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PERCEPTION OF TONAL CONSONANCE 

R. Plomp and W. J. M. Levelt* 

Consonant chords, as used in music, are characterized by simple frequency 
ratios of the constituent tones. Although this relation between ratio 
simplicity and consonance has drawn considerable interest in the past, 
no unanimous opinion about its origin exists. Recent developments in 
hearing theory, equipment design, and measuring techniques justified a 
new study of the phenonenon. It appeared that the experimental results of 
this study were confirmed by statistical analysis of the chords of musical 
compositions. 

* Present address: Center of Cognitive Studies, Harvard University, Cambridge 
(Mass), USA. 
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PERCEPTION OF TONAL CONSONANCE 

R. Plomp and W. J. M. Levelt 

One of the oldest discoveries in the field of tone perception, dating 
back to Pythagoras, concerns the singular character of chords pro
duced by a string vibrating in two parts with length ratios of 1 : 1, 
1 : 2, 2 : 3, and 3 : 4, respectively. These tone intervals were called 
consonances and on them the harmony of Western music has been 
developed, especially so since, in the Middle Ages, other intervals with 
ratios of 4 : 5, 3 : 5, 5 : 6, and 5 : 8 had been accepted as imperfect 
consonances. Nowadays we know that these consonant tone intervals 
are characterized by simple frequency ratios of the constituent tones. 
As such, however, this change in physical description does not 
throw more light on the phenomenon of consonance, and opinions are 
still divided as to its origin. Helmholtz's explanation of the difference 
between consonant and dissonant intervals on the basis of interference 
between adjacent harmonics (Helmholtz, 1863) has been opposed by 
many other investigators who tried to explain the phenomenon in 
terms of perception of the frequency ratio itself, coincidence of har
monics, difference tones or fusion (for references cf. Plomp and Levelt, 
1965). 
This divergence of opinions on the origin of consonance, combined with 
the fact that most research on it dates from before 1920, made it at
tractive to submit the phenomenon to a new investigation in which 
full use could be made of more recent developments in hearing theory, 
equipment design and measuring techniques. In this study, a review 
will be given of the most interesting results of these experiments, as 
far as they are available now. To avoid misunderstandings, it may be 
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useful to emphasize that the sole concern of our investigation was why 
consonance is related to simple frequency ratio. Although the concept 
of consonance is rather vague and may be different for musicians and 
laymen, this relationship is always involved. In our opinion it refers 
to the peculiar sensorial experience associated with isolated tone pairs 
with simple frequency ratios. We shall use the term tonal consonance to 
indicate this characteristic experience. The study of this phenomenon 
was the purpose of our investigations. 

Dimensions in the perception of tone intervals 

One possible approach towards the question why consonance is 
related to simple frequency ratios is to determine in which way tone 
intervals are categorized or, in other words, which criteria are used 
in discriminating them. This means, in fact, that we are looking for the 
psychological dimensions in our perception of tone intervals. If fre
quency ratio is one of the criteria we may expect to find a corresponding 
dimension in the experimental results. As, after Helmholtz's conception, 
dissonance is related to interference, it is of interest to examine inter
vals consisting of simple tones (sinusoids) as well as intervals consisting 
of complex tones (fundamental plus harmonics). 
The best way to investigate the psychological dimensions in the per
ception of tone intervals is to use a non-verbal technique, in which a 
subject is asked to compare his impressions of different intervals. 
Since, in this respect, the method of triadic comparisons is very at
tractive, it was used in the present investigation. The subject, then, 
can operate three pushbuttons, each corresponding with a different 
tone interval. By pressing these pushbuttons successively the subject 
has to select the two intervals which sound most similar to him and 
the two which sound least similar. In this investigation (Levelt, van de 
Geer and Plomp, 1966) 15 different tone intervals were involved, given 
by the frequency ratios 1 : 2, 2 : 3, 3 : 4, 2 : 5, 3 : 5, 4 : 5, 5 : 6, 4 : 7, 
5 : 7, 5 : 8, 4 : 9, 8 : 9, 11 : 12, 8 : 15, 15 : 16. To avoid the influence 
of pitch as much as possible, all stimuli had the same mean frequency 
viz. 500 cycles per second (cps). The component tones of the intervals 
were either simple tones, or complex tones (with harmonics up to 4000 
cps, all with equal loudness). The stimuli were reproduced by a loud
speaker, placed in front of the subject at a sound-pressure level of 
55-60 dB (normal listening level for speech and music). Since with a 

set of 15 stimuli = 455 different triads correspond, it was impos-
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sible to present any subject with the complete set of triads. |We there
fore developed an incomplete balanced design consisting of 4 blocks, 
each of 35 triads. Each block was presented to 4 subjects (non-
musicians) ; they all judged one block of stimuli twice, once for simple-
tone and once for complex-tone intervals. 
As the blocks were so designed that all 105 possible pairs of stimuli 
were judged once by each subject, we obtained 16 judgements of each 
pair. On the basis of these responses, for each stimulus pair a 'similarity 
index' was computed, defined as the number of times that a specific 
pair was judged more similar than the other pairs. This resulted in two 
15 X 15 matrices, one for simple-tone and one for complex-tone 
intervals. Any matrix element thus determines the 'psychological 
distance' between two intervals, a large similarity index corresponding 
with a small distance and a small similarity index with a large distance. 
The most suitable technique for further analysis of such similarity 
matrices is that developed recently by Kruskal (1964a, 1964b). For a 
better understanding of the problem, and of the way in which the data 
were handled, the following brief explication may be of value. Suppose 
that the perception of tone intervals is determined by three different 
psychological factors. Then, each of the 15 stimuli can be represented 
as a point in a three-dimensional space with orthogonal axes, the 
coordinates of the point corresponding to the contribution or loading 
of each factor in the perception of the stimulus concerned. The similari
ty matrix informs us about the relative distances between the 15 
points. It will be clear that on the basis of this matrix the best-fitting 
configuration of the points can be computed. The only criterion of 
Kruskal's technique is that the rank order of the distances between 
interval points in the stimulus space must be the inverse of the rank 
order of the corresponding similarity indices. The degree to which this 
criterion is not fulfilled can be expressed in a percentage of 'stress'. 
In our case we do not know a priori how many independent factors 
are involved. Therefore, perhaps a space with more than three di
mensions is required to nonviolate the data. On the other hand, 15 
points can anyway be fitted in a 14-dimensional space, meeting Krus
kal's criterion with zero stress. Of course, in the final solution that 
configuration will be taken which has the minimum number of di
mensions still acceptable. The best-fitting configurations were computed 
in all spaces with 10 or less dimensions. This was done by means of 
Kruskal's MDSCAL computer programme. On the basis of what 
Kruskal considers as 'fair' stress (10%), it appeared that, both for 
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simple-tone and complex-tone intervals, a three-dimensional space 
sufficed to fit the data. 
For the interpretation of this result it is of interest to look for 'common 
dimensions' in both spaces. We mean by this that, in the simple-tone 
interval space, a direction might be found for which the projections 
of the interval points on an axis in that direction closely correlate with 
the projections on an axis of the corresponding points (same frequency 
ratio) in the complex-tone interval space. Computation showed that 
both spaces had two dimensions in common, in other words in each 
space a plane was found for which the projections of the corresponding 
interval points are near to each other (correlation coefficients of 0.935 
and 0.944 for the two dimensions, respectively)*. The projections of 
the stimulus points on this plane are not evenly distributed over the 
plane but appear to be ordered along a horseshoe-like pattern with 
interval width (frequency difference between the constituent tones) 
as a parameter. Without going into further details we may conclude 
that this relation shows that we have in fact only one underlying 
dimension, common for both simple-tone and complex-tone intervals, 
namely interval width. 
Furthermore, the question is of interest whether there is a dimension 
in the perception of tone intervals related to frequency ratio, for we 
know that consonance depends on it. For that reason in both the simple-
tone and complex-tone spaces, a direction has been determined for 
which the projections of the interval points on an axis in that direction 
has a maximum correlation with ratio simplicity. Although other 
measures are also acceptable, the frequency of the lowest common 
harmonic was taken as a criterion for ratio simplicity (for instance for 
the interval 1 : 2 the actual frequencies were 333 and 666 cps, so 666 
cps was taken; for 2 : 3 the frequencies were 400 and 600 cps, giving 
1200 cps, etc.). As the distribution of these frequencies is rather skew, 
the logarithm was used in the computations. I t appeared that there 
existed an a priori correlation between interval width and ratio 
simplicity, owing to the intervals selected; therefore, measures had to 
be taken to eliminate this artefact from our results. After correction 
for it, we found that, in the complex-tone interval space, a direction 
could be determined giving a high correlation (r = 0.914) with ratio 

* We are much indebted to J. P. van de Geer for providing the techniques to 
compute the common dimensions and the dimension for maximum correlation 
with ratio simplicity described below. 
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simplicity, whereas in the simple-tone interval space this was not 
possible (r = 0.215). 
Summarizing the results of this experiment, we may conclude that 
tone intervals, whether consisting of simple or complex tones, are 
differentiated on the basis of interval width and that, in addition, only 
complex tones are also differentiated on the basis of simplicity of 
frequency ratio. This conclusion implies that, for simple-tone intervals, 
tonal consonance as a sensorial experience can only be related to 
interval width and not to ratio simplicity. This means that all ex
planations of consonance in which the harmonics do not play a role, 
have to be abandoned. 

Relation between consonance and interval width for simple-tone intervals 

Knowing that, for simple-tone intervals, consonance is related to 
interval width, it is of interest to focus attention on this relation. It 
was investigated through experiments (Plomp and Levelt, 1965) in 
which subjects judged simple-tone intervals with different interval 
width and mean frequency on a 7-point rating scale, 1 corresponding 
with most dissonant and 7 with most consonant. Some subjects asked 
for the meaning of 'consonant'. In that case the term was circum
scribed as 'beautiful' and 'euphonious'. This is justified because, as 
had been found earlierly (Van de Geer, Levelt and Plomp, 1962), 
'consonant', 'beautiful' and 'euphonious' are highly correlated for naive 
subjects. The tones were reproduced by a loudspeaker at a sound-
pressure level of about 65 dB. 
The experiments were carried out for mean frequencies of the intervals 
of 125, 250, 500, 1000, and 2000 cps. Each subject participated only 
in one test session in which he had to judge 12 to 14 different interval 
widths around one of these mean frequencies. The intervals were 
presented five times in a random order, and only the data of those 
subjects were maintained who gave sufficiently consistent responses 
(r > 0.5 between the scores of first and last series). In this way, results 
were obtained for about ten subjects at each mean frequency. 
As an example, in Fig. 1 the results for intervals around 500 cps are 
reproduced. At other mean frequencies similar curves were obtained, 
thus indicating that there is a clear minimum in the consonance score 
followed by a broad maximum for wider intervals. This result confirms 
the validity of Helmholtz's assumption that consonance is related to 
interference. Two tones very near to each other, give slow beats which 
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Fig. 1. Consonance rating scores of simple-tone intervals with a mean frequency 
of 500 cps as a function of frequency difference between the tones. The solid 
curve corresponds with the median, the dashed curves with the lower and upper 

quartiles of the scores (averaged over 11 subjects). 

are evaluated as consonant. For larger interval widths, these beats are 
so rapid that the sound obtains a rough and dissonant character which 
disappears for still wider intervals. However, it was found that, 
contradictory to Helmholtz's view on the matter, the frequency 
difference for which the interval is most dissonant, depends on the 
mean frequency of the interval; this is also the case for the interval 
width for which consonance score increases no longer. 
The question can now be asked whether these data can be related to 
other properties of hearing. They can, indeed. In recent years, many 
investigations have been published in which the concept of the 
'critical band' plays an important role. This critical band, whose width 
is a function of frequency, can be considered as the resolving power 
of the hearing organ for sounds of different frequencies (for more 
details, see the second study). A comparison with the present results 
shows that tone intervals wider than critical bandwidth are judged as 
consonant, whereas maximum dissonance occurs for an interval width 
around a quarter of critical bandwidth. This supports the assumption 
that dissonance is due to interference. 
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Consonance for complex-tone intervals 

In practice, tones as produced by musical instruments, usually consist 
of a fundamental and a number of harmonics. This implies that, for 
intervals composed of these tones harmonics of one of them may interfere 
with harmonics of the other. Accordingly, the degree to which this 
occurs will affect the consonance value of the interval. This influence 
can be illustrated in the following way. From the results of the preceding 
experiments a standard curve was derived which represents conso
nance - or dissonance - of simple-tone intervals as a function of interval 
width with critical bandwidth as a unit (Fig. 2). Assuming that the 
total dissonance value of a complex-tone interval is equal to the sum 
of the dissonance values of each pair of adjacent harmonics, this total 
can be computed by using the right-hand scale of Fig. 2. Although 
this assumption is rather speculative, it is not unreasonable as a 
first approximation. Its use may be justified in illustrating how it 
predicts, for complex-tone intervals, the dependence of consonance on 
interval width and frequency ratio. On this basis the curves of Figs. 3 
and 4 were computed for complex tones consisting of six harmonics. 
The first figure shows in which way consonance varies as a function 
of interval width, whereas the other graph illustrates how the con
sonance of some intervals, given by simple frequency ratios, depends 
on frequency. 
The curves illustrate: (1) peaks of the curve of Fig. 3 correspond with 

0.4 0.6 0.8 t.O 
x critical bandwidth — 

Fig. 2. Standard curve representing consonance of simple-tone intervals as a 
function of frequency difference with critical bandwidth as a unit. The con

sonance and dissonance scales are arbitrary. 
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simple frequency ratios of the component tones; this shows that, 

for complex tones, consonance is related to these simple ratios; (2) 

more simple ratios are represented by sharper peaks, so the octave 

(1 : 2) and fifth (2 : 3) are much more sensitive to a deviation from 
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their correct ratio than are other intervals; this explains why in the 
equally-tempered scale (vertical lines of Fig. 4) the impure thirds 
(4 : 5 and 5 : 6) are much more tolerable than impure octaves and 
fifths would have been; (3) the relative heights of the peaks of Fig. 3 
and the curves of Fig. 4 fit rather well the rank order of consonant 
intervals as accepted by musicians; (4) with decreasing frequency 
consonance is better preserved for more simple than for more complex 
frequency ratios (Fig. 4), reflecting the musical practice to avoid 
thirds (4 : 5, 5 : 6) at low frequencies. 

Statistical analysis of chords in music 

The close relation between consonance and critical bandwidth raised 
the question whether in music, too, we may find this relation. As the 
experiments showed, maximum dissonance corresponds with an inter
val width of about a quarter of the critical bandwidth, whereas con
sonance increases no longer for interval widths exceeding this critical 
value. This suggests that especially this range will be of interest in 
music to differentiate between more consonant and more dissonant 
chords. To check this assumption statistical analyses of the chords 
in some musical compositions, the 'vertical' dimension of music, were 
carried out. 
An illustration may serve to explain how the analyses were done. 
Suppose we are interested in the occurrence of intervals with c2 = 
523.2 cps as the lower tone. We then sort out all chords containing c2 

and a higher tone simultaneously and determine the fraction of time 
during which the nearest higher tone is separated from c2 by a distance 
of 1 semitone, by 2 semitones, etc. I t may appear that distances of 
1 semitone as well as of 15 semitones are rare, whereas a distance 
of 4 semitones is rather common. Of this 'density distribution' of 
intervals we can determine the 50% (median)-, 25%- and 75%-points, 
respectively. These numbers represent a good measure of the widths 
of intervals with c2 as the lower tone. By repeating the procedure for 
other tones over the relevant frequency range, we can find how the 
50%-, 25%- and 75%-points depend on frequency. 
As in practice musical tones nearly always consist of a number of 
harmonics with amplitudes comparable with the amplitude of the 
fundamental, we are also interested in density distributions in which 
harmonics have been taken into account. This can be done, popularly 
said, by plotting the notes of the first n harmonics in the score of the 
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music and treating these additional notes in the same way as the 
original ones. In this way density distributions can be determined for 
various values of n, premising that the additional notes fit our tone 
scale. This is rather well the case up to n = 10. 
Density distributions as a function of both frequency and number of 
harmonics were computed, using especially developed equipment, for 
parts of musical compositions of J. S. Bach, A. Dvorak and A. Schoen-
berg. In Fig. 5, some results are reproduced graphically, based on the 
third movement of Dvorak's String Quartet Op. 51. The density 
distributions of the other compositions led to similar graphs. A 
comparison of the solid curves with the dashed curves corresponding 
with critical bandwidth and a quarter of this bandwidth, respectively, 
shows that, for a number of harmonics representative for musical 
instruments, all curves have about the same shape. Moreover, the 
situation of the solid curves demonstrates that most intervals have a 
width between critical bandwidth and a quarter of it. 
These results suggest that critical bandwidth plays an important role 
in music. Apparently the region over which for simple tones the 
consonance impression strongly depends on interval width is used for 
'modulation' between more consonant and more dissonant chords. We 
should realize that this equally deep 'penetration' in the borderland 
between pronouncedly consonant and dissonant sounds is a result of 
many such factors as the Western tone scale, the number of simul
taneous tones and the primary intervals selected by the composer. 
Concerning the latter factor, a comparison of the density distributions 
of three compositions showed that in modern music the just-mentioned 
borderland is penetrated more deeply than in older music. 

Conclusions 

The investigations strongly suggest that the relation between tonal 
consonance and simple frequency ratio, as it has been found in practice, 
is a result of interference of adjacent harmonics. The fact that the 

Fig. 5. Results of a statistical analysis of the chords of the third movement of A. 
Dvorak's String Quartet Op. 51 in e-flat major with n (= number ol harmonics 
taken into account) as a parameter. The solid curves represent the 25%-, 50% 
and 75%,-points, respectively, of the cumulative density distribution of intervals, 
plotted as a function of frequency. The dotted curves correspond with critical 

bandwidth and a quarter of this bandwidth. 
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perception of intervals consisting of simple tones is not governed by 
frequency ratio, but only by interval width, is confirmed by the finding 
that for naive subjects, the consonance value attached to this type of 
intervals is a continuous function of frequency difference. The ex
perimental fact that frequency ratio is an important factor in discrimi
nating complex-tone intervals can be explained by using the hypothesis 
that, in this case, not only the fundamentals interfere, but that 
adjacent harmonics do too. Moreover, the experiments showed that 
this interference only occurs for frequency distances within the 'critical 
bandwidth'; the most dissonant intervals correspond with a frequency 
distance of about a quarter of this bandwidth. This relevance of 
critical bandwidth for the perception of tonal consonance is supported 
by the results of statistical analyses of chords in musical compositions. 
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