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1. Introduction

This year just a century ago H von Hel nholtz (1821-1894) published his book
"Die Lehre von den Tonenpfindungen als physiol ogi sche Grundl age fir die Theorie
der Musik". His treatnment of nusical consonance, the central problem of the book,
has proved to be the nobst acceptable explanation of the well-known fact that the
consonant chords correspond with sinple frequency ratios of the tones (octave 1:2,
fifth 2:3, fourth 3:4, major third 4:5 major sixth 3:5> mnor third 5:6, mnor
sixth 5:8).

Von Hel mholtz's explanation was based on the hypothesis of Chm (1787-1854)
that the hearing organ perforns a Fourier analysis of sound, so each periodical
vibration is dispersed inits partials (fundamental tone plus overtones). After
Von Hel mhol t z di ssonance occurs when two or nore partials differ so little in
frequency that they cannot exist independently but interfere with each other (mn-
i mum consonance at 30-40 beats/sec). The nore partials of a tone coincide with
partials of another one, the less the chance on interferences is. This can explain
the fact that sinple frequency ratios give the nobst consonant chords.

Especially by Stunpf (1848-1936) many objections agai nst these considerations
were raised, for instance that after Von Hel mholtz consonance alters by transpos-
ing a chord. Stunpf! introduced "fusion" ("Verschnelzung") as the origin of con-
sonance: a chord is nore consonant as it is easier perceived as one tone. Though
undoubtedly a rel ati on between consonance and fusion exists, at |least for conplex
tones, this notion does not explain the consonance phenonenon at all as Révész2
rightly stated.

During the last decennia the physiol ogi cal know edge of the hearing process,
the physical equipnment and the psychol ogi cal nmethods of experinment are inproved
so much that a reconsideration of Von Hel mholtz's explanation might be of value.
This paper gives only a brief survey of research in this field carried out by the
authors during the last years.

2. The connotation of nusical consonance

As a prelimnary to further research an exploratory investigation was made on
the different nodes of judgnents of nusical intervals. In this way it was tried to
determ ne what subjects nmean by their qualification of chords as consonant or dis-
sonant. 23 conbinations of two pure tones were used, all within the octave. The

frequency ratios of the intervals could be described by the nunbers 1....12, so
the intervals were 1:2, 2:3, 3:4, 3:5, 4:5, ,7:12, 11:12. Only nmultiples
of 85 cps were available as pure tones, so it was not possible to have all inter-

val s of the sane height. Ten intelligent subjects (non-nusicians) judged these
chords against ten 7-Points rating scal es: high-1ow, sharp-round, beautiful-ugly,
active-passive, consonant-dissonant, euphoni ous-di seuphoni ous, wi de-narrow, sounds
li ke one tone-sounds like nore tones, tense-quiet, rough-smooth. The correl ations
bet ween the scales were conputed and the correlation natrix factor-anal ysed.

It appeared that all data could be sumarized by assumi ng 3 basic di nensions,
whi ch we call ed hei ght, evaluation and fusion. Evaluation was closely related to
consonance, beautiful and euphonious; with other words: consonance had a definite
meani ng coinciding with the two other notions, not with fusion. This result was
used infurther experinents by circunscribing consonance as beautiful and euphoni ous.
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3. Consonance as a function of the dl stanos between two pure tones

From the foregoing and other experinments it appeared that the degree of conso-
nance is a function of the distance (frequenoy difference) between the two tones
of a ohord, as far as pure tones are concerned. To investigate this relation nore
closely, a series of experinents were carried out in which teat subjects had to
judge chords of two pure tones on consonance against a 7-points rating scale as in
the experinents described above. To elimnate the factor height as good as possi-
bl e, each subject judged only chords with a constant geonmetric mean. Different
groups of 10-12 subjects were used to judge chords with a geonetric mean of 125,
250, 500, 1000 and 2000 cps. The subjects were exposed to each interval 5 tines
and only the data of the subjects with a reasonably consistent judgment (a corre-
lation above about 0.5 between the first and the last judgment of the intervals)
sere maintai ned. The average scores at 125, 500 and 2000 cps are plotted in fig. 1.
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The arrows indicate the critical band-
width after Zw cker3, derived from psycho-
physi cal hearing experinents. Fig.1 shows
that the upper bend of the curves agrees
very well with the critical band; the |ow
er bend corresponds with about 0.2 x this
bandwi dth. In fig.2 this is denonstrated
nmore explicitly.

This neans that intervals with a fre- o
quency difference exceeding the critical
bandwi dth are judged as consonant; bel ow »r ¢ d
this value the consonance appreciation
falls rather sharp, reaching a mninum at -—._—L—‘—_._ﬁ—w
about 0.2 x the critical bandw dth. For ns e e e
still smaller frequency differences we get F;’, 1
sl ow beats which are appreciated core and
nore positively as the frequency difference decreases. This is shown in detail by
a conparabl e experinent of Guthrie and Mrrill4 at one frequency.

These results show that the critical band is an inportant factor in relation to
consonance. W may state that this conclusion represents a val uable nodification of
Von Hel mholtz's conception that dissonance is caused by interference of pure tones.
Moreover it denponstrates that for pure tones consonance is not related to sinple
frequency ratios though for mnusicians the recognition of well-known intervals nay
affect their consonance appreciation of chords consisting of pure tones.

4. Consonance as a function of the distance between two conpl ex tones

Using the results of the foregoing paragraph we can show that for conplex tones
(fundarmental tone plus overtones) consonance is indeed related to sinple frequency
ratios. Plotting the consonance scores of fig.1 together with the correspondi ng da-
ta at 250 and 1000 cps as a function of the critical bandwi dth: and averaging these
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curves we get a standard curve which is reproduced in fig.3. By a linear transfor-
mation the evaluation scale is replaced by a "consonance scale", 1 corresponding
with maximumand 0.1 with mnimum appreciation. For small frequency differences
the curve is extended in accordance with the data of Guthrie and Morrill 4.

We can use thi3 diagramto get sone inpression how consonance varies as afunc-
tion of the distance (frequency difference of the fundamental tones) between two
conplex tones. As an illustration we take the case of a constant tone of 250 cps
and a variable tone between 250 and 500 cps, each tone conposed of the first 6
partials. W define as the consonance of the chord the sun of the di ssonances
(right scale of fig.3) of the intervals between each two adjacent partials, sub-
tracted from 1. This consonance value is calculated as a function of the frequency
of the variable tone and plotted in fig.4.
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interesting conclusions are justified:

a. The sinple frequency ratios (1:1, 1:2, 2:3, 3:4, 3:5 4:5 5:6) are singular
ooints of the curve, each being surrounded by a region of |ower consonance. This
explains that for conplex tones consonance is related to sinple frequency rati os.
b. The consonance of 1:1 and 1:2 is 1, which neans that the distances between the
adj acent partials exceed the critical bandwidth. It appears that this only applies
for 6 and fewer partials; this is in agreement with the fact, also underlined by
Von Hel mholtz, that tones with strong higher partials sound sharp and di ssonant.
c. Asmall deviation froma sinple frequency ratio has much nore influence on the
unison (1:1), octave and fifth than on the other consonant intervals. This corre-
sponds with the practice of tuning nusical instruments by octave and fifth rel a-
tions. In connection with this the fact is inportant that the inpure thirds of the
equi -tenpered intonation are much better tolerated than inpure octaves and fifths
woul d have been (conpare the position of the naxi mumof the curve with the vertical
dashes in fig.4, giving the intervals of the equi-tenpered i ntonation).

d. The octave and fifth are the nost consonant intervals, which is in agreenent
with practice. -

Fig.5 illustrates how the consonance
of sinple frequency ratios varies with \
frequency. The curves show that the mu- "1

tual relations of consonance of the dif-
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ferent intervals are nearly independent
of frequency. The fall at |ow frequen-
cies is caused by the fact that bel ow
500 cps the critical bandwidth is nearly

L

consangnc e

constant and the fall at high frequen- b
cies by the fact that in this range the 2 e S, L e
critical bandwidth increases nore rapid s %o fand Kot ops
than frequency. Tne curves of fig.5 are Fi,‘ 5

inportant in relation to the controversy
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Von Hel mhol t z- St unpf about the dependence of consonance on frequency. After \Von
Hel mhol tz the consonance of an interval increases with frequency, after Stunpf con-
----nce is independent of frequency. Von Hel nholtz seems to be right bel ow about
250 cpa and Stunpf in a range of 1-? octaves above this frequency.

5. The distance between partials in nusic

It is of interest to exanine to which extent the relation of consonance to
critical bandwi dth can be found back in nusical conpositions. Only sone prelim-
naryinvestigations are nade and one of the nost interesting results will be shown.

W anal ysed the chords of conpositions in the follow ng way. After choosing a
note, for instance b'(494 cps), we deternmined which fraction of its total tine of
presentation this note sounds together with a tone at a distance of 1/2 tone (b!-
flat or at sharp and c2), which fraction together with a tone at a distance of 2/2
tone, etc. The result of such an analysis we called the interval distribution of
bt. Such interval distributions can be calculated for different tones and also tak-
ing into account the presence of overtones.

In figure 6 the nean value of interval distributions of tones around 125, 250,
500, 1000 and 2000 cps is plotted as a function of the nunber of partials taken
into account. The interval distributions were calculated fromall chords of 4 cho-
rals of J.S.Bach (St. Matthew Passion, nos. 3, 16, 23 and 31). The ordinate is
given in cps, so the graph shows the "density" of partials (nmean frequency differ-
ence between adjacent partials) at a nunber of frequencies. As we may expect, in-
troducing nore partials affects nore the "density" at high frequencies than at |ow
frequencies. In fig.7 the asynptotic values of the curves of fig.6 are plotted as
a function of frequency together with the critical bandwidth. It is very interest-
ing that the curves are alnost parallel, denonstrating that the conposer selected
his chords in such a way that on the average over the whole frequency range the
critical band is "penetrated" to the same degree.
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