Germanic languages and a Romance
language, which strongly suggests generalizability of our
findings and hints that the patterns may derive from funda-
mental principles of human communication �see Lindblom,
1990�. Significant negative correlations were also found be-
tween frequency of occurrence and duration of uniphones in
English and Italian.

Our approach differs from the approach inspired by Zipf
�1929, 1935� in that we predicted frequency from acoustic
duration, rather than acoustic duration from frequency. Im-
portantly, multiple regression models based on our DPF ap-
proach perform significantly better than the ones that follow
the Zipfian approach. This advantage in performance also
holds when the influence of several predictors is regressed
out of our key factor, acoustic duration. Moreover, the Zip-
fian account cannot deal with the concave functional form
that the relation between frequency and acoustic duration
takes under the Zipfian FPD approach.

Essentially, Zipf’s approach �1935� is only based on the
speaker’s tendency to reduce articulatory effort and it cor-
rectly predicts that very long n-phones are infrequent. Our
data suggest that reduction of comprehension effort may also
play a role that becomes evident in speakers’ avoidance of
very short realizations, which are costly for listeners. We
implemented the hypothesis about the interacting demands of
efficient speech production and effective speech comprehen-
sion mathematically in a theoretical function based on Job

The values in columns, a, b, and K are reported for
ones of the VC type and of the triphones of the CVC
ate the performance of the theoretical function as

subsets of given datasets. Thus, −4.3 for the Dutch
of Dutch diphones is 4.3% smaller for the theoretical

K MSE

3 0.04 1.47�−4.3% �
5 0.00 2.46�0.0%�
5 0.00 5.04�−6.1% �
7 0.08 1.52�0.0%�
8 0.19 0.32�−0.1% �
7 0.06 0.77�0.0%�
6 0.03 2.18�−7.5% �
4 0.18 0.53�+0.1% �
tion.
diph
estim

r all
sets

b

0.6
0.3
0.9
0.0
0.1
0.1
0.4
0.1
and Altmann, 1985. The function provides good fits to the
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distributions of frequency of diphones and triphones over
their acoustic durations supporting our hypothesis.

Our data point at processes of self-organization in lan-
guage. Specifically, they document the existence of consis-
tent frequency patterns in several languages, which demon-
strate the emergence of global cross-linguistic regularities
from the individual instances of communication that operate
on a microscopic scale �cf. De Boer, 2001�. Clearly, the fre-
quencies of n-phones are determined by the frequencies of
words. Changes in the frequencies of n-phones therefore
have to result from changes in the pronunciation of words or
in word choice, which imply adjustments for the broad lin-
guistic community. The question then is how the observed
patterns of use spread across vast linguistic communities
with such surprising uniformity and in the absence of global
control.

Recent computational models connect the emergence of
speech sounds with psychologically and socially motivated
properties of interactive communication �cf., e.g., De Boer,
2000, 2001, Oudeyer, 2005�. We predict for these models
that their simulated data will be characterized by inverse-U
shaped distributions of sound frequencies over sound dura-
tions �similar to the ones we have attested here for four natu-
ral languages�, probably reflecting the roles of ease of articu-
lation and ease of perception in language use.
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