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Abstract: We review the semiclassical analysis of strings in AdSsxS® with a focus on
the relationship to the underlying integrable structures. We discuss the perturbative
calculation of energies for strings with large charges, using the folded string spinning in
AdS3 C AdS5 as our main example. Furthermore, we review the perturbative light-cone
quantization of the string theory and the calculation of the worldsheet S-matrix.
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1 Introduction

The semiclassical study of strings in AdSsxS® has played a key role in extending our
understanding of the AdS/CFT correspondence beyond the supergravity approximation.
The analysis of quantum corrections to the energies of strings with large charges has gone
hand-in-hand with the discovery and application of the integrable structures present in
the duality. In particular, it has been important for comparison with the Bethe ansatz
predictions for the anomalous dimensions of long operators and to understand the finite
size corrections of short operators.

Due to the presence of Ramond-Ramond fields one must make use of the Green-
Schwarz formalism for the string action, adapted to the AdS5xS® geometry [1] (see [2]
for a brief introduction), ! which to quadratic order in fermionic fields is
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Here we have used the rescaled worldsheet metric h* = /—gg®, the induced Dirac
matrices g, = 8ax“E#AF 4 and the covariant derivative
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Directly quantizing this action is beyond current methods and one must take a perturba-
tive approach, expanding about a given classical solution in powers of the effective string
tension, vA. A classical solution is characterised by the conserved charges corresponding
to the AdS energy, E, two AdS spins, S;, and three angular momenta of the sphere, .J;,
in addition to any parameters specifying further properties of the string such as non-
trivial winding. The Virasoro conditions provide a constraint on these parameters and
for the solutions we are interested in we can express the string energy as a function of the
remaining charges: E = FE(S;, Js; k). In the semiclassical approach one takes a string
solution where one or more of the rescaled charges are finite, S; = % or J, = j—“i, and
computes the worldsheet loop corrections to the energy as an expansion in large tension,
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In general, calculating these corrections involves gauge-fixing the diffeomorphism and
kappa gauge invariance, and studying the fluctuations of the fields — bosonic, fermionic
and conformal ghosts from gauge fixing — about the classical solution. An important
point is that all UV divergences of the worldsheet theory cancel and, relatedly, the
conformal anomaly vanishes once the contribution from the path integral measure is
accounted for; thus the semiclassical expansion is well defined. On general grounds this
is expected as the string theory is of critical dimension and it was explicitly shown at

1One can also study strings in different backgrounds, AdS,xCP?3 is of particular interest where many
results parallel the AdS5xS® case. See [3].



one-loop in [4] and [5]. * A solution which has played a particularly important role in
our quantitative understanding of the AdS/CFT duality is the spinning folded string
in AdSs, introduced in [6] and whose semiclassical analysis was initiated in [5]. In the
large spin limit [6-8], the difference between its energy E and spin S scales like In.S
with the coefficient being the universal scaling function, f(\). This function provided
the first example of a result interpolating between weak and strong coupling which can
be calculated from the all-order asymptotic Bethe ansatz (ABA) [9,10] (see [11,12] for a
review of the all-order ABA). The one and two-loop semiclassical calculations [5,13-15]
have been shown to match the predictions of the string ABA [16-18] using the one-loop
phase factor [19-21] and its all-order generalisation [22,10] in a very non-trivial test of
the duality and its quantum integrability (see [23] for a review of the ABA calculation
and references). We will discuss this solution, its generalisations and related solutions
in Sec. 2.3. While for the most part we focus on closed strings, similar semiclassical
analysis has also been applied to open strings: duals to cuspy Wilson loops, to Wilson
loops describing “quark—anti-quark” systems, [4,24], to Wilson loops describing high
energy scattering [25] and more recently, dimensionally reduced amplitudes [26].

Another solution which has played a crucial role in our understanding of the quantum
string in AdS5xS® is the BMN string, [27] [6] see also [2], which is the BPS solution dual
to the ferromagnetic vacuum of the spin chain description of the gauge theory. This
solution is the natural vacuum state in the light-cone quantization of the worldsheet
theory where the physical Hamiltonian, H, ., is proportional to P. = E — J, with J one
of the sphere angular momenta. ® Finding quantum string energies, £, corresponds to
computing the spectrum of the H; .. Unfortunately the exact light-cone Hamiltonian has
a non-polynomial form [30,34] and is not a suitable starting point for “first-principles”
quantization. One can, however, solve for the spectrum perturbatively. At leading
order the theory is simply that of free massive fields [27,35] while at subleading orders
[36,29,30,37,32] the interactions are somewhat more complicated and, due to the gauge
fixing, do not respect worldsheet Lorentz invariance. Alternatively, as the worldsheet
theory is integrable, it is possible to find the spectrum of the decompactified theory, via
the ABA, by calculating the worldsheet S-matrix [17], [16,18]. A review of the exact
form of this S-matrix and its properties can be found [12], in this review we will restrict
ourselves to briefly describing its perturbative calculation (for a more thorough review
see [38]).

2 Quantum spinning strings

We will, as an illustrative example, consider the the folded spinning string [6], [5], see
also [2]. This solution describes a string extended and rotating with spin, S, in an AdS3

2 Particular care must be taken with the fermionic fields. Importantly, they couple to the worldsheet
metric rather than the zweibein and so contribute to the conformal anomaly four times the usual 2-d
Majorana fermion amount.

3There are essentially two ways to fix the light-cone gauge in AdSsxS®, which differ by picking
inequivalent light-cone geodesics. In one case, which is possible only in the Poincaré patch, the light-
cone directions lie entirely in AdSs [28]. In our case the light-cone is shared between AdSs and S°
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Figure 1: In (a) we show the classical folded spinning string moving in AdSs
C AdSs at a certain time (dark solid line) and earlier/later times (dashed lines).
The quantum fluctuations, corresponding to oscillations transverse (light wavy
lines) to the classical solution, acquire mass due to the background curvature. In
(b) we show the motion of the string on the sphere, essentially a point moving
along a great circle, with its fluctuations again seeing more of the geometry.

subspace of AdSs while additionally moving along a great circle of the S® with angular
momentum J (see Fig. 1). In terms of the global coordinates

dsidss = —cosh? p dt? + dp? +sinh® p (0[(92 + cos? 0 d¢? + sin? 0 dqﬁ%) , (2.1)
ds3s = +cos® v dp3 + dy?® + sin® v (de + cos? ¢ dp] + sin® dgog) , (2.2)

the string solution is given by 0 =y =1 = 7,
t=krT, po=wr, p=plo)=plc+2n), @s=vT. (2.3)
The equations of motion and the conformal constraints are satisfied provided
P = (k* — w?)sinh pcosh p , p'? = k?cosh? p — w?sinh? p — 12 | (2.4)

and the other fields are zero. This string can be thought of as four segments: the first,
for0 <o < 5, extends from the origin of the AdSs space along the radial direction to
a maximum p(%) = po i.e. p/(5) = 0. The string then turns and runs back along itself
to the origin, this then repeats before the string closes on itself. In fact, this solution is
generically rather complicated however, in various limits it simplifies dramatically.

2.1 Quantum corrections

It is possible to extract the one-loop correction to the energy by various means though, of
course, all give identical results. The most direct method is to fix a physical gauge, such as
light-cone, solve the resulting constraints and quantise the remaining degrees of freedom,;
the correction to the AdS energy of the string is the correction to the two-dimensional
energy of the vacuum state. However, for many purposes, and particularly for more

e.g. [29-33].



complicated solutions at higher orders, the most convenient method, introduced in this
context by [14,26,13] and most completely described in [39,40], is to relate the correction
to the energy to the calculation of the worldsheet effective action. *As in standard QFT,
and in analogy with the thermodynamic Gibbs free energy, in the presence of a non-
trivial background solution, ¢.(x), the expectation value of the conjugate source, J(x),
is given by the functional derivative of the effective action, I'[p.(x)], which is simply the
Legendre transform of the vacuum energy functional. For the theory we are interested
in the sources are simply the conserved charge densities, such as E, S and J. These
are conjugate to time derivatives of the fields and so the background is specified by the
constant parameters e.g. x, w, and v. Thus
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where T" — oo is the worldsheet time interval. Due to the classical Virasoro constraints
not all parameters are independent e.g. k = k(w, V). Furthermore, the energy functional
vanishes as (Hyg) = 0 due to the quantum conformal constraint. The charges are thus
found from the effective action by e.g.

10l(w,v)  Ok(w,v)
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Hence, we need only calculate the worldsheet effective action to determine the corrections
to the string charges. In general, the leading quantum correction to the effective action,
I'1, is found by expanding the Lagrangian, L, about a classical solution, ¢ = ¢.+ ¢, and
performing the Gaussian integral
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For the string theory we must include not only the bosonic fluctuations but also those
of the fermionic and the ghost fields which give inverses of determinants.

In general the effective action is an extrinsic quantity. ° This can be seen by consid-

ering the simple case where the quadratic fluctuation operator is given by K = —0%+m?
with constant masses, m. Fourier transformed this is K = —w? + n? + m?, and so
T [ dw T d*pg
I=— [ =) log(—w?+n? 2:—/—10 ; 2 2.8
! 2/%2 g (et mf) = 5 (27)? g (v +m) (28)

where in the last identity we have Wick rotated to Euclidean signature and taken the
extent of the spatial direction, [, to also be large. Note that by performing the integration
over w in this constant mass case, or in fact for any stationary solution, one recovers
the sum over fluctuation frequencies which gives the more common expression for the
correction to the string energy c.f. appendix A [5]. ©

4There is yet another method, essentially a generalisation of the WKB formula, for finding the leading
quantum correction to periodic solutions due to Daschen, Hasslacher and Neveu [41]. Such methods
were applied to the semiclassical quantization of the giant magnon [42] in [43]

5Strictly speaking all our considerations are only valid in the large volume limit and under the
assumption that interactions are local.

6Tt is also possible to make use of the integrable structure and extract the fluctuation frequencies



2.2 Point-like BMN string

If we consider the case w = 0, k = v, for (2.3), this forces py = 0 and so corresponds to
the point-like BMN string rotating only in the S® (see Fig. 1 (b)). As mentioned in the
introduction, this solution plays a fundamental role in our understanding the quantum
string. Here we merely calculate the one-loop correction to its classical AdS energy
Ey=J =k

It is convenient to switch to Cartesian coordinates: (p,0, @1, ¢2) — 2, k = 1,...,4
and (7,1, p1,93) = s, s = 1, ..., 4 such that

1+ 32%)° dz.dz 1—1y%)° dysdys
e e e F N (S PO DR (e 7
Now, expanding near 2z = ys = 0,
t gk p st
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the bosonic terms of the action (1.1), in conformal gauge, give the quadratic term 7
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This action corresponds to two massless longitudinal fluctuations ¢ and @, plus eight

free, massive scalars, with mass m = v. For the fermions we find for the induced Dirac
matrices pg = k I'” and p; = 0 so that the action becomes

Iy = % &0 [élr—mel T 007 — zye‘lr—m?] (2.12)
where we have defined 0y = 9y£0;, 't = FIy+Tg and II = I'1934. Furthermore because
of the form of the fermionic kinetic operator it was natural to choose the kappa-gauge
fixing I't0”7 = 0 which simplified the mass term. This action corresponds to eight free,
massive fermionic excitations, with m = +v. Finally, one must include contributions
from the conformal bosonic ghosts, however for the cases in which we are interested, as
was shown in [4, 5], the ghost contribution is essentially trivial. Their only effect is to
cancel the two massless longitudinal bosonic fluctuations.

As the masses of the transverse bosons and physical fermions are equal one immedi-
ately sees that the ratio of fluctuation determinants cancels and the one-loop effective
action is zero. Thus the correction to the AdS energy, (2.5), (EF—J) = I is zero which
is exactly as expected as this state is BPS. As we will see later, it provides a sensible
vacuum about which to study fluctuation interactions.

from the string algebraic curve. While this powerful method is widely used in the calculation of quantum

corrections we will not discuss it here, but simply refer the reader to [44] for a review and references.
"We note that this is essentially the same action as that found by expanding the action for a string in

the plane-wave geometry, [35], ds® = dada™+12?dzt dz +dz'da’ about the solution 2 = 2v7 [27,35].



2.3 Spinning folded string

While for the BPS solution we find zero correction to the string energy, a generic spinning
string solution spontaneously breaks supersymmetry and we expect to find a non-trivial
correction at one-loop. We will consider the so-called “semi-classical scaling” or long-
string limit of the spinning string solutions, see [7,8] and also [39],

J
21nS

S>J>1, with (= (2.13)
As discussed at length in [8,39], upon taking w = x the solution simplifies dramatically
becoming homogeneous so that p(c) = po. The conformal gauge condition becomes
k= +/p? 4+ V% and in this limit of large spin, u = %lnS and ¢ = ﬁ

As p is thus very large, by rescaling the worldsheet coordinate o such that p = o,
we find the string length [ = 27pu becomes infinite. The folded string becomes two
overlapping, infinite, open strings. Omne can further expand in small ¢, the so called
“slow long string limit”, [8,39]. In this further limit the quantum string energy is given

by
VA

E—-S=—f(AN)InS, (2.14)
T

where f(A) is the universal scaling function. At leading order this can be checked by
expanding the classical energy which is given by Eq — S = puv/1 + 2. We will see this
form persists at subleading orders in the semiclassical expansion, i.e. there are no In* S

terms, and furthermore we can calculate the numerical coefficients [5,8,13,39]

f(ﬁ):1—?’1%2—§+... (2.15)

where K is the Catalan constant.

To calculate these coefficients we expand about the homogeneous, J = 0 solution,
t = kT, p = Ko, 6 = 5 $o = KT, and (following [5] closely, where full details can be
found) we again consider the conformal gauge action.

Bosons The bosonic action (1.1) to quadratic order in fluctuations (using coordinates
(2.1) for the AdS; space but (2.9) for the sphere) is
1 - ~ . -
Ig = 1 d’c [ — cosh? p(01)* 4 sinh? p(Dgs)? + 2k sinh pp(Apt — Doa)
T

+(0p) + sinh® p((90)* + 0°(9¢n ) + K70°) + (D) + Z(&%)Q] (2.16)

where e.g. (0t)* = 0,t0°. In this expression the coefficients depend on the worldsheet
coordinates, however by making the field redefinitions
X =isinh2p (o — 1), €= —sinh®pdy+cosh®pi, O=sinhph,
p=2p, :Elzécosgbl , i’gzésingbl , (2.17)

7



this can be put in the form
1 _ _
In = =5 [ @0 [(00° - (007 + (09 + 16(010€ - 1x(O0)p

D (0m) +26%2) + (96:)° + Y (0m)] - (28)

It is now straightforward to calculate the determinant of the fluctuation operator
det Kp = —(0%)7(0* + 2x?)%(0 + 4K?) (2.19)
corresponding to two scalars with mass \/§/$, one with mass 2k and seven massless scalars

— two from the AdS space, five from the sphere.

Fermions Substituting the classical solution in the expressions for the induced Dirac
matrices we find (where the flat index 0 is the homologue of ¢, 1 corresponds to p, and

2 to ¢2)
Op — K FO (COShﬁ — sinh[) Fgg) y 01 =K Pl . (220)

Using the expression for the quadratic action (1.1), we again find that the dependence
on the worldsheet coordinates can be removed by a field redefinition

o' = S, with S =exp (%) , (2.21)
such that the corresponding transformations of the induced Dirac matrices are

0=5toS=kTy, and 7 =S S=rT;. (2.22)

Making use of the relevant terms of the spin connection, w;”* = sinhp and wy,* =

cosh pcosf, one can show that the portion of the covariant derivative that couples to
the background curvature, D, = 0, + }lw;“B " 4B, essentially becomes trivial: S7!D,S =
0. + B, where n%7, By = €¢%1,B;, = 0. Thus the fermionic action can be written as

/) - B
Ir = ZQL /d20 (Uabfsu - Eabsu)(\lﬂﬂzﬁb\lﬁ] + %EJK\I’ITaszMTb‘I’K) . (2.23)
T

As can be seen from the form of the kinetic operator one can fix the fermionic kappa-
symmetry by imposing W' = U2 = ¥ resulting in the fermion action ®

X B
Ip = i— /dQU \IJI(Taaa +iM)¥ | where M = ir°Tasy . (2.24)
T

Of the eight physical fermions four have mass « and four have —x, thus

det Kp = (0> + k)% . (2.25)

8While it is not relevant for the case at hand in general one must be careful with the boundary
conditions imposed on the fermions which can be subtle. See [45] for a discussion.

8



Energy Correction To determine the correction to the energy we must evaluate the
sum over momenta. As we are interested in the leading term in the large x expansion
we can treat the worldsheet, after rescaling by k, as having infinite extent and so the
worldsheet momenta are continuous. In momentum space the one-loop effective action
is (having taken into account the conformal ghosts which cancel two massless bosons)

1 d>

Igzi%/kz@[m@ﬁw®+2m@?+m+5mﬁ—8m@?+n (2.26)
™

where we recall that two-dimensional volume is given by V, = 27x2T. While the complete

expression is finite the individual terms are divergent so we introduce a cut-off at inter-

mediate stages to perform the integration. The quadratic and logarithmic divergences

cancel and the finite result is

1 3ln2

—I'y=-

one—loop «T T

(E—S) | InS (2.27)

which is the leading correction to the universal scaling function. We note that the In .S
dependence arises from the fact that the effective action is proportional to the worldsheet
volume as, in the scaling limit, we can completely remove x from the action. This remains
true at all orders.

Generalisations The two-loop calculation of the universal scaling function was carried
out in [13-15]. The equivalence [26] of the spinning folded string, in the [ — oo limit, to
the null cusp Wilson loop solution [46] plays a key role in these calculations; as does a
form of the action with particularly simple fermions [47]. One can obviously include the
effects of non-zero J by keeping finite v, or equivalently ¢, dependence. The generalised
one-loop calculation in the “long string” limit was performed in [8] and the two-loop
analysis in [39,40,48|. Here, it is necessary to take into account the quantum corrections
to the Virasoro condition and to the relations between solution parameters and charges
as described in Sec. 2.1. Furthermore, the calculation is simplified by using a light-
cone gauge [28] adapted to a geodesic entirely in the AdS; space. These results match
those found from the ABA [49]. These calculations thus provide vigorous checks of the
two-loop finiteness of the worldsheet theory and the underlying quantum integrability.

2.4 Circular spinning strings

While the energies of spinning folded strings have provided stringent checks of ABA
the relationship is slightly complicated. It is a separate class of solutions, rigid circular
spinning strings (see [2] for a review and further references), whose energies are most
transparently related to the strong coupling expression for the S-matrix entering the
ABA. The simplest circular strings come in two types: the so-called su(2) circular strings
moving on a S* C S 5, [50], and the s[(2) circular strings lying in AdSzxS! C AdS;xS°
[51].

The computation of the one-loop correction to the energies of the su(2) [52,53] and
s1(2) [54,19,55,56] strings ° played a key part in discovering the presence of the one-loop

9An early semiclassical analysis of circular strings in AdS was performed in [57].



term [20] in the phase in the strong-coupling (or “string”) form of the Bethe Ansatz
[16-18].

The (S, J) string solution of [51] has a spiral-like shape, with projection to AdSs
being a constant radius circle (with winding number k), and projection to S° — a big
circle (with winding number m). The corresponding spins are, respectively, S and J
with the Virasoro condition implying that u = 5 = —7*. Expanding the classical energy
in large semiclassical parameters S and J with fixed k and u [51,54] we have

2 2

Ey=S+J+ 361(% k) + %63('&, k) + ﬁe5(u, k)+ ... (2.28)
For circular strings the expressions for the fluctuation frequencies are sufficiently com-
plicated that they must be expanded in J to be evaluated and subsequently summing
over modes becomes slightly subtle [54,58, 53,59, 19, 55,60, 56]. The correct procedure,
given in [19] for the sl(2) case (see also [56] for the su(2) case), gives two types of terms
for the one-loop correction, E; = E¢¥® + £ where

A 2 a /\5/2
Efet = ﬁgg(u, k) + ﬁg4(u, k)+ ..., EY = —g5(u, k) + ... . (2.29)
The absence of the }, and % terms suggests that the two leading %] and ?—i terms receive
no quantum corrections and their coefficients should directly match weak coupling gauge
theory results. Indeed, the coefficient g, of the “even” =3 term in (2.29) can be reproduced

as a leading l] (finite spin chain length) correction from the one-loop gauge theory Bethe

Ansatz [53,58]. At the same time, the presence of the non-analytic term %1,2 in (2.29)
implies that a similar % term in the classical energy (2.28) is not protected so that its
coefficient cannot be directly compared to three-loop result on the gauge theory side
which implies [19] that the corresponding “string” Bethe Ansatz [16] should be modified
to contain a non-trivial one-loop correction to the phase. This phase was determined by

directly matching to higher orders in this expansion [20,21].

2.5 Finite size effects and short operators

Semiclassical analysis can also be applied to strings of finite length and even, to a certain
degree, short strings. For the folded spinning string, Sec. 2.3, the large S corrections to
the one-loop calculation were analysed in [61] and the exact one-loop expression for the
fluctuation determinants was found in [62] (for two-loop results see [48]). The one-loop
correction to the small spin or short string limit of the string were calculated in [63] and
the generalisation with non-zero J in [64]. Short, excited strings dual to operators in the
Konishi multiplet are particularly important in testing the conjectured exact results for
the spectrum at finite volume. The correction to their energies at strong coupling was
calculated semiclassically, with caveats regarding the validity of these methods in this
regime, in [65]. For the circular spinning strings, in addition to the energy correction
(2.29), a careful analysis shows the presence of exponential corrections, O(e™) [55,56,66].
Similar exponential corrections are found for quantum corrections to finite-sized giant-
magnons calculated using algebraic curve methods (see [44]). Such corrections cannot

10



be accounted for by modifying the phase in the BA but rather arise from finite volume
effects. See [67] for reviews and references.

3 Perturbative light-cone quantization

As we saw in Sec. 2.2, the string action expanded about the BMN string is particularly
simple and is exactly solvable to quadratic order in fluctuations. This string solution
provides a sensible vacuum about which to perturbatively quantize the AdS;xS® Green-
Schwarz string 36,29, 30,32,68]. In this context it is natural to make use of light-cone
gauge, introducing the coordinates and momenta, p, = h*G,,,0,2",

1 . 1
th=g(tte), 2T =¢—t, p=5s—p). Pr=Pstp (3.1)

where we focus on the bosonic fields for simplicity. The Hamiltonian density H =
puat — L is given by

TO

1
(x’“pu) + o= (PG py + x/uGuvxw) 5 (3.2)

h
== 2hTT

h’TT

with the notation 2’ = d,x and & = J,x. As is usual in theories with general coordinate
invariance, the Hamiltonian is a sum of constraints times Lagrange multipliers.

To impose light-cone gauge one sets xt = 7 and p_ = const. The metric coefficients

1/h™ and h™ /AT act as Lagrange multipliers, generating delta functions that impose

two constraints which determine x~ and p, in terms of the transverse variables (and

the constant p_). '© The transverse coordinates and momenta x4, py A =1,...,8 will
then have dynamics which follow from the light-cone Hamiltonian —p, = H,;.. The first
constraint, or level-matching constraint, yields 2/~ = —2'“p4/p_. While solving the

quadratic constraint equation for p, we obtain the somewhat dispiriting result

G__ P2

G, VG G G?
_chzp + +pG\/_\/1+ (pAGABpg + #'AG 4pa'B) + p;* (z'4p4)? , (3.3)

with G = G%_ — G4yG__. ™ Using the relation between the canonical momenta and
the target space charges we have

2m 21
E_J:_p+:g_§/ do Hye %(Eu):p:g—j/ dop. . (34)
0 0

Perturbative expansion To make progress we perform the large tension expansion:
rescaling the transverse fields by A=*/4 and expanding in large v/\, or equivalently P_ =

10T fact, the constraints determine the derivatives of £~ and so ™ itself is non-local in this gauge.
This has important consequences for the “off-shell” symmetry algebra.

1We have made use of the fact that the AdSs x S® metric, (2.9), rewritten in light-cone coordinates,
(3.1), has no G4 4 or G_ 4 components.
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VAp_ ~ J, while keeping —P, = E — J fixed. Being careful with the expansion of the
G__ terms, see e.g. [30], one finds the first two orders,

1 , ,
M = o [0+ @ )
1

4\/Xp,
A

where beyond leading order the eight transverse fields split into two sets of four, x* =
(2%,4%). One can remove the dependence on the density p_ by rescaling the worldsheet
coordinates, and thus we see that we are taking the large charge limit but keeping the
worldsheet compact.

The leading order term is simply the plane-wave Hamiltonian whose spectrum consists
of an infinite tower of non-interacting massive oscillators,

+

(ZQ(pi + y/Z) . y2(p3 4 2/2) 4 2222/2 - 2y2y/2) 7 (35)

o)=Y alne ™, al(r) = —=(ate 7 —atleT) . (36)

V2w, "

where n € Z, w, = \/p> +n?, and the raising and lowering operators obey the usual
commutation relations. One can straightforwardly include the fermions, though the
subleading interaction terms become somewhat involved [29,30,32]. At leading order one
again gets massive oscillators, b%, a = 1,...,8 and thus the full plane-wave Hamiltonian,

y ' no
Hpp, is

n=—oo

1 o0
Hy = — 3 w, (ﬁ%fwg%z) , (3.7)
p_

n=—oo

where one can immediately see that the energy of the vacuum state, |Vac), corresponding
to a string with charge P_ vanishes.

Near-BMN energy spectrum The quartic terms give rise to corrections of order
O(1/J), the effects of which can be perturbatively included in the spectrum. In the
simple case where we consider a single complex boson from the sphere y = y' + iy?, the
leading correction to the two excitation state ala’, |P_) is

—-n

N 2 N 2
E—J=2V1+Nn2—2 ; + ijn) (3.8)
with A = \/J? an effective coupling. Due to the form of the interactions there is a

normal ordering ambiguity, here characterised by the arbitrary function Ng(n?). There
are related functions in the correction to all energies and they are fixed by demanding
that the full spectrum possess the underlying global psu(2,2|4) symmetry. This implies,
for example, Ng = 0. Equivalently, they could be fixed by demanding that the algebra
of generators, including the Hamiltonian, is satisfied at this order. These expressions for
string energies can be compared to the string ABA [37,31,32,68] and were one of the
first pieces of evidence for a non-trivial dressing phase interpolating between strong and
weak coupling.

12



3.1 Worldsheet S-matrix

As the theory in light-cone gauge has only massive particles, we can study the interactions
by calculating the worldsheet S-matrix. Modulo issues of gauge dependence '? this
object should match the spin chain S-matrix introduced in [17], see [12] for reviews. The
perturbative study of the worldsheet S-matrix was initiated in [70] while its symmetries
and many properties were analysed in [71,72] (see [38] for an extensive review). To define
the S-matrix one must consider the theory on the plane: this corresponds to scaling p_
out of the action and taking the decompactification limit p_ — oo. In order to define
free, asymptotic states for generic momentum one relaxes the level matching condition
and then studies the interactions in powers of /A or equivalently in a small (worldsheet)
momentum expansion.

Asymptotic states Of the global group, the light-cone gauge preserves a subset
PSU(2|2), x PSU(2|2)g € PSU(2,2|4). The bosonic subgroup of each PSU(2|2) fac-
tor consists of two SU(2) groups and it is useful to introduce a bispinor notation for
the physical bosons Z,q = (0i)aa?’ , Yaa = (0s)aay® and fermions, W4, Yos, which
are charged under different combinations of the SU(2)’s. One may define superindices

= (a|o) and A = (@|¢r) combining all asymptotic fields creating incoming or outgoing

partlcles into a single bi-fundamental supermultiplet of which we will denote by &'/ m/ out)

The S-matrix. The two-particle S-matrix is a unitary operator relatm - and out—
states. In the basis @, ;(p), so that |®,(p)Pys(P))"™ = @ m)( )@ ()| Vac), i

matrix representation is

S|P 44(P) ()™ = |@0a(P)®pp (1)) ™ SIGLL (p, 1) - (3.9)

Before gauge fixing the worldsheet theory is classically integrable [73]; since fixing light-
cone may be interpreted as expanding about the BMN solution and solving some of
the equations of motion, the gauge-fixed theory is also expected to be integrable at
the classical level. In such an integrable theory, the S-matrix, invariant under a non-
simple product group, must be a tensor product of S-matrices for each of the factors (see
e.g. [74))"

S=S®S , SIP2(p,p") =SB, 1SS (p, 1) . (3.10)

It is important to note that a factorised tensor structure does not follow solely from the
PSU(2|2) x PSU(2|2) symmetry considerations; confirming group factorisation is thus an
important test of integrability.

12The S-matrix is gauge-dependent, since unlike the spectrum it is not a physical object with a clear
target-space interpretation. The differences between gauges can be attributed to the definition of the
string length [17]. The difference in the definition of length and the gauge-dependence of the S-matrix,
mutually cancel in the Bethe equations [32,69].

13This can be understood as a requirement that the Faddeev-Zamolodchikov algebra is also a direct
product: the field ® , ; is represented by a bilinear in oscillators: ® , ;4 ~ 242, each transforming under
one of the PSU(2|2) factors [72]. The two sets of oscillators mutually commute. The braiding relations
for each of these sets are determined by an PSU(2|2)-invariant S-matrix S consistent with the Lagrangian
of the theory.
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The first nontrivial order in the expansion of the S-matrix in the coupling constant
21 /v/A defines the T-matrix

27 1
S ]I—l—\/XT—i—O()\) . (3.11)
which inherits the factorised form T =1 ® T + T ® I from the S-matrix. Furthermore,
since SU(2) x SU(2) € PSU(2|2) is a manifest symmetry of the gauge-fixed worldsheet
theory, T may be parametrised in terms of ten unknown functions of the momenta p and
p'. These functions, to leading order in 1/ V), can be easily extracted from the matrix
elements of quartic terms of the light-cone Hamiltonian (3.5) (see [70] where explicit
expressions for T can be found). Equivalently one can Legendre transform with respect
to the transverse fields to find the light-cone Lagrangian and then use the usual LSZ
reduction to calculate the worldsheet scattering amplitudes perturbatively.

Properties of the S-matrix

e The explicit perturbative calculation does indeed show that the two-body S-matrix
has the factorised form (3.10). Furthermore, it can be explicitly checked to leading
order that the ten functions in the T-matrix agree with the corresponding functions
in the strong coupling BA S-matrix. It can be shown explicity that there is no two-
to-four particle scattering [70].

e In calculating the S-matrix we relax the level-matching constraint. In this “off-
shell” formulation of the theory the symmetries become extended by two ad-
ditional central charges related to the worldsheet momentum [71] (the same as
found in the spin chain [75]). Furthermore, as the supersymmetry generators,
Q~ [e* QZ,Y,T, V), depend on the zero mode of the longitudinal coordinate,
z~ ~ [dod,x~, there is a mild non-locality in the action of the symmetries which
thus satisfy a Hopf algebra [70, 72].

e The integrable structures of the perturbative string S-matrix have been further
studied including the construction of the classical r-matrix e.g. [76]. Furthermore,
assuming the quantum integrability of the full worldsheet theory, and using the
global symmetries, the worldsheet S-matrix was uniquely determined up to an
overall phase. We refer the reader to [12,77] for a more complete discussion of
these and other exact properties of the worldsheet S-matrix.

3.2 Simplifying Limits

Due to the complexity of the world sheet theory, going beyond the leading perturbative
term is challenging. One simplifying limit which has proved useful is the “near-flat
limit” [78]. This limit corresponds to studying the worldsheet near a constant density
solution boosted with rapidity A/* in the worldsheet light-cone direction, o~. The left-
and right-moving excitations on the worldsheet scale differently and the right movers
essentially decouple. The resulting theory has only quartic interactions and is much
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more tractable. The one-loop and two-loop [79] corrections to the S-matrix have been
calculated and shown to match the all-order conjecture [22]; furthermore factorization at
one-loop was explicitly shown. In the two-loop calculation radiative corrections induce
a correction to the relativistic dispersion relation which corresponds to the expansion
of the sine function, natural from a spin chain perspective, which appears in the exact
dispersion relation [75].

Another interesting formulation of the theory is found via a generalisation of the
Pohlmeyer reduction [80] which is used to relate, at a classical level, the string theory on
AdSs x S% to a massive, Lorentz invariant theory which only involves the physical fields.
Applied to strings on R x S3 this method consists of gauge fixing and solving the Virasoro
constraints so that the remaining degree of freedom satisfies the sine-Gordon equation
of motion [81]. Generalised to the full superstring [82] the reduced theory is a massive
deformation of a gauged WZW model with an integrable potential. The resulting model
has been explicitly shown to be UV finite to two-loops and there is evidence that the
equivalence to the standard formulation persists at the quantum level [83]. The two-
particle S-matrix was calculated in this formalism in [84] where it was shown that it has
the appropriate group factorisation properties. Being manifestly Lorentz invariant this
formalism may provide a better basis for understanding the quantum theory.
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