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Abstract

We propose a new method for the second-level analysis of functional MRI data based on Bayesian statistics. Our method does not require
a computationally costly Bayesian model on the first level of analysis. Rather, modeling for single subjects is realized by means of the
commonly applied General Linear Model. On the basis of the resulting parameter estimates for single subjects we calculate posterior
probability maps and maps of the effect size for effects of interest in groups of subjects. A comparison of this method with the conventional
analysis based on t statistics shows that the new approach is more robust against outliers. Moreover, our method overcomes some of the
severe problems of null hypothesis significance tests such as the need to correct for multiple comparisons and facilitates inferences which
are hard to formulate in terms of classical inferences.
© 2003 Elsevier Inc. All rights reserved.

1. Introduction

The most widely used methods for the statistical analysis
of fMRI data are based on a linear model of the hemody-
namic response function (Friston, 1994). The detection of
activated voxels is realized most commonly by means of
statistical null hypothesis significance tests (NHST) based
on frequentist or classical1 t and F statistics (Worsley and
Friston, 1995; Ardekani and Kanno, 1998). These tests are
typically performed on different levels of analysis. On the
first level, values indicating the significance of an effect are
obtained for individual subjects. On the second level of
analysis, statistical tests facilitate multisubject or multises-
sion comparisons.

In recent years Bayesian techniques have been intro-
duced to the field of functional MRI, providing a powerful
alternative to linear modeling and NHST (Frank et al., 1998;
Kershaw et al., 1999; Genovese, 2000; Høojen-Søorensen et

al., 2000; Gössl et al., 2001a, 2001b; Friston et al., 2002a,
2002b; Marrelec et al., 2003). These methods are aimed at
a complete Bayesian analysis of the functional data on all
levels of analysis. They facilitate Bayesian models for the
estimation of the hemodynamic response and apply Bayes-
ian inference for the detection of functional activation in
both single subjects and groups of subjects.

In this article, we propose an efficient new method that
applies Bayesian techniques to the second level of analysis
only. Our approach does not require a computationally
expensive fully Bayesian analysis and modeling of the he-
modynamic response on the first level. Rather, modeling on
the level of single subjects is based on classical least-
squares estimates of parameters for the General Linear
Model (GLM). These parameter estimates are then viewed
within a Bayesian framework as evidence for the presence
or absence of some effect of interest in a group of subjects
on the second level of analysis.

Traditionally, the analysis of functional MRI data has
been viewed either within the frequentist or within the
Bayesian framework. Our new approach is to draw on
methodologies from each framework in different parts of
the analysis. It is important to be clear that using Bayesian
techniques on the second level of analysis does not presup-
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pose Bayesian modeling and parameter estimation on the
level of single subjects. Neither entails the classical treat-
ment of the GLM frequentist methodologies on the level of
inference. In our proposed method we view modeling and
parameter estimation for single subjects within the classical,
and statistical inference for groups of subjects within the
Bayesian framework. This way we combine the relative
simplicity of the GLM on the first level with the power and
flexibility of Bayesian inference on the second level of
analysis. Most notably, after parameter estimation of the
GLM for single subjects, computation times for the Bayes-
ian second-level analysis are under 10 s for a typical-sized
group of subjects on a standard UNIX workstation.

The analysis of groups of subjects is of particular impor-
tance to the statistical evaluation of fMRI data. It has been
shown by a large number of studies that results for individ-
ual sessions can vary considerably from session to session
and from subject to subject (Aguirre et al., 1998; Miezin et
al., 2000; McGonigle et al., 2000; Neumann et al., 2003).
Single session results have thus to be treated with caution,
as they represent only a sample of a subject’s response.
Consequently, only the analysis of groups of subjects allows
meaningful generalizations to expected activations in the
population. This requires statistical inference methods for
groups of subjects that reflect the commonalities in the
responses of different subjects while, at the same time,
being robust against differences between subjects caused by
their neuroanatomical or physiological variability.

Bayesian approaches are attractive alternatives to classi-
cal analysis methods, because they overcome a number of
severe shortcomings of NHST. P values resulting from
NHST describe the estimated probability of obtaining the
observed data provided the null hypothesis of zero activa-
tion for an effect of interest is true. Consequently, suffi-
ciently small P values are used to reject the null hypothesis
of zero activation. It is in the nature of the test that given a
large enough sample size, P will always be small enough to
reject the null hypothesis. On the other hand, the alternative
to the null hypothesis can never be rejected. In other words,
although we are testing against the hypothesis of zero acti-
vation, the test does not allow us to infer that no activation
has occurred. The somewhat counterintuitive way of read-
ing the results of a NHST has more than once led to false
interpretations of the observed data (Krueger, 2001; Giger-
enzer, 1993; Oakes, 1986). In contrast, Bayesian inference
provides a means of directly assessing the probability for an
effect of interest to take on a certain range of values. For
example, it allows us to infer the probability that a contrast
between two experimental conditions is larger than zero.

Equally problematic for the application of NHST is the
need for adjusting P values according to the search volume
of a test statistic in order to account for the multiple com-
parison problem. This problem arises when repeatedly ap-
plying a t test to assess the significance of activation in
different voxels. The threshold indicating significance in-
creases with the number of examined voxels (Friston et al.,

2002b). The required adjustment implicates that inferences
about some part of the brain depend on whether other parts
have been inspected, which is not very plausible. The need
to address this multiple comparison problem does not arise
from the application of Bayesian inferences to individual
voxels. The probability of activation in one cortical area is
independent of the inspection of other cortical regions.

Finally, in addition to the localization of activated cor-
tical areas, more complex research questions such as the
detection of functional dependencies or the analysis of the
temporal behavior of the BOLD response become more and
more the focus of ongoing research in fMRI. Such questions
which are often hard or impossible to formulate in terms of
a traditional NHST can be directly addressed using Bayes-
ian inference.

The main principles of Bayesian inference and the GLM
which are essential for the further understanding of the
article are summarized in the following section. A compre-
hensive introduction to the GLM in the context of fMRI
data analysis can be found in Friston et al. (1994); Friston
(1994); Worsley and Friston (1995); Zarahn et al. (1997)
and Lohmann et al. (2001). Excellent introductions to
Bayesian data analysis and Bayesian inference in statistical
analysis are provided by Gelman et al. (2000) and Box and
Tiao (1992).

2. Methods

General Linear Model

For the General Linear Model

Y � X� � �, (1)

with data vector Y, design matrix X, and independently and
identically normally distributed errors �, it can be shown
that the sampling distribution of the least-squares estimates
for the parameters �̂i, i � 0,1, . . . , k, is normal with E(�̂i)
� �i and Var(�̂i) � �2cii, where cii are the diagonal ele-
ments of (XTX)�1 (Seber, 1977). An extended GLM ac-
counting for serial autocorrelation in the observation data is

KY � G� � K�, (2)

where K is a convolution matrix using a Gaussian kernel
and G � KX is the convolved design matrix. Here the
variance of �̂ extends to

Var��̂� � �̂2G�V�G��T, (3)

where V � KK�, G� � (GTG)�1GT is the so-called
Moore-Penrose inverse of G, and �̂2 is an unbiased estima-
tor for the variance �2. After fitting the linear model to the
observed data, effects of interest can be expressed by means
of contrasts c�̂ which are linear combinations of the pa-
rameter estimates. The vector c is a set of weights that
usually sum to zero. In case of a single effect c � 1. The
estimated variance of a contrast is
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Var�c�̂� � cVar��̂�cT � �̂2cG�V�cG��T. (4)

It is important to note that the calculation of contrasts up
to this point does not involve any statistical evaluation of
the data. A contrast merely contains information about how
one or more covariates correspond to the experimental de-
sign. However, contrast images can serve as input for fur-
ther statistical analysis. Within a classical framework, for
example, statistical parametric maps SPM{t} can be con-
structed from contrast images by conducting a one sample t
test that assesses the null hypothesis of zero response. Ob-
tained t values are typically transformed into z values, giv-
ing a SPM{z} which, in order to detect and visualize acti-
vated voxels, is often thresholded at a commonly accepted
but arbitrary level, e.g., z � 3.09, corresponding to P �
0.001. In our approach, we use contrasts obtained for single
subjects and their respective estimated variances as input to
Bayesian inferences over groups of subjects on the second
level of statistical analysis.

Bayes’ theorem

Bayesian inference rests upon the posterior probability
distribution of model parameters given some observed data.
For a model parameter � with the probability distribution
p(�) and the observed data y, the posterior probability dis-
tribution of the parameter given the data p(��y) can be
calculated according to Bayes’ theorem:

p���y� �
p� y�� � p�� �

p� y�
. (5)

p(�) is called the prior probability distribution or simply
prior of the parameter �, expressing our initial knowledge or
belief about the value of the parameter. p(��y) is called the
posterior probability distribution or posterior of the param-
eter, expressing our belief about the parameter in the light of
evidence from the data y. Since the data y are known and the
true parameter � is unknown, it is more convenient to
express the conditional probability distribution p(y��) as the
likelihood function of � for given data y, which is written as
l(��y) (Box and Tiao, 1992). Moreover, p(y) is a function of
the known data only and is constant with respect to the
parameter �. Equation (5) can thus be reformulated as

p���y��l���y� p�� �. (6)

In words, the posterior probability distribution for a param-
eter � given the data y is proportional to the product of the
distribution of � prior to the data and the likelihood of the
parameter given the data. Bayes’ theorem thus provides a
mathematical means of combining previous knowledge with
new evidence. This becomes particularly apparent when it is
applied in an iterative way. Assume some parameter � and
some initial data y1. According to Bayes’ theorem, the
posterior of � can be expressed as

p���y1��l���y1� p�� �. (7)

For a second observation y2 with a distribution independent
of y1 we can state

p���y2,y1� � l���y2�l���y1� p�� �
� l���y2� p���y1�

. (8)

The posterior calculated in Eq. (7) plays the role of the prior
in Eq. (8). The new posterior can in turn serve as prior in a
subsequent step, as new data come in. For this iterative
process the posterior probability distribution can be easily
calculated, if both prior and likelihood are normally distrib-
uted. If we suppose a priori that the parameter � is distrib-
uted as

p�� � �
1

�2��0

exp� �
1

2�� � �0

�0
� 2� ,

� � 	 � 	 �, (9)

and the likelihood function of the parameter is

l���y�� exp� �
1

2�� � y

�1
� 2� (10)

for an observation y, then it can be shown that the posterior
distribution of � is

p���y� �
��0

�2 � �1
�2�1/ 2

�2�
exp�� 1

2
��0

�2 � �1
�2�


 �� � �� �2� , � � 	 � 	 �, (11)

which is the Normal distribution N[�� , �� 2] where

�� �
1

�0
�2 � �1

�2��0
�2�0 � �1

�2y� (12)

�� 2 � ��0
�2 � �1

�2��1. (13)

The full proof is given in Box and Tiao (1992). See also Lee
(1997) and Gelman et al. (2000) for discussion. Note that
the resulting posterior mean can be interpreted as weighted
average of the prior mean and the observed data, with
weights proportional to the inverse variance.

Putting things together

Given the normal sampling distribution of the parameter
estimates �̂i, i � 0,1, . . . , k, in the GLM, we can use the
formalism described above to infer about the mean of a
contrast in a group of subjects. Parameter estimates obtained
for single subjects can be combined in an iterative process
outlined by Eq. (7) to (13), given the same underlying
model specification for all subjects. After establishing some
prior which represents our initial belief about the mean of
the contrast in the group of subjects, we can view the
parameter estimates obtained from individual subjects as
“data” or evidence modifying this belief. As prior we use
the probability distribution of the contrast estimated for a
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randomly chosen subject. In other words, we assume that
the contrast of a randomly chosen subject is a good repre-
sentative of the mean contrast in the entire group. This
initial prior is then combined with the estimates for the
contrast of a second subject, according to Bayes’ theorem.
Thus, we are updating our belief which is based on the
observation of the first subject by evidence from the second
subject.

More specifically, given the contrast of interest estimated
for two subjects, c�̂1 and c�̂2, with respective variances �1

� Var(c�̂1) and �2 � Var(c�̂2), the posterior probability
distribution of the combined contrast is the Normal distri-
bution N[c�̂, �� 2], where

c�̂ �
1

�1
�2 � �2

�2��1
�2c�̂1 � �2

�2c�̂2� (14)

�� 2 � ��1
�2 � �2

�2��1 (15)

This probability distribution reflecting evidence from two
subjects then serves as prior for the subsequent step of the
iteration, where it is combined with the contrast estimated
for the next subject. The result of the iterative process is the
posterior probability distribution of the weighted mean ef-
fect for the whole group of subjects.

If the number of subjects is known in advance, the
iterative process can be replaced by a single step. For
normally distributed estimated contrasts of interest c�̂i with
respective variances �i � Var(c�̂i), i � 0,1, . . . , k, obtained
from k single subjects, the posterior of the combined con-
trast is the Normal distribution N[c�̂, �� 2], where

c�̂ �
�k�k

�2c�̂k�k�k
�2 (16)

�� 2 �
1

�k�k
�2. (17)

These equations allow a very clear interpretation of the
result. The mean of the posterior is the sum of the means of
the individual parameter estimates weighted by their respec-
tive inverse variance. The resulting variance represents the
pooled within-subject variance and is a measure of our
certainty about the population mean. It further becomes
obvious that the choice of the subject for the initial prior and
the order of the remaining subjects do not influence the
result of the iterative calculation of the posterior.

It is an important point to note from Eq. (14) and (15)
that the influence of each individual subject on the posterior
for the entire group is determined by the estimated variance
of the contrast specific to this subject. More precisely, the
smaller the within-subject variance, the larger the influence
of this subject on the posterior. This is illustrated in Fig. 1,
where the same prior p(�) � N(2,1) is combined with
parameter estimates �1 and �2 from two subjects, whereby
l(���1) � N(8,0.5) and l(���2) � N(8,1.5) for Subject 1 and
Subject 2, respectively. The relatively small variance of �1

causes the mean of the posterior to move toward the mean
of �1 and also results in a considerable decrease of variance
from the prior to the posterior of �. The resulting posterior
is p(���1) � N(6, 0.33), calculated using Eq. (12) and (13).
In comparison, the posterior for the second subject is
p(���2) � N(4.4, 0.6). The larger variance of �2 causes the
mean of the posterior to move less toward the mean of �2

and the posterior still shows a relatively high variance. This
result is intuitively plausible, since the estimated variance of
the parameters represents the stability of the corresponding
contrast in the obtained measurement. The smaller this
variance, i.e., the higher the stability of the measurements,
the higher should our certainty be about the observed effect
and, consequently, the more should the observed data in-
fluence or correct our belief about the true value of the
effect of interest.

Bayesian inference

In the most simple case of a second-level analysis of
fMRI data we wish to make inferences about the presence or
absence of an effect of interest in a group of subjects. Such
effect is usually the activation corresponding to an experi-
mental condition or a contrast, i.e. the difference in activa-
tion between two conditions. With a NHST the null hypoth-
esis of zero activation or zero contrast is assessed based on
estimated contrasts for individual subjects. The P values
resulting from the test describe the estimated probability of
obtaining these individual contrasts provided the null hy-
pothesis of zero activation is true. If this probability is small
enough, we reject the null hypothesis. The test does not tell

Fig. 1. The likelihood functions l(���1) and l(���2) representing data from
two subjects are combined with the same prior p(�). The observed data
have the same mean but different variances. Data with small variance
(Subject 1) have a larger influence on the prior than data with larger
variance (Subject 2). Consequently, the posterior p(���1) is shifted more
toward the mean of the observed data than p(�|�2), and the variance of
p(���1) is smaller than that of p(���2).
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us, however, how certain we can be that the effect is present
in the group, if the null hypothesis was rejected. This ques-
tion can be directly addressed using Bayesian inference.

Bayesian inference is based on posterior probability dis-
tributions. From the posterior mean and variance of an
effect of interest we can calculate the probability for the
effect to take on a range of values. This provides us with a
measure of certainty about the effect in the group. For any
probability distribution function f(�) the probability that the
random variate � takes on a value in the interval [a,b] is

P�a � � � b� � �
a

b

f�� �d�. (18)

For example, given estimated contrasts2 �̂1,�̂2, . . . , �̂n of n
individual subjects, the probability of a positive contrast �
for the entire group is

P�� � 0� � �
0

�

p����̂1�̂2, . . . , �̂n�d�. (19)

Note that while the mean � of the posterior tells us
something about the size of the effect of interest, the pos-
terior probability enables us to mathematically express the
strength of evidence for the effect (Genovese, 2000). The
ability to calculate this probability thus facilitates state-
ments such as “Given the evidence of the observed data, we
believe that in the investigated region the contrast is positive
with 95% probability.” Such statements very directly ad-
dress the question of localizing regions with stimulus-re-
lated activation in the brain, and they are a much more
intuitively plausible interpretation of the observed data than
the rejection of a null hypothesis.

By means of Bayesian inference we can also tackle more
complex research questions that are hard or impossible to
formulate in terms of traditional hypothesis testing. This has
been demonstrated, for example, for the comparison of
activation amplitudes in different voxels (Frank et al., 1998)
or the assessment of monotonicity of experimental condi-
tions (Genovese, 2000). In the latter case, using NHST in
order to assess the monotonicity of, say, four parameter
estimates �1 � �2 � �3 � �4 requires the repeated appli-
cation of single tests for the hypotheses �2 � �1  0 and �3

� �2  0 and �4 � �3  0. The resulting P values have in
turn to be corrected for multiple comparisons. In contrast,
within a Bayesian framework the posterior probability dis-
tributions for the parameters �1, �2, �3, and �4 allow the
direct computation of P (�1 � �2 � �3 � �4 | y).

When examining the results of fMRI experiments, we are
often interested in comparisons of different groups of sub-
jects, for example, left-handed and right-handed participants
of our study or subjects of different age or sex. The posterior

distributions resulting from our analysis can directly be used
to infer about differences between the means of two groups
of subjects. Given the two probability distributions
p(�1��̂1 . . . �̂k) and p(�2��̂k�1. . .�̂n) for a contrast of inter-
est in two groups of k and n � k subjects, respectively, and
assuming independence of the two groups, the joint distri-
bution of the contrast is

p��1,�2��̂� � p��1��̂1, . . . , �̂k� p��2��̂k�1, . . . , �̂n�,

(20)

with �̂ � {�̂1, . . . , �̂k,�̂k�1, . . . , �̂n}. The posterior of the
difference in means d � �2 � �1 is then the correlation of
the two independent distributions (Frank et al., 1998). For
normally distributed p(�1) � N(�1,�1

2) and p(�2) �
N(�2,�2

2) this correlation has the analytical form

p�d��̂� �
1

�2��
exp� �

1

2�d � �

� � 2� , (21)

with � � �2 � �1 and � � (�1
2 � �2

2)1/2 (Box and Tiao,
1992; Frank et al., 1998). The probability for a difference in
means between groups can then be calculated by integrating
the posterior distribution in the respective interval. Other
tests for differences in means such as comparisons of dif-
ferent contrasts in a single subject or within one group of
subjects can be calculated in the same manner.

3. Experimental results

Posterior probability distributions can be summarized
and visualized in various ways. Maps of the posterior mean
of an effect provide estimates for the effect size in every
voxel. Posterior probability maps reflect the probability
with which we can expect the effect to be found in a
population. As one is usually interested in both, how large
is the effect of interest and how likely is it to occur, we will
in the following present maps of the posterior means to-
gether with the corresponding posterior probability maps.

Our method was tested on data obtained for a previous
experiment on differences between the left and the right
occipital cortex in response to spatial cueing (Pollmann and
Morillo, 2003). Twelve subjects were first presented with a
small or big visual cue on the left or the right side of a
screen. Cue presentation was followed by the presentation
of a target either in the cue location, i.e., in the same visual
hemifield as the cue (valid trials), or in the contralateral
visual hemifield (invalid trials). Subjects were instructed to
focus their attention to the cued area while fixating a marker
in the center of the screen. After the presentation of the
target, subjects had to perform a simple target discrimina-
tion task.

The obtained data were processed with the software
LIPSIA (Lohmann et al., 2001). This software package
contains tools for preprocessing, registration, statistical
evaluation, and presentation of fMRI data. In LIPSIA sta-

2 For the sake of simplicity we will in the following refer to both a
single parameter and a contrast of parameters as �.
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tistical evaluation is implemented as a two-stage random-
effect analysis (Holmes and Friston, 1998) based on the
least-squares parameter estimation of a GLM for serially
autocorrelated observations (Friston, 1994; Worsley and
Friston, 1995; Zarahn et al., 1997). More specific informa-
tion on the model as well as the experimental design, hy-
potheses, and detailed results of the classical analysis can be
found in Pollmann and Morillo (2003). The Bayesian sec-
ond-level analysis described above was performed on the
parameter estimates from the first stage of the random-effect
model. The method was implemented in C and computa-
tions were performed with an AMD Athlon(TM) XP1800�
processor and 768MB working memory. Computation time
for the complete second-level analysis was under 10 s for
each contrast including the extraction of individual contrast
means and variances from the results of the first-level anal-
ysis.

For the most prominent contrast, valid-left against valid-
right trials, the pattern of activation obtained from the clas-
sical analysis was replicated with our Bayesian approach.
The most significant activations were found in the left and
right lingual gyrus, in the lateral occipital gyri of both
hemispheres, and in the junction of the right intraparietal
sulcus and the transverse occipital sulcus (IPS/TOS). For
the centers of activation in these regions, coordinates in the
Talairach stereotactic space (Talairach and Tournoux,
1988), z values obtained from the classical analysis,3 and
means and standard deviations of the posteriors from the
Bayesian analysis are listed in Table 1. The regions are
visualized in Fig. 2. The top row of the figure shows the
posterior mean values of the contrast obtained from the
Bayesian second-level analysis (left) and the posterior prob-
ability maps for P (c� 	 0) (middle) and P (c� 
 0) (right).
A threshold of 99.9% was applied to the probability maps
for better visualization. The bottom row shows the corre-
sponding SPM{z} from the classical analysis threshold at z
� 3.09.

As can be seen, the posterior probability maps corre-

spond well with the SPM{z}. P(c 	 0) and P(c 
 0) exceed
99.9% in regions with significant positive and negative z
values, respectively. However, whereas the SPM{z} sug-
gests five centers of activation within the significantly ac-
tivated areas, the posterior probabilities are more homoge-
neously distributed over the significantly activated areas. In
other words, the probability for activation is very high both
in the centers of activation detected with the classical
method and in their surrounding voxels. This seems intu-
itively plausible, since we would expect that the probability
of activation in voxels close to an activation focus is still
very high, even if the strength of the activation is smaller
than in the center.

Differences between the five centers of activation which
are not obvious from the SPM{z} can be detected from the
posterior means. The posterior means in the lingual gyri are
considerably higher than in the other regions (see also Table
1) suggesting that the contrast between valid-left and the
valid-right trials is much stronger there than in the remain-
ing activated areas. Note that the value of the posterior mean
in our model is proportional to the difference in the maxi-
mum signal amplitude for valid-left and valid-right trials.
The differences in the posterior means found here support
the results from time course analyses of these regions pre-
sented by Pollmann and Morillo (2003) (see in particular
their Fig. 2). Maximum amplitude differences in the time
courses between valid-left and valid-right trials were about
0.2% signal change for both lingual gyri. In the lateral
occipital gyri and the IPS/TOS this difference was consid-
erably lower.

A second possible contrast in the experimental design
arises from the presentation of small or big cues followed by
the target in the same visual hemifield (valid-small against
valid-big trials). The behavioral data suggested, if at all,
only a very small effect. However, the Bayesian analysis
revealed a number of cortical regions with posterior prob-
abilities similar to those estimated for the previous contrast.
Three of these regions are visualized in Fig. 3. Here, the
Bayesian analysis yielded posterior probabilities of 98% or
higher, whereas the values in the classical SPM{z} did not
exceed the threshold of z � 3.09.

One reason for the different results obtained with both
methods becomes visible when analyzing the contrast found

3 Note that the values reported here differ slightly from the results in
Pollmann and Morillo (2003). These differences were caused by the use of
an updated version of the software package LIPSIA with slightly modified
parameter settings.

Table 1
Talairach coordinates, z values, posterior means, and standard deviations of the posteriors for five cortical regions

ROI Location z value (NHST) Mean Standard deviation

1 Lingual gyrus R (13 �83 �4) 4.36 0.23 0.02
2 Lingual gyrus L (�14 80 �1) �4.79 �0.25 0.02
3 Lateral occipital gyrus R (31 �70 2) 3.83 0.10 0.01
4 Lateral occipital gyrus L (�38 �70 2) �4.51 �0.09 0.01
5 IPS/TOS R (28 �71 23) 4.13 0.12 0.01

Note. Centers of the most significant activations for the contrast between valid-left and valid-right trials. z values resulting from a classical analysis and
means and standard deviations from the second-level Bayesian analysis are shown. While z values are comparable for all regions, differences between the
lingual gyri and the remaining areas can be found for the posterior means and standard deviations.
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for the individual subjects. Figs. 4a–c show the contrast for
all individual subjects for the centers of activation in the
three cortical areas marked in Figs. 3a–c, respectively. For
comparison, Fig. 4d shows data for the center of activation
in the inferior temporal sulcus obtained for the previous
contrast. Here, the classical method yielded a z value of 4.49
which is usually regarded as significant activation.

For all four voxels in Fig. 4 the estimated contrast is
larger than zero for the majority of subjects. However, two
subjects in voxel (a) and one subject in voxels (b) and (c)
differ from the general pattern with large negative contrasts.
Such differences in the estimated contrasts can be caused,
for example, by large anatomical variations between sub-
jects which cannot fully be accounted for by the preprocess-
ing procedures. Outliers can also result from differences in
the temporal behavior of the BOLD response of individual
subjects. Relatively large temporal offsets between the ob-
served data and the model function for the hemodynamic

response can lead to poor fitting and estimation of the model
parameters, in particular if the same model function is
applied to all subjects, which is a prerequisite for both the
two-stage random-effect analysis and our Bayesian method.

In our data, the estimated variances of the outliers are
larger than the variances of the estimates for most other
subjects. As we have already seen from Eq. (14) and (15)
and from Fig. 1, with our approach the influence of each
individual subject on the posterior for the entire group is
determined by the estimated variance of the contrast specific
to this subject. Given the relatively large variances of their
estimates, the influence of the outliers’ contrasts is not large
enough to move the posterior mean close to zero. Conse-
quently, the posterior probability P(c� 	 0) is still very
high, whereas the significance values from the classical
method do not exceed the required threshold due to the high
between-subject variance caused by the outliers. For com-
parison, the classical second-level analysis was repeated for

Fig. 2. Posterior means (top left) and posterior probability maps for P (c� 	 0) (top middle) and P (c� 
 0) (top right) for the contrast between valid-left
and valid-right trials. The corresponding SPM{z} is shown in the bottom row. Note that negative z values and posterior means (blue) indicate activations
for the inverse contrast, i.e., valid-right against valid-left trials.
Fig. 3. Posterior probability maps for the contrast between valid-small and valid-big trials. The contrasts for all individual subjects in the three marked regions
are further analyzed in Figs. 4a–c.
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the three regions (a), (b), and (c), now omitting the two
outliers for (a) and the single one for (b) and (c). The z
values for the three voxels increased to 3.14, 3.19, and 2.61,
respectively. Although these values are still comparatively
small, the large increase relative to the initial analysis shows
clearly that the outliers had a huge impact on the results of
the classical analysis.

The complete Bayesian second-level analysis of all ex-
perimental conditions and the exact neuropsychological in-
terpretation of the obtained results are beyond the scope of
this article and have to be left to the original experimenters.
However, we belief that the data presented here demonstrate
that Bayesian analysis is a promising alternative to conven-
tional methods, in particular for experimental paradigms
which address very subtle differences between conditions,
where classical methods are likely to fail due to too con-
servative thresholding.

4. Discussion

We have introduced a Bayesian method for second- and
higher-level analyses of fMRI data which is based on mod-
eling the obtained measurements for single subjects by
means of the GLM. The method is easy to implement and
computationally inexpensive. The required computation
time is on the order of seconds for a complete second-level
analysis following a relatively simple classical modeling on

the first level. This is in stark contrast to alternative ap-
proaches using nonlinear or hierarchical Bayesian model-
ing. Complex Bayesian models can be computationally ex-
pensive, and computation times on the order of hours or
even days for single subjects have been reported (Genovese,
2000). Despite its simplicity, our method overcomes some
of the drawbacks of NHST such as the need to address the
problem of multiple comparisons. It provides estimates for
both the size of an effect of interest and the probability of
the effect to occur in the population. The results are easy to
interpret and intuitively more plausible than results of clas-
sical NHST. Like other Bayesian approaches, our method
permits complex inferences which are hard to derive from
NHST.

Note that our Bayesian second-level analysis could also
be combined with a different first-level analysis and is not
restricted to the use of the GLM on the first level. One
could, for example, conceive of a nonlinear model on the
first level resulting in parameters with a clear physical
interpretation such as a direct estimate of the amplitude or
time delay of the observed signals. The only prerequisite for
the straightforward application of Bayes’ theorem presented
here is that the effects of interest are described for single
subjects as normally distributed variables.

NHST is based on a frequentist interpretation of proba-
bility. The probability of an event is defined as its relative
frequency and is therefore, when viewed over a large num-
ber of trials, a constant. Consequently, a hypothesis about
the event can be only true or false, and the observed data
help us to decide between these two possibilities. They do
not allow us, however, to assess the probability of our
hypothesis to be correct, although P values resulting from
NHST are often wrongly interpreted this way (Krueger,
2001; Gigerenzer, 1993; Oakes, 1986). Bayesian inference
on the other hand provides us with exactly this information.
Here probability is viewed as an individual’s belief about an
event which is modified by the observed data. Our initial
belief (or hypothesis) about the event, represented as prior
probability, is modified by the observed data whereby we
become more certain about the true nature of the event the
more data we encounter.

Critics of Bayesian techniques often stress the subjectiv-
ity inherent in the methods. Clearly, the posterior probabil-
ity of an event crucially depends on the chosen prior, i.e., on
the experimenter’s belief about the event in question. How-
ever, we would argue in line with Lange (1997) and others
that this subjective element should be regarded a virtue
rather than a disadvantage. It provides us with a method to
incorporate knowledge and experiences from previous stud-
ies or subjects into our model and combine them with newly
acquired data. Making use of this virtue, we take the prob-
ability distribution estimated for one subject as our initial
belief about the true distribution of the parameter in the
entire group, i.e., as the first prior in the iterative application
of Bayes’ theorem. This way only actually observed data

Fig. 4. The sampling distribution of the contrast between valid-small and
valid-big trials estimated for all individual subjects in three voxels (a)–(c).
These three voxels have the highest posterior probability in the cortical
areas marked in Figs. 3a–c, respectively. These areas show no significant
activation in the classical method. For comparison, (d) shows the contrast
between valid-left and valid-right trials for all individual subjects for the
center of activation in the inferior temporal sulcus. This region was also
found significantly activated using the classical method. Posterior means
and standard deviations were similar for all four voxels: (a) 0.052, 0.015,
(b) 0.048, 0.014, (c) 0.031, 0.014, and (d) 0.054, 0.013, respectively.
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enter into the calculation of the posterior for the group of
subjects.

It is also important to note that some degree of subjec-
tivity enters into non-Bayesian models, too, when choosing
the experimental design, formulating hypotheses, or select-
ing model parameters (Petersson et al., 1999; Krueger,
2001). As Gössl et al. (2001a) point out, model specifica-
tions such as the choice of basis functions in the GLM
provide even harder constraints on the solutions than Bayes-
ian priors. While the former specify a subspace in which the
solution must lie, the latter impose only soft constraints on
the solutions which can be violated, if a sufficient amount of
acquired data provide appropriate evidence.

When assessing functional neuroimaging data, a consid-
erable degree of variability in the measured signal can be
observed both in individual scans of the same subject and in
different subjects of a group (Aguirre et al., 1998; Miezin et
al., 2000; McGonigle et al., 2000; Duann et al., 2002;
Neumann et al., 2003). Different classical models allow the
within-subject and the between-subject variance of the ob-
served responses to enter the second-level analysis to vary-
ing degrees. Classical fixed-effect models do not take into
account the between-subject variability of the responses.
Rather, they are based on the assumption that all subjects
respond with the same variance and thus utilize the within-
subject variance as the only variance component. In other
words, the acquired data are treated as if coming from a
single subject. While the resulting large number of degrees
of freedom facilitate a high sensitivity of the method, a
classical fixed-effect model can produce significant effects
by virtue of a single subject.

Mixed- or random-effect models are designed to take
into account both the within-subject and between-subject
variability of the responses. Subjects are viewed as ran-
domly sampled from a population and the effects estimated
for each subject are treated as random variables. The result-
ing variance of the estimated response across subjects con-
tains both within- and between-subject variance compo-
nents in a proportion determined by the ratio of scans per
subject to the number of subjects (Friston et al., 1999).
However, the analysis of random-effect models is often
difficult (Searle et al., 1992) and the usually small number
of subjects in fMRI experiments results in a low power of
such analyses. A relatively simple two-stage model imple-
menting a random-effect analysis can be applied under the
conditions that the model is balanced, i.e., the same exper-
imental design is used for all subjects, and that the model is
separable by subject, i.e., the parameter estimates for each
subject are independent (Holmes and Friston, 1998). This
implementation, as realized for example in SPM and LIP-
SIA, builds upon the idea of simple summary statistics
(Frison and Pocock, 1992). It should be noted, however, that
the model rests on the simplifying assumption that the
within-subject residual variance is constant for all subjects
(McGonigle et al., 2000). This means that while the within-
subject variance is one component of the overall variance,

differences in the within-subject variance between subjects
are neglected in the analysis. As our data have shown, these
models are still relatively sensitive to outliers which cause a
high between-subject variance.

In our Bayesian approach the variance of the resulting
posterior is the pooled within-subject variance of all sub-
jects (Worsley et al., 2002). The between-subject variance is
expressed by the spread of the means of the estimated
parameters for individual subjects. Note that while the ac-
tual location of the means clearly influences the posterior
mean for the group, their variance does not necessarily do
so. In this respect our method implements a fixed-effect
analysis. However, unlike in classical fixed-effect analyses,
measurements are not viewed as coming from a single
subject. Modeling on the first level is performed indepen-
dently for each individual subject and the Bayesian infer-
ence allows for different within-subject variances. Most
importantly, the within-subject variance, i.e., the stability of
the measurements obtained for the individual trials and the
goodness of the model fit, determines the influence of a
subject on the posterior for the group. The influence of a few
outliers on the group result is small as long as their within-
subject variance is not considerably smaller than those of
the remaining subjects. This is a large advantage over con-
ventional methods where the influence of each individual
subject is not weighted by its within-subject variance. Con-
sequently, outliers can cause the between-subject variance
to increase considerably independent of their within-subject
variance, which in turn results in small t and subsequent z
values. Such outliers cannot always and completely be
avoided given the large anatomical and physiological vari-
ability in the population. Therefore, robustness against such
outliers is a prerequisite of powerful analytical tools for the
evaluation of fMRI data. Our Bayesian second-level analy-
sis meets this prerequisite.

Our experimental results highlight the fact that it is
important to consider both the effect size and the signifi-
cance or strength of evidence for the effect. This is of course
equally true for both Bayesian techniques and classical
analyses. For the latter the presentation of effect size to-
gether with the significance of the activation is too often
neglected. Within the Bayesian framework, posterior prob-
ability distributions provide sufficient means to report both
aspects of the obtained results. Moreover, Bayesian infer-
ence based on posterior probability distributions does not
depend on any form of thresholding (Friston et al., 2002a)
which is typically required in classical approaches. In fact,
using posterior mean and variance of an effect, posterior
probability maps for any threshold of interest can be de-
rived. This becomes particularly important for complex
scientific hypotheses and, most notably, for analyses based
on model functions whose estimated parameters have a
clear physical interpretation.

Finally, a comparison between our Bayesian approach
and a classical analysis on the same data revealed that the
latter might disregard a number of activations on the basis
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of their relatively low significance. We agree with Friston et
al. (2002b), who observed that “there is no magical increase
in power afforded by a Bayesian approach.” However, we
would also argue that we must not ignore cortical areas for
the neuropsychological interpretation of experimental re-
sults, where the posterior probability of an effect is as high
as 99% or above, just because they have missed a more or
less arbitrary threshold in the classical analysis. We believe
that they at least demand a closer look.
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