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Abstract Time plays an important role in medical and
neuropsychological diagnosis and research. In the field
of Electro- and MagnetoEncephaloGraphy (EEG/MEG)
source localization, a current distribution in the human
brain is reconstructed noninvasively by means of mea-
sured fields outside the head. High resolution finite el-
ement modeling for the field computation leads to a
sparse, large scale, linear equation system with many
different right hand sides to be solved. The presented so-
lution process is based on a parallel algebraic multigrid
method. It is shown that very short computation times
can be achieved through the combination of the multi-
grid technique and the parallelization on distributed
memory computers. A solver time comparison to a clas-
sical parallel Jacobi preconditioned conjugate gradient
method is given.

Key words EEG/MEG-source localization in the hu-
man brain, Algebraic multigrid, Parallel iterative solvers.

1 Introduction

Nowadays devices and tools are available for analyzing
and monitoring the human brain with fine details. These
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details are necessary, e.g., for successful surgery or, more
generally, for basic brain research. Often computational
methods are used in the diagnosis- and pre-surgical
phase. Such non-invasive tools are of course preferable
to invasive methods, e.g., surgery, with high risks for pa-
tients. In basic human brain research, most often there
is no other choice besides computational methods. How-
ever, the acceptance of tools depends very much on their
speed and their reliability and robustness. In this paper
it will be shown how advanced numerical methods en-
hance such tools or make them work at all. The paper
brings together clinical diagnosis, pre-surgical planning,
clinical and cognitive research and numerical mathemat-
ics, and describes the requirements of necessary algo-
rithms and software.

It is normal practice in cognitive research and in clini-
cal routine and research to localize current sources in the
human brain by means of the induced electric potentials,
measured with electrodes which are fixed on the scalp
(EEG) and/or the induced magnetic fluxes, measured in
a distance of a few centimeters from the head surface
(MEG). The localization of the underlying source dis-
tribution is an inverse problem whose solution requires
the repeated simulation of the electric/magnetic propa-
gation in the head for a varying source in the brain (for-
ward problem). During the forward problem, the volume-
conductor head has to be modeled. An overview about
the head tissues with different conductivities can be
found in [Haueisen, 1996]. The human skull, e.g. is an
inhomogeneously conducting layer which consists of dif-
ferent plates with suture lines in between. These inho-
mogeneities have an influence on the inverse source lo-
calization, as shown by [Pohlmeier et al., 1997]. [van den
Broek et al., 1997] reported a large influence of holes in
the skull or lesions in the brain to the field simulations. If
the skull, from a macroscopic point of view, is regarded
as one unit consisting of a soft bone layer (spongiosa)
enclosed by two hard bone layers (compacta), its con-
ductivity shows an anisotropy with a ratio of about 1:10
(radially:tangentially to the skull surface) [Akhtari et al.,
2000]. First results show that neglecting this anisotropy
in the forward problem can lead to spurious errors in
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Figure 1. Head geomnetry: a) The human skull: Suture lines and the tri-layeredness [Platzer,1994]. b) Diffusion Tensor Imaging

reveals anisotropy of brain white matter [Wolters et al.,1999b].

the inverse current reconstruction result [Marin et al.,
1998]. An anisotropic conductivity with a ratio of 1:9
(normal:parallel to fibers) has been measured for brain
white matter. Figure 1, taken from [Platzer, 1994] and
[Wolters et al., 1999b], illustrates geometrical features
of skull and white matter tissues. Models and measure-
ment techniques to approximate and include white mat-
ter anisotropy into source localization procedures can
be found in [Haueisen et al., 1999; Tuch et al., 1998;
Wolters et al., 1999b]. [Haueisen et al., 1999] presented
a first study showing a non neglectable influence of white
matter conductivity anisotropy to the forward problem.

A Dbottleneck for sensitivity-studies of tissue inho-
mogeneities/anisotropies towards the different inverse
source reconstruction techniques and especially for broad
application of high resolution volume conductor model-
ing to inverse reconstructions in the application fields is
the time for calculating the 3D potential distributions
during the various forward problems that have to be
solved. [Waberski et al., 1998], e.g., conclude that for
the achievement of the final goal in epilepsy source lo-
calization, i.e., the general clinical use, high resolution
realistically shaped head models are necessary and par-
allel computing has to speed the computation. Finite el-
ement (FE) models for the electromagnetic field simula-
tion in the head have been developed by various research-
groups (see e.g. [Bertrand et al., 1991; Haueisen, 1996;
van den Broek et al., 1997; Buchner et al., 1997; Awada
et al., 1997; Marin et al., 1998]). The FE method is
able to treat geometries of arbitrary shape, inhomoge-
neous and anisotropic conductivities. Generally iterative
solvers like the preconditioned Conjugate Gradient (CQ)
method with conventional preconditioners on single pro-
cessor machines have been used for the large linear equa-
tion system arising from this approach. The hundred or
even thousand times repeated solution of such a system
with a constant stiffness matrix and varying right hand
sides is the major time consuming part within the in-
verse localization process. These calculation times lim-

ited the resolution of the models or, even stronger, the
broader application of FE based head modeling to prac-
tical source localization problems got stuck.

Geometric MultiGrid (GMG) methods have proven
to be of optimal order with respect to memory re-
quirement and arithmetic costs, see e.g. [Hackbusch,
1985]. In [Jung and Langer, 1991], it was shown that
multigrid methods are efficient preconditioners for the
conjugate gradient method. For a parallel implementa-
tion see for instance [Bastian et al., 1997]. GMG suf-
fer from the requirement of a grid hierarchy, which is
not available in our case. By contrast, Algebraic Multi-
Grid (AMG) methods use only single grid informa-
tion (see e.g. [Ruge and Stiiben, 1986; Braess, 1995;
Kickinger, 1998; Haase et al., 2000b] and for parallel
versions [Falgout et al., 1999; Krechel and Stiiben, 2001;
Haase et al., 2000a; Wagner, 2000]) while mostly pre-
serving the properties of the geometric version. Many
numerical studies have shown a good performance of
AMG preconditioners. Furthermore, AMG precondition-
ers were successfully applied to source localization re-
cently ([Wolters et al., 2000; Johnson et al., 2000]). Even
if AMG preconditioned CG (AMG-CG) was shown to be
very fast in comparison to standard methods, additional
speedup is required. This paper describes how the latter
can be achieved for realistically shaped high resolution
head models by using a parallel computer with a mod-
erate number of processors.

Subsection 1.1 of this paper will give an overview
about different application fields of source localization
and will present an exemplary reconstruction result for
Somatosensory Evoked Potentials (SEP). The subsection
is meant to be a further motivation for interested readers
not stemming from the bioelectromagnetism area and
it can be skipped otherwise. In Section 2, the model-
ing aspects for the forward problem will be described.
An overview about a physical model for the source and
for the field propagation in the head volume conductor
will be presented. A short introduction to the automatic



generation of realistically shaped high resolution head
models using multimodal Magnetic Resonance Imaging
(MRI) based segmentation and tetrahedral and cubic FE
meshing will then be given. The section terminates with
an FE formulation. In Section 3, the AMG-CG solver
will be introduced as a fast solver for the large linear
equation system arising from the FE approach. The par-
titioning of the meshes and a parallelization strategy for
distributed memory computers will then be presented.
Section 4 describes the new software developments, nec-
essary for the achievement of the results in Section 5,
where numerical studies will be presented within realis-
tically shaped high resolution head models. The paral-
lelized multigrid method will be compared with a parallel
Jacobi-preconditioned CG method (Jacobi-CG), which is
a well-known solver method in FE source localization. It
will be shown that high speedups can be achieved which
open the possibility for a broader application of high res-
olution FE based source localization in the human brain.
The paper ends with the discussion of the results and the
conclusions in Section 6.

1.1 Overview about applications of source localization

This subsection is only meant to be a further motiva-
tion and to list some references for readers who would
like to know more about the inverse problem and some
well-established application fields of EEG/MEG-source
localization.

An overview about the different application fields
of source localization can be found in [Andrd and
Nowak, 1998]. Various inverse reconstruction techniques
for continuous and discrete source parameter spaces
are described, e.g., in [Scherg and von Cramon, 1985;
Buchner et al., 1997; Knosche, 1997; Wagner, 1998;
Wolters et al., 1999a; Schmitt and Louis, 2001; Schmitt
et al., 2001].

2.0 127.0
0.4 |

024

-0.2+

0.4

—1IEIU —%U 0 E SIU 1E‘IU

Time [ms]
Figure 2. SEP example dataset, taken from CURRY: But-
terfly plot of averaged EEG data from —0.4 to 0.4 pV. The
P22 signal component is marked.

A first example is the study of functional cortical or-
ganization by means of evoked fields of the somatosen-
sory system. The different evoked signal components of
interest in such studies appear during the first 100 ms
poststimulus. Since the components are well time-locked
and not dependent on the attention of the subjects, the
signal-average can be built over a large number of trials
so that the signal components of interest are equipped

with a relatively good signal-to-noise ratio. Figure 2
shows the averaged EEG measurements for SEP in 31
channel butterfly plot from [Fuchs et al., 1998], included
as an example dataset in the software package [CURRY,
2000]. To give an impression for a medically interest-
ing source localization result, the continuous dipole fit
method, introduced by [Scherg and von Cramon, 1985],
with two dipoles at the peak of the SEP-P22 signal com-
ponent is shown in Figure 3 (see [Fuchs et al., 1998]).
The result has been calculated using the example dataset
and methods within [CURRY, 2000]. Source localization

Figure 3. SEP source localization example, computed with
CURRY: Results of the continuous dipole fit method with two
dipoles at the peak of the P22 signal component.

methods have also been introduced to characterize the
generators of signals related to higher cognitive function.
An example is a recent study showing equivalences be-
tween speech and music processing in the brain [Maess
et al., 2001].

The non-invasive EEG/MEG-source localization di-
agnosis method is successfully used in clinical research
and application. For instance tumors may distort brain
anatomy so that the presurgical localization of sensory
or motor areas on the basis of anatomical landmarks
is impossible. In [Sutherling et al., 1988], the agree-
ment between invasive and the non-invasive diagnosis
method have been evaluated and an “excellent precision
of the source localization results” was found. About 0.25
% of the world population suffers from drug-resistant
epilepsy and about 10 to 15 % would profit from a sur-
gical removement of the epileptogenic tissue [Andri and
Nowak, 1998]. As opposed to alternative invasive diag-
nostic procedures, i.e., opening the skull and implanting
electrodes near the assumed focus (ECoG surface elec-
trodes or depth electrodes) which put the patient under
a considerable risk and is cost intensive, source local-
ization procedures are non-invasive and can give a more
“global” overview since the sensors can be placed around
the whole head. [Waberski et al., 1998], e.g., found a
high congruence of source reconstruction and invasive



determination of the focus of epileptiform activity using
realistically shaped head models.

2 The forward problem
2.1 Physical modeling

The sources to be localized during the inverse problem
and to be modeled in the forward problem are elec-
trolytic currents within the dendrites of the large pyra-
midal cells of activated neurons in the cortex sheet of the
human brain. A stimulus-induced activation of a large
number of excitatory synapses of a whole pattern of neu-
rons leads to a negative monopole under the brain sur-
face, whereas the cells in rest form a positive monopole
quite closely underneath. Such a stimulus can have var-
ious forms, e.g., any visual or auditory stimulus in neu-
ropsychological experiments or an epilepsy- or tumor-
induced stimulus as clinical examples. The resulting pri-
mary current is generally formulated as a mathematical
dipole

37 (x) = Moy, (x) (1)

at the position xo with the moment M (see e.g.[Nunez,
1990]). The dipole source establishes an electric field E
and a return current o E in the whole head with o a 3 x 3
conductivity tensor. The total current distribution j in
the head is then modeled as

j=j* +0oE.

Since in the considered low frequency band, the capaci-
tive component of tissue impedance and the electromag-
netic propagation effect can be neglected [Plonsey and
Heppner, 1967], the fields are quasistatic and E can be
expressed as the negative gradient of a scalar potential
@, so that

j=j" — V.

Because the divergence of j must be zero, we arrive at
the quasistatic approach of Maxwell’s equations of elec-
trodynamics

V-(oVP)=JP=V-j° in 2 (2)
with appropriate boundary conditions

0P
O'a—n - =0 (3)
with (2 the head, I" the head surface and n the surface
normal. Additionally, a reference electrode with given
potential is assumed, i.e.,

Drer=0. (4)

If the scalar potential is known, the magnetic flux
through an MEG-magnetometer can then be calculated
using a corollary from Biot-Savart’s law (see e.g. [Wolters
et al., 1999b)).

The subtraction method (see e.g. [Awada et al.,
1997]) splits the total potential @ into two parts, the sin-
gularity potential > and the correction potential $°°™"

@ — @OO + ¢CO’I"7"- (5)

The singularity potential is the solution for a cur-
rent dipole in an unbounded homogeneous conductor
with constant conductivity o¢ (the isotropic conductiv-
ity value at the dipole location zg),

o 1 M(x—xo)
% (x) = 3
4oy |X—X0|

which can be computed very fast. Subtracting the differ-
ential equation for the singularity potential from equa-
tion (2) yields the following equation for the correction
potential

V- (0VET) = —V - (0 — 00)VS®) in 2 (6)

and the inhomogeneous Neumann boundary conditions

at the surface

BQCOTT
g on

_ OP>®
r - On

- (7)
r
When solving this towards #°°"", the unknown scalar
potential ¢ can then be calculated using equation 5.
[de Munck and Peters, 1993] derived series expan-
sion formulas for problem (2) with boundary condi-
tions (3) and reference potential (4) in order to calcu-
late the potential distribution for a dipolar source in a
multi-layer spherical shell model with constant isotropic
or anisotropic conductivity values/tensors within each
layer. It is now widely known that realistically shaped
models of the human head are needed to minimize the
localization error (see e.g. [Waberski et al., 1998]).

2.2 Generation of a realistic 5 tissue head model

A prerequisite for a realistic modeling of the volume
conductor is the segmentation of head tissues with dif-
ferent conductivity properties. The exact modeling of
the low-conducting human skull is of special impor-
tance for EEG/MEG-source localization[Huiskamp et
al., 1999]. The skull can be seen as an isolating layer
which leads to a strong decrease and a blurring of the
potential distribution towards the measurement elec-
trodes. MRI is known as a save and non-invasive method
for imaging the human head. The identification of the
CerebroSpinal Fluid(CSF)-skull boundary based on T1-
MRI (T1-weighted MRI) is problematic, and PD-MRI
(proton-density-weighted MRI) is most appropriate for
this task (see Figure 4). A strong segmentation im-
provement of the CSF-skull boundary could be achieved
through the exploitation of the registered PD image.
When compared to procedures, solely based on a T1
image modality, where the segmented brain surface is
smoothed and dilated in order to estimate the inner
skull, larger errors in areas of the skull base, but also at



Figure 4. Azial slices of a a) T1-weighted MRI b) registered
proton-density-weighted MRI.

the neurocranial roof, where the CSF layer between brain
and skull is underestimated, are reported in [Burkhardt
et al., 2001; Huiskamp et al., 1999; Wolters, 2001]. Er-
rors in EEG source localization of up to lcm in mesial-
temporal and basal-frontal regions, resulting from inac-
curate skull segmentation, were found in [Huiskamp et
al., 1999]. The segmentation of outer skull, skin, white
and gray matter surfaces was carried out as described
in [Wolters, 2001], resulting in the 5-tissue head model,
shown in Figure 5. In future studies, the skull conductiv-

Figure 5. Cut through an azial layer of the 5-tissue segmen-
tation result through multimodal MR-imaging.

ity tensor eigenvectors will be automatically determined
by means of the triangle normals of a deformable model
within the skull spongiosa space and Diffusion Tensor
Imaging (DTI) methods will be used to measure/model
the conductivity anisotropy of the white matter as shown
in Figure 1 and described in [Haueisen et al., 1999;
Tuch et al., 1998; Wolters et al., 1999b; Wolters, 2001].

2.8 Discretization and Mesh Generation

Numerical methods are needed for field simulations in
volume conductors which exploit individual tissue seg-
mentation results. Within this paper, we will use the
FE method and equation (2) will be discretized, using

a direct approach. Therefore, the blurred dipole model
has been introduced for FE based source localization
in [Buchner et al., 1997], which will be shortly summa-
rized now. The blurred dipole is made up from monopole
sources Jp := J°(x;), calculated for all neighboring FE
mesh nodes x;, around the location x; of a mathematical
dipole M; := My, (x), so that
D = L ("M — (A" ) (M — (A% 1))

1
+/\§J,ggksJ§ = min

g o= L (ARLARL) 2 if k= s
s 0 ifk#s

with Ax}, = Ax},/a the r-component of the a-weighted
vector from node i to node k, Axy;, no the order of the
source model and n, the dipole smoothness. The first
part of the functional D ensures a minimal difference bet-
ween the resultant moment of the blurred dipole and the
one of the mathematical dipole, while the second part,
a Tikhonov-Phillips regularizer, smoothes the monopole
distribution and enables a unique minimum for D. The
differentiation of D with respect to J® expresses the con-
dition for the minimum and a linear system of equations
is established.

[(ARL)™ (AKL)™ + Agea] JL = (AR M0 (8)

Y Jb=0
k

Together with J? = 0 for all non-neighbor indices ¢ of
dipole index i, the monopole distribution of the blurred
dipole model is defined. See [Buchner et al., 1997] for a
motivation of this source model and for accuracy tests in
a sphere model, where the numerical results were com-
pared with results of an analytical formula from [Smythe,
1989] for two closely neighbored monopoles, a source and
a sink. The direct application of variational and FE tech-
niques to equation (2) with boundary conditions (3) to-
gether with the blurred dipole model yields a system of
linear equations

Kn®p, = J,, (9)

with K, € RV»*Nu the stiffness matrix, J, € RV» the
source load and &, € RM» the solution vector for the
total potential. The stiffness matrix is given by

Kl = / VipjoVap; d2 (10)
?

and the right hand side entries for the direct method by
Bl == [ e (11)
Q

for an FE-basis V, = span{t;} X" . The subindex h de-
notes the average meshsize and N, = O(h™?) is the num-
ber of unknowns as h tends to zero. The condition num-
ber of the stiffness matrix behaviors asymptotically like

O(h~2).



The subtraction method (6,7) leads to an equation
system Kp®:°™" = J3° with the same stiffness matrix
(10), but with the right hand side entries

) = —ih: [/Q Vi (0 — a0) Vid2

+ /F0'0<V’(,b]’,n>’(ﬁid[':| @;)0

The solution vector ;°"" is the FE approximation of the
correction potential and equation (5) is used to calculate
the total potential. Since the stiffness matrix is the same
for the subtraction method and the solvers are indepen-
dent of the right hand side of the equation system, the
results presented in the following are as well valid for the
subtraction method.

An essential prerequisite is the generation of an FE
mesh representing the geometric and electric properties
of the head volume conductor. Two different approaches
have been chosen. The first approach uses a surface-
based tetrahedral tessellation of the relevant compart-
ments skin, skull, CSF, brain gray and white matter and
ventricular system, described in [Wagner, 1998]. Aux-
iliary surfaces with a distance d; from the given com-
partment borders are generated so that a set of layered
surfaces is obtained. In a next step, the vertices of the
tetrahedral mesh are generated by means of a thinning of
the surfaces with thinning-distance d; for auxiliary and
ds for compartment surfaces. do = 2mm enabled a very
exact representation of the skull-layer. A distance of 1.3
times dy was chosen for dy, since the resolution deeper in
the brain was considered to be less important for an ap-
propriate accuracy. This resulted into 119299 nodes. Af-
ter a three-dimensional Delaunay triangulation, each of
the 713733 tetrahedra was labeled according to its com-
partment. Figure 6 shows the tetrahedra mesh for the 5

Figure 6. Tetrahedra mesh of the 5 tissue head model.

tissue head model. The top part was cutted away in order
to enable a view to the inside. The second mesh gener-
ation exploits the discretization of 3D space which is a
given for any scanned medical dataset. High-resolution
2mm isotropic cube elements have been generated and
labeled according to their position as described above.

This resulted in a model with 325384 nodes and 307580
elements.

Both FE meshes were generated using the software
package [CURRY, 2000].

3 Parallel Algebraic Multigrid Solver

The inverse reconstruction process requires the solution
of hundreds or even thousands of large scale systems of
equations (9) with the stiffness matrix (10). In [Wolters
et al., 2000], condition numbers of about 107 have been
calculated for high resolution realistically shaped head
stiffness matrices, causing severe accuracy and conver-
gence problems for classical iterative solvers. These prob-
lems were recovered by applying appropriate precondi-
tioners for the CG method such that the condition num-
ber of the resulting preconditioned stiffness matrix was
small. The AMG preconditioner was shown to be supe-
rior to incomplete Cholesky factorization with threshold.
In [Johnson et al., 2000], AMG-CG was found to be su-
perior to a successive overrelaxation method.

If we are going to solve the entire localization prob-
lem with many calls of the solver, the results cannot be
produced within an acceptable time. However, a paral-
lel computer may provide sufficient capacity such that
time limitation can be fulfilled. In [Haase et al., 2000a)]
it has been shown that AMG-CG solvers exhibit high
speedups on parallel computers including PC clusters
and an SGI ORIGIN 2000. The speedup was especially
good for the solver-part of the algorithm. Since the setup
of the preconditioner has to be carried out only once per
head geometry, its calculation time and speedup can be
neglected.

3.1 Algebraic Multigrid Method

As in Geometric MultiGrid (GMG, see [Hackbusch,
1985] for a theoretical overview), the basic idea in AMG
is to reduce high and low frequency components of the
error by the efficient interplay of smoothing and coarse
grid correction, respectively. In AMG, both, the matrix
hierarchy and the prolongation operators are constructed
just from the stiffness matrix K. In analogy, we will
speak of “coarse grids” although these are purely virtual
and do not have to be constructed explicitly as coarse
FE meshes. Since the automatic generation of a grid-
hierarchy for GMG and especially the proper assembling
of all components would be a very difficult task with re-
spect to conductivity inhomogeneities and anisotropies
in a realistically shaped head model, the automatic al-
gebraic construction of a virtual grid is a big advantage.
A general concept of AMG methods for FE discretiza-
tions can be found in [Haase et al., 2000b]. Each AMG
algorithm consists of the following components:

(a) Coarsening: define the splitting wp, = we Uwp of wy,
(the index set of nodes) into sets of coarse and fine
grid nodes we and wr, respectively.

(b) Transfer operators: prolongation By, : Vg — V, and
restriction Ry, 1= PF.



(c¢) Definition of the coarse matrix by Galerkin’s method,
i.e., KH = S)‘{hKhmh.

(d) Appropriate smoother for the considered problem
class.

The most important issue to be discussed is the setup
phase, i.e., the construction of the matrix hierarchy and
the prolongation operators. We will give the explanation
for a two grid method where h is related to the fine grid
and H to the coarse grid.

In our case, the stiffness matrix Kj can be associated
with an FE grid, i.e., the diagonal entry of the i** row
of the matrix Ky, is related to a grid point in wy and an
off-diagonal entry is related to an edge in an FE grid (see
Figure 7). First we look at the coarsening process which

“fine grid” “coarse grid”

m coarse grid node
e fine grid node

Figure 7. Illustration of a two grid method.

has the task to reduce the nodes such that Ny = |we| <
Ny = |wy|. Here, |w| denotes the number of elements
in the set w. Motivated from Figure 7, the grid points
wp, can be split into two disjoint subsets we (coarse grid
nodes) and wp (fine grid nodes), i.e.,

wp =wcUwp, wecNuwr =10

such that there are (almost) no direct connections be-
tween any two coarse grid nodes and the resulting num-
ber of coarse grid nodes is as large as possible. Instead of
considering all connections between nodes being of the
same rank, we introduce the following sets

N = {1 ki # 0. # 5} (12
Sh = {i € N{1IKE| > coarsei . Kn)}
sit={ienilies)}

where N} is the index set of neighbors, S} denotes the
index set of nodes with a “strong connection” from node
i and S;" is related to the index set of nodes with a
“strong connection” to node i (see [Ruge and Stiiben,
1986)). In addition coarse(i, j, Ky,) is an appropriate cut-
off (coarsening) function, e.g.,

coarse(i, j, Kp) = a - max{|K£f’j]|} , (13)
J

with a € [0,1]. With those definitions a splitting into
coarse and fine grid nodes can be done. For our compu-
tations we used a modified splitting algorithm of [Ruge
and Stiiben, 1986]. Next the prolongation operator has
to be defined correctly. We require that the prolongation
operator Ry, : Vg — V4 has full rank. There are a lot of
possibilities to define such transfer operators with pure
algebraic information. For the construction we refer to
[Ruge and Stiiben, 1986; Braess, 1995; Kickinger, 1998;
Wagner, 2000]. A possible setting and the one which
turned out to be the most efficient for the presented ap-
plication is given by

1 i =J €wc
1/|S;’Tﬁwc| iEwF,jESZ’TﬁwC
0 else.

(P =

(14)

The coarse grid matrix Kg is defined by the classical
Galerkin method, i.e.,

Ky = Pr KB, € RV N

being again symmetric and positive definite (see e.g.
[Ruge and Stiiben, 1986)).

After the proper definition of the prolongation and
coarse grid operators a matrix hierarchy can be setup
in a recursive way. Finally, a multigrid cycle can
be assembled, see Algorithm 1. Therein the variable
COARSEGRID denotes the level where a direct solver is
applied.

Algorithm 1 (Parallel) V(vp,vg)-cycle MG(K},, D, J)
if COARSEGRID then
& < DIRECTSOLVE (K- & = J)
els~e
& < v TIMES SMOOTH(K},, @, J)

d? « PT.d

2 I el |2 |2 |

[¢]

For our application we use AMG-CG, i.e., AMG is
applied as a preconditioner for the CG method (see [Jung
and Langer, 1991]). For the m-V (vp,vp)-cycle AMG
preconditioned CG method, the operation w = CI_(IL
is realized by m calls of MG(Kp,o,r). For the Jacobi-
preconditioner, it is Cx = D with D the diagonal of Kj,.
The Preconditioned CG (PCG) method is shown in Al-

gorithm 2.

3.2 Data Partitioning

The aim of parallelization is to split both data and oper-
ations to the P processors available. The consistency of



Algorithm 2 (Par.) PCG algorithm pca(Kp, $,J, Ck)
r+J—-K,®
w<Cglor
S W
v <= (W, r)
repeat
v Kp-s
a < v/(s,v)
P D+as

B < ¥/Yop , Yoo
S W+ s
until TERMINATION

the algorithms is preserved by message passing. In our
case, the parallelization is based on a non-overlapping
domain decomposition, i.e., we decompose (2 into P sub-
domains {2, such that

P
n=J,

s=1
with

NN, =0 Yg#s, s,q=1,...,P
holds. Each subdomain (2; is discretized by a mesh 7, s
such that the whole triangulation

P
Th = U Th,s
s=1

of {2 forms a conforming mesh. A global FE space V, is
defined with respect to 7, and the local spaces Vj, , are
restrictions of V}, onto 7 5.

The mesh partitioning of realistic FE geometries with
unstructured meshes is critical for the efficiency of the
parallel solver method. The distribution must be done
so that the number of elements assigned to each pro-
cessor is the same and the number of adjacent elements
assigned to different processors is minimized in order to
balance the computation amount among the processors
and to minimize the communication between them, re-
spectively. Therefore, graph partitioning algorithms were
used which model the FE mesh by a graph (V, E) with
vertices V' and edges E. Since we are interested in an
“element-wise-” in contrast to a “node-wise-" distribu-
tion, the dual graph of the FE mesh was partitioned.
The finite elements are the vertices of the dual graph
and adjacent elements are the corresponding edges. A
balanced k-way partitioning was used, minimizing the
number of edges which straddle partitions. No weighting
of the edges, e.g. with regard to jumping conductivities
between elements at tissue-boundaries, was used. The
algorithm is based on a multilevel approach, first reduc-
ing the size of the dual graph by collapsing vertices and
edges, then partitioning the dual graph on the lowest
level and further refine during the uncoarsening steps.

For the described mesh-partitioning, the software pack-
age METIS was used [Karypis and Kumar, 1998]. The re-
sults were achieved in a few seconds on a single processor
SGI workstation. A first examination of the partitioning

a)

Figure 8. FE meshes, partitioned for 12 processors with
METIS and visualized with PMVIS a) Realistic tetrahedra-
head model, 713783 elements b) Realistic cube-head model,
307580 elements.

result was carried out by means of zooming, rotating,
translating, scaling, and applying explosion factors. Fig-
ure 8 shows a visualization of the partitioned geometries
for 12 processors (see [Oztekin et al., 1998]). Later, the
number of interface and inner nodes and the number of
elements were controlled during the calculations. The in-
terface nodes are those nodes which belong to at least
two processors, whereas inner nodes only belong to one.
In all cases, the quality of the partitioning results were
very satisfactory.

3.3 Parallel AMG

The mapping of a vector &, € RV» in global num-
bering onto a local vector @, € RM: in subdomain 2,
(s =1,...,P) is represented symbolically by subdomain
connectivity matrices A, : RV s RN+ with entries

Al 1 if j=Loc2GLOB(7) Vi€ we, ¥j € wp
s 0 else ’

where LOC2GLOB(-) maps a local index to the global
index. The transpose Al of these binary matrices A
maps a local vector back onto the global one. The index

set of all those subdomains to which an unknown ¢£f],
J € wp, belongs, is denoted by

ol = {s|oV e 0} (15)

We store the data related to the i'” node in the subdo-
main 2, if s € ol . This approach results in local data
denoted by index s of two types [Haase, 1999]: accumu-
lated data (vector @, matrix ) represented by

B, = AP,  Py= A P-AD (16)



and distributed data (vector d, matrix Kj) represented
by

P P
d =Y AT-d,, Ky:=> AT-Ki- A, (17)
s=1 s=1

It turns out, that in Algorithms 1 and 2, the function-
als are represented as distributed data (J, v, r, d, Ky),
whereas functions are represented as accumulated data
(®, s, w, B). The local FE accumulation with respect
to Vj, s produces automatically distributed matrices K.
For instance, it can be shown that the multiplication of
a distributed matrix K; with the accumulated vector s
in Algorithm 2 results in a distributed vector v:

P P
Kh'§: ZAZKsAs'ﬁ = ZAz(Ksﬁs)
s=1 s=1

P
_ T, _
= E Asyy = v
s=1

The realization requires no communication at all because
we only have to compute v, = K, - s, locally.

If an accumulated matrix 9t fulfills the condition

Viewn,Vjicwe : ol g ol — bl =0, (18)
then the operations w = 9 -, gH = MT .d and
Ky = MTKLM can be performed locally without any
communication [Haase, 1999].

In AMG the coarsening and prolongation operators
are components which can be chosen. The main idea in
the design of parallel AMG is to choose these compo-
nents such that the resulting prolongation operators
are of accumulated type satisfying the pattern condition
(18). For this purpose, a local node ordering is intro-
duced by means of a grouping and ordering of the in-
dex sets (15) according to |oll|. The coarsening then
starts at interfaces involving more than 2 processors and
continues with faces between two processors and finally
the coarsening of inner nodes is realized. In addition the
coarsening has to be synchronized such that the coarse
grid problem is conforming across interfaces between
processors. This synchronization requires next neighbor
communication. Note that the partitioning of the nodes
has only been performed on the finest grid. For a detailed
discussion we refer to [Haase et al., 2000a].

Now we observe that Algorithm 1 and Algorithm 2
are also the appropriate parallel formulations, where
double-line arrows “<” indicate that communication
is required for the corresponding operation. In Algo-
rithm 1, the coarse grid system is accumulated globally
once in the setup phase. During the iteration only a vec-
tor has to be assembled for computing the coarse grid
solution. Furthermore, the smoother requires communi-
cation and has to be adapted appropriately. We use a
Gauss-Seidel smoother for the inner nodes and a Jacobi
smoother for the interface nodes. The Jacobi-smoother
involves a vector conversion from distributed to accumu-
lated type, i.e., one next neighbor communication across

interfaces is required per smoothing step. In this way
we get a sophisticated smoother which can be found in
[Haase, 1999]. In Algorithm 2, only inner products in-
volve communication besides the preconditioning opera-
tion. Since for the inner product of different type vectors
it is

P P
<m7£> = QTZAZIS = Z (Asm)TIS
P s=1 s=1
= (w,r,),
s=1

only one global reduce operation is needed.

4 Software developments

A new FE software package NeuroFEM was developed,
based on the package CAUCHY (see [CAUCHY, 1997;
Buchner et al., 1997]). Since it would have been diffi-
cult to integrate the FORTRANT77-CAUCHY code us-
ing quasistatic memory management in a new C++
class structured inverse toolbox, the old software was re-
designed. The inverse toolbox contains a variety of state-
of-the-art current source localization methods ([SimBio,
2000], see also [Knosche, 1997; Wolters et al., 1999a)).
Another argument for the code development was the
possibility for a proper interface to the software pack-
age PEBBLES including the parallel AMG solver ([Re-
itzinger, 1999; Haase et al., 2000a)). The solver code ex-
ploits C++ principles of overloading and inheritance.

Therefore, C++ class structured software concepts
replace old CAUCHY kernel routines. The storage man-
agement within NeuroFEM is fully dynamical so that a
recompilation of the software is no longer necessary when
changing the problem- and thus memory- size. The new
structure facilitated parallel programming on distributed
memory computers using the Message-Passing Inter-
face (MPI) standard. The integrated software allows fu-
ture comparisons with boundary element method based
forward simulations (see e.g.[Zanow and Peters, 1995;
Fuchs et al., 1998]) or series expansion formulas in spher-
ical shell models [de Munck and Peters, 1993].

The coupling to the parallel solver-package is carried
out through an “element by element” interface. The root-
process determines the index set (15) for each node of
the partitioned geometry and scatters the correspond-
ing data together with the material properties to the
processors. The arrangement of the nodes to groups ac-
cording to their index-sets, the ordering of the groups
and the allocation of corresponding MPI-communicator
groups and the local node numbering is then a fully par-
allel process. Element-stiffness-matrices are computed on
each processor and stored in the local stiffness matrices
in FE compact row format. These matrices automati-
cally have the distributed data format (17). The global
Dirichlet-node information is scattered to all processors
and implemented with a penalty approach in local num-
bering to those local stiffness matrices whose processor-
number is part of the global Dirichlet-node index-set.
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The coarsening can then be carried out and the hierarchy
of stiffness and prolongation matrices can be determined
in the parallel setup-phase of the AMG preconditioner
as described in Section 3.

5 Results with realistic head models

For the following simulations, one blurred dipolar cur-
rent source was placed in the somatosensory cortex of the
tetrahedra and cube head models. For the parameters of
the blurred dipole (see equation (8)), we chose ng = 2
for the order of the source model, n, = 2 for the dipole
smoothness, A = 1078 for the regularization parame-
ter and a = 20.0 for the dipole scale, effecting a spatial
concentration of monopole loads .J;, in the dipole axis
around the dipole node. This choice also led to best re-
sults in sphere model accuracy tests, when comparing
the numerical results with an analytical formula from
[Smythe, 1989] for two closely neighbored monopoles, a
source and a sink, see [Buchner et al., 1997]. The zero
starting vector &g = 0 was chosen for the iterative solu-
tion process. The FE basis V;, consisted of piecewise lin-
ear Ansatz-functions. Note that the solver-speed of the
algorithms in Section 3 is only dependent on the stiff-
ness matrix (10), so that the following results are valid
for both, direct and subtraction method (see Subsections
2.1 and 2.3) and all possible source configurations (i.e.,
independence of the right-hand side of the linear equa-
tion system).

The conductivities o of skin- and brain-elements
were set to 0.33 [1/2m]. A conductivity value of
0.0042 [1/2m] was assigned to skull elements and
1.0 [1/£2m] to elements in the CSF, i.e., within the layer
between brain and skull and within the ventricular sys-
tem.

The experiment was run on an SGI ORIGIN 2000
with R10000, 195 MHz processors and overall 6GB of
main memory. The speedup for 1 up to 12 processors
was investigated.

The process of determining the index set (15) for each
node and scattering the data to the processors, both car-
ried out by the root, and the local arrangement of nodes
to groups according to their index-set and the allocation
of corresponding communicator groups takes about half
a minute and can be neglected since it has to be done
only once per head model.

The solver process was stopped in the " iteration
if the relative error in the controllable K;Cx' Ky-energy
norm was below € = 1078, i.e.,

(o, rt)
(n?, r0)

For the AMG-CG, we used the 1-V(1,1)-cycle AMG-
preconditioner. Equation (13) was taken as the cut-off
coarsening function with @ = 0.01 and the prolonga-
tion was chosen as in (14), respecting the pattern con-
dition (18). The factorization in Algorithm 1 was car-
ried out, if the size of the coarsest grid (COARSEGRID)
in the preconditioner-setup was below 800 for the tetra-
hedra and 1000 for the cube-models. The coarse system

< €.

is solved by means of a Cholesky-factorization. It should
be mentioned that the solver times for the tetrahedra
model with a fixed value of COARSEGRID = 1000 were
only slightly slower, so that this parameter could be fixed
to 1000 for the considered resolution range.

Figure 9 shows a result of the FE calculations,
achieved on two (9a) and 12 (9b) processors. The isopo-
tential lines have been interpolated and visualized from
—5uV up to 5uV on an axial layer of the 2mm cube
mesh (left) and from -1.6 to 0.7 4V on the surface of the
tetrahedra head model (right). Note the blurring effect
of the isolating skull-layer on the axial slice.

5.1 Realistic tetrahedra model

For the realistic tetrahedra model, the local accumula-
tion of the geometry matrix Ks on 1 processor took 173.4
seconds, parallelized on 12 processors a setup time of
14.89 seconds was achieved.

Time 1etrahedra head model: Comparison of parallel
(log., in sec.) solvers up to rel.accuracy 1e-08
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Figure 10. SGI ORIGIN: Wall-clock time from 1 to 12 pro-
cessors for the solver part of the parallel AMG-CG compared
to the parallel Jacobi-CG up to an accuracy of 1078 for the
realistic tetrahedra head model, 118299 nodes. The numbers
of iterations are shown over the curves.

Figure 10 shows the wall-clock time of the parallel
AMG-CG solver compared to the parallel Jacobi-CG.
The number of iterations for both solvers, necessary for
the required accuracy, is shown over the curves. The time
for the setup of the preconditioner is not included, since
it has to be carried out only once per head model and
is thus neglectable with regard to the solution of the in-
verse problem. To give an impression, the setup of the
AMG on 1 processor took 29.9 seconds and parallelized
on 12 processors 7.4 seconds. The 3D potential distribu-
tion was calculated on one processor within 195.8 sec-
onds with the Jacobi-CG method, whereas the parallel
AMG-CG method on 12 processors needed 2.6 seconds.
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Figure 9. Isopotential-lines: a) from -5 to 5 uV on an azial layer through the location of the source in the cube head model,
calculated on 2 processors b) from -1.6 to 0.7 uV on the surface of the tetrahedra head model, calculated on 12 processors.

SGI ORIGIN: Speedup results for tetrahedra

headmodel, 118229 nodes
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Figure 11. SGI ORIGIN: Speedup results from 1 to 12 pro-
cessors for the tetrahedra head model, 118299 nodes.

This is a factor of about 75 (7.5 through multigrid pre-
conditioning and 10 through parallelization).

The speedup results from 1 to 12 processors are
shown in Figure 11. The matrix generation is purely lo-
cal and gives the reference curve for the quasi optimal
speedup. This curve can also be seen as an indicator for
the quality of the mesh-partitioning, described in Subsec-
tion 3.2. The speedups for the parallel AMG-CG solver,
for one iteration of this solver and for the parallel Jacobi-
CG solver are compared.

Since the coarsening process and the determination of
the prolongation matrix 3 respecting pattern condition
(18) in the setup of the parallel AMG-preconditioner and
the smoother-component of the solver depend on the de-
composition into subdomains and a strongly increasing
number of interface-nodes would spoil the precondition-
ing effect, it is interesting to have a look at the relation of

Matrix hierarchy of tetrahedra head model
Nodes

1

100000 = | T T T

10000 r ]

1000 =

100 —
2 4 8 12 Processors

Oinner nodes level 1 dinner nodes level 2

Einner nodes level 4
Winterface nodes level 2
interface nodes level 4

Einner nodes level 3
Dinterface nodes level 1
interface nodes level 3

Figure 12. Realistic tetrahedra head model, 118299 nodes:
Relation interface nodes to all nodes (interface plus inner
nodes) on the four levels of the algebraic multigrid, ezem-
plarily for the decompositions for 2, 4, 8 and 12 processors.

interface nodes to all nodes (interface plus inner nodes)
on the different levels of the multigrid. Figure 12 shows
this relation exemplarily for 2, 4, 8 and 12 processors.
The decomposition into two domains lead to 2986 and
thus 2.5 % interface nodes on the finest level. On the
third level (their is no more smoother component on the
fourth and coarsest virtual grid), 294 out of 3581 nodes
were interface nodes and thus a percentage of 8.2%. On
12 processors, 11175 and thus 9% were interface nodes
on the finest level and on the third level, 998 out of 3675,
ie., 27%.
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5.2 Realistic cube model

For the cube head model, the local geometry matrix ac-
cumulation took 183.2 seconds on 1 processor and par-
allelized on 12 processors 15.80 seconds.

2mm cube head model: Comparison of parallel
solvers up to rel. accuracy 1e-08
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Figure 13. SGI ORIGIN: Wall-clock time from 1 to 12 pro-
cessors for the solver part of the parallel AMG-CG compared
to the parallel Jacobi-CG up to an accuracy of 1078 for the
realistic cube head model, 32538/ nodes. The numbers of it-
erations are shown over the curves.

Figure 13 shows the wall-clock time of the parallel
AMG-CG solver compared to the parallel Jacobi-CG for
the realistic cube model with 325384 nodes. Again, the
number of iterations is shown over the curves. As for the
tetrahedra-model, the time for the setup of the precon-
ditioner is not included. The setup of the AMG for the
cube model on 1 processor took 184 seconds and paral-
lelized on 12 processors 29.6 seconds. The 3D potential
distribution was calculated on one processor within 499
seconds with the Jacobi-CG method, whereas the par-
allel AMG-CG method on 12 processors needed 8.3 sec-
onds. This is a factor of about 60 (6.3 through multigrid
preconditioning and 9.5 through parallelization).

The speedup results from 1 to 12 processors are
shown in Figure 14. Again, the matrix generation gives
the reference curve for the quasi optimal speedup.

Let us have a closer look at the percentage of inter-
face nodes to all nodes (interface plus inner nodes) on the
five levels of the multigrid. Figure 15 shows this relation
exemplarily for 2, 4, 8 and 12 processors. The decomposi-
tion into two domains lead to 6659 and thus 2% interface
nodes on the finest level. On the fourth level, 219 out of
2029 nodes were interface nodes and thus a percentage
of 10.8%. On 12 processors, 27312 and thus 8.4% were
interface nodes on the finest level and on the third level,
637 out of 1804, i.e., 35.3%.

SGI-ORIGIN: Speedup results for 2mm cube
headmodel, 325384 nodes
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Figure 14. SGI ORIGIN: Speedup results for 2mm cube head
model, 325384 nodes, relative accuracy 1075,
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Figure 15. Realistic cube head model, 82538/ nodes: Rela-
tion interface nodes to all nodes (interface plus inner nodes)
on the five levels of the algebraic multigrid, exemplarily for
the decompositions for 2, 4, 8 and 12 processors.

6 Discussion and Conclusions

High resolution FE head modeling allows the inclu-
sion of head tissue conductivity inhomogeneities and
anisotropies. Many studies indicate the necessity of
such a complex forward model within EEG/MEG-
based source localization methods. The bottleneck for a
broader application is the time for solving the large linear
equation system with thousands of different right hand
sides arising from the FE discretization. Within this pa-
per, an efficient and memory-economical way was pre-
sented to face this problem. Very short calculation times
were achieved through the combination of AMG pre-
conditioning techniques and the parallelization on dis-
tributed memory platforms.



We compared the presented AMG-CG with the
Jacobi-CG, the latter being a well-known solver method
in FE-based source localization. If the Jacobi-CG on a
single processor is taken as a reference, we achieved a
speedup of 75 for a realistically shaped high resolution
tetrahedra head model with 118299 nodes when com-
paring to the parallel AMG-CG on 12 processors, 7.5
through multigrid preconditioning and 10 through par-
allelization on 12 processors. The factor for the realis-
tically shaped high resolution cube model with 325384
nodes was 60, 6.3 through multigrid preconditioning and
9.5 through parallelization on 12 processors. On 12 pro-
cessors, the parallel AMG-CG was a factor 6.6 faster
than the parallel Jacobi-CG for the tetrahedra model
and a factor 5.1 for the cube model. The required rela-
tive solution accuracy was 108, For a solution accuracy
of 10~° with respect to the limitations within the inverse
problem (e.g. data noise), we found factors in the same
range (slightly larger).

The partitioning of the dual graph of a convex head
geometry generally leads to a relatively large percentage
of interface nodes. Nevertheless, for the examined mod-
erate processor numbers between 1 and 12, the AMG-
preconditioner was found to be stable, i.e., a sensible
increase of the number of subdomains did not result in
a deterioration of the AMG-preconditioner and thus an
increasing need for iterations for the tetrahedra model
(Figure 10) or resulted in only a slight deterioration with
a slightly increased number of iterations for the cube
model (Figure 13).

In [Wolters et al., 2000] it was shown on a single
processor machine that a radial:tangential “skull”-layer
anisotropy of 1:10 in a spherical four layer FE model did
not influence the solver times of the AMG-CG whereas
the time for the Jacobi-CG solver was a factor 1.25 larger
for the anisotropic models. This is due to the fact that
the AMG-preconditioner takes anisotropy into account.
Future studies will be carried out to test the sensitiv-
ity of the parallelized AMG-CG solver to realistic skull
anisotropy and especially white matter anisotropy.

Moreover, the overall solver CPU-time for the inverse
source reconstruction will be accelerated through the use
of techniques for multiple right hand sides [Chan and
Wan, 1997; Haase and Reitzinger, 2001]. First studies on
a sequential computer have shown a good performance.
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