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1 Preface 

 

 

 

 

 

 

 

 

Where does a decision come from? The answer is simple: it is a brain process. Decisions 

can be very different and occur on all levels of our every-day life: we can make small 

decisions or we can make life-changing decisions; we can be aware of making decisions or 

we can even react on something without having consciously made the decision to do so. 

Usually, we are happy to attribute unconscious decisions, such as finding ourselves opening 

the door of the fridge without having intended to do so, to automatic brain processes. We do 

not do this so easily, however, with conscious decisions, in spite of the fact that conscious 

decisions do not happen “in consciousness” instead of the brain (Lamme, 2006). It is not 

even the brain process that is conscious of itself; but a brain process that somehow creates 

what we perceive as a conscious decision, even though this explanation might not feel 

intuitively satisfying (Dennett, 1991; Prinz, 2003; 2006a). A conscious decision evolves in 

the brain (Libet, Gleason, Wright & Pearl, 1983; Soon, Brass, Heinze & Haynes, 2008) and 

can be evoked by stimulating the brain (Desmurget et al., 2009). One way to look at humans 

(and other primates) is to say that they are decision-making agents, permanently reacting on 

stimulation from the environment or from their own somatic and cognitive systems. Investi-

gating different decision processes along the reaction chain from stimuli to responses is one 

of the most fascinating tasks with which one could possibly be faced. The decision making 

processes introduced in this work varied in terms of the degrees of freedom in different 

“What we commonly call the mind is a set of operations carried out 

by the brain. The actions of the brain underlie not only relatively 

simple motor behaviors such as walking and eating, but all the 

complex cognitive actions that we believe are quintessentially human, 

such as thinking, speaking and creating works of art.” 

(Eric K. Kandel, in Kandel, Schwartz & Jessell, 2000,  

Principles of Neural Science, pp. 5-6) 
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dimensions that the decision makers had when choosing between responses. Nevertheless, 

all decisions were very simple; they required nothing more than a transformation from a 

visual stimulus to a motor response.  

The first project addressed decisions in a rule-determined task context. It was com-

prised of a major functional magnetic resonance imaging (fMRI) study and a smaller fMRI 

control study (also see Bode & Haynes, 2009). The second project investigated a necessary 

precondition, namely the discrimination of stimuli under different levels of visibility, in a 

perceptual decision making study (also see Bode, Bogler, Soon & Haynes, under review). 

Three small behavioural experiments were used to optimise stimuli and experimental 

procedures. A major fMRI experiment was conducted as well as an additional fMRI local-

izer experiment, used for further detailed analyses. Finally, the third project compared 

guessing in perceptual decision making with intended free decisions (Bode et al., under 

review). This project was comprised of a small behavioural study and a major fMRI ex-

periment. Despite being interconnected, all three projects make statements on their own 

right and require context-specific interpretations. They will therefore be presented and 

discussed in detail in their separate experimental sections. It is intended that each section is 

highly readable without frequent cross-references to the other sections, which is why each 

of them also contains an individual detailed methods part. Since all fMRI studies used 

similar data acquisition parameters and approaches for data analyses, this necessarily leads 

to some repetition in the description; this, however, hopefully makes each individual section 

more comprehensible. To further increase the readability of each section, less central parts 

of the projects (such as behavioural pre-tests, supplementary analyses and supporting 

results) are reported in individual appendices (A to C). This indeed requires some cross-

referencing but hopefully avoids that the reader is too lost in details. Preceding the experi-

ments, a general introduction will explain the basic framework for the presented work; the 

theoretical context is given in depth in the respective introductions to each experiment. The 

introduction to methods will then give a short overview about fMRI. It strongly focuses on 

multivariate pattern classification, which was used for all experiments presented here. This 

section might interrupt the flow of arguments and could be skipped by the experienced 

reader. Finally, following the experimental sections, a short general discussion of all studies 

is given to integrate all results into a common framework – and hopefully to shed light on 

different mechanisms of decision making, which are used in our daily ventures to find the 

adequate reaction to all the different stimuli that constantly influence us. 
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2 Introduction 

2.1 General introduction 

2.1.1 From stimuli to responses 

 

The present work is dedicated to the question of how reactions to different elements (or 

stimuli) in the environment are prepared and encoded in the brain. Of course, this might be 

the broadest question one could possibly ask and most studies in psychology and neurosci-

ence tackle this issue in some way. The number of meaningful elements that are behaviour-

ally relevant is virtually unlimited. It can be a simple flash of light or a complex social 

interaction, requiring different reactions and involving fundamentally different processes. In 

its simplest form, however, the process can be depicted like this: a stimulus is presented, 

which has to be encoded by the neural system; a decision has to be made defining how to 

react on it and an appropriate (motor) response has to be selected and carried out. One 

example of such a stimulus is a traffic sign, which has a clearly defined meaning such as 

“stop here”. The person being confronted with it has to follow a simple rule by activating 

the corresponding stimulus-response mapping. A more challenging situation arises when the 

same stimulus would lead to a different reaction depending on the context. For example, the 

letter “C” on water taps refers to “cold water” in English speaking countries while in 

France, it stands for “eau chaude” (meaning hot water). The correct response (turning on the 

tap or not) requires the activation of abstract rule knowledge, also referred to as task-sets 

(Sakai, 2008). Hence, it is possible to vary the degrees of freedom in rule determinism to 

investigate response preparation. The first experiment used a task-switching approach (e.g. 

Brass & von Cramon, 2004a; 2004b; Dove et al., 2000) to disentangle the neural representa-

tions of fixed and flexible rules in the human brain. Rule information is one important 

component used by the cognitive control system located in prefrontal and parietal cortex to 
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flexibly guide behaviour (Miller & Cohen, 2001; Quintana & Fuster, 1999; Stoet & Snyder, 

2004). It is an open question, however, which brain regions process rule information during 

different processing stages to the final response. 

This first study left the aspect of real decision processes untouched. Following the in-

structed rule was the only required decision. Before reacting according to a rule, however, 

one has to make sure that the relevant stimulus was perceived correctly. For example, a road 

sign might easily be misinterpreted in a hail storm. The second study addressed this ques-

tion and required perceptual decisions about weakly visible stimuli, using a perceptual 

decision making task (Gold & Shadlen, 2007; Heekeren, Marrett & Ungerleider, 2008; 

Smith & Ratcliff, 2009). Signal detection models of perceptual decision making typically 

assume that the ability to discriminate two stimuli is governed by the overlap of response 

distributions they evoke in the sensory system (Green & Swets, 1966). It has been shown 

that in the sensory system there exist neurons that reliably reflect perceptual choices under 

all visibility conditions (Britten, Newsome, Shadlen, Celebrini & Movshon, 1996). Under 

this model, the trial-to-trial variability in choice under conditions of low visibility is mainly 

due to noise fluctuations in the same sensory system. The alternative, however, is that 

different neural systems are involved in perceptual decision making depending on whether 

people have confidently perceived a stimulus. In line with this, different networks in 

prefrontal and parietal cortex were shown to be differentially activated for highly or poorly 

visible stimuli (Dehaene et al., 1998; Heekeren, Marrett, Bandettini & Ungerleider, 2004) 

and networks can process stimuli differently depending on their visibility (Fang & He, 

2005). Also, the activation and information encoding in specialised sensory areas has been 

shown to be modulated by participants’ successful categorisation performance (Grill-

Spector, Kushnir, Hendler & Malach, 2000; Williams, Dang & Kanwisher, 2007). The 

experimental approach taken in the present work was to search for information encoding 

about the outcome of a perceptual decision process separately under high and low stimulus 

visibility. The dissociation of information about stimuli and choices was considered to be 

conceptually close to choice probabilities used in single-cell studies in monkeys (Britten et 

al., 1996; Gold & Shadlen, 2000; Kim & Shadlen, 1999; Nienborg & Cumming, 2009; 

Purushothaman & Bradley, 2005; Shadlen & Newsome, 2001).    

Finally, decisions can be made even in the absence of superimposed rules or perceived 

stimuli. Everyday life, so it seems, permanently requires such stimulus-independent, free 

decisions. Even though one might never be in a completely stimulus-free environment 

(Thorndike, 1911), voluntary decisions are defined as internally motivated rather than 
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externally triggered. The last study therefore addressed the question of how free decisions 

(Haggard, 2008) compare to guessing in perceptual decision making. These might be 

fundamentally different since voluntary action selection and stimulus-based action selection 

have been shown to involve partially different brain networks (Waszak et al., 2005). On the 

other hand, as will become evident with the second study, perceptual decisions without 

sufficient sensory input (or guessing) might resemble free decisions at least in some impor-

tant aspects, as both are internal decisions. Brain structures in medial prefrontal cortex 

(PFC) and medial parietal cortex have been shown to be involved in processing intentions 

and voluntary action selection (Bode et al., in prep.; Cavanna & Trimble, 2006; Cunnington, 

Windischberger & Moser, 2005; Deiber, Honda, Ibañez, Sadato & Hallett, 1999; Haynes et 

al., 2007; Jenkins, Jahanshahi, Jueptner, Passingham & Brooks, 2000; Lau, Rogers, Hag-

gard & Passingham, 2004a; Soon et al., 2008) and were candidate regions for a common 

internal decision network. The last study varied decisions from determined to fully internal 

and by doing so completed the spectrum from the first study that used a fixed task setup. In 

order to investigate the underlying decision networks, all studies made use of a methodo-

logical approach that made it possible to directly decode the decision outcomes and abstract 

rules from regional cortical activity measured with fMRI (Haynes & Rees, 2006; Norman, 

Polyn, Detre & Haxby, 2006).  

 

2.1.2 Localizing information about rules and decisions 

 

In the present work, fMRI was used for the investigation of the neural basis of decision 

processes. This method is a powerful tool for linking cognitive processes to brain activity at 

a macroscopic level. It has been criticised, however, that neuroimaging does not contribute 

to the development of models in cognitive psychology (Coltheart, 2006). Functional MRI in 

particular was characterised as being better suited to formulating data-driven hypothesis 

rather than unambiguously selecting between them (Logothetis, 2008). Of course, using 

fMRI is not automatically guaranteed to reveal anything substantial; a stronger activation in 

a brain region for one process compared to a second process by no means rules out the 

general involvement of the same region in both processes. One way to escape this dilemma 

is offered by recently developed multivariate pattern classification approaches (for reviews 

see Formisano, De Martino & Valente, 2008; Haynes & Rees, 2006; Mur, Bandettini & 

Kriegeskorte, 2009; Norman et al., 2006). These methods do not look for simple activation 
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differences between experimental conditions within single locations but search for informa-

tion encoding in local spatial activation patterns that could be used to predict abstract 

mental states. This means the content of decisions and the information flow in the brain 

from stimulus processing to response selection become accessible. In the present work, this 

approach was used to reveal information-encoding brain networks, which would have been 

overlooked by conventional analyses. It is believed that the decoding of information can 

indeed be used to test models about the questions outlined above. Demonstrating specific 

information encoding is superior to revealing unspecific activation, which could be simply 

related to the general preparation of mental operations or the support of processes in other 

brain regions. Hence, the conceptual link to the underlying cognitive process becomes 

closer than in classical fMRI studies. Multivariate methods are more sensitive than conven-

tional analyses because they take into account patterns of brain activity at many locations, 

they can use weak (but stable) information and they can directly predict the participants’ 

cognitive states (Haynes & Rees, 2006). To allow for a better understanding of the experi-

ments, the next paragraphs will first give a brief overview about the principles of fMRI and 

data analyses before multivariate pattern classification approaches will be explained in 

greater depth. For more detailed information see e.g. the textbooks of Buxton (2002), 

Jezzard, Matthews & Smith (2003) or the review articles of Heeger and Ress (2002), 

Logothetis and Wandell (2004), Logothetis (2008), Haynes & Rees (2006) and Norman et 

al. (2006). 
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2.2 Introduction to methods 

2.2.1 Basic physical principles of MRI 

 

MRI is a method that noninvasively acquires images of the brain. This is possible because 

atomic nuclei posses an intrinsic angular moment called ‘spin’. In very simplified terms, the 

proton can be thought as a small magnet, precessing like a spinning top about an axis. More 

than 70% of the human brain consists of water; and the H+ protons of water are spin-½ 

nuclei that dominate the signal measured with MRI (Logothetis, 2008). These normally 

random spin directions of protons can be aligned parallel to or anti-parallel to an externally 

applied strong magnetic field in a MRI scanner, denoted B0 (common field strengths used 

for functional imaging in humans are 1.5 to 7 Tesla). The majority of protons will preferen-

tially align more parallel to the B0 field than anti-parallel, because of the lower (and there-

fore preferred) energy state accompanied with parallel alignment, even though the 

difference is very small. Importantly, this results in a net magnetization (described as a 

magnetization vector), which, however, cannot be measured because it is oriented parallel to 

the magnetic field B0. Therefore, a radio frequency pulse (RF pulse) is applied perpendicu-

lar to B0 with the amplitude B1, matching the precession frequency of the protons. The latter 

is given by the Larmor-frequency (w), defined by the magnetic field strength (B0 [T]) and 

the gyromagnetic ratio (� [MHz / T]), which is different for each kind of nucleus:  

w = B0 * � 

Due to the protons’ resonance, the RF pulse causes the protons to absorb energy and 

has two important effects: first, it tilts the magnetization vector from the horizontal plane 

(usually described as dimension z) to the transversal plane (xy). Second, it aligns the preces-

sion of the spins, which means that the protons’ rotations are in phase. This transversely 

rotating magnetization vector can then be recorded as a signal by a receiver coil placed 

around the head. The technique makes further use of the fact that after switching off the RF 

pulse, the transverse magnetization decays quickly, a process described as relaxation. The 

dipoles start to align with the magnetic field B0 again and release their energy to the lattice. 

This process is called longitudinal relaxation or spin-lattice relaxation. It is described by the 

time-constant T1 (the time it takes for 63% recovery of magnetization along the z-axis). The 

time-constant T2 describes the time it takes for 37% of the transversal magnetization (xy-
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plane) to decay, which is called spin-spin relaxation. The T2 relaxation occurs because spins 

start precessing out of phase again, due to random, fluctuating fields caused by other spins 

in the surround. A faster transversal relaxation as predicted by T2, however, can be observed 

because of the additional effects of constant, static field inhomogeneities, described by the 

time-constant T2
*. In order to acquire images, MRI makes use of these relaxation processes, 

which are differentially fast depending on the tissue. Different tissues therefore are visible 

as different contrasts in the images.  

In order to acquire an image of the whole brain (also referred to as volume or scan), 

signals from each position in the brain (cuboid voxels) have to be received; the size of each 

voxel can vary between studies depending on research interests and technical requirements. 

Several steps are necessary for the spatial reconstruction of the signal. First, a field gradient 

is applied to B0 (axial z-axis: inferior to superior), which makes it possible to excite only a 

small slice of tissue with a RF pulse of a given frequency and therefore to select the slice 

position. The decoding of the y-position is achieved by another short gradient applied along 

the coronal y-axis (anterior to posterior). When switched off, the positions along the y-

direction have locked-in phase differences, because they precessed with a different speed 

for a very short time and can therefore be identified (phase encoding). Finally, another 

negative gradient is used along the sagittal x-axis (left to right) after the RF pulse is applied, 

followed by a positive gradient such that a gradient echo (GE) occurs after half of the signal 

read-out time (used to re-phase the spins). The frequency or precession therefore also varies 

along the x-axis (frequency encoding). With each measurement, the mean signal contains 

the sum of frequencies; the individual signals, which correspond to the spatial positions 

along the axes, can then be decoded using Fourier Transformation. The time between two 

RF pulses is called repetition time (TR); the time between excitation and measurement is 

called echo time (TE). These parameters can be chosen such that they determine the influ-

ence of T1 and T2 on the image contrast. Finally, different imaging sequences can be used, 

differing in their use of RF pulses, gradients and therefore in their T1-, T2- and T2
*-

weighting. All the presented studies used gradient-echo EPI sequences, which are very fast 

and efficient because they allow the acquisition of a full image using only one RF excitation 

pulse (for details refer to e.g. Buxton, 2002; Logothetis, 2008). 
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2.2.2 Functional magnetic resonance imaging (fMRI) 

 

In order to investigate rules and decision processes as in the present studies, brain activity 

had to be measured and related to the cognitive tasks. This can be done with functional MRI 

(fMRI). It makes use of the blood-oxygen-level-dependent (in short: BOLD) contrast, which 

was discovered by Ogawa and colleagues. They found that MRI images displayed dropouts 

at the location of big blood vessels (Ogawa, Lee, Nayak & Glynn, 1990a; Ogawa, Lee, Kay 

& Tank, 1990b) and related this effect to regional neural activity; this assumption was 

experimentally confirmed shortly after (Turner, Le Bihan, Moonen, Despres & Frank, 

1991). In short, oxygenated blood, oxyhaemoglobin (Hb), is diamagnetic, which enhances 

the signal. Deoxyhaemoglobin (dHb) is paramagnetic and introduces field distortions 

(susceptibility artefacts), which lead to less signal. Neural activity is accompanied by a 

local increase in blood oxygenation, which is needed for glucose metabolism. The increase 

in oxygen extraction from the blood is achieved by vascular changes, namely an increase in 

regional blood flow, in blood volume and in blood velocity, all of which are related in a 

complex way (see Buxton, 2002 for details). Importantly, even though more oxygen is 

extracted from the blood during neural activity, this is accompanied by a local oversupply in 

blood oxygen and therefore a better BOLD signal (for a discussion of the oversupply see 

e.g. Buxton, 2002; Logothetis & Pfeuffer, 2004). This increased BOLD signal occurs with a 

latency of 3-6 s after the onset of neural activity, depending on the task and the brain region 

involved (for details see Heeger & Ress, 2002). The location of the signal can be revealed 

with fMRI with high spatial resolution, whereas the temporal resolution is rather poor (e.g. 

compared to electroencephalography, EEG) because of the hemodynamic delay. Since 1992 

the BOLD signal has been used in experiments in humans (Bandettini, Wong, Hinks, 

Tikofski & Hyde, 1992; Kwong et al., 1992; Ogawa et al., 1992).  

It is crucial to understand what exactly the measured signal reflects in order to relate it 

to the cognitive mechanisms of interest. Is it valid to conclude that the BOLD signal simply 

reflects a local increase in neural activity in terms of a higher firing rate (action potentials, 

the output signals of neurons)? At least, this is usually the implicit assumption. The BOLD 

signal, however, does not perfectly correlate with the neurons’ firing rate as measured with 

single-cell recordings in monkey cortex. Perisynaptic activity from neurons in the surround 

up to 3 mm from the electrode tip (local field potentials, LFP) was found to be the better 

predictor (Logothetis 2002; 2003; 2008; Logothetis & Pfeuffer, 2004; Logothesis and 
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Wandell, 2004). Moreover, LFPs predicted the BOLD signal even in the absence of spiking 

activity (Logothetis, Pauls, Augath, Trinath & Oeltermann, 2001), confirming the impor-

tance of pre-synaptic activity for the BOLD signal rather than simple output signals to other 

regions (Logothetis, 2008; Logothetis & Wandell, 2004). Unfortunately, the LFPs also 

represent an ambiguous mixture of activity. Logothetis (2008) pointed out that neural 

activity in general cannot be explained by a simple feed-forward integration model in which 

all information is just transmitted to the next “higher” brain area; connections between 

regions are feed-forward and feedback. Moreover, it is not the single neuron that processes 

the information but micro-units composed of many interconnected neurons, resulting in 

local mass activation. The local connectivity of such micro-units reveals strong excitatory 

and inhibitory recurrence, coining the term excitation-inhibition networks (EIN) (Logothe-

tis, 2008). The BOLD signal could therefore not only arise from an increase in firing of 

task- or stimulus sensitive neurons but also from an increase in balanced exhibitory and 

inhibitory conductance, which does not necessarily cause a net increase of stimulus-related 

cortical output. In conclusion, it seems that the BOLD signal always contains a mixture of 

sources and it can hardly be used to draw conclusions about what exactly happens within a 

single fMRI voxel. The magnitude of the fMRI signal therefore cannot be quantified to 

accurately reflect differences between brain regions (Logothetis & Wandell, 2004). Even the 

comparison between tasks within the same region might be problematic, which makes it 

theoretically impossible to deduce the exact role of an area for a task at hand. Nevertheless, 

today BOLD fMRI is one of the best tools for the investigation of the neural basis of 

cognitive functions in humans (Logothetis, 2008), but its restrictions have to be kept in 

mind: it will not be possible to unravel the exact mechanisms of the cognitive processing 

steps using fMRI. The present studies, however, still go beyond conventional fMRI studies 

by directly demonstrating the encoding of information within brain regions. 

 

2.2.3 Pre-processing and univariate analysis of fMRI data 

 

The classical approach of fMRI data analysis is briefly described in this section. It explains 

how to get from the acquired images to conclusions about cognitive tasks; but it is also 

crucial to understand the differences to the multivariate approach that was used in the 

present work. Detailed overviews about various other ways of data analyses can be found in 
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several textbooks (e.g. Faro & Mohamed, 2006; Friston, Ashburner, Kiebel, Nichols & 

Penny, 2006; Jezzard et al., 2003).  

The signal in fMRI time-series contains a mixture of changes in neural activity as 

well as correlated and uncorrelated noise (Friston et al., 1995b). An important limitation for 

task-related signals is the signal-to-noise ratio (SNR) that defines how much signal can be 

attributed to the experimental condition. Averaging across multiple functional images from 

the same experimental condition is required to eliminate the (unsystematic) noise compo-

nents. Therefore, a series of t images is recorded (which also can be expressed as v voxels 

with a time-series of t time-points). During data pre-processing, the images of each partici-

pant first have to be realigned to one image of the series. This procedure corrects for small 

movement that might have occurred during the scanning session (Brett, Johnsrude & Owen, 

2002). For this, the brain is treated as a rigid body and six motion parameters are used for 

realignment (translational movement and rotation in three spatial dimensions). It is also 

possible to co-register the functional images to a structural, high-resolution image recorded 

during the same session. Additionally, it has to be considered that the functional images are 

multi-slice images and each slice samples a slightly different point in time. Slice acquisition 

time correction can be applied to compensate for this effect. In order to compare individual 

brain images between participants, the images must then be transformed into a common 

space: spatial normalisation uses computational warping to match the individual images to 

a standard brain (see e.g. Aguire, 2006). Template images are provided e.g. by the Montreal 

Neurological Institute (MNI) or the stereotactic brain atlas by Talairach and Tournoux 

(1988). Commonly, the functional images are also spatially smoothed using Gaussian 

kernels. This step is useful since it is physiologically implausible that sharp drops of activa-

tion occur at the boundaries between voxels and if these are observed in the data, they rather 

display the influence of measurement noise. It therefore helps to increase the normalities of 

the data, to overcome residual differences between participants and to reduce sensitivity for 

false positive results in single voxels’ time-series (Aguire, 2006).  

The statistical analysis aims at identifying voxels’ time-series in which the signal of 

interest is greater than the noise level (Smith, 1994). The experimental conditions are 

contrasted with a baseline condition or with each other, depending on the experimental 

protocol and research question. The most common way to achieve this is to use a General 

Linear Model (GLM) (Friston et al., 1995a,b). The events (or different experimental blocks) 

are used as regressors to explain variance in the data. For each voxel’s time-series (univari-
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ate analysis), the fit to the model is quantified by a parameter estimate (�-value). In a 

simple way, for one stimulation condition this can be expressed as: 

y(t) = � * x(t) + c + e(t) 

In this equation, y(t) corresponds to the observed data (with a vector of signal inten-

sity values for each time point), x(t) corresponds to the model (with a vector of ones and 

zeros representing the presence or absence of stimulation conditions), c is a constant (e.g. 

baseline intensity) and e(t) corresponds to the error. Therefore, � is the value with which the 

model has to be multiplied to fit the data. In order to get a better fit of the model, the time-

series can be convolved with the haemodynamic response function (HRF) to mimic the 

BOLD response in a more realistic way. The parameter estimates obtained from the GLM 

are fed into group-level statistical analyses, which then result in statistical maps, displaying 

the uncertainty of their estimation (t-values). This allows the identification of voxels that are 

believed to be significantly activated for each experimental condition. A statistical threshold 

(expressed as p-value) has to be applied to these maps, taking into account a correction for 

multiple comparisons. Often, additional voxel-cluster thresholds are used to further limit the 

possibility of false positives. Differences between the relevance (or activation) of voxels for 

experimental conditions can be inferred by subtracting parameter estimates from each other. 

Finally, the activated areas have to be labelled, which can be done on different levels (Brett 

et al., 2002).  

  

2.2.4 The multivariate pattern classification approach 

 

In recent years, new approaches were taken in analysing fMRI data. As outlined above, 

conventional univariate analysis compares each voxel in the brain separately with respect to 

activation differences between experimental conditions. This approach has proven to be 

very useful for identifying areas involved in cognitive processes; however, at the cost of 

information reduction. Differences between participants are treated as noise and fine-

grained information in activation patterns are blurred or cancelled out. Only the “tip of the 

iceberg” (Formisano et al., 2008) of shared activity becomes visible. In contrast, pattern 

classification methods make use of unique fine-grained spatial activation patterns of indi-

vidual participants’ data. The idea behind this approach is to extract information related to 

different cognitive processes by testing the correlation of activation patterns between 
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experimental conditions or by using them to predict experimental conditions directly 

(Formisano et al., 2008; Haxby et al., 2001; Haynes & Rees, 2006; Kriegeskorte, Goebel & 

Bandettini, 2006; Mur et al., 2009; Norman et al., 2006). This approach has been labelled 

“information based fMRI” (Kriegeskorte et al., 2006; Kriegeskorte & Bandettini, 2007a,b; 

Mur et al., 2009), “mind reading” or “brain reading” (Cox & Savoy, 2003), “multi-voxel 

pattern analysis” (MVPA) (Normal et al., 2006) or “multivariate decoding” (Haynes, 2009; 

Haynes & Rees, 2006). 

The great advantage of this class of methods is that it accounts for the possibility that 

regions carry information about cognitive processes even though this might not be reflected 

in differences in the average signal (Haynes & Rees, 2006). Consider for example the neural 

responses to mental processes such as the processing of very similar visual stimuli, or 

abstract rules as in the present studies. In principle, one would expect that different neurons 

(or micro-units) might be involved in each computation but one would also expect these 

neurons to be located in the same macro-anatomical regions. Different neurons within a 

single voxel might code for one mental process (e.g. detecting the first stimulus), some 

might code for the other process (detecting the second stimulus), while other neurons might 

not code for any task related processes at all. A region of a relatively small size such as 1 

mm2 covering cortical surface will still contain 90.000 to 100.000 neurons (Logothetis, 

2008). It is therefore very likely that conventional analysis will fail to detect small activa-

tion differences within this voxel (and neighbouring voxels) between conditions. If these 

voxels display small but stable biases, however, multivariate methods can link the resulting 

activation patterns to experimental conditions. This method could therefore be regarded as a 

test for pattern stability. It has been claimed that this approach is sensitive to differences at 

a finer scale than the voxel size (Haynes & Rees, 2005a; Haynes & Rees, 2006; Kamitani & 

Tong, 2005). This view has recently been challenged by simulations, which showed that 

supra-voxel information sources rather than sub-voxel information would account for 

decoding (Op de Beeck, 2010). Others, however, demonstrated that these simulations were 

partly based on inaccurate assumptions and could not dismiss potential sub-voxel informa-

tion sources (Kamitani & Sawahata, 2010). Also at odds with Op de Beeck (2010), strong 

orientation-specific signals at the scale of cortical columns (below and up to 1 mm) in 

primary visual cortex (V1) of cats have been demonstrated using high-field and high-

resolution fMRI; these orientation biases (which were also found in humans) were still 

detectable when the spatial scale was increased to several millimetres (Swisher et al., 2010). 

Likewise, the build-up of free decisions could be decoded from prefrontal cortex using a 
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standard resolution of 3x3x3 mm3 voxels (Soon et al., 2008) as well as using a much 

smaller resolution of 1x1x1 mm3 voxels (Bode et al., in prep.). Hence, these small biases are 

likely to be the basis for pattern classification approaches; however, most likely in combina-

tion with some large-scale global biases and effects of blood vessels (Kamitani & Sawahata, 

2010; Swisher et al., 2010). 

Multivariate pattern classification can potentially demonstrate involvement of brain 

regions beyond unspecific preparatory activation or support for processes taking place 

elsewhere in the brain. For example, several studies found that parietal and prefrontal cortex 

were both involved in task switching (e.g. Brass & von Cramon, 2004a; Crone, Wendelken, 

Donohue & Bunge, 2006; Rowe, Hughes, Eckstein & Owen, 2008). In order to decide if one 

region performs more abstract mental operations than the other (e.g. processing task rules), 

the direct test would involve looking at information encoding in the respective areas (see 

Experimental Section I). It has been stressed that only revealing the representational 

content can take the understanding of mental processes to the next level (Haynes, 2009; Mur 

et al., 2009). The basic methodological principles of multivariate pattern classification 

techniques will be described in the following paragraph. A more detailed description of the 

exact method used in the present studies will be given in each methods section separately. 

 

2.2.5 Methodological principles of pattern classification 

 

A number of different approaches for the analysis of fMRI activation patterns have been 

introduced in recent years, the most important ones will be described here. The fMRI data 

usually undergoes individual movement correction but no further normalisation or smooth-

ing in order to preserve as much of the original information as possible (Formisano et al., 

2008; Haynes & Rees, 2006; Mur et al., 2009; see Op de Beeck, 2010, and Kamitani & 

Sawahata, 2010, for a discussion about the effects of spatial smoothing). The next step 

always involves defining a set of voxels that constitutes the patterns (feature selection). The 

activation values from the selected voxels are combined to a feature vector (for an overview 

see Pereira, Mitchell & Botvinick, 2009). In principle, it is possible to use activation 

patterns from all voxels in the brain for classification (e.g. Polyn, Natu, Cohen & Norman, 

2005). This approach, however, results in a very high-dimensional feature vector and 

therefore in a great proportion of noise, considering that only the minority of voxels will 
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carry task-related information; it might also lead to over-fitting. Several approaches have 

been suggested to reduce the dimensionality of high-dimensional feature vectors, including 

principal components analysis (PCA) (Mourão-Miranda, Bokde, Born, Hampel & Stetter, 

2005), taking the most discriminative voxels only or taking the most activated voxels only 

(Mitchell et al., 2004). The latter approach risks missing voxels that display weak but stable 

biases, which could have enhanced the classification performance if included. One could 

also define a region of interest (ROI) according to anatomical or functional criteria (Mur et 

al., 2009). Others used a combination of anatomically defined regions and voxel sampling 

by activation strength (Haynes & Rees, 2005a; Kamitani & Tong, 2005). It has to be 

ensured, however, that voxel selection and pattern classification are performed on inde-

pendent data-sets to avoid circularity (Kriegeskorte, Simmons, Bellgowan & Baker, 2009). 

Unfortunately, these approaches do not allow a search for local information encoding 

without making presumptions. An elegant way to overcome this was introduced by 

Kriegeskorte and colleagues (2006). These authors constructed a searchlight cluster with a 

fixed radius around each voxel in the brain and analysed the activation patterns contained 

within them. By doing so, the classification accuracy achieved from each of these clusters 

could be examined. This approach results in 3-dimensional brain maps of decoding accura-

cies, which are then normalised to standard space, spatially smoothed and can be subjected 

to group-level analyses (Haynes et al., 2007; Mur et al., 2009; Soon et al., 2008). This 

method was used for the present studies and will be described in greater detail in the sepa-

rate method sections. 

For the analysis, it is generally possible to take the data from each individual trial 

and sort them according to the experimental conditions (Haynes & Rees, 2005a; Haxby et 

al., 2001; Kamitani & Tong, 2005) or to apply a GLM for each voxel first, (using HRF or 

Finite Impulse Response, FIR, based modelling) and perform pattern classification on the 

resulting parameter estimates (beta-images) (Haynes et al., 2007; Mourão-Miranda, 

Reynaud, McGlone, Calvert & Brammer, 2006; Soon et al., 2008). Additionally, each time 

point in a trial can be included as a different feature (Mitchell et al., 2004; Mourão-Miranda, 

Friston & Brammer, 2007). Subsequently, the complete data-set is split into a “training data 

set” and a “test data set”, which have to be acquired independently (Haynes & Rees, 2006; 

Norman et al., 2006). In its simplest case, the data-set is split in half, e.g. odd and even runs. 

A correlation analysis is computed between the pattern vectors from both sets and each 

pattern is assigned to the condition with which it displays the highest correlation (Haxby et 

al., 2001). Other approaches more strongly stress the prediction aspect. The pattern vectors 
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from the training data-set are subjected to a classifier or decoder, which learns to distinguish 

between activation patterns relating to different experimental conditions. In order to do so, 

the patterns are treated as points in multidimensional space with as many dimensions as 

voxels contained in the pattern. The classifier has to estimate a decision boundary, or more 

precisely a decision hyperplane, in order to optimally separate pattern exemplars of different 

conditions from the training data set. In principle, the learned classifier is a model for the 

relationship between features and class labels (Pereira et al., 2009). In a second step, the test 

data set is used to test if the decision hyperplane can successfully classify independent data 

(Haynes & Rees, 2006; Mur et al., 2009; Norman et al., 2006). Cross-validation has to be 

performed to obtain a better estimation of the classification accuracy and to control for 

over-fitting. This can be done by dividing the data into independently acquired sub-sets 

from each functional run such that each run serves as the independent “test run” once. The 

final decoding accuracy is calculated as the average percentage of correct classifications 

from all cross-validation steps (Haynes & Rees, 2006). For a detailed illustration of this 

procedure see Figure 3-2 of the first study.  

 There are several mathematical algorithms used for decoding, each designed to find 

an optimal decision hyperplane for the classification problem (for detailed overviews see 

Formisano et al., 2008; Mur et al., 2009; Pereira et al., 2009). The most common classifiers 

are linear classifiers because these are simpler and non-linear approaches have not been 

shown to be superior (e.g. Cox & Savoy, 2003) and are additionally difficult to interpret 

(Pereira et al., 2009). Simple correlation approaches rely on minimum distance classifica-

tion. They use the distance (e.g. Euclidian distance) between the test data example and the 

training data sets for each experimental condition (Pereira et al., 2009). This can be depicted 

by imagining the single vectors as dots in multidimensional space (often illustrated in a two-

dimensional coordinate system; see Mur et al., 2009). The centroids from both sets (vector 

‘clouds’ for each experimental condition) are simply connected using a straight line. A 

linear decision hyperplane (boundary) is placed orthogonal to the centroid connection line 

and divides it in the middle.  

A different approach is linear discriminant analysis (LDA) (e.g. Haynes & Rees, 

2005a; Kamitani & Tong, 2005) that projects each vector on a single linear discriminant 

dimension, which replaces the connection line between centroids. To obtain the decision 

hyperplane, the covariance of the vectors is taken into account such that it optimises the 

ratio of between-condition variance (which should be high) and the within-condition 
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variance (which should be low). This method, however, requires multivariate-normal 

distributions of each condition (Mur et al., 2009).  

In the past years, support vector machine (SVM) classifiers have proven to be pow-

erful in classification of fMRI activation patterns (Haynes & Rees, 2006; Haynes et al., 

2007; Mourão-Miranda et al., 2005; 2006; Soon et al., 2008). This method works by a 

similar principle to the LDA, but does not assume multivariate normality. It differs, how-

ever, in how the decision hyperplane is set. Vector weights are computed, indicating the 

importance of each vector for the prediction. The support-vectors, the closest points in 

space between conditions, are taken to define a margin around the decision hyperplane such 

that the distance between the separating hyperplane to the nearest training samples is 

maximized (Formisano et al., 2008). Optimally, the decision hyperplane is then set in the 

middle of the margin, which, in turn, is set in a way that it extends to the closest vectors on 

both sides without including them. If no solution can be found that completely separates 

both conditions, it is possible to flexibly define the number of vectors to be ignored that 

would be misclassified in the training data-set. This method is not much affected by changes 

far away from the decision boundary but strongly affected by changes of the support vectors 

(Mur et al., 2009). Classification using SVMs can also be extended to more than two 

conditions, e.g. by calculating all pair-wise classifications and indentifying the most fre-

quently chosen one. 

 

2.2.6 The application of multivariate pattern classification 

 

Pattern classification on fMRI data was first applied in the visual domain. Specifically, the 

question of how the brain encodes objects in the occipital and ventral temporal cortex led to 

great debate (e.g. Aguirre, Zarahn & D’Esposito, 1998; Downing, Jiang, Shuman & Kan-

wisher, 2001; Edelman, Grill-Spector, Kushnir & Malach, 1998; Epstein & Kanwisher, 

1998; Epstein, Harris, Stanley & Kanwisher, 1999; Kanwisher, McDermott & Chun, 1997; 

Spiridon & Kanwisher, 2002). It was the use of pattern classification, however, that re-

vealed the distributed nature of object category encoding in those regions (Haxby et al., 

2001). These authors concluded that an unlimited number of categories and single objects 

could be encoded in the activation patterns with many voxels contributing to the coding. 

Cox and Savoy (2003) used SVM classifiers and demonstrated that decoding accuracies 
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were even higher if patterns were not restricted to voxels that showed the strongest BOLD 

signal during object presentation. Furthermore, training and testing on different exemplars 

of objects from the same category led to comparably good results (Cox & Savoy, 2003). In 

the following years, pattern classification has been increasingly used in the perceptual 

domain of object-, face-, scene- and motion recognition (e.g. Eger, Ashburner, Haynes, 

Dolan & Rees, 2007; Downing, Wiggett & Peelen, 2007; Haushofer, Livingstone & Kan-

wisher, 2008b; Kay, Naselaris, Prenger & Gallant, 2008; Kriegeskorte, Formisano, Sorger 

& Goebel, 2007; Kriegeskorte et al., 2008; Op de Beeck, Torfs & Wagemans, 2008b; 

O’Toole, Jiang, Abdi & Haxby, 2005; Peelen, Wigget & Downing, 2006; Peelen & Down-

ing, 2007; Schwarzlose, Swisher, Dang & Kanwisher, 2008; Shinkareva et al., 2008; 

Spiridon & Kanwisher, 2002; Sterzer, Haynes & Rees, 2008; Walther, Caddigan, Fei-Fei & 

Beck, 2009; Weber, Thomson-Schill, Osherson, Haxby & Parsons, 2009; Williams et al., 

2007; 2008), as well as saliency (Bogler, Bode & Haynes, in prep.), colour encoding 

(Brouwer & Heeger, 2009) and odour perception (Howard, Plailly, Grueschow, Haynes & 

Gottfried, 2009). 

Another fascinating application was in the investigation of subjective experiences, 

such as the awareness of visual contents. Kamitani and Tong (2005) used multivariate 

decoding to predict the orientation of simple stimuli composed of lines from activation 

patterns in early visual cortex during passive viewing. Furthermore, these authors could 

predict participants’ covert attention to one of two overlaid line orientations. Using a similar 

approach, Haynes and Rees (2005a) could even predict the orientation of stimuli that were 

rendered invisible by masking from activation patterns in primary visual cortex (V1). This 

was a powerful demonstration that information can be encoded in – and decoded from – 

brain activity without the participants having conscious access to that information. The 

same authors have also demonstrated the converse by predicting changes in the content of 

conscious experiences while visual stimulation was kept constant using a binocular rivalry 

task (Haynes & Rees, 2005b).   

Recently, the application of multivariate pattern classification was extended to 

higher cognitive processes, such as memory (Harrison & Tong, 2009; Polyn et al., 2005; 

Serences, Ester, Vogel & Awh, 2009), navigation (Hassabis et al., 2009), deception (Davat-

zikos et al., 2005), decision making (Hampton & O’Doherty, 2007; Li, Ostwald, Giese & 

Kourtzi, 2007; Pessoa & Padmala, 2007; Serences & Boynton, 2007; Tusche, Bode & 

Haynes, 2010), number representation (Eger et al., 2009) and the storage and formation of 

intentions (Bode et al., in prep.; Haynes et al., 2007; Soon et al., 2008; Soon, He, Bode & 
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Haynes, in prep.) While the functional columnar organisation of early visual cortex is 

comparably well investigated, the functional organisation of higher cortical areas (e.g. 

involved in cognitive control) is still poorly understood. These recent studies, however, 

gave rise to the notion that higher cognitive processes, which were of interest for the present 

work, can indeed be decoded from local patterns of brain activity. Here, it was concluded 

that this approach would allow the investigation of rule-based behaviour as well as percep-

tual decision making, given its sensitivity for information about objects, the content of 

conscious experiences and decisions. By using a searchlight approach (Haynes et al., 2007; 

Kriegeskorte et al., 2006) the search for information encoding did not have to be restricted 

to pre-selected brain regions. The following experimental sections will link these detailed 

methodological considerations back to the concrete research questions. 
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3 Experimental Section I: Rule-based task     

preparation 

 

 

3.1 Theoretical background 

3.1.1 Task-sets and task switching 

 

One simple form of responding to a stimulus, which will be the starting point for the present 

work, is following a rule. In this case, there are no degrees of freedom for the acting agent 

because the response is clearly predefined by the context and the stimulus. Hence, if the rule 

is not willingly violated, there is no real decision process involved. For example, in road 

traffic (context) we respond to the red traffic light (stimulus) by stopping (response) and to 

the green light (alternative stimulus) by walking (alternative response). In our every day 

life, rule-based behaviour is very common; it allows for highly automated processes based 

on useful associations between context cues and the adequate responses (Bunge, 2004). In 

most situations, however, our behaviour is not as predefined as in the case of traffic lights. 

Crossing the street in Germany, for example, requires first looking to the left, whereas in 

Australia it requires looking right. Hence, responses to stimuli are often context-dependent, 

requiring a switch between multiple motor behaviours associated with the same stimulus. 

The term task-set is used to refer to this prospectively configured combination of percep-

tual, mnemonic and motor processes in an abstract form (Sakai, 2008). Flexible rule usage, 

swift interpretation of environmental cues and the ability to switch between adequate 

responses are key features of human (and primate) behaviour; hence much research has 

“Life is the only game in which the object of the game is to learn the rules” 

(Ashleigh Brilliant; http://www.ashleighbrilliant.com) 
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focused on task-switching. In task switching, the agent needs to flexibly adjust its behaviour 

according to the current rule. This ability requires flexible reconfiguration of the flow of 

information through the brain. Perceptual information that enters the primary sensory areas 

needs to be routed into different motor responses depending on current tasks (or other 

context information), which also have to be encoded in the brain.  

Early behavioural studies showed that participants needed additional time whenever 

they switched from one simple task to another (Jersild, 1927). These switch costs were 

reduced but not eliminated when the preparation of the alternative task was facilitated by 

longer stimulus-response delays using fixed task sequences (Monsell, 1996; Rogers & 

Monsell, 1995; Spector & Biederman, 1976) or variable cue-target intervals (Meiran, 1996). 

These residual costs were often attributed to the process of task-set reconfiguration but the 

exact sources are still under debate (see e.g. Rogers & Monsell, 1995; Rubinstein, Meyer & 

Evans, 2001). One explanation states that inhibition effects from the preceding trial result-

ing from strong associations between the same stimulus and the other motor response are 

affecting the current trial (Allport, Styles & Hsieh, 1994; Allport & Wylie, 1999). Impor-

tantly, many of these interpretations point to the conclusion that task-set reconfiguration can 

only be finally completed after the stimulus is presented and not beforehand (De Jong, 

2000; Monsell, 2003). Hence, it can be assumed that different processes operating on the 

abstract level of task-sets contribute to rule-guided task preparation at different points in 

time. 

 

3.1.2 The neural substrate of task-sets 

 

In recent years, task switching has become a frequently used method for research on the 

neural mechanisms underlying cognitive control and rule-based behaviour (Bunge, 2004; 

Bunge & Wallis, 2007; Sakai, 2008). It has been suggested that the lateral prefrontal cortex 

(PFC) is involved in guiding flexible behaviour (Badre & D’Esposito, 2007; 2009; Badre, 

Hoffman, Cooney & D’Esposito, 2009; Constantinidis, Williams, Goldman-Rakic, 2002; 

Desimone & Duncan, 1995; Miller & Cohen, 2001). Signals from PFC could bias compet-

ing activity in other regions of the brain, thereby guiding behaviour from top-down (Miller 

& Cohen, 2001). In support of this, the human PFC is approximately twice as large as 

would be expected for nonhuman primates with a neocortex of equal size and it is also more 
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complexly folded (Passingham, 1973; Striedter, 2004; Zilles, Armstrong, Moser, Schleicher 

& Stephan, 1989), pointing to an involvement in high-level cognitive functions. Addition-

ally, PFC is highly interconnected with all sensory association cortices, motor structures, 

basal ganglia, thalamus and several regions in temporal and parietal cortex, which may 

allow it to play a key role in the integration of information (Miller & Cohen, 2001).  

Monkeys are also generally capable of performing tasks that require high levels of 

cognitive control and have therefore been intensively studied using single cell recordings in 

several sub-regions of PFC. In such studies, monkeys usually perform a simple task (e.g. 

tilting a joystick in one of two directions or performing a delayed saccade to a preceding 

stimulus) according to one or several given task rules while the activity of single neurons is 

recorded. The tuning of such neurons is then assessed according to their firing rates during 

particular phases of the trial. For rule-guided behaviour, PFC neurons were identified that 

showed tuning to the visual properties of behaviourally relevant stimuli (Funahashi, Chafee 

& Goldman-Rakic, 1993; Hoshi, Shima & Tanji, 2000; Hoshi & Tanji, 2004), even when 

these had to be kept in memory during a delay period (Constantinidis, Franowicz & Gold-

man-Rakic 2001a; 2001b), as well as neurons tuned to visual properties of stimuli that were 

not even relevant for the selection of behaviour (Quintana & Fuster, 1999). Other PFC 

neurons were tuned to motor responses while a different set of neurons encoded the predict-

ability of the correct response (Quintana & Fuster, 1999). In other studies, PFC neurons 

were found that changed their tuning properties according to the abstract task rules 

(Amemori & Sawaguchi, 2006; Asaad, Rainer & Miller, 2000), encoded reward expecta-

tions and upcoming responses (Hoshi, Shima & Tanji, 1998; Hoshi et al., 2000; Wallis & 

Miller, 2003), encoded the monkeys’ certainty about the correct sequence of action (Aver-

beck, Sohn & Lee, 2006) or directly encoded the abstract rule (Johnston, Levin, Koval & 

Everling, 2007; Kusunoki, Sigala, Gaffan & Ducan, 2009; Sigala, Kusunoki, Nimmo-Smith, 

Gaffan & Duncan, 2008; Wallis, Anderson & Miller, 2001). Remarkably, PFC neurons in a 

wide range of sub-regions seem to be capable of encoding all possible aspects of rule-

guided task preparation, making it difficult to pinpoint – and generally questions – any 

functional regional specialisation (Duncan, 2001; Sigala et al., 2008).  

There is also evidence that posterior parietal cortex (PPC) plays an important role in 

cognitive control (Quintana & Fuster, 1999). Parietal cortex has been less intensively 

investigated than prefrontal areas in this context but recent studies demonstrated the exis-

tence of neurons sensitive to abstract rules in several parietal sub-regions in the monkey 

brain (Freedman & Assad, 2006; Gail & Andersen, 2006; Gottlieb, 2007; Oristaglio, 
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Scheider, Balan & Gottlieb, 2006; Stoet & Snyder, 2004, 2007; Toth & Assad, 2002). This 

also led to new hypotheses that parietal cortex plays a much more active role in task recon-

figuration than previously thought (Singh-Curry & Husain, 2009). 

In humans, several brain areas have been shown to be activated during preparation of 

externally cued tasks, including lateral PFC, intraparietal sulcus (IPS), the pre-SMA and the 

anterior cingulate cortex (ACC) (Brass & von Cramon, 2002, 2004a, 2004b; Brass et al., 

2003; Bunge, Hazeltine, Scanlon, Rosen & Gebrieli, 2002; Braver, Reynolds & Donaldson, 

2003; Crone et al., 2006; Dosenbach et al., 2006; Dove et al., 2000; Forstmann, Brass, Koch 

& von Cramon, 2005; Kimberg, Aguirre & D’Esposito, 2000; Rowe et al., 2008; Rush-

worth, Paus & Sipila, 2001, Rushworth, Hadland, Paus & Sipila, 2002a; Rushworth, Pass-

ingham & Nobre, 2002b; Sohn, Ursu, Anderson, Stenger & Carter, 2000; Toni, Schluter, 

Josephs, Friston & Passingham, 1999; Yeung, Nystrom, Aronson & Cohen, 2006). In line 

with findings in monkeys, a fronto-parietal network emerges as being important for rule-

guided behaviour. However, it is still heavily debated as to which brain areas correspond to 

which processing stages from stimulus representation to response execution. For example, 

using fMRI ventrolateral prefrontal cortex (VLPFC) and dorsolateral prefrontal (DLPFC) 

were found to be differentially activated depending on the task domain (Sakai & Pass-

ingham, 2003; Sakai & Passingham, 2006; Yeung et al., 2006). Others suggested that 

DLPFC is generally more involved in rule-based response selection while anterior VLPFC 

plays a key role in the retrieval of rule knowledge; posterior VLPFC, pre-SMA and parietal 

cortex may be involved in rule maintenance and the transformation of rules into action 

codes (Bunge, 2004). Brass and von Cramon (2002; 2004a; 2004b) dissociated the visual 

properties of a rule cue and its abstract meaning and could show that a sub-region of 

VLPFC, the inferior frontal junction (IFJ), was important for the selection of task relevant 

information. These authors assumed that the IFJ might be a key region in cognitive control 

across different tasks (Brass, Derrfuss, Forstmann & von Cramon, 2005a; Derrfuss, Brass & 

von Cramon, 2004; Derrfuss, Brass, Neumann & von Cramon, 2005). More abstract opera-

tions, such as task management or abstract mental operations, were suggested to be carried 

out by anterior frontopolar cortex (FPC) (Badre & D’Esposito, 2009; Bunge, 2004; 

Koechelin & Hyafil, 2007), while ACC and the anterior insula / operculum were discussed 

to constitute a core task-set system that regulates activity in other brain regions (Dosenbach 

et al., 2006). The specific role of the prefrontal sub-regions, however, is far from clear; 

competition and interaction of representations of rules, stimuli and responses may also take 

place within the same brain regions (Sakai, 2008).  
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Parietal cortex is most commonly thought to play a subordinate role in cognitive 

control, mainly linked to storage of stimulus-response (S-R) associations, attention and 

response preparation (Brass & von Cramon, 2002, 2004a, 2004b; Brass, Ullsperger, Kno-

esche, von Cramon & Phillips, 2005b; Bunge, 2004; Crone et al., 2006; Rushworth et al., 

2001). There is also much debate regarding the roles of different prefrontal and parietal 

areas in time, i.e., from the retrieval of a general rule, to its associations with response 

representations and to the final motor preparation (Brass and von Cramon, 2004a, 2004b; 

Brass et al., 2005a; Braver et al., 2003; Bunge, 2004; Bunge et al., 2005). In most studies, it 

has also remained unclear whether brain activity related to task switching reflected the 

specific encoding of the task, or whether it instead reflected unspecific, global processes 

that did not differentiate between tasks.  

 

3.1.3 The goal of the present study 

 

The present fMRI study investigated how information about task-sets builds up across time 

when participants are cued to use different rules to guide their behaviour. Being able to 

pinpoint the temporal sequence of information encoding would allow conclusions to be 

drawn about two important aspects of task preparation: first, identifying the content of 

information stored in a specific brain region could shed light on the specific processes in 

which a particular region is engaged. Second, knowing the time at which a specific region 

holds that information would help clarify its role in preparing rule-guided behaviour. 

Specifically, multivariate pattern classification (Haynes & Rees, 2006; Norman et al., 2006) 

was used to disentangle the encoding of task-sets, target stimuli and motor responses 

(Passingham, Toni & Rushworth, 2000). Multivariate decoding has been successfully 

applied to analyse high-order cognitive functions beyond visual representations from 

patterns of brain activity including prefrontal cortex (Hampton & O’Doherty, 2007; Haynes 

et al., 2007; Li et al., 2007). Additionally, it can be used to track the built-up of decisions 

across multiple brain regions over time (Soon et al., 2008). In the present study, a task was 

used that required participants to alternate between two simple task-sets based on a visual 

cue presented prior to each trial. The task was temporally staggered and required two 

different mappings of visual stimuli to motor responses. Using this procedure, it was 

possible to identify different stages of information processing during rule-based response 

preparation. 
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3.2 Methods 

3.2.1 Task-switching experiment 

Participants 

 

Seven male and seven female participants took part in the study and gave written informed 

consent to the test procedure. The experiment was approved by the local ethics committee 

and was conducted according to the Declaration of Helsinki. All participants were right-

handed and had normal or corrected to normal visual acuity. Data from two participants 

were excluded due to poor task performance in one case and technical problems in re-

cording responses in the other case. The final sample consisted of five male and seven 

female participants (mean age 26.4, range 24-30 years).  

 

Stimuli 

 

All stimuli were created using MATLAB 7.0 (The MathWorks, Inc.) in combination with 

the Cogent toolbox (http://www.vislab.ucl.ac.uk/Cogent). During the experiment, stimuli 

were presented via a projector (resolution 1024x768 pixel, 60Hz) that projected from the 

head-end of the scanner onto a screen. Participants viewed the projection through a mirror 

fixed on the head coil. The visual angle was � = 0.72° for cues and � = 7.15° for target 

stimuli. The target stimuli consisted of dynamic colour patterns that yielded strong re-

sponses in colour and motion responsive regions without semantic associations (Figure 3-1). 

Each pattern was based on a superposition of phase-randomised sinusoids that was used to 

index colours in a circular colour map. These moving coloured patches were animated by 

smoothly varying the phase, which created the impression of pulsation: for each stimulus, 

ten single frames of these patterns were shown in rapid succession, each a slightly warped 

rendering of the preceding one. This series of 10 frames (700 ms) was repeated six times for 

the duration of 4200 ms, thus creating the impression of smooth, wave-like movement. For 

manual responses, a custom-made MR-compatible joystick was used which allowed left and 

right movement only. The joint of the joystick was adjusted until participants reported a 

comparable amount of effort to move it in each direction. The joystick was fixed on an MR-
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compatible plexiglass construction, the surface functioning as a table. This construction 

allowed for the adjustment of the joystick table in every desired angle to ensure that each 

participant’s arm rested in a comfortable position and to avoid any additional movement 

artefacts (Appendix A, Figure A-1).  

 

Experimental procedure 

 

The experiment used a variant of a classical task-switching paradigm (Dove et al., 2000). 

One of two possible cues was given at the beginning of each trial. This cue represented the 

rule that specified which stimulus-response mapping had to be established between the two 

possible target stimuli and the two responses (therefore it defined the task-set). This yielded 

a total of four conditions (see Figure 3-1). Every run started with a 5600 ms presentation of 

a black screen with a white cross in the centre, upon which the participant had to fixate. At 

the beginning of each trial, one of the two task cues was presented for 1400 ms in the form 

of a letter (“A” or “B”) indicating the active rule. Cue “A” instructed the participant to 

move the joystick to the left for target 1 and to the right for target 2. Conversely, cue “B” 

reversed the mapping, indicating that participants should move a joystick to the right for 

target 1 and to the left for target 2 (see Figure 3-1). The cue was followed by a 2800 ms 

delay during which the fixation cross was shown. After this interval, one of the two target 

stimuli was presented for 4200 ms in the centre of the screen with the fixation cross super-

imposed. Participants were instructed to observe the target stimulus for the entire period of 

its presentation, but not to respond yet. Subsequently, once the target stimulus disappeared, 

participants were allowed to respond according to the task rule. The response period lasted 

for 2800 ms. This procedure allowed the de-correlation (and hence dissociation) of task-

sets, stimuli and responses because either stimulus could lead to either response, depending 

on the instructed rule. To familiarise the participants with the joystick and the test proce-

dure, a 20-minute training session outside of the scanner was conducted one or two days 

prior to the fMRI experiment. In the MRI-scanner, the participants were instructed to fixate 

throughout all stages of the experiment. The experiment consisted of four runs, each repeat-

ing the four different conditions 16 times, resulting in 64 trials in total. The order of the four 

conditions was repeatedly pseudo-randomised in blocks. After every 16th trial (4 blocks) 

there was a pause of 14 s. 
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Figure 3-1: Experimental paradigm. Every task-set contained two stimulus-response mappings. Cue “A” 

indicated that a joystick should be moved to the left after presentation of target stimulus 1 and to the right after 

presentation of target stimulus 2 (picture above). Cue “B” indicated the reverse mapping (picture below). In each 

trial, one of the two cues (“A” or “B”) was presented for 1400 ms to indicate the active rule, followed by a delay 

of 2800 ms. Subsequently, one of the two target stimuli was presented for 4200 ms. Participants responded 

immediately following the stimulus presentation (response delay 2800ms). 

 

Functional imaging 

 

A Siemens TRIO 3T scanner (Erlangen, Germany) with standard head coil was used to 

acquire gradient-echo EPI functional MRI volumes of the whole brain (42 axial slices, 

repetition time TR = 2800 ms, echo time TE = 30 ms, resolution 3x3x2 mm3 with 1 mm 

gap). Within each of the four runs, 278 images were acquired for each participant. The first 

two recorded images were discarded to allow for magnetic saturation effects. 
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Data analysis 

 

The data were subjected to three pattern classification analyses. Each of them was designed 

to identify brain regions carrying information about one of the three routes of information 

processing, namely the target stimuli, motor responses or task-sets. This approach goes 

beyond conventional univariate analysis, since it was designed to discriminate between the 

individual representations within a class of experimental conditions, which may be too 

similar for the mean signals to show any differences (see Appendix A, Univariate analysis). 

A Finite Impulse Response (FIR) model was used as implemented in SPM2 

(http://www.fil.ion.ucl.ac.uk/spm/). A high-pass filter with a cut-off of 128 s removed low 

frequency drifts in the time series at each voxel. The model was conducted based on motion 

and slice timing corrected data that was neither normalised nor smoothed. By not smoothing 

the data, the sensitivity for information encoded in fine-grained spatial voxel patterns was 

maximized (Haynes and Rees, 2005a; Kamitani and Tong, 2005). For the FIR model each 

trial was subdivided into eight distinct time bins of 2800 ms (= 1 TR) covering a total of 

22400 ms. In each of these time bins, the cortical response was estimated separately by one 

parameter. This allowed the build-up of informative pattern signals to be analysed across 

time. A “searchlight” approach was implemented to analyse activity patterns at each brain 

location (Haynes et al., 2007; Kriegeskorte et al., 2006). This approach allowed the search 

for informative voxels in an unbiased fashion across the whole brain. Modifying the ap-

proach by using a FIR model, it was possible to estimate the information not only for each 

location but also for each time point separately (Soon et al., 2008). The general procedure is 

illustrated in the following for one time bin but was computed separately for each of the 

eight time bins. 

First, the task-sets were decoded from brain activity. A spherical cluster of N sur-

rounding voxels (c1…N) within a radius of four voxels was created around a voxel vi. The 

FIR-parameter estimates for these voxels were extracted separately for both task-set condi-

tions at a given delay for each run. They were then transformed into pattern vectors for each 

condition for each run of each participant. These vectors represented the average spatial 

response patterns to the given task-set condition from the chosen cluster of voxels (Figure 

3-2a). In the next step, multivariate pattern classification was used to assess whether infor-

mation about the experimental condition was encoded in the spatial response patterns. For 

this purpose, the pattern vectors for three of the four runs were assigned to a “training data 
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set” that was used by a linear support vector machine (SVM) pattern classifier (Müller, 

Mika, Rätsch, Tsuda & Schölkopf, 2001) with a fixed regularisation parameter C = 1. First, 

the classifier was trained on this data to identify patterns corresponding to each of the two 

task-set conditions (LIBSVM implementation, http://www.csie.ntu.edu.tw/~cjlin/libsvm). It 

was then used to classify independent data from the last run (“test data set”). Cross-

validation (4-fold) was achieved by repeating this procedure independently with each run 

acting as the test data set once, while the other runs were used as training data sets (Figure 

3-2b). The decoding accuracy was assessed by averaging the results of all four classification 

iterations and was assigned to the central voxel vi of the cluster. It therefore reflected the 

accuracy of classification based on the given spatial activation patterns of this particular 

local cluster. Classification accuracy significantly above chance implied that the local 

cluster of voxels encoded information about the task-sets, whereas chance level perform-

ance implied no information. The same analysis was then repeated with the next spherical 

cluster, created around the next spatial position at voxel vj. Again, an average decoding 

accuracy for this cluster was extracted and assigned to the central voxel vj. By repeating this 

procedure for every voxel in the brain, a 3-dimensional map of decoding accuracies for each 

position could be created (Figure 3-2c). Furthermore, because the complete classification 

process was performed for each time bin separately, independent accuracy maps were 

available for each time bin.  

The resultant accuracy maps were normalised to a standard stereotaxic space (Mont-

real Neurological Institute EPI template), re-sampled to an isotropic spatial resolution of 3 x 

3 x 3 mm3 and smoothed with a Gaussian kernel of 6 mm full width at half maximum 

(FWHM) using SPM2. This allowed a random-effects group-level analysis, computed on a 

voxel-by-voxel basis, to test the decoding accuracy for each position in the brain statisti-

cally across all participants (Haynes et al., 2007) and to track the evolution of decoding 

accuracies across time in separate brain regions (Soon et al., 2008). 
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Figure 3-2: Multivariate pattern classification: a) Extraction of voxels for classification: Parameter estimates 

for all voxels in spherical cluster (radius = 4 voxels) around voxel vi were calculated separately for each of the 

two conditions (here illustrated for target stimuli, functioning likewise for task-sets and responses). Subse-

quently, they were transformed into two pattern vectors. b) Classification: Pattern vectors of all runs but one 

were assigned to a “training data set”, the remaining run was assigned to a “test data set”. A linear support vector 

pattern classifier was trained on the “training data set” and subsequently applied to classify the “test data set” as 

belonging to one of the two conditions (here illustrated for two voxels where the decision boundary is located in 

2-dimensional space. With N voxels in a spherical cluster, the decision boundary is located in N-dimensional 

space). For cross-validation, the classification procedure was repeated for all runs providing the “test data set” 

separately. The decoding accuracy was the average accuracy [%] across all cross-validation steps. c) Searchlight 

approach: After data extraction (I), pattern classification and cross-validation (II), a new local spherical cluster 

(radius = 4 voxels) was constructed around the adjacent voxel vj. The classification process was repeated for all 

voxels serving as the central voxel of a “searchlight”-sphere once (III). Using this procedure, a 3-dimensional 

brain map of decoding accuracy values was created.  
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3.2.2 Control experiment with fixed stimulus-response mappings 

 

A small control study was conducted in order to investigate whether regions engaged in 

cognitive control (beyond visual and motor cortex) were also involved when task-sets were 

fixed and no flexible switching between rules was required. Notably, in this case stimuli and 

responses were always correlated and their encoding cannot be dissociated.  

 

Participants and experimental procedure 

 

Five healthy, right-handed participants with normal visual acuity took part and gave written 

informed consent to the test procedure. For one participant, functional data was not com-

pletely recorded because of technical problems. Data from the remaining four participants 

(2 female; mean age 28.5; range 25-34 years) is reported here.  

The experiment consisted of five runs in which four different visual target stimuli 

were presented, similar to those used in the task-switching experiment (see Figure 3-6a). 

Every run started with a fixation period of 5600 ms, followed by the presentation of one of 

the four stimuli in the centre of the screen for 11200 ms with the fixation cross superim-

posed. Participants were instructed to fixate and not to execute a response until the target 

stimulus disappeared. Subsequently, participants were instructed to respond using one of 

four buttons on a response device (operated by the index- and middle fingers of both hands; 

response period 5600 ms). The mapping between target stimuli and response buttons was 

fixed during the experiment. The presentation order of the four stimuli was pseudo-

randomised such that no stimulus was repeated on the consecutive trial. In sum, all stimuli 

were shown ten times in each run, resulting in 40 stimuli per run and 200 stimuli in total.  

The scanning procedure was identical to the task-switching experiment, except that 

242 images were acquired for each run. For analyses, the fMRI data were again motion 

corrected and re-sampled (3 x 3 x 3 mm3). A GLM was used as implemented in SPM2 that 

consisted of eight boxcar regressors, each convolved with a canonical HRF. The first four 

regressors modelled the target stimuli, and the last four regressors modelled the motor 

responses (button presses). Again, a searchlight pattern classification analysis was imple-

mented as described above to decode the four stimuli and their correlated motor responses.  
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3.3 Results 

 

In the task-switching experiment, participants performed well with a low error rate of 2.6% 

(standard deviation SD 5.0; range 0 to 5.9% of 64 trials per run). Only trials with correct 

responses were included in the following analyses.  

The present study investigated whether distinct stages of information processing could 

be decoded from brain responses. Specifically, multivariate pattern classification was applied 

to each area in turn to assess whether it was possible to decode which of the two task-sets, 

target stimuli and motor responses were engaged on a particular trial (chance level was 

always 50%). First, the encoding of the task-sets was investigated. Each trial began with the 

presentation of a task cue indicating which rule to use in determining the response. A se-

quence of encoding stages for the task-sets could be found (Figure 3-3, top row). In an early 

phase, only visual cortex encoded task-cues above chance, peaking with up to 63% decoding 

accuracy. Subsequently, it was possible to decode which specific task-set was engaged from 

high-level control regions in parietal and prefrontal cortex. Specifically, decoding was first 

possible from left IPS (peaking at 60% accuracy) even before target presentation, followed by 

left posterior VLPFC (peaking at 56%). The third region encoding the task-sets was located in 

the anterior part of left VLPFC and showed significant accuracy only very late (peaking at 

58%), around the time of response execution (Figure 3-4). The position of peak decoding 

accuracy in posterior VLPFC was anterior and ventral to the IFJ found by Brass and col-

leagues (Brass and von Cramon, 2002; 2004a; Derrfuss et al., 2005). The two regions showed 

no overlap. 

 The next analysis was conducted to reveal brain regions encoding the identity of the 

target stimuli over time (Figure 3-3, second row). Regions showing above chance decoding 

accuracy throughout target stimulus presentation were located in bilateral visual cortex, 

with a peak accuracy of 72%. Interestingly, a region in prefrontal cortex, the left anterior 

VLPFC, also showed significant decoding accuracy, again in a later processing stage, 

peaking at 56% (for details see Appendix A, Figure A-2).  
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Figure 3-3: Decoding the task-sets, target stimuli and motor responses over time. The parameter estimates 

from the FIR model were used for 3 independent multivariate searchlight pattern classification analyses 

(spherical voxel clusters with radius = 4) to decode information about task-rules (upper row), target stimuli 

(second row) and motor responses (third row) over time. The FIR model consisted of eight time bins, each of 

which had a length of 2800 ms to model the entire duration of each trial. The cue was presented at the beginning 

of each trial (onset 0 sec), followed by the target stimulus (onset 4.2 sec) and the motor response (onset 8.4 sec). 

To account for the temporal delay of the BOLD signal the decoding time bins were shifted by 2 volumes (i.e. 

time bin 1 is the earliest that could reflect cue related activity). Time bin 3 coincided with the target stimulus 

presentation, and time bin 4/5 with the motor response (bottom row). A perfect match between events and time 

bins cannot be postulated since the time bins cover a period of 2.8 seconds each, and the delay of the BOLD 

response can only be coarsely estimated. The task cues were found to be encoded bilaterally in visual cortex 

(visCor) (bin 1; p < .00001 uncorrected; here displayed for left hemisphere). Information about task-sets then 

shifted to the left IPS (bin 2; p < .0001 uncorrected), the pVLPFC (bin 3; p < .001 uncorrected) and finally the 

aVLPFC (bin 4; p < .001 uncorrected). Target stimuli were encoded bilaterally in visual cortex (bin 3-5; p < .05 

FWE corrected; here only displayed for left hemisphere) and left aVLPFC (bin 4-5; p < .001 uncorrected). 

Responses could be decoded bilaterally (here only displayed for left hemisphere) from SMA, primary motor 

cortex (motCor) and left medial occipitotemporal sulcus (not displayed) (bins 3-5; p < .05 FWE corrected). For 

BIN 1 BIN 2 BIN 3 BIN 4 BIN 5

Target 
Stimuli

visCor [-15 -96 3]
Accuracy = 72 % 

aVLPFC [-51 33 -12]
Accuracy = 56 % 

Motor
Responses

motCor [-39 15 57]
Accuracy = 75 % 

SMA [-18 6 66]
Accuracy = 65 % 

Time [sec] 

Cue + Response
Events shifted 
by HRF

Task-Rules

visCor [-18 -78 0]
Accuracy = 63 % 

IPS [-24 -45 42]
Accuracy = 60 % 

pVLPFC [-48 12 21]
Accuracy = 56 % 

aVLPFC [-51 33 3]
Accuracy = 58 % 

0 5.6 8.4 11.2 14.0 16.8
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better visualisation, decoding accuracies are displayed with a threshold of p < .001 uncorrected for task-rules and 

target stimuli as well as p < .00001 uncorrected for motor responses. Coordinates displayed are MNI coordinates.  

 

 

 

Motor responses could be decoded from spatial activation clusters in motor-related brain 

regions including bilateral primary motor cortex and bilateral premotor cortex with a peak 

accuracy of 75% (Figure 3-3, third row; for details see Appendix A, Figure A-3). All 

regions showed a similar characteristic information time course: the peak in accuracy 

corresponded to the period of early stimulus decoding, and then slowly decreased back to 

chance level. This result is not surprising since participants could prepare the response from 

Figure 3-4: Information time courses for task-set 

decoding. Displayed are mean decoding accuracy and 

standard errors for the left IPS (upper part), the left 

posterior VLPFC (middle part) and the left anterior 

VLPFC (lower part) over time. The cue was presented at 

the beginning of each trial (onset 0 sec), followed by the 

target stimulus (onset 4.2 sec) and the motor response 

(onset 8.4 sec). To account for the temporal delay of the 

BOLD signal the decoding time bins were shifted by 2 

volumes (i.e. time bin 1 is the earliest that could reflect cue 

related activity). The IPS showed an early peak in 

decoding accuracy before the presentation of the target 

stimulus (time bin 2; p < .0001 uncorrected). Decoding 

accuracy in posterior VLPFC slowly increased in the same 

time bin without reaching significance and peaked during 

early stimulus target presentation (time bin 3; p < 0.001 

uncorrected) and gradually decreased to baseline in the 

next bins. Task-sets could be decoded from left anterior 

VLPFC during the fourth time bin only (p < 0.001 

uncorrected). The time course from visual cortex related to 

the cue presentation is not shown in this figure. Coordi-

nates displayed are MNI coordinates.  
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the moment the target stimulus was presented, but were instructed not to execute until the 

target stimulus presentation had ceased.  

Comparing the amplitude of the BOLD signal across time bins to the time course of 

information encoding (decoding accuracies) revealed that these did not necessarily corre-

spond (Figure 3-5). Especially for motor responses it could be observed that while informa-

tion about the action to be performed was already present in motor areas during early 

stimulus presentation, the BOLD amplitude showed a peak not before response execution. 

Prefrontal and parietal regions showed an even stronger de-correlation between activation 

and information time courses (also see Appendix A for detailed univariate analysis). The 

process-relevant information at a given time point was therefore encoded in fine-grained 

spatial activation patterns rather than in the mean signal in single voxels. 

 Given previous findings by Asaad, Rainer and Miller (1998) that lateral PFC can 

encode combinations of stimuli and rules, it was also investigated whether the four individ-

ual rule-stimulus combinations could be decoded from prefrontal and parietal cortex. Spatial 

activation patterns in prefrontal and parietal areas that were predictive for task-sets and 

stimuli were found to exhibit a tendency to encode specific combinations of rules and target 

stimuli. This trend, however, did not reach significance (for details see Appendix A, Table 

A-4 and Figure A-4). 

In order to assess whether the information in prefrontal cortex about target stimuli 

was also present in a simpler visually guided experiment, the data of the control experiment 

was analysed. In this study, the stimulus-response mappings were kept constant, meaning 

that no switch between task-rules was required. The error rate was very low with 0.63 % for 

all trials in the whole experiment (mean 1.2 errors out of 200 trials; SD = 1.30). Target 

stimuli and correlated motor responses could only be decoded from bilateral visual cortex 

(65% decoding accuracy) and motor cortex (54% decoding accuracy) where chance level 

was 25% (Figure 3-6). Contrary to the task-switching experiment, there were no regions in 

prefrontal cortex from which decoding of visual stimuli was possible, suggesting that 

prefrontal information about target stimuli was specific to tasks that required alternation 

between different stimulus-response mappings. Furthermore, these results suggest that in 

the task-switching experiment, the encoding of visual properties of the cue itself cannot 

account for the information present in the PFC and IPS. 
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Figure 3-5: Averaged decoding accuracies and FIR contrast estimates. The graph shows the overall BOLD 

response amplitude (solid grey lines; +/- SE) for those central searchlight voxels that demonstrated the highest 

accuracy for decoding stimuli and motor responses (dark bars; +/- SE (a) visual cortex [-15 -96 3]), (b) motor 

cortex [-39 -15 57]), and task rules (bright bars; +/- SE (c) IPS [-24 -45 42], (d) pVLPFC [-48 12 21], (e) 

aVLPFC [-51 33 3]) averaged across all participants. The cue was presented at the beginning of each trial (onset 

0 sec), followed by the target stimulus (onset 4.2 sec) and the motor response (onset 8.4 sec). To account for the 

45

50

55

60

65

70

75

80

-5

0

5

10

15

20

25

45

50

55

60

65

70

75

80

-5

0

5

10

15

20

25

a) left Visual Cortex

e) left aVLPFCd) left pVLPFC

c) left IPSb) left Motor Cortex

a

b

c
d

e

D
ec

o
d

in
g

 A
cc

u
ra

cy
 [%

]

FI
R 

C
o

n
tr

sa
t 

Es
ti

m
at

es

0 5.6 8.4 11.2 14.0 16.8 19.6 time [sec]

BIN 1 BIN 2 BIN 3 BIN 4 BIN 5 BIN 6

0 5.6 8.4 11.2 14.0 16.8 19.6 time [sec]

BIN 1 BIN 2 BIN 3 BIN 4 BIN 5 BIN 6

0 5.6 8.4 11.2 14.0 16.8 19.6 time [sec]

BIN 1 BIN 2 BIN 3 BIN 4 BIN 5 BIN 6

0 5.6 8.4 11.2 14.0 16.8 19.6 time [sec]

BIN 1 BIN 2 BIN 3 BIN 4 BIN 5 BIN 6

0 5.6 8.4 11.2 14.0 16.8 19.6 time [sec]

BIN 1 BIN 2 BIN 3 BIN 4 BIN 5 BIN 6
FI

R 
C

o
n

tr
sa

t 
Es

ti
m

at
es

D
ec

o
d

in
g

 A
cc

u
ra

cy
 [%

]

45

50

55

60

65

-5

0

5

10

15

20
D

ec
o

d
in

g
 A

cc
u

ra
cy

 [%
]

FI
R 

C
o

n
tr

sa
t 

Es
ti

m
at

es

45

50

55

60

-10

-5

0

5

10

15

20

D
ec

o
d

in
g

 A
cc

u
ra

cy
 [%

]

FI
R 

C
o

n
tr

sa
t 

Es
ti

m
at

es

45

50

55

60

65

-10

-5

0

5

10

15

20

FI
R 

C
o

n
tr

sa
t 

Es
ti

m
at

es

D
ec

o
d

in
g

 A
cc

u
ra

cy
 [%

]

Decoding Accuracy

Overall Response Amplitude



  

 44 

temporal delay of the BOLD signal the decoding time bins were shifted by 2 volumes (i.e. time bin 1 is the 

earliest that could reflect cue related activity). The visual cortex showed strong activations with the presentation 

of the target stimulus (bin 3) while the motor cortex was strongly activated during the response period (bin 4-5). 

Interestingly, the information time course in motor areas already peaked in time bin 3, corresponding to the time 

of motor preparation and not execution. This finding supports a partial dissociation of the time course of 

information and overall response amplitude. Regions encoding the task rule did not show a strong increase in 

BOLD signal across the trial. This emphasizes the notion that information about rules was encoded in fine-

grained spatial activation patterns rather than in the mean BOLD signal in single voxels. This comparison of 

time courses (information vs. BOLD signal) demonstrates the additional benefit of using multivariate analyses to 

pinpoint different roles of the same brain regions in cognitive processes over time.  

 

 
Figure 3-6: Decoding fixed task-sets in the control experiment. a) Paradigm of fixed task-sets experiment: 

One of four different stimuli was presented, each associated with a fixed response button (operated by middle 

and index finger of each hand). Decoding the four different target stimuli and their correlated motor preparation 

revealed accuracies above chance (25%) in bilateral visual cortex (peak at MNI [21 -90 0] with 65% decoding 

accuracy; SE 4.16; p < .000001 uncorrected) and bilateral motor cortex (peak at MNI [33 -12 48] with 54% 

decoding accuracy; SE 1.34; p < .05 FWE corrected). For better visualisation all decoding accuracies are 

displayed with p < .001 uncorrected. b) Flexible task-sets (taken from task-switching experiment): Other regions 

such as aVLPFC, pVLPFC and IPS, which encoded stimuli or task-rules in the main experiment (red circles) 

using flexible task-sets, were not found to predict the fixed task-sets in the control experiment. Only visual and 

motor areas were the same in the task-switching experiment and the control experiment (green circles).  
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3.4 Discussion 

 

Owing to multivariate pattern classification, this study provides new insights into the 

information flow through the brain during the preparation of rule-guided behaviour. It 

demonstrated a shift of task-set information encoded in the brain over time. First, with the 

presentation of one of two visually distinct task cues, their identity could be decoded from 

visual cortex. After cue presentation, the information about task-sets shifted to different 

brain regions. The left IPS showed an early, transient peak in encoding of task-set informa-

tion, while a slower build-up of information encoding could be observed in left posterior 

VLPFC, approximately coinciding with the presentation of the target stimulus. Finally, 

approximately during the execution of the motor response, task-sets could be decoded from 

a distinct area in left anterior VLPFC. Interestingly, it was also possible to decode the 

identity of visual target stimuli from anterior VLPFC. However, this was only possible 

when participants needed to flexibly switch between different task rules, and not when the 

task rule was fixed as in the control experiment.  

 

3.4.1 Prefrontal cortex and rule-guided behaviour  

 

Several studies on task-switching demonstrated the involvement of a parietal and lateral 

prefrontal network in cognitive control, including the areas identified in the present study 

(Asari, Konishi, Jimura & Miyashita, 2005; Chiu & Yantis, 2009; Brass & von Cramon, 

2002, 2004a, 2004b; Brass et al., 2003; Braver, et al., 2003; Bunge et al., 2002, Bunge, 

Kahn, Wallis, Miller & Wagner, 2003; Dove et al., 2000; Rowe et al., 2008; Sakai & 

Passingham, 2003, 2006; Sohn et al., 2000). Activation related to cognitive control in PFC 

has been reported bilaterally but more often in the left hemisphere, matching the present 

results (e.g. Badre & Wagner, 2007; Brass & von Cramon, 2002, 2004b; Dove et al., 2000). 

Lateral prefrontal cortex is thought to be a generic region for executive control, guiding 

behaviour from top-down (Miller & Cohen, 2001). The specific roles of prefrontal sub-

regions, however, are highly debated. The VLPFC in general has been linked to context 

processing (Badre & D’Esposito, 2009). In particular, it has been suggested that anterior 

VLPFC is responsible for the controlled retrieval of abstract rules (Badre and Wagner, 
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2005, 2007; Bunge et al., 2003; Bunge, 2004) or general maintenance of cognitive control 

(Braver et al., 2003). Posterior VLPFC, on the other hand, is thought to process contextual 

information of a rule (Brass & von Cramon, 2004b) or to represent and maintain the task-

sets (Braver et al., 2003; Bunge, 2004; Sohn et al., 2000). In line with these interpretations, 

in the present study posterior VLPFC might have maintained the active task-set for the final 

response selection. This could be demonstrated by directly showing that abstract rule 

information was encoded in posterior VLPFC during the time period in which the decision 

for a response had to be made. 

Other prefrontal regions that have been reported to be involved in cognitive control 

but were not found in the present study are DLPFC and FPC (Badre & D’Esposito, 2009; 

Bunge, 2004; Koechlin, Corrado, Pietrini & Grafman, 2000; Koechlin & Hyafil, 2007; 

Sakai & Passingham, 2003, 2006). It has been suggested that DLPFC is also involved in 

rule maintenance, while FPC is involved in moderating task-specific activations in other 

prefrontal regions (Sakai and Passingham, 2003, 2006). The latter studies, however, re-

quired participants to switch between different task domains, such as spatial versus verbal 

tasks, or semantic versus visual processing, and might therefore not be directly comparable 

to the present study. Others also found pre-SMA and SMA to be involved in task switching 

and cognitive control (Brass & von Cramon, 2002; Braver et al., 2003; Dosenbach et al., 

2006; Rushworth et al., 2002). These regions have been discussed as core regions for motor 

preparation and sensory-motor associations (Picard & Strick, 2001), for linking cognition 

and action (Nachev, Kennard & Hussain, 2008) as well as for the initiation of voluntary 

action (Cunnington, Windischberger, Deecke & Moser, 2002; Cunnington et al., 2005; 

Haggard, 2008). However, abstract task-set information was not found to be encoded in the 

pre-SMA or the SMA in the present study, instead it encoded the motor responses. In 

agreement with this, it has recently been shown that the pre-SMA only encoded the timing 

of freely paced decisions rather than the content of such (Soon et al., 2008). It has also been 

argued that pre-motor cortex performs the execution of rules on a non-abstract level (Badre 

& D’Esposito, 2009), which is in line with the present findings. 
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3.4.2 Parietal cortex and rule-guided behaviour 

 

Compared to PFC, the role of IPS in cognitive control is less well established. Classical 

models on posterior parietal cortex (PPC) functions do not focus on cognitive control but on 

the dorsal visual pathway, processing spatial information (Ungerleider & Mishkin, 1982), 

providing “vision for action” (Milner & Goodale, 1993) or being related to different kinds 

of attention (Rizzolatti & Matelli, 2003). For cognitive control, the PPC is discussed as 

playing a subordinate role and either being related to response preparation (Bunge et al., 

2002; Bunge, 2004) or to attention (Forstmann, Brass, Koch & von Cramon, 2006; Rush-

worth et al., 2001). It has been suggested that the IPS provides stimulus-response associa-

tions rather than abstract rules (Brass & von Cramon, 2002, 2004a, 2004b). Several recent 

findings, however, question this view as the present study does.  

It has been shown that a region in left parietal cortex, overlapping the IPS found in 

the present study, is directly involved in switching between task rules (Crone et al., 2006). 

The authors suggested that parietal cortex might be involved when there is a need to control 

sets of stimulus-response mappings (Crone et al., 2006; see also Braver et al., 2003). 

Furthermore, it has been difficult to identify a clear dissociation between prefrontal and 

parietal regions in establishing task-sets using classical univariate fMRI analyses. The IPS 

showed an activation profile very similar to that of prefrontal regions during task prepara-

tion (Brass and von Cramon, 2002, 2004a, 2004b; Crone et al., 2006; Rowe et al., 2008). 

Rowe and colleagues (2008) found parietal as well as lateral prefrontal areas to be involved 

in switching between rules and switching between responses made under single rules 

without any hierarchical order between the two areas. Instead, these authors suggested that 

both prefrontal and parietal cortex guide behaviour together. Bilateral posterior parietal 

cortex, predominantly the left IPS, has also been found to be involved in cognitive set-

shifting using the Wisconsin Card Sorting Test (WCST), even when spatial task compo-

nents were eliminated (Asari et al., 2005). Recently, it has been suggested that a domain-

independent mechanism for reconfiguration of task-sets and cognitive control is located in 

PPC (Chiu & Yantis, 2009). Current models of PPC functions have been revised based on 

recent meta-analyses (Singh-Curry & Husain, 2009). These authors conclude that classical 

models focussing on visual and attentional functions of PPC (predominantly the inferior 

parietal lobe, eventually extending to the IPS in humans; see Orban et al., 2006) fail to 

account for the variety of tasks in which parietal regions have been demonstrated to be 
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engaged. According to their model, the PPC functions as the centre of a control network in 

which different information competes, and sensory information, motor information as well 

as task-goals and reward-related information are integrated. Its primary purpose is to keep 

the cognitive system in a goal-focussed and task-engaged state (Singh-Curry & Husain, 

2009). In order to fulfil these functions, which were classically attributed to the PFC alone, 

PPC must encode abstract rule information, as demonstrated by the present study.  

 

3.4.3 The temporal sequence of information encoding 

 

Extending previous findings, the present study was able to reveal the time at which informa-

tion about task-sets emerged in different regions of parietal and prefrontal cortex. A tempo-

ral sequence of task-set information encoding could be demonstrated, starting with an early, 

transient encoding in IPS before target presentation and then followed by a more sustained 

encoding of task-sets in posterior VLPFC. The finding that abstract rules could be read out 

from the IPS first suggests that the IPS might be able to provide abstract input to prefrontal 

cortical regions rather than only being engaged in response processing (Brass et al. 2005b; 

Bunge 2004). Evidence from human EEG and fMRI studies has so far yielded conflicting 

results about the relative timing of parietal and prefrontal cortex in establishing task-sets 

(e.g. Brass et al., 2005b; Buschman & Miller, 2007; Forstmann, Ridderinkhof, Kaiser & 

Bledowski, 2007). In contrast to the present results, a previous EEG study found that 

activity in PFC might arise earlier than in IPS, suggesting that the IPS would be subordinate 

to PFC in cognitive control (Brass et al., 2005b). On the other hand, there is evidence from 

a study using event-related potentials in a free selection task that parietal activation arises 

earlier than frontal activation (Forstmann et al., 2007). This questions the notion of a strict 

hierarchy from frontal to parietal areas. The inconsistent findings regarding the temporal 

order of signals in prefrontal and parietal cortex might simply reflect differences in the tasks 

studied. Moreover, none of these previous studies investigated the encoding of task-related 

information, hence, could not distinguish between unspecific activation (for example, 

related to preparatory arousal) and specific encoding of task-sets in these regions. 

The present finding of early task-set information in parietal cortex is supported by 

single cell electrophysiology studies in monkeys that demonstrated rule sensitive neurons in 

parietal cortex (Freedman & Assad, 2006; Gail & Andersen, 2006; Gottlieb, 2007; 
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Oristaglio et al., 2006; Stoet & Snyder, 2004, 2007; Toth & Assad, 2002). Neurons in 

medial and lateral IPS could be found that only responded to abstract rules in task switch-

ing, showing their highest selectivity in a delay after cue presentation and before target 

stimulus presentation (Stoet & Snyder, 2004, 2007), comparable to the present study. The 

authors argued that these neurons directly encode the abstract upcoming task (“cognitive 

set”). Likewise, Gail and Andersen (2006) implemented a task switching paradigm to 

perform multivariate decoding on a population of neurons in the monkey IPS. They found 

that the abstract rule could already be predicted before the current target stimulus was 

presented, suggesting a direct involvement of IPS in cue-to-goal transformations at an 

abstract level. Notably, the temporal flow of information in the fronto-parietal network has 

only rarely been addressed in electrophysiological studies. Recordings were typically made 

only from one brain region, either lateral PFC (Wallis et al., 2001) or the IPS (Gail & 

Andersen, 2006; Stoet and Snyder, 2004, 2007). FMRI studies in humans might also fail in 

this respect if conventional voxel-wise analyses of activation are used. In contrast, substan-

tial contributions of different areas in cognitive control over time could instead be encoded 

in spatial patterns of activation, which do not necessarily coincide with supra-threshold 

activation (Haynes & Rees, 2006; Norman et al., 2006). This interpretation is supported by 

the finding that only multivariate pattern classification, rather than univariate analyses, 

revealed the time courses of areas involved in cognitive control in the present study. Impor-

tantly, early encoding of task-set information in the IPS does not rule out the possibility that 

parietal cortex is later engaged in processes related to attention and response preparation as 

suggested by others (Brass & von Cramon, 2002; Brass et al., 2005b; Bunge et al., 2002; 

Bunge, 2004; Crone et al., 2006; Rushworth et al., 2001). 

The activity levels and temporal dynamics in the fronto-parietal network might also 

depend on how well-learned the rules are. It has been shown that monkey PFC neurons are 

more strongly activated for new rules compared to familiar ones (Asaad et al., 1998). Using 

fMRI in humans, the right (but not left) VLPFC was found to be more activated during the 

processing of newly learned rules compared to well-known ones (Donohue, Wendelken, 

Crone & Bunge, 2005). Similarly, Wallis and Miller (2003) found that the contribution of 

PFC was weaker and occurred later compared to pre-motor cortex using a paradigm in 

which rules were well practised. These findings suggest that PFC is less involved with well-

learned rules. In the present study, the rules were very well learned and participants hardly 

made any mistakes. This might explain why, despite being highly reliable, the overall 

decoding accuracy in VLPFC was lower than in other informative regions. The results 
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might also be a reflection of differences in the anatomical-functional micro-architecture of 

cortical columns. The structure to function relationship in lateral PFC might involve dy-

namic, adaptive re-coding as suggested previously (Duncan, 2001; Kusunoki et al., 2009). 

Thus, the exact locus of information encoding in PFC might vary more strongly across 

participants compared to other regions. 

One functional interpretation of the early task-set encoding in parietal cortex might 

be that PPC acts as a control hub directly engaged in reconfiguring task goals (Singh-Curry 

& Husain, 2009). In order to keep attention directed to the task goal or to actively reconfig-

ure mappings, a brain region necessarily has to encode highly abstract rule information at a 

very early stage of task preparation. This is exactly what was found in the present study. 

Rubinstein and colleagues (2001) suggested a formal model of task switching in which two 

separable components of cognitive control can be identified, namely goal shifting and rule 

selection. Goal shifting is thought to provide the information about the current task for other 

components of the cognitive system. This can take place in a potential delay between the 

indication of the upcoming task and the target stimulus. Subsequently, rule selection is 

externally triggered by the presentation of the target stimulus and is thought to load the 

current rule into working memory. This stepwise processing of rule information is thought 

to prevent interference that might occur if more rules were active in working memory 

(Rubinstein et al., 2001). With respect to this framework and considering the PPC model of 

Singh-Curry and Husain (2009), it could be speculated that the IPS is involved in goal 

shifting. Subsequently, task-set information from the IPS could serve as input for further 

processing in VLPFC. This region might then perform the rule selection and utilise the 

current rule to select a response once the target stimulus is successfully identified (Brass & 

von Cramon, 2004a, 2004b; Bunge, 2004). This interpretation is also supported by the 

finding that all motor regions encoded the upcoming motor response simultaneous to the 

peak of task-set encoding in posterior VLPFC and not in IPS.  

Finally, anterior VLPFC encoded the task-set as well as the identity of the target 

stimulus around the time of the motor response. The motor response could not be decoded 

from VLPFC, matching recent findings from single-cell recordings in monkeys for fixed 

and flexible task rules (Kusunoki et al., 2009). The coincidence of visual information and 

rule information in VLPFC suggests that it plays an important role in making the final 

decision to act. Anterior VLPFC has been suggested to be involved in top-down controlled 

retrieval of plans or relevant semantic knowledge from memory (Badre & Wagner, 2007). 

Hence, this region might initiate a final check of the validity of the planned motor response 
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with respect to the target stimulus and the rule. Recently, anterior medial PFC has been 

demonstrated to encode decisions during the preparation of voluntary action (Haynes et al., 

2007; Soon et al. 2008). One might speculate that in a similar manner, during the prepara-

tion of exogenously cued action, the anterior lateral PFC is involved in retrieving the 

stimulus and the rule from memory when it comes to the final decision to act. Another 

explanation for the present result would be an involvement of anterior VLPFC in a post-

execution assessment of the appropriateness of the motor response with respect to the rule. 

 

3.4.4 Methodological considerations 

 

An important limitation of fMRI compared to electrophysiology is that its poor temporal 

resolution requires specific experimental paradigms to reveal onset differences between 

cognitive processes. One option to optimise the deconvolution of task components would 

have been the usage of a conventional GLM fitting the HRF instead of using FIR modelling. 

This, however, would also have excluded the possibility of time-resolved decoding. Inter-

estingly, it has been shown in monkeys that while populations of prefrontal neurons main-

tained their selectivity for task rules during different phases of a task-switching experiment, 

the underlying patterns were only reliable within single phases and were orthogonal across 

task phases (Sigala et al., 2008). In other words, the use of pattern classification should 

greatly benefit from time-resolved modelling of separate task-phases as achieved by FIR, 

because patterns (for each task component) cannot be expected to stay the same across 

different stages of task preparation.  

To reveal onset differences between cognitive processes in the present study, the 

pacing of events was deliberately slowed by introducing long delays (4.2 s) between the 

onsets of cues and targets as well as between targets and responses. Although fMRI is not 

perfectly suited to resolving sub-second processes, it has previously been shown for longer 

time scales that the latency of the haemodynamic response appropriately reflects the infor-

mation flow in different regions in cortical networks (Formisano & Goebel, 2003). Thus, 

latency differences in the order of a second or more are considered to reflect the true neural 

order (Formisano & Goebel, 2003; Huettel & McCarthy, 2001). Given that the present study 

used onset differences as large as 4.2 s, it can be assumed that any small differences in 

haemodynamic latency in different brain regions cannot disqualify the observed temporal 
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order of their involvement. Since fine-grained spatial activation patterns form the basis for 

decoding, the same conclusion holds for the temporal order of information encoded in these 

regions. Nevertheless, because the haemodynamic delay can only be estimated, it cannot be 

excluded that some activation patterns were already established in one time bin but were at 

that stage still too weak to be detected by the analyses. This raises the question of whether 

the later onset of information in prefrontal cortex might be due to poor sensitivity of the 

method to early signals. The interpretation of negative results must therefore be made with 

care. Although it is possible that pattern classification lacked the sensitivity to reveal any 

early signals in PFC, the method clearly does not lack sensitivity in general because it does 

reveal information in PFC at later stages of processing. This again speaks for the validity of 

the present findings. 

 

3.4.5 Conclusion 

 

The present results substantially extend previous findings by resolving the build-up of 

specific task-related information over time. This goes beyond the mostly indirect evidence 

of other human fMRI studies and shows that activation in these areas does not simply reflect 

unspecific processes related to task-learning and task-switching. Hence, it is could be 

demonstrated that cued rules can be decoded from human parietal and prefrontal cortex. The 

data suggest a tentative model of information flow in establishing task-sets. IPS first pro-

vided updated representations of the active abstract rule. This information was then shifted 

to posterior VLPFC, which maintained the representation and biased the response selection 

as soon as the target stimulus was presented. From there on, the upcoming response was 

encoded in motor areas. Around the time of the final motor response, patterns in anterior 

VLPFC in turn encoded the task-set and the target stimulus, suggesting a role in making the 

final decision to act. Importantly, using multivariate decoding the substantial involvement 

of parietal cortex at an early stage of task preparation could be revealed, which might have 

been overlooked with conventional analyses. In summary, the present study demonstrated 

that a network of lateral prefrontal and posterior parietal cortex encodes abstract rule 

information when task-sets have to be flexibly chosen according to a priori established 

rules.  
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4 Experimental Section II: Perceptual  

decisions in task preparation 

 

 

 

 

4.1 Theoretical background 

4.1.1 The formal elements of perceptual decision making 

 

In every-day life, we have to flexibly adapt our behaviour to the objects we perceive in the 

environment around us. An appropriate reaction on stimuli firstly requires successful 

perception, thus perceptual decision making. For example, we would not sit on an object 

that we identified as a piano but rather on a chair. It is unclear, however, if there is one 

perceptual decision making system that operates under all conditions of perceptual ambigu-

ity. Models of perceptual decision making typically assume a sequence of neural processing 

stages that begins with a sensory representation of the stimulus and then proceeds to com-

pute the perceptual choice at some higher level (Britten, Shadlen, Newsome & Movshon, 

1992; Britten et al., 1996; Gold & Shadlen, 2000; 2001; 2007; Heekeren et al., 2008; Leon 

& Shadlen, 1998; Mountcastle, Talbot, Sakata & Hyvärinen, 1969; Parker & Newsome, 

1998; Shadlen, Britten, Newsome & Movshon, 1996; Smith & Ratcliff, 2009). This idea has 

been formalised using probabilistic models of statistical inference and likelihood functions 

(Gold & Shadlen, 2007; Jazayeri & Movshon, 2006; Smith & Ratcliff, 2004; 2009). One 

common model assumes that perceptual hypotheses (“I see a piano” or “I see a chair”) are 

“Devine, si tu peux, et choisis, si tu l'oses.”  

(Guess if you can, and choose if you dare.) 

(Pierre Corneille, Léontine, Héraclius, 1646, act IV, scene IV) 
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tested using the noisy representations in visual areas (evidence), considering a certain 

probability or likelihood given by the context, to calculate the decision. A decision variable 

(DV) represents the aggregation of evidence, prior hypotheses and values. This DV is 

shifted during the decision process towards a criterion (for an overview about how to 

express this model mathematically see Gold & Shadlen, 2001). The decision criterion is the 

rule used to determine how much evidence has to be collected before a decision can be 

made one way or another (Gold & Shadlen, 2007). In some cases, additional evidence 

processed in a short time-window after the criterion is reached might even be used to 

reverse the decision (Resulaj, Kiani, Wolpert & Shadlen, 2009). Models typically assume 

that incoming evidence will shift a single DV from a neutral mid-position to the one side or 

the other over time until it reaches the criterion for one decision (symmetric random walk 

model or Wiener diffusion model). Alternatively, separate processes for individual DVs for 

each decision could compete for reaching their respective criterion (race model or dual 

diffusion model; for an overview about models see Gold & Shadlen, 2003; 2007; Smith & 

Ratcliff 2004; 2009; for urgency-gating models see Cisek, Puskas & El-Murr, 2009; Dit-

terich, 2006).  

The implicit assumption is that perceptual decision making under different levels of 

visibility always operates based on the same sensory mechanism. One of the simplest 

models is the classical signal detection theory (SDT) model of perceptual decision making 

(Green & Swets, 1966; Parker & Newsome, 1998; Swets, 1961). It assumes that even under 

the same presentation conditions, the internal representation will never be exactly the same, 

due to external (e.g. exact number of photons reaching the retina) and internal noise factors 

(e.g. non-zero level neural responses even without stimulation). The discriminability of two 

stimuli therefore depends on the overlap between the sensory distributions evoked by these 

different stimuli in the visual system. For clearly distinguishable stimuli, these distributions 

will be relatively distinct and not strongly overlapping, which facilitates accurate perceptual 

choices by placing the decision criterion in an optimal position along the sensory contin-

uum. When stimuli are not discriminable, they are believed to have overlapping sensory 

distributions and the trial-by-trial noise fluctuations in the sensory signal rather than marked 

differences in sensory signal determine whether it falls to one or the other side of the 

criterion (Shadlen et al., 1996; Swets, 1961). The decision process will then produce errors 

and close-to-chance-level performance. If this model were true, it would mean that the 

sensory signals predictive for high visibility choices would also be predictive for low 

visibility choices. Before an alternative model will be considered, the next paragraph gives 
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an overview about neuroscientific research on perceptual decision making and its reference 

to this framework. 

   

4.1.2 The neural basis of perceptual decision making 

 

Studies using single-cell recording in monkeys used the concept of choice probabilitiy (CP) 

to determine the neurons’ relationship to the monkeys’ choices independent from the 

presented stimuli (e.g. Britten et al., 1996; Newsome, Britten & Movshon, 1989; Nienborg 

& Cumming, 2009; Shadlen et al., 1996; Uka, Tanabe, Watanabe & Fujita, 2005). The 

neuron’s CP indicates the probability with which an independent observer would be able to 

correctly predict the monkey’s perceptual choice from this neuron’s firing rate on a given 

trial, knowing only the neuron’s firing characteristics for the possible decisions. In the 

classical task, monkeys were presented with random dot motion for one or two seconds. The 

monkeys watched dots on a screen; the dots were replaced with every monitor refresh. The 

coherence in replacement of dots was used to systematically vary the magnitude of per-

ceived movement to the left or to the right, usually including a neutral (non-coherence) 

condition (Britten et al., 1996). In early studies, recordings were made in extrastriate medial 

temporal area (MT) in the visual system. Weak but significant positive CPs were found for 

MT neurons even if stimuli did not contain any real motion, suggesting a link between the 

firing of neurons and the monkeys’ perceptual choices independent from the real stimulus 

motion. Others extended these findings by identifying neurons for very fine perceptual 

decisions (Jazayeri & Movshon, 2006; 2007; Purushothaman & Bradley, 2005). Accord-

ingly, Salzman, Murasugi, Britten & Newsome (1992) showed that micro-stimulation of 

neurons in monkey area MT favoured perceptual choices about random dot motion for the 

preferred direction of the stimulated neuron. Given the independence of neurons’ firing 

from real stimulus motion in these studies, the findings can be interpreted as evidence that 

the same neural system computes perceptual choices for stimuli of all visibility levels. 

However, the decision making system for motion is unlikely to be solely located in 

area MT. The choice probabilities found by Britten and colleagues (1996) were rather weak, 

suggesting that other regions contribute to a distributed decision making system that is more 

strongly involved in the decision process itself. Accordingly, others demonstrated that 

sensory areas are likely to be modulated by top-down processes during early processing 
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stages (Nienborg & Cumming, 2009). In line with these findings, it was assumed that 

further decision-related computations are carried out by frontal and parietal areas, as well as 

by motor structures, which might plan the upcoming actions (Gold & Shadlen, 2000; Kim & 

Shadlen, 1999; Shadlen & Newsome, 2001). Most importantly, the monkey lateral intrapa-

rietal area (LIP) was shown to be involved in the integration of collected evidence over time 

and in target selection for saccades (Huk & Shadlen, 2005; Roitman & Shadlen, 2002; 

Shadlen & Newsome, 2001). For other modalities, similar distributed neural systems have 

been proposed, such as primary and secondary somatosensory cortex and premotor cortex 

for vibro-tactile frequency (flutter) discrimination (Deco, Pérez-Sanagustín, de Lafuente & 

Romo, 2007; de Lafuente & Romo, 2005; Hernández, Zainos & Romo, 2000; 2002; Romo 

et al., 2002; Romo, Hernández & Zainos, 2004; Salinas, Hernández, Zainos & Romo, 2000; 

for a review see Romo & Salinas, 2003) and MT and the inferior temporal cortex (IT) for 

fine grained depth perception (e.g. Uka & DeAngelis, 2003; 2004; Uka et al., 2005). A 

clear-cut classification of sensory areas, motor areas and abstract decision areas within these 

perceptual decision making networks, however, seems to be an oversimplification; integra-

tion towards a decision might require direct ongoing modulation of sensory input (Kim & 

Shadlen, 1999; Romo & Salinas, 2003; Shadlen & Newsome, 2001).  

 

4.1.3 Networks for perceptual decision making 

 

An often neglected possibility is that different neural processes might determine the re-

sponse when participants are confident about their perception of a stimulus, as compared to 

conditions when they are not. For instance, for visual stimuli presented under high versus 

low visibility conditions, different networks in prefrontal and parietal cortex became more 

active (Dehaene et al., 1998; Heekeren et al., 2004). It has also been shown that different 

processing streams can be differentially influenced by stimulus visibility (Fang & He, 

2005). Under high visibility conditions there is also higher subjective confidence in the 

accuracy of a decision (Kiani & Shadlen, 2009; Kunimoto, Miller & Pashler, 2001) and less 

conflict between different response alternatives (Botvinick, Braver, Barch, Carter & Cohen, 

2001), whereas low visibility and uncertainty might involve different brain areas, require 

additional processes and introduce decision latencies (Philiastides & Sajda, 2006; Philias-

tides, Ratcliff & Sajda, 2006). There is also evidence for more recurrent processing (Philias-

tides & Sajda, 2006; Supèr, Spekreijse & Lamme et al., 2001; VanRullen & Koch, 2003) 
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and higher functional integration within visual cortex for high compared to low visibility 

(Haynes, Driver & Rees, 2005). The picture is further complicated by the fact that not all 

sensory information in the brain is available to guide a response (Haynes & Rees, 2005a) 

and that behaviour can be influenced by stimuli that fail to reach awareness (Vorberg, 

Mattler, Heinecke, Schmidt & Schwarzbach, 2003). Taken together, this raises the question 

of whether the brain might compute decisions in a fundamentally different way under 

conditions of high and low visibility. Although several previous electrophysiological studies 

have investigated the influence of visibility on decision-making signals, these typically 

focussed on only few selected brain regions and are thus not suitable for identifying any 

differential roles between large-scale networks under high versus low visibility (e.g. Britten 

et al., 1996; Gold & Shadlen, 2000; Kim & Shadlen, 1999; Nienborg & Cumming, 2009; 

Purushothaman & Bradley, 2005; Shadlen & Newsome, 2001). 

Studies using fMRI in humans could demonstrate the involvement of larger networks 

in perceptual decision making (Heekeren et al., 2004; Ho, Brown & Serences, 2009; Philias-

tides & Sajda, 2007; Shulman, Ollinger, Linenweber, Petersen & Corbetta, 2001; Tosoni, 

Galati, Romani & Corbetta, 2008; for a review see Heekeren et al., 2008). Some studies 

used multivariate pattern classification on fMRI data to decode participants’ perceptual 

choices (Li et al., 2007; Pessoa and Padmala, 2007; Serences & Boynton, 2007). In one 

study, participants were presented with random dot motion, which was dissociated from real 

motion or attended motion. When the motion was unambiguous (clearly visible), nearly all 

visual areas from V1 to the human MT complex (hMT+) encoded the perceived motion 

(Serences & Boynton, 2007). Perceived motion for ambiguous stimuli that did not contain 

real motion could only be decoded from hMT+ (to V3a), confirming findings of electro-

physiology studies (Britten et al., 1996). It is important to note, however, that motion 

stimuli require the integration of information across longer time periods (Leon & Shadlen, 

1998; Mazurek, Roitman, Ditterich & Shadlen, 2003) and might easily lead to illusionary 

perception. This renders them problematic for the investigation of decision making under 

different levels of stimulus perceivability. Other fMRI studies in humans also have focused 

on selected brain regions from the visual system and prefrontal cortex when comparing high 

and low visibility conditions (Serences & Boynton, 2007; Williams et al., 2007). Thus, it 

remains unclear whether visibility might change the influence of specific brain regions on 

participants’ decisions.   
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4.1.4 Perceptual decisions about objects 

 

In order to reduce the complexity of perceptual decisions processes, the component of long 

temporal integration can be eliminated by using static images, e.g. of different object 

categories (Philiastides et al., 2006; Philiastides & Sajda, 2006; 2007). Object classification 

still involves several processing stages (e.g. Humphreys, Price & Riddoch, 1999; Riddoch 

& Humphreys, 2003) but the integration of sensory information in static images towards a 

perceptual decision will take place within ~ 500 ms, depending on the difficulty (Philias-

tides & Sajda, 2006). Using static object images also has the advantage that the respective 

sensory regions for objects, the ventral and lateral-occipital complex (LOC) in occipital and 

inferior temporal cortex, are well investigated (e.g. Haushofer et al., 2008b; Haxby et al., 

2001; Ishai, Ungerleider, Martin, Schouten & Haxby, 1999; Malach et al., 1995; Op de 

Beeck et al., 2008b; for reviews see Grill-Spector, 2003; Grill-Spector & Malach, 2004). 

There are other ventral high-level visual areas adjacent to the LOC that were discussed to be 

specialised for subclasses of object stimuli, e.g. the fusiform face area (FFA), the parahip-

pocampal place area (PPA) and an area for body parts (Aguirre et al., 1998; Epstein & 

Kanwisher, 1998; Epstein et al., 1999; Downing et al., 2001; Kanwisher et al., 1997; 

Spiridon & Kanwisher, 2002; Reddy & Kanwisher, 2006; Spiridon, Fischl & Kanwisher, 

2006). There is much debate, however, whether the whole object sensitive occipito-temporal 

cortex is organised in distinct modules for different object categories, clustered by shared 

processes (Gauthier, Tarr, Anderson, Skudlarski & Gore, 1999; Gauthier, Skudlarski, Gore 

& Anderson, 2000; Tarr & Gauthier, 2000), topographical eccentricity (Malach, Levy & 

Hasson, 2002) or object form, encoded in a distributed and overlapping fashion (Cox & 

Savoy, 2003; Eger et al., 2008; Haxby, Hoffman & Gobbini, 2000; Haxby et al., 2001; 

O’Toole et al., 2005). It was also suggested that the LOC represents objects mainly by the 

arrangement of their parts (Haushofer, Baker, Livingstone & Kanwisher, 2008a; Hayworth 

& Biederman, 2006; Op de Beeck et al., 2008b). A recent review comes to the conclusion 

that a non-additive combination of distinct weak maps of all these different properties could 

result in very pronounced selectivity profiles in some sub-regions of the ventral object-

vision pathway. The combinations of these maps might then appear as specialised modules 

in functional imaging studies (Op de Beeck, Haushofer & Kanwisher, 2008a). 

It has further been proposed that in object recognition, inferior temporal cortex 

might act as a ‘connection centre’, or multiplexer, for context associations that activate 
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candidate object representations from which high-level areas could choose in a second 

processing step (Bar, 2004; Bar et al., 2006). Some fMRI studies also linked the LOC cortex 

directly to perceptual decisions about objects (Grill-Spector et al., 2000; Li et al., 2007; 

Philiastides & Sajda, 2007; Walther et al., 2009; Weber et al., 2009; Williams et al., 2007). 

In one study, the correlation between the classifier’s and participants’ classification errors 

of natural scenes, which contained typical objects, was high in LOC, pointing to a direct 

behavioural relevance of information encoded in LOC (Walther et al., 2009). In another 

study, Grill-Spector and colleagues (2000) presented their participants with masked images 

from different categories, using different image durations to achieve different levels of 

visibility. Activation in the LOC showed the highest correlation with recognition perform-

ance and was therefore assumed to be necessary for successful object perception (Grill-

Spector et al., 2000). Williams and colleagues (2007) were able to predict the category of 

successfully identified masked object images from the LOC but not when identification 

failed. These findings point towards a differential involvement of the LOC in perceptual 

decisions for different visibility conditions. No study, however, directly addressed the 

encoding of the decision outcome in comparison to the presented objects. Therefore, these 

studies again did not reveal whether a sensory region such as the LOC is always involved in 

perceptual decisions or if different neural systems might be engaged for high and low 

visibility. 

 

4.1.5 The goal of the present study 

 

The present study sought to directly investigate whether visibility has an effect on which 

brain regions determine a participant’s perceptual choice. In the present study, participants 

were asked to make perceptually based decisions about the category of weakly or strongly 

masked visually presented objects from three different categories. Static images were used 

to avoid extended temporal integration. To investigate the relationship between stimulus 

visibility and choices, the true object categories were dissociated from participants’ choices 

in the low visibility condition. Additionally, the motor responses were dissociated from the 

category decisions. This avoided confounds of choice and response direction that were 

inherent in most classical perceptual decision making studies in monkeys (e.g. Britten et al., 

1996; Huk & Shadlen, 2005; Shadlen & Newsome, 2001). Multivariate pattern classifica-

tion (Haynes & Rees, 2006; Norman et al., 2006) was used to predict the outcome of 
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perceptual decisions from brain activity under high and low visibility. This approach 

allowed neural encoding and choice performance to be directly linked and is conceptually 

close to choice probabilities in single-cell studies of perceptual decision making (e.g. 

Britten et al., 1996). First, a searchlight approach (Haynes et al., 2007; Kriegeskorte et al., 

2006) was applied to identify those brain regions that were maximally informative of 

choices under different visibility conditions. In a second step, the results were further 

elaborated using independent localizer scans to investigate the encoding in object-sensitive 

voxels in LOC and their contribution to perceptual decision making in greater detail. 
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4.2 Methods 

4.2.1 Masking experiment 

Participants 

 

Nineteen participants (10 female, mean age 26.1; range 23-31) took part in the study. All 

were right-handed, had normal or corrected to normal visual acuity and gave written in-

formed consent to the fMRI procedure. Data from two participants were excluded from all 

analyses due to excessive head movement. Data from another three participants were 

excluded because their categorisation performance did not differ between the two visibility 

conditions, suggesting a lack of attention to the task or the use of illegitimate strategies (e.g. 

one participant reported having used rapidly blinking in order to render the mask ineffec-

tive). The data from the remaining fourteen participants (8 female, mean age 25.8; range 23-

31) were used for the analyses. 

 

Stimuli 

 

The stimuli were pictures of objects from two categories – pianos and chairs – as well as 

phase-randomised noise images serving as a non-object category. The categories were 

selected as they demonstrated comparable and optimal visibility characteristics under 

different masking conditions in behavioural pre-tests (Appendix B, Behavioural pre-tests I). 

Object stimuli were created from freely available pictures from the Internet or custom-made 

photographs using Adobe® Photoshop Version 7.0. Following Grill-Spector and colleagues 

(2000), the images showed objects in different natural backgrounds. All images were 

transformed into grey-scaled versions with a size of 400 x 400 pixels. The overall contrast 

(object to background) was kept approximately constant for all stimuli by matching the 

spectra and eliminating extreme contrast values. Thirty stimuli were created for each object 

category from which 24 were selected for the experiment (see Appendix B, Behavioural 

pre-tests III and Figure 4-1a for examples of the stimuli). The noise category also contained 

24 stimuli consisting of scrambled phase textures with the same power spectra as the 
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pictures from both object categories (see Appendix B, Figures B-3 to B-5 for all stimuli). To 

create the noise images, a two-dimensional Fourier transformation was performed on all 

stimuli from each object category (pianos, chairs). As in previous studies their phase maps 

were scrambled by adding a random value of +/- 1.75*� to each phase angle (Malach et al., 

1995). The resulting phase maps were then transformed back to images and were contrast-

normalised. Two different scrambled masks were used as pre- and post-mask. Masks were 

constructed by dividing every target image into 10 x 10 squares, each 40 x 40 pixels. 

Subsequently, 100 of these squares were randomly chosen from the pool of all scrambled 

target images, such that they did not contain any clearly identifiable parts of objects. For 

both masks, 100 squares were reorganised into new 400 x 400 pixel scrambled images with 

10 squares in every row and every column (Figure 4-1b).  

 

Experimental procedure 

 

During the fMRI experiment, stimuli were presented in the middle of the screen. Partici-

pants were required to fixate a white cross that was superimposed at the centre. Each trial 

consisted of a brief “standing wave” (Macknik & Livingstone, 1998) of the same mask-

target-mask sequence repeated four times to increase signal-to-noise level, extending the 

total duration of visual stimulation to 2668 ms (Figure 4-1c; see also Appendix B, Behav-

ioural pre-tests II). In both high and low visibility conditions the target images were pre-

ceded by a 167 ms pre-mask and followed by a post-mask of variable duration. The target 

image was shown for 16.7 ms (1 frame) under low visibility followed by a 483.3 ms post-

mask. Under high visibility it was shown for 66.7 ms (4 frames) followed by a 433.3 ms 

post-mask. Thus, the visibility conditions were defined by the ratio of target and post-mask 

duration (Grill-Spector et al., 2000). Each trial was followed by a response mapping screen 

that displayed three letters as response options (“K” Klavier = piano, “S” Stuhl = chair, “M” 

Muster = noise). Participants had to indicate the category of the object they believed they 

had seen by pressing one of three buttons using the index-, middle- and ring finger of the 

right hand. The position of letters assigned to the buttons was pseudo-randomised in order 

to avoid confounds of categorical choices with motor responses. Each button served as the 

correct response button equally often, separately for each visibility condition. Note that 

using this technique, motor responses could not be prepared until the response mapping 

screen appeared after stimulus presentation. Participants were encouraged to take their best 



  

 63 

guess if they could not identify or were unsure about an object’s category, rather than not 

responding at all. The response mapping screen was presented for a pseudo-randomised 

duration, completing the total trial duration of 5000 ms, 7000 ms or 9000 ms. In each run all 

24 images from each of the three categories (pianos, chairs and noise) were shown in 

random order, under either of the two visibility conditions. Thus, participants were pre-

sented with 72 trials per run which was repeated for 6 runs in randomised order resulting in 

432 trials for the experiment. Altogether, each image was presented three times under each 

visibility condition in the entire experiment. Presentation during the experiment was con-

trolled by the Cogent toolbox (http://www.vislab.ucl.ac.uk/Cogent) for MATLAB 7.0 (The 

MathWorks, Inc.). The stimuli were presented via a projector (resolution 1024x768 pixel, 

60Hz) that projected from the head-end of the scanner onto a screen. Participants viewed the 

projection via a mirror fixed onto the head coil. Using stimuli 10 x 10 cm in size and a 

distance of approximately 70 cm between the participants’ head and the screen, the esti-

mated visual angle was � ~ 7.15° for all stimuli and masks. 

 

Functional imaging 

 

Functional MRI volumes of the whole brain were acquired using a Siemens TRIO 3T 

scanner (Erlangen, Germany) with a standard head coil (42 axial slices, TR = 2800 ms, echo 

time TE = 30 ms, resolution 3 x 3 x 2 mm3 with 1 mm gap). Within each of the six runs, 182 

volumes were acquired for each participant using gradient-echo EPI. The first two volumes 

of every session were discarded by default to allow for magnetic saturation effects. 
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Figure 4-1: Experimental paradigm and examples of stimuli and masks. a) 24 different stimuli from three 

categories (pianos, chairs, noise) were used in the experiment (four example images of each category are 

displayed here). b) Masks were created by randomly scrambling the target images and constructing two new 

mask images of 10 by 10 tiles. c) Target images were preceded by a 167 ms pre-mask and followed by a post-

mask of variable duration. The target image was shown for 16.7 ms (1 frame) under low visibility followed by a 

483.3 ms post-mask. Under high visibility it was shown for 66.7 ms (4 frames) followed by a 433.3 ms post-

mask (left side). The flashed sequence of masked target images was presented four times in direct succession 

(right side), resulting in 2668 ms total presentation duration. Each trial was followed by a response mapping 

screen with a pseudo-randomised order of response buttons associated with the categories in order to avoid 

confounds of categorical choices with motor responses. The response mapping screen was presented for a 

pseudo-randomised duration, completing the total trial duration of 5000 ms, 7000 ms or 9000 ms.  
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Analysis of behavioural data 

 

Behavioural data was analysed by calculating hit rates as well as a visibility index for each 

category and each visibility condition, similar to the d-prime (d') for the two-condition case 

in SDT (Green & Swets, 1966). For this, the percentage of hits and false alarms for each 

condition of each category was transformed into z-values.  

d' = z (hits) – z (false alarms) 

High values corresponded to high visibility and low values indicated low visibility. The 

maximum value that could be achieved by 100% hits and no false alarms was d' = 7.44. On 

the other hand, a minimum in visibility cannot be easily specified because possible system-

atic confusion between categories would lead to a high number of false alarms, which, in 

turn, would produce negative values for d'. True invisibility, on the other hand, would 

produce a hit and false alarms rate at chance level, which would be indicated by a d' = 0. 

Note that this only holds true if there are no missing responses, so in general d' should be 

interpreted as an estimation rather than a direct measurement of visibility.  

 

Multivariate pattern classification 

 

Multivariate pattern classification (Haynes & Rees, 2006; Norman et al., 2006) was per-

formed on the fMRI data in order to identify brain regions encoding information about 

participants’ choices and object categories. For both procedures, data were subjected to two 

individual pattern classification analyses, one for high and one for low visibility. For the 

analyses of participants’ category choices, one participant had to be excluded as she never 

selected the “noise” category in the low-visibility condition during one run.   

As a precursor to the decoding analyses, a general linear model (GLM) was esti-

mated on an individual subject level based on motion corrected, non-normalised and 

unsmoothed data using SPM2 (http://www.fil.ion.ucl.ac.uk/spm/). This GLM yielded 

parameter estimates for each voxel in each participant for all three category decisions 

(pianos, chairs, noise), for each visibility condition and for each run. These parameter 

estimates were used for the following decoding analyses. Both high and low-visibility 

decoding analyses were carried out quasi identically, again using a variant of the “search-
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light approach” (Haynes et al., 2007; Kriegeskorte et al., 2006). This method searched for 

information-encoding regions in the brain in an unbiased fashion, as it tested spatial clusters 

around every voxel separately for their information content. For a given position in the 

brain, a searchlight cluster was defined as a sphere of N voxels (c1…N), with radius of 4 

voxels, constructed around the central voxel vi. For these voxels the GLM parameter 

estimates were extracted for each stimulus category and run, separately for each participant 

and for each visibility condition. A multivariate pattern classification algorithm was then 

applied to decode the stimulus category from these pattern vectors. Specifically, a linear 

support vector pattern classifier (Müller et al., 2001) with a fixed regularisation parameter C 

= 1 was trained on patterns vectors from all runs but one (“training data set”) using the 

LIBSVM toolbox. Based on the training data the classifier estimated an optimal linear 

decision hyperplane to separate the pattern vectors associated with choices for the different 

object categories. Subsequently, this hyperplane was used to predict the categories from the 

pattern vectors of an independent “test data set” taken from the remaining run. A six-fold 

cross-validation was performed by repeating the classification process independently with 

the pattern vectors of each run as the “test data set” and the remaining five runs as the 

“training data set”. The use of independent training and test data sets avoided problems of 

circular inference (Kriegeskorte et al., 2009). The mean probability of correct classification 

was assigned to the central voxel vi of the searchlight cluster and indexed the local decoding 

accuracy. This process was performed for every voxel in the brain by moving the search-

light cluster through all spatial positions. Using this technique, two 3-dimensional maps of 

local decoding accuracy values were obtained (one for “high visibility” and one “low 

visibility”) for each participant. These maps were then normalised to standard stereotaxic 

space (MNI EPI template) and smoothed with a Gaussian kernel of 6 mm FWHM to ac-

count for anatomical variability. Random-effects group-level analyses were then computed 

on a voxel-by-voxel basis to identify searchlight positions where local patterns had signifi-

cant decoding accuracy across all participants (Haynes et al., 2007).  

 

A very similar pattern classification analysis was conducted in order to predict the 

category of the presented objects. The classification procedure was the same as described 

above, only that parameter estimates were obtained from a different GLM that estimated 

regressors for the different presented categories, again individually for each participant and 

each run.  
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The second multivariate pattern classification control analysis was conducted to de-

code the motor responses (button presses) instead of the assigned categories, again sepa-

rately for both visibility conditions. The decoding analysis therefore aimed to confirm that 

the dissociation between response buttons and categories was successful. Again, the classi-

fication procedure was the same as described above, based on GLM parameter estimates for 

the motor responses, individually for each participant and each run.  

Finally, the procedure was repeated for decoding errors versus correct responses. 

This could only be achieved in the low visibility condition because the number of errors in 

the high visibility condition was too small because stimuli and responses were highly 

correlated. Taken together, these analyses ensured that all combinations of a typical confu-

sion matrix in perceptual decision making (see Appendix B, Figure B-6) were systemati-

cally investigated. 

 

4.2.2 LOC localizer experiment 

 

An additional experiment was performed, nominated a priori on the lateral occipital com-

plex (LOC) region. It should be assessed whether the results might change in case the 

analyses were restricted to specialised object processing voxels, using a conventional 

individual-specific LOC localiser (Malach et al., 1995). Independent functional localizer 

scans were used to predefine the LOC region in nine participants from the original sample 

(4 female, mean age 26.3, range 23-31), conducted some weeks later. Regions of interest 

(ROIs) were constructed for the original data from the main experiment and parameter 

estimates of these voxels were re-sampled as a different approach to feature selection for 

multivariate pattern classification.  

 

Stimuli, experimental procedure and data analysis 

 

Stimuli were presented in alternating blocks showing either object stimuli or phase-

randomised noise images (Figure 4-2). Blocks lasted 10000 ms and consisted of 10 object or 

noise images shown in random order, each for 900 ms with a 100 ms gap. Each block was 

followed by a fixation-only period of 10000 ms, prolonged by a pseudo-randomised delay 
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of 3000 ms, 5000 ms or 7000 ms. In one third of all object and noise blocks, one image was 

left out and instead the preceding image was directly repeated. The participants’ task was to 

detect these image repetitions (1-back task). This procedure ensured that participants’ 

attention to the target images was sustained during the whole scanning session. Scanning 

parameters were the same as for the masking experiment, but using 163 volumes acquired 

across 3 functional runs. Each run consisted of 18 blocks: 9 with object images and 9 with 

noise images. 

 

 
Figure 4-2: Stimuli used in the localizer experiment. a) Object stimuli b) Phase-randomised noise stimuli. In 

separate object blocks and noise blocks, all images were each shown for 900 ms in a random order, separated by 

100 ms blanks so that each image emerged discretely. In one third of all blocks, one image was left out and 

instead a different image was repeated in direct succession, which was to be detected. This procedure ensured 

that participants’ attention to the target images was constantly sustained. 

 

Data from this independent object localizer were motion-corrected and then co-registered to 

the non-normalised images of the individual participants from the masking experiment 

using SPM2. Two regions were identified that were activated stronger by object images than 

noise images (p < .05 FWE corrected) in each participant. These were the left and right 

LOC (left LOC: average 83 voxels, range 45-159; right LOC: average 79 voxels, range 40-

124). The decoding analyses (participants’ categorical choices and presented object cate-

gories) performed on the data from the masking experiment were then repeated as described 

above but restricted to these conventional LOC voxels. Detailed analyses were performed to 

decode each possible pair-wise classification combination (pianos-chairs, pianos-noise, 

chairs-noise).  
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4.3 Results 

 

Behavioural data was analysed by means of d' values. Following an ANOVA for repeated 

measurements that included all combinations of categories and visibility conditions as 

factors [F(5,65) = 30.08; Eta2 = 0.59; p < .001], the differences in d' values between “high 

visibility” and “low invisibility” reached statistical significance for all object categories in 

post-hoc Scheffé-tests correcting for multiple comparisons (pianos: high visibility d' = 2.90, 

SE = 0.30; low visibility d' = 0.69, SE = 0.10; p < .001; chairs: high visibility d' = 3.13; SE 

= 0.30; low visibility: d' = 1.02, SE = 0.11; p < .001; noise: high visibility d' = 2.16, SE = 

0.23; low visibility d' = 1.11, SE = 0.19; p < .01) (Figure 4-3a). The same analysis con-

ducted using hit rates instead of d' values showed highly comparable results (Appendix B, 

Figure B-7). It can therefore be assumed that distinct visibility characteristics for each 

condition were successfully achieved, as was the comparability of the object categories 

within each visibility condition. None of the participants was better at categorising poorly 

visible objects compared to highly visible objects from the same category (Figure 4-3b). A 

control experiment with an independent sample demonstrated that high visibility was 

strongly associated with high decision confidence while low visibility was associated with 

low confidence in the decision (Appendix B, Figure B-13).  
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Figure 4-3: Visibility of stimuli. a) Mean visibility indices for both visibility conditions and all three categories. 

Hits and false alarms [%] were transformed into z-values for each category in each visibility condition. The 

difference between z (hits) – z (false alarms) then served as the index of visibility d'. Displayed are mean d' values and 

standard errors for the final sample (N=14). Greater d' values for the “high visibility” compared to the “low 

visibility” condition were achieved for all categories. b) Individual visibility indices for all participants for both 

visibility conditions and all three categories. The graph displays individual d' values for each participant. Solid 

lines: categories in “high visibility” condition (mean 2.73; SE 0.27); dotted lines: categories in “low visibility” 

condition (mean 0.94; SE 0.14). Nearly all participants showed a clear separation between visibility conditions 

(exceptions were participant 4 and 12 in one case). The same category was never perceived better under “low 

visibility” compared to “high visibility” by any of the participants. 
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In the next step, searchlight decoding was used to identify brain regions that encoded 

participants’ classification choices (chance level 33%). For the “high visibility” condition, 

the chosen category could be decoded from bilateral LOC (accuracies: left 45%; right 46%; 

Figure 4-4a, green regions). For the low “visibility condition” participants’ choices could 

not be decoded from LOC. Instead, their choices could be decoded from the precuneus, 

which showed a significant decoding accuracy of 45%. This region extended to lateral 

inferior parietal cortex (Figure 4-4a, red regions). The activity patterns underlying the 

category choices were highly unique for each participant (Figure 4-4b; additional illustra-

tions for all participants can be found in Appendix B, Figures B-11 and B-12).  

To further elaborate upon the relationship between the pattern classifier’s classifica-

tion performance and participants’ categorisation performance, correlation analyses of 

confusion matrices (see Walther et al., 2009, for a similar approach) were performed (see 

Appendix B; Figure B-10a for details). This analysis confirmed that regions that displayed a 

high similarity between the pattern classifier’s performance and the participants’ perform-

ance (therefore reflecting similarities in classification errors) were located in bilateral visual 

cortex and LOC when objects were highly visible. For poorly visible objects the correlation 

was highest in a cluster in the precuneus, located close to the cluster found for searchlight 

decoding (Appendix B; Figure B-10b). 

Pattern classification analyses were also conducted to decode the true categories of 

presented objects. These could only be decoded from bilateral visual cortex (accuracies: left 

47%; right 44%), left LOC (50% accuracy) and right LOC (48% accuracy) when objects 

were highly visible (Figure 4-5a). In the low visibility condition the categories could not be 

decoded from any region. The LOC regions for high visibility strongly overlapped with 

those found for decoding of category choices. This was expected since participants’ choices 

for highly visible objects corresponded well with the category of presented objects. Early 

visual cortex, including V1, also encoded the true category of highly visible objects in the 

present study. The wide spread of decoding accuracy in early visual regions might mostly 

be due to stronger differences in low-level features between noise images and real object 

images compared to differences between the real object images (pianos and chairs). In line 

with this assumption, control analyses using pair-wise decoding of only two categories at a 

time confirmed that only the LOC allowed real object images to be decoded. Patterns in 

wide spread regions of the ventral visual stream, however, allowed decoding of noise versus 

real object categories (Figure 4-5b; for details see Appendix B, Table B-3).  
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Figure 4-4: Whole-brain searchlight decoding results for categorical choices. a) Participants’ perceptual 

choices for all categories (pianos, chairs, noise) were used for pattern classification. Displayed in green are 

regions where a searchlight allowed decoding above chance level for high visibility conditions (chance level 

33% for three categories). This was possible from left (45% accuracy) and right LOC (46% accuracy) with a 

threshold of p < .05 (FWE corrected). Displayed in red are regions where choices could be decoded for the low 

visibility condition. The choices could be decoded from precuneus (accuracy 45%; p < .000001). For better 

visualisation, informative regions are displayed with a threshold of p < .0001. Note the double dissociation 

between regions encoding of choices under high and low visibility. b) Examples of individual spatial activation 

patterns for participants’ choices in the low visibility condition for six participants. Displayed are the searchlight 

clusters (radius = 4 voxels) with the best average decoding accuracy from the main analysis (MNI: -9; -63; 30). 

The colour code indicates which category the voxels preferentially respond to (magenta for pianos, yellow for 

chairs, blue for noise; sup = superior, ant = anterior, R = right). Grey voxels did not show a category-preference 

or were not located in grey matter. Colours are scaled for better visualisation. Informative patterns were unique 

for each participant. Bars indicate standard errors. Coordinates are MNI coordinates. 
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Figure 4-5: Whole-brain searchlight decoding for object categories. a) Decoding of sensory stimulus 

categories (pianos, chairs noise). Displayed in green are clusters from which decoding above chance level (33%) 

was achieved; peak accuracies and standard errors are given for each cluster. In the high visibility condition the 

category of sensory stimuli could be decoded from bilateral LOC (p < .05 FWE corrected; displayed with p < 

.00001 uncorrected for better visualisation) extending into visual cortex. No region could be found to encode the 

category of sensory stimuli in the low visibility condition. b) When the decoding analysis was restricted to real 

object categories (pianos, chairs; plotted here in red; see Appendix B) the informative brain regions were even 

more closely confined to LOC (chance level 50% for two categories) and again only for the high visibility 

condition (p < .00001 uncorrected). c) Example of a spherical voxel cluster (“searchlight”) of one participant for 

the left LOC. Voxels responding preferentially to one category are colour-coded (magenta for pianos, yellow for 

chairs, blue for noise; sup = superior, ant = anterior, R = right). Grey transparent voxels did not show category-

preference or were not located in grey matter. Colours are scaled for better visualisation. As expected, informa-

tive patterns were different for each participant. All coordinates are MNI coordinates.  

 

To ensure that decoding of participants’ choices was not based on motor decisions, addi-

tionally pattern classification analyses were performed to decode the motor response (button 

press) instead of the associated category. As expected from the randomised response 

mappings, no choice-related region showed significant decoding accuracy. The only region 

which encoded the motor responses (peak accuracy 45%) was left motor cortex (since 

responses were given with the right hand only) under both visibility conditions (Figure 4-6). 
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Figure 4-6: Whole-brain searchlight decoding results for motor responses. Response buttons were random-

ised with respect to the assigned categories to avoid confounds of motor responses with categorical choices. The 

successful dissociation between encoding of choices and motor responses is highlighted by the results of a 

searchlight decoding of participants’ button presses (index/middle/ring finger of the right hand; chance level 

33%). Only the left motor cortex allowed decoding of motor responses for both, the high visibility condition 

(accuracy: 43%; p < .0001 uncorrected, 10 voxels threshold) and the low visibility condition (accuracy: 45% p < 

.000001 uncorrected, 10 voxels threshold) with comparable accuracy (all displayed with p < .0001 uncorrected 

for better visualisation). The regions which were found to encode participants’ abstract category choices (left and 

right LOC for high visibility and precuneus for low visibility) did not allow decoding of motor responses above 

chance. Bars are standard errors. Coordinates are MNI coordinates.   

 

The next step was to compare the average BOLD signal in those voxels that were the centre 

of the most successful decoding searchlight clusters from the LOC and the precuneus. Both 

left and right LOC showed stronger activation (as assessed by BOLD contrast estimates) for 

real objects compared to noise images when they were highly visible. On contrast, the 

activation was lower for poorly visible objects from all three categories, confirming earlier 

findings (Grill-Spector et al., 2000). Despite containing choice-related information, the 

precuneus did not show significant overall differences in average BOLD signal between 

objects or conditions. (Figure 4-7). 
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Figure 4-7: BOLD contrast estimation profiles for all conditions. Event-related differences in BOLD signal 

between all six conditions (pianos, chairs, noise in the high visibility (solid lines) and the low visibility (dashed 

lines) condition) averaged across all 14 participants with standard errors (SE). Time-steps are given in volumes 

(1 volume = 1 TR = 2800 ms), the first volume is time-locked to the onset of stimulus presentation. Time-series 

(here based on data smoothed with a Gaussian kernel of 8 mm FWHM) were extracted for the voxels with the 

highest decoding accuracies for participants’ category choices in the high visibility condition (left and right 

LOC) and the low visibility condition (precuneus). Both LOC regions showed a stronger BOLD response for 

highly visible objects (pianos, chairs) compared to highly visible noise as well as compared to all categories in 

the low visibility condition. The precuneus was not strongly activated for images from any visibility condition.  

 

Comparing the BOLD response (as estimated by a GLM) between visibility conditions 

throughout the whole brain, only the rostral cingulate zone (RCZ) in medial prefrontal 

cortex showed stronger activation for objects from all categories presented under low 

visibility compared to high visibility. Stronger activation for objects presented under high 

visibility compared to low visibility could only be found in LOC and anterior temporal 

cortex (see Appendix B, Univariate Analysis, Figure B-8). No brain region showed a 

difference between correct trials and error trials under low visibility, even with a very 

liberal threshold (p > .01 uncorrected), or when the analyses were restricted to ROIs in LOC 

and precuneus (Appendix B, Figure B-9). Correct versus error trials could also not be 

decoded from any brain region, even when a lower threshold than for the all other analyses 

was used (p > .0001, uncorrected). These results confirm that it is very unlikely that sub-

stantial residual visibility for strongly masked images was present; this should have caused 

some brain region to reflect incorrect categorisation. 

Finally, the decoding analyses were repeated for participants’ category choices and 

object categories but restricted to voxels from conventional LOC ROIs as obtained by the 

independent localizer scans. The results confirmed that the objects’ true categories as well 

as category choices could only be decoded from LOC when objects were highly visible, 
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closely matching the results from the searchlight decoding analyses (see Table 4-1; for 

details see Appendix B, Decoding results from conventional LOC ROIs). The lower decod-

ing accuracies for the classification of pianos and chairs might be due to greater similarities 

between low-level features of pianos and chairs compared to both object categories. This is 

in line with the lower statistical values obtained from searchlight decoding of pianos and 

chairs when leaving out the noise trials (see Appendix B, Two-class pattern classification 

for presented objects). Given the smaller sample size of the localizer experiment, this 

analysis also had lower statistical power. Additionally, it has been demonstrated before that 

decoding accuracy drops when only object-selective voxels (defined by univariate analyses) 

are selected for pattern classification, possibly due to redundancy effects within the selected 

voxel set and the elimination of information from weakly activated voxels, which otherwise 

importantly contribute to the patterns (Cox & Savoy, 2003). 

 

Table 4-1: Decoding from LOC ROIs 

Decoding Anatomical 
area 

L/R Accuracy 
 

T p < 

   M SE   

True Category       

High Visibility LOC L 69 4.2 7.76 .001 

  R 60 4.1 3.42 .01 

Low Visibility LOC L 50 4.0 0.01 .99 

  R 54 3.7 1.55 .16 

Chosen Category       

High Visibility LOC L 65 4.7 5.94 .001 

  R 61 6.0 2.10 .07 

Low Visibility LOC L 52 5.2 0.61 .65 

  R 56 3.6 1.68 .13 

Note: LOC = Lateral-occipital complex (based on individual localizer scans); the results are averaged across all 

pair-wise decoding analyses, separately for high and low visibility (chance level 50%); L = left hemisphere, R = 

right hemisphere; M = mean; SE = standard error. 

 

In summary, it was only for highly visible objects that their identity as well as participants’ 

(correct) category choices could be decoded from the LOC region in inferior temporal 

cortex. In the case of poor visibility, achieved by strong masking, the object category could 

not be decoded from brain activity - but the participants’ categorical choices could nonethe-

less be predicted from the precuneus.  
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4.4 Discussion 

 

This study shows that stimuli and choices during perceptual decision making can be reliably 

decoded from patterns of brain signals. Importantly, it could be demonstrated that different 

mechanisms were responsible for perceptual choices about highly and poorly visible ob-

jects. The maximally predictive brain regions depended strongly on stimulus visibility; a 

clear double dissociation could be revealed between the visibility conditions. The LOC 

encoded the true category of highly visible objects as well as decision outcomes of such. It 

did not, however, encode the object categories or decision outcomes when objects were 

rendered nearly invisible. The drop in information presumably explains the drop in per-

formance for conditions of low visibility. No regions could be found to encode the true 

category of presented objects when these were strongly masked. The precuneus, however, 

encoded choices about poorly visible objects but not highly visible ones. The BOLD signal 

strength in this region did not reflect preferences for any object category. Decisions were 

only encoded in finer grained stable activation patterns. These results demonstrate that 

under certain circumstances, it is possible that perceptual decisions are not based on the 

same sensory signal dimension.  

 

4.4.1 Perceptual decisions about highly visible objects 

 

The present results demonstrate that categorical choices were encoded in object sensitive 

cortex in the LOC for highly visible objects. This is in line with studies showing that the 

LOC can be regarded as a sensory processing area for objects and categories (e.g. Cox & 

Savoy, 2003; Grill-Spector, 2003; Haushofer et al., 2008a; Haxby et al., 2001; Op de Beeck 

et al., 2008a,b; Reddy & Kanwisher, 2006; Schwarzlose et al., 2008). This region extended 

to the medial temporal lobe (MTL), which is highly interconnected with the lateral LOC. It 

has been demonstrated using single-unit recordings in humans that the MTL contains highly 

selective neurons for a variety of categories, pointing to a sparse, invariant and explicit 

representation in the MTL related to memory and conscious perception (Mormann et al., 

2008; Quiroga, Reddy, Kreiman, Koch & Fried, 2005; Quiroga, Reddy, Koch & Fried, 

2007). Given the greater extend in the LOC the whole area will be simply referred to as 

LOC in the following.  
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When a stimulus can be easily be seen, it is difficult to dissociate sensory from 

choice-related signals because participants will choose correctly on most trials and the two 

measures are therefore highly correlated. Accordingly, regions encoding presented objects 

and chosen objects strongly overlapped in the high visibility condition. Highly visible 

objects could additionally be decoded from early visual cortex. Previously, it has been 

demonstrated that activation patterns from V1 to V3 are sufficient to encode literally every 

possible object image (Kay et al., 2008). Others also found that category information could 

be decoded from earlier areas of the visual system (Eger et al., 2008; Walther et al., 2009; 

Williams et al., 2008). In the present study, this can be easily explained by differences in 

low-level visual features, especially between the noise category and the real object catego-

ries (pianos and chairs). It seems most likely that areas from early visual cortex up the 

ventral visual pathway were recruited to process information about the objects, resulting in 

representations about object categories in the LOC.  

The LOC might therefore also be a high-level integration area for perceptual deci-

sions about object categories. Others suggested the existence of a “domain general accumu-

lator” for sensory evidence located in the insula (Ho et al., 2009). Similarly, a “general 

mechanism” for perceptual decision making has been suggested, reflected by a stronger 

difference signal for objects under high visibility compared to low visibility in DLPFC 

(Heekeren et al., 2004). These studies, however, did not explicitly look at choice prediction 

in various brain regions and used different presentation and visibility conditions compared 

to the present study. There is little evidence for the insula or lateral prefrontal cortex acting 

as a general decision maker in the present study (only the correlation analysis of confusion 

matrices showed significant results in DLPFC; see Appendix B) (but see Rorie & Newsome, 

2005; Tosoni et al., 2008 for a general discussion of this model).  

The present findings extended earlier studies substantially by demonstrating a case in 

which the encoding of choice outcomes in LOC was only possible under high visibility. By 

varying the visibility of the visual input, others found that the LOC only encoded object 

information on trials in which participants successfully classified the objects while earlier 

visual regions also contained object information if objects were not correctly identified 

(Williams et al., 2007); but these authors did not directly investigate the encoding of deci-

sion outcomes. In a different fMRI study, activation in LOC was found to strongly correlate 

with the visibility of objects and therefore with participants’ ability to correctly identify the 

objects’ category (Grill-Spector et al., 2000). Using very short target durations of 20 ms, no 

object-related activity was reported for the LOC after subtracting activity related to the 
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mask. The direct encoding of choice-related signals was again not addressed. Another study 

that used pattern classification to compute choice probabilities based on EEG signals also 

did not specifically address any potential changes in choice-predictive topographies depend-

ing on visibility (Philiastides & Sajda, 2006). The present study, however, could demon-

strate that for very short target durations, the LOC did not encode object categories or 

decision outcomes. This clearly speaks against the existence of one self-contained neural 

system for perceptual object decisions of all levels of ambiguity. 

 

4.4.2 Perceptual decisions about poorly visible objects 

 

Several previous near-threshold experiments have studied which brain signals are predictive 

of perceptual choices, either by comparing hits/false alarms with misses/correct rejections 

or by explicitly computing choice probabilities (Bradley, Chang & Andersen, 1998; Britten 

et al., 1996; Gold & Shadlen, 2000; Huk & Shadlen, 2005; Nienborg & Cumming, 2009; 

Kim & Shadlen, 1999; Ress & Heeger, 2003; Serences & Boynton, 2007; Shadlen et al., 

1996; Shadlen & Newsome, 2001; Thompson & Schall, 1999; Williams et al., 2007). 

Importantly, however, the degree to which different networks might be involved in percep-

tual choices under high and low visibility has remained unclear. The most important finding 

in the present study is that the LOC did not encode the perceptual choices for poorly visible 

objects; they were instead encoded in the precuneus. This clear double-dissociation in 

decoding demonstrated that different neural systems were involved. This contradicts the 

assumptions of SDT (Green & Swets, 1966), which predicts that decisions about perceptual 

entities should be based on the same dimension of signal, even in the absence of useful 

sensory information. In temporal accumulation models, choices under low visibility are 

dominated by a random walk that is based on trial-by-trial fluctuations in the underlying 

sensory signals (Mazurek et al., 2003). The variability in decisions is then thought to be 

dominated by “noise” (Faisal, Selen & Wolpert, 2008). This noise could be related to 

changes and random processes in single neurons (e.g. electrochemical and biochemical 

fluctuations) and in the respective sensory network (Faisal, et al., 2008), driving the random 

walk towards one decision threshold or another. Accordingly, using choice probabilities, it 

has repeatedly been demonstrated that decisions about random dot motion could be pre-

dicted from the same neural populations in area MT, LIP and DLPFC, independent of the 

real stimulus motion and even in the absence of any real motion in the stimulus (Britten et 
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al., 1996; Huk & Shadlen, 2005; Kim & Shadlen, 1999; Shadlen & Newsome, 2001). These 

findings suggested one self-contained neural system for all levels of perceptual ambiguity 

(Gold & Shadlen, 2007), which is not supported by the present results.  

The applicability of one single system for perceptual decisions is, however, subject 

to question. First, in the abovementioned studies, recordings in monkeys were usually made 

in one cortical region only (Gold & Shadlen, 2000; Huk & Shadlen, 2005; Kim & Shadlen, 

1999; Shadlen & Newsome, 2001). The involvement of a different decision system for poor 

visibility therefore might have been easily overlooked. Second, recent models acknowledge 

that the information flow between sensory regions, parietal and prefrontal integration areas 

and motor regions appears to be continuous and reciprocal such that the decision is not the 

end-product of the computation of a central decision maker (Gold & Shadlen, 2007; Nien-

borg & Cumming, 2009; Tosoni et al., 2008). Hence, perceptual decision making appears to 

be more dynamic than initially thought, which might also permit interactions with a differ-

ent network for poor visibility. Additionally, unlike the present study, signal detection 

models are designed for stimuli that require temporal accumulation of evidence over time 

(Cisek et al., 2009; Mazurek et al., 2003). Moving dot patterns in most studies were always 

visible for several seconds, which gave the participants the possibility to gather a relevant 

percept that could be interpreted, even illusory. The static object images used in the present 

study required little spatio-temporal integration (for a similar argument see Philiastides & 

Sajda, 2006) as object classification is usually a very fast and highly automated process 

(Bowers & Jones, 2008; Grill-Spector & Kanwisher, 2005; Mack, Gauthier, Sadr & 

Palmeri, 2008). It was demonstrated with the present study that under these conditions, 

decision making under high and low visibility can involve a switch between different 

cortical networks. 

Several possible confounds have to be considered before a possible mechanism for 

perceptual decision making with insufficient visual input is discussed. First, the strongly 

masked objects might have been visible enough to be processed at a conceptual level, given 

that hit rates and d' values slightly exceeded chance level in some cases. It has been argued 

that only a d' value of zero is sufficient for true invisibility (Schmidt & Vorberg, 2006). 

Additionally, regions in parietal cortex, as part of the dorsal visual stream, can also process 

shape (Sereno & Maunsell, 1998) and object information (Konen & Kastner, 2008), thereby 

might reflect some residual visibility in the positive decoding results. Contradicting this 

argument, however, the masking procedure used in the present study was comparable to 

other studies in which objects were successfully rendered invisible (Grill-Spector et al., 
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2000; Quiroga, Mukamel, Isham, Malach & Fried, 2008). It might have been even stronger 

due to the use of shorter target durations and stronger sandwich-masking (Appendix B, 

Figure B-2). Moreover, if the precuneus did indeed process the barely visible objects on a 

visual basis (and furthermore at a category level) it should have shown some information 

encoding for poorly visible objects or categorisation errors, which was not observed. All 

participants reported they often felt they were purely guessing as they did not see the 

objects. The subjective experience of low decision confidence might therefore activate a 

different network (see Appendix B, Figure B-13).  

Another concern might be that participants gave up on the task and responded in a 

random manner. Hence, the double dissociation between encoding in LOC and precuneus 

would only be due to different kinds of decisions, namely object related decisions under 

high visibility and motor decisions under low visibility. This explanation, however, can be 

ruled out because motor responses could not be prepared beforehand and decisions and 

motor responses were dissociated due to the use of pseudo-randomised response mapping 

screens. Additional control analyses clearly demonstrated that motor responses could not be 

decoded from choice-related brain areas under any visibility condition. It can therefore be 

concluded that participants always made category decisions instead of random button 

presses. 

Furthermore, it could also be argued that sensory regions must be the origin of the per-

ceptual decision because it is possible to evoke perception in the absence of sensory informa-

tion via micro-stimulation in sensory cortex (e.g. Britten & van Wezel, 1998; Murphey & 

Maunsell, 2007; Murphey, Maunsell, Beauchamp & Yoshor, 2009; Salzman, Britten & 

Newsome, 1990; Salzman et al., 1992). In successful direct cortical stimulation, however, the 

information is actually present because it is artificially induced in the sensory area and is 

again sufficient to make a perceptual decision. Hence, this argument does not contradict the 

present findings since decisions were made in the absence of such information in decision-

related areas in the present study. 

 

4.4.3 A mechanism for internal decisions 

 

It is proposed here that in the low visibility condition, participants might have purely 

guessed when stimuli were presented close to the perceptual threshold. Without access to 
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substantial sensory evidence for either choice alternative, they faced a symmetry situation. 

Thus, trial-by-trial choices could be based on a dedicated symmetry-breaking network rather 

than on noise fluctuations in sensory signals. This network would come into play as soon as 

the participants believe the information to be insufficient. Previous studies have shown 

differences in large-scale cortical activity patterns under different visibility conditions 

(Dehaene et al., 1998; Fang & He, 2005; Heekeren et al., 2004; Philiastides et al., 2006; 

Philiastides & Sajda, 2006). These different networks are often believed to reflect uncer-

tainty or effort but instead they might reflect neural mechanisms that are actively involved 

in symmetry-breaking. The present study is therefore compatible with the data obtained in 

these studies. The precuneus could be part of the neural substrate of the symmetry-breaking 

network and produce random internal decisions. Accordingly, recent fMRI studies using 

multivariate pattern classification found that the precuneus encoded decision outcomes for 

intended free decisions, even in the absence of a visual task (Soon et al., 2008; in prep.). 

Participants had to freely decide whether they wanted to press the left or right button at a 

time of their choosing (Soon et al., 2008) or decide upon a simple mathematical operation to 

be performed (Soon et al., in prep.). It was possible to predict the decision outcomes from 

activation patterns in the precuneus / PCC as well as from anterior medial prefrontal cortex 

(MPFC), even seconds before participants were aware of making a decision. It is worth 

noting that the precuneus cluster found by Soon and colleagues (2008) was located anterior 

to the present results but demonstrated substantial overlap when the same statistical thresh-

olds were applied (see Appendix B, Figure B-16). Others found regions in inferior parietal 

lobe / precuneus involved in internally selected actions compared to externally cued ones 

(Jenkins et al., 2000) or focussing on one’s own intentions (den Ouden, Frith, Frith & 

Blakemore, 2005). It also has been demonstrated that posterior parietal areas are involved in 

the formation of free decisions in monkeys (Cui & Andersen, 2007; Pesaran, Nelson & 

Andersen, 2008) and intentions in humans (Desmurget et al., 2009). The precise localization 

of effects within this region can be rather widespread depending on the exact nature of the 

task (e.g. den Ouden et al., 2005). These studies support the hypothesis that low visibility 

required participants to switch to a mechanism that breaks the symmetry, allowing a deci-

sion to be made when sensory input is unreliable, absent or irrelevant. The precuneus could 

act as a generator for internal random decision outcomes. It is well suited for this purpose, 

because it has one of the most complex columnar cortical organisations and has been 

discussed to be involved in the implementation of a wide range of higher-order cognitive 

functions (Cavanna & Trimble, 2006). The precuneus has reciprocal connections to several 
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regions in medial and lateral parietal cortex as well as prefrontal cortex including DLPFC, 

SMA and pre-SMA (Cavanna & Trimble, 2006), the latter of which were also discussed to 

be involved in the generation of self-initiated action (Haggard, 2008; Soon et al., 2008).  

The present findings require a modified conceptual framework for perceptual deci-

sion making. The classical model assumes that sensory evidence for the given alternatives is 

collected, leading to the decision. The decision, in turn, triggers the (motor) response (e.g. 

Gold & Shadlen, 2007). Others, however, assumed that central (rather than peripheral) noise 

fluctuations between large-scale attractor networks are essential during near-threshold 

decision making (Deco & Romo, 2008). When no sufficient evidence can be collected, or 

sensory information is equal for each alternative, the response selection process might still 

be routed into one decision or the other, such that a random decision must be made (Romo 

& Salinas, 2003). Note that this model does not require the temporal accumulation of 

signals towards a threshold in sensory regions. Decisions with negligible input might rather 

be based on the current state of a different system, which, in turn, is determined by random 

noise factors. It could further be speculated that the switch from perceptual decisions to 

random decisions could be achieved by neurons signalling the absence of a detectable 

stimulus (e.g. Deco et al., 2007). It has been suggested that the positive detection of sub-

threshold input might allow systems that rely on strong noise fluctuations to determine a 

response (Faisal et al., 2008). Such a scenario would be plausible when no extended tempo-

ral integration of information takes place and no substantial build-up of decision biases can 

be expected. Interestingly, this model is similar to a model proposed for voluntary decision 

making, which assumes that if sensory stimuli fail to generate sufficient information for a 

response, a free decision is required (Haggard, 2008).  

 

4.4.4 Alternative mechanisms 

 

There are, however, some alternative accounts for the precuneus involvement in the present 

decision task. The medial part of inferior parietal cortex has been reported to work in 

concert with its lateral counterparts in spatial and abstract mental imagery (Fletcher et al., 

1995; Knauff, Fangmeier, Ruff & Johnson-Laird, 2003). Other work also identified the 

precuneus as being related to episodic memory retrieval (Addis, McIntosh, Moscovitch, 

Crawley & McAndrews, 2004; Fletcher, Shallice, Frith, Frackowiak & Dolan, 1996; Tulv-
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ing et al., 1994). The involvement of the precuneus could alternatively be explained by the 

generation of mental images of objects as a substitute for visual information. It could be 

speculated that these images were then compared with templates from recent memory 

traces. This explanation, however, has several shortcomings. First, it contradicts self-reports 

of the participants who agreed in great consensus on simply having guessed if they did not 

see the objects. This makes it unlikely that any strong mental images were created. Second, 

the precuneus was more often found to be involved in self-related episodic memory (Lund-

strom et al., 2003; Lundstrom, Ingvar & Petersson, 2005) or self-related prospective mem-

ory (Burgess, Quayle & Frith, 2001) rather than simple item recall. Third, visual imagery is 

believed to involve networks that are required for perception (Kosslyn, Ganis & Thompson, 

2001; O’Craven & Kanwisher, 2000). If visual imagery were relevant, one would expect an 

involvement of LOC rather than a near-perfect double dissociation between visible and 

invisible conditions. Therefore, it seems more likely that the decisions themselves were 

internally generated, thus made with a high self-reference.  

If symmetry-breaking leads to internal decisions, partially resembling free decisions, 

one would also expect prefrontal areas to be involved in this process; specifically, the 

medial and anterior PFC were often found to be involved in free decision making and 

internal action selection (Cunnington et al., 2002; 2005; Haggard, 2008; Haynes et al., 

2007; Lau et al., 2004a; Lau, Rogers & Passingham, 2007; Soon et al., 2008; in prep.). 

However, while activation in medial prefrontal cortex at the border of RCZ and SMA / pre-

SMA was stronger for the low visibility condition than for the high visibility condition in 

the present study, this area did not encode the decision outcomes. This is in line with results 

from Soon and colleagues (2008; in prep.) where the pre-SMA encoded the timing, but not 

the outcome of the decisions. In the present study, timing aspects could not be teased apart 

because of the temporal proximity of visual presentation and decisions, excluding the use of 

time-resolving FIR models. It is likely that the SMA / RCZ activation in the present study 

was simply related to decision uncertainty under low visibility (Nachev et al., 2008). In 

summary, it can be assumed that internal guessing decisions and intended free decision 

share some neural substrate but they might not be completely identical. This question is 

investigated in detail with the next experiment (Experimental Section III).  
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4.4.5 Conclusion  

 

It was demonstrated that the brain might switch between two different decision networks 

depending on whether visual stimuli are easy or difficult to see. For clearly visible objects, 

decision-relevant information might be contained in specialised sensory regions in the LOC. 

In the absence of sufficient perceptual input, the decisions rely on neural populations in the 

precuneus, distinct from those for perceptual decisions made with certainty. This interpreta-

tion is in line with findings showing that the precuneus was also a key region for free 

decisions. The precuneus therefore might act as the brain’s symmetry breaker and generator 

of internal random decisions when participants believe themselves to be guessing. 
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5 Experimental Section III: Internal task 

preparation 

 

 

 

 

 

 

5.1 Theoretical background 

5.1.1 The general framework of free decisions 

 

Imagine a card game in which one wins by picking the higher card of two alternatives. Most 

of us would agree that, if we had to choose between two covered cards without seeing their 

faces, it would be a completely free decision. Would it be different, however, if the faces 

were shown so briefly that we could not identify the cards and had to guess? The previous 

study (Experimental Section II) demonstrated a case in which visual information about 

objects was so well masked such that it became insufficient for perceptual decision making. 

Contrary to assumptions derived from SDT (Green & Swets, 1966), it could be shown that 

those decision outcomes were not encoded in the sensory system (LOC) anymore but in a 

different region, namely the precuneus. The precuneus was assumed to be part of a symme-

try-breaking network, which comes into play in the absence of sufficient visual input. Given 

that other studies linked the precuneus to free decisions (e.g. Soon et al., 2008) it was 

“So I only mean I am free in the sense that it’s not you who is determining 

my actions; it’s not blind force or destiny; it’s my upbringing, and my genes, 

and my predilections, and my desires. All of this, plus some random compo-

nent depending on fluctuation and noise in my brain, comes together in 

making a decision one way or the other way.” 

(Christof Koch in S. Blackmore (2006), 

Conversations on Consciousness, p. 131) 



  

 88 

assumed that the participants guessed instead of using residual visual input. Guessing might 

therefore be an internal decision, similar to free decisions. However, it has also been 

demonstrated before that free decisions were additionally encoded in medial and anterior 

PFC (Haynes et al., 2007; Soon et al., 2008), which was not observed in the previous study. 

The goal of the present study was to investigate these differences and similarities and to 

directly compare guesses with free decisions. 

When talking about free decisions, it is necessary to give a clear definition of “free” 

decisions in a neuroscientific context, as this is subject of a great, sometimes highly pas-

sionate debate in natural science and philosophy (e.g. an der Heiden & Schneider, 2007; 

Blackmore, 2006; Chiang, 2005; Dennett, 2003; Haynes, submitted; Heisenberg, 2009; 

Libet, 2004; Prinz, 2006a; Searle, 2004). The everyday meaning of “free” in this context is 

often related to a decision that “I” (meaning the experienced “self”) make as opposed to 

(automatic) reactions of the brain and body. This dualistic dichotomy is scientifically 

unlikely and is more related to properties of our language as well as to how we experience 

our selves as socially acting agents (Dennett, 1991; Prinz, 2003; 2006a). In the context of 

neuroscientific research, free decisions were defined as decisions that are maximally non-

stimulus driven, the opposite to simple reflexes (Haggard, 2008). It has been pointed out 

that in experimental situations that lack any stimulation, participants also have no motiva-

tion to choose one alternative over the other, which is a rather unnatural case (Haggard, 

2009). On the other hand, only a situation in which no choice alternative is more valuable 

than the other satisfies the requirements for the definition of a free decision (Haggard, 

2008). The assumption of a determined world seems to contradict “truly” free decisions 

(Haynes, submitted), but even determinism does not rule out the possibility of free decisions 

(depending on the definition of a free decision) (Dennett, 2003). However, as already 

acknowledged by Thorndike (1911; cited by Haggard, 2008), voluntary behavior might be 

organised in loops rather than in single chains of events, as they do not need an initial cause; 

a free decision might be best described as “intelligent interaction with the animal’s current 

and historical context”. Nevertheless, certain brain regions are involved in computing these 

interactions, thereby acting as generators of free decisions.  
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5.1.2 The neural basis of free decisions 

 

The starting point of neuroscientific research on free decisions was the discovery of the 

Bereitschaftspotential (BP), or readiness-potential (Kornhuber & Deecke, 1965). It de-

scribes a slow negative potential shift in EEG activity preceding voluntary movement. It has 

been shown that the BP also precedes the conscious awareness of initiating the movement 

by several hundreds of milliseconds (Libet, et al., 1983; Libet, 1985). The origin of the BP 

seems to be located in the SMA / pre-SMA and anterior cingulate motor areas (CMA) (Ball 

et al., 1999; Deecke, Lang, Heller, Hufnagel & Kornhuber, 1987). Several studies further 

demonstrated that the pre-SMA is a key region for focusing on self-initiated actions (Cun-

nington et al., 2005; Haggard & Eimer, 1999; Lau et al., 2004a; Lau, Rogers & Passingham, 

2006; Nachev, Rees, Parton, Kennard & Husain, 2005; Nachev, Wydell, O’Neill, Husain & 

Kennard, 2007) and that pre-SMA and rostral SMA were more strongly activated when 

participants performed self-initiated movements compared to externally cued ones (Deiber 

et al., 1999; Jenkins, et al., 2000). Others found activation differences for this contrast in the 

adjacent rostral cingulate zone (RCZ) (Forstmann et al., 2006; Mueller, Brass, Waszak & 

Prinz, 2007) or showed that RCZ and pre-SMA differed only in the onset of activation 

(Cunnington et al., 2002). Lau and colleagues tried to isolate the neural basis of intention 

and execution for self-initiated movements and demonstrated that focusing on the onset of 

upcoming intentions activated the pre-SMA (Lau et al., 2004a) while attending to the motor 

execution activated the RCZ, especially the CMA (Lau, Rogers, Ramnani & Passingham, 

2004b). None of these studies, however, directly demonstrated the encoding of specific 

decision outcomes in these brain regions as achievable with multivariate decoding methods 

(see Haggard & Eimer, 1999, for a different approach to infer causality via detecting co-

variations of potential causes and effects). Hence, these regions might play a role in free 

decision making different to computing the final decision outcome. 

Other prefrontal areas that have been reported to be important for free decision mak-

ing were located anterior to the pre-SMA. Fronto-polar cortex (FPC) has been suggested to 

represent the most abstract contents of cognition (Badre & D’Esposito, 2009). This region 

was discussed to be involved in keeping a pending action plan active while another task is 

performed (Koechlin et al., 2000; Koechlin & Hyafil, 2007). Recent decoding studies linked 

medial FPC to the generation of free decisions (motor decisions as well as abstract ones), 

long before these reach awareness (Bode et al., in prep.; Soon et al., 2008; in prep.). Medial 
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prefrontal cortex (PFC), anterior to the pre-SMA, was found to be activated during veto-

decisions (Brass & Haggard, 2007). Outcomes of free decisions maintained in memory 

during a delay period could also successfully be read out from medial PFC (Haynes et al., 

2007). 

 Medial PFC, however, was not found to encode participants’ guesses in the previous 

study; decoding was only possible from a region in the precuneus extending to lateral 

posterior parietal cortex (PPC). Accordingly, others have shown that the pre-SMA might be 

more involved in the timing of free decisions rather than encoding the decision contents 

(Soon et al., 2008; in prep.). Studies using single-cell recordings in monkeys recently linked 

neurons in PPC to movement intentions (Quiroga, Snyder, Batista, Cui & Andersen, 2006). 

Correlations of spikes and local field potentials (LFPs) between neurons in PPC and dorsal 

pre-motor cortex were found to be greater when monkeys made free decisions compared to 

simply following instructions (Pesaran et al., 2008). The authors concluded that this could 

mirror an exchange of information between these regions when making a free decision. A 

recent study impressively demonstrated that direct electrical stimulation of human PPC 

evoked strong motor intentions (Desmurget et al., 2009). Stimulation of pre-motor cortex, 

however, did not lead to any urge to move; instead it directly triggered movements, which 

were not even perceived by the participants. 

Taken together, recent findings suggest that a network involving medial prefrontal 

cortex as well as posterior parietal cortex (extending to the precuneus and posterior cingu-

late cortex), is involved in the generation of voluntary decisions. While precuneus / PPC 

were also found to encode guessing decisions in the previous study, medial prefrontal 

regions were not. On the one hand, this suggests a shared neural mechanism for guesses and 

free decisions located in parietal cortex; on the other hand, there might be important differ-

ences, reflected by differential involvement of medial PFC. However, no study so far has 

directly compared the encoding of guesses and intended free decisions using the same 

paradigm. 

 

5.1.3 The goal of the present study 

 

Many studies investigated internal, free decisions rather indirectly by asking participants to 

think about their intentions instead of acting according to them and also did not control for 
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the influences of personal values and attitudes (e.g. Blakemore, den Ouden, Choundhury & 

Frith, 2007; den Ouden et al., 2005). Others successfully implemented tasks in which the 

choice alternatives did not differ in value, but differed from the previous study in terms of 

stimuli and decision timing (Mueller et al., 2007; Soon et al., 2008; in prep.). The present 

study was conducted to achieve a direct comparison between random guessing decisions (in 

a perceptual decision making task as implemented in the previous study) with intended free 

decisions using the same visual stimulation and decision entities. This allowed the investi-

gation of whether the same neural mechanisms were recruited in both situations.   

 A second shortcoming of the previous masking study was that residual visibility of 

strongly masked objects could not be fully ruled out. Many studies have demonstrated that 

visual information can be processed in the brain without reaching awareness and can 

influence behavior (e.g. Dehaene et al., 1998; Fahrenfort, Scholte & Lamme, 2007; Fang & 

He, 2005; Haynes & Rees, 2005a; Van Gaal, Ridderinkhof, Fahrenfort, Scholte & Lamme, 

2008; Vorberg et al., 2003; for classical masking studies see also Bachmann, 2006; Breit-

meyer & Stoerig, 2006). The involvement of the precuneus / PPC could in principle be 

explained by weak visual input to object selective regions in the dorsal visual cortex (Konen 

& Kastner, 2008). To rule out this possibility, in the present study the low visibility condi-

tion was replaced by a true invisibility condition: only strongly masked non-meaningful 

noise images were presented, which served as neutral stimuli while all decisions were made 

between two object categories (pianos and chairs) as choice alternatives. 

The experimental procedure was similar to the previous study. Participants either 

had to categorise the presented object as being a piano or a chair (as in the previous study) 

or they had to spontaneously and freely choose one of the two categories. The same multi-

variate decoding techniques (Haynes & Rees, 2005; Haynes et al., 2007; Kriegeskorte et al., 

2006; Norman et al., 2005) were applied as for the previous study to analyse the data. It was 

tested whether decision outcomes from guessing and intended free decisions were based on 

the same neural patterns in any brain region, as hypothesised for the precuneus / PPC. For 

this, an unbiased whole-brain cross-condition pattern analysis was performed, testing for 

inter-changeability between the underlying activation patterns for guesses and free decision 

outcomes. Finally, the results of the pattern classification analyses were compared to those 

obtained from the previous study.  
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5.2 Methods 

Participants 

 

Sixteen participants took part in the fMRI experiment and gave written informed consent to 

the test procedure. The experiment was approved by the local ethics committee and was 

conducted according to the Declaration of Helsinki. Participants were told that they took 

part in a decision making experiment but were not informed about the crucial experimental 

manipulations. All participants were right-handed and had normal or corrected to normal 

visual acuity. No participant indicated to be a professional musician (or to be directly 

related to one) or took part in earlier experiments presented here. Only one participant 

indicated after the experiment that he had noticed the missing object images and therefore 

stopped doing the task as instructed. This participant’s data was excluded from all analyses. 

The remaining sample consisted of seven female and eight male participants (mean age 25 

years; range 21-28).  

 

Stimuli 

 

The experiment implemented a categorisation task with either highly visible objects or 

poorly visible ones (similar to the previous study) and a free decision task. For the categori-

sation task under high visibility (hereafter referred to as HV), the target stimuli needed to be 

fairly visible objects. For this, standardised grey-scaled images of pianos and chairs were 

presented using a moderate masking procedure (see Appendix C, Behavioural pre-tests). For 

the categorisation task using invisible objects (IV) and the free decision task (FD), the target 

stimuli must not contain meaningful object stimuli, yet should nonetheless create the 

illusion that there is indeed an object stimulus presented, albeit difficult to detect. For this, a 

phase-randomised scrambled pattern image was presented, which was additionally strongly 

masked. It was therefore guaranteed that participants’ decisions were pure guesses or free 

choices, without any residual visibility influencing either process. The object stimuli (HV) 

were taken from the previous study (see Experimental Section II for details) and were 

comprised of 24 grey-scaled images per object category, displaying pianos and chairs with 
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natural backgrounds (size 400 x 400 pixels). Stimuli were again masked using scrambled 

checkerboard-masks of 10 x 10 cells (each 40 x 40 pixels) for strong sandwich-masking (see 

Experimental Section II and Appendix B for details). To create the non-object target stimuli 

used for the IV and FD conditions, one of the (non-meaningful) mask images was randomly 

chosen for a two-dimensional Fourier transformation. The phase map was scrambled by 

adding a random value of +/- 1.75 * � to each phase angle. Subsequently, the new phase 

map was read back using an inverse Fourier transformation with the unchanged power 

spectrum. The resulting image was completely neutral in terms of its shape and visual 

information while serving as an average stimulus image for all IV and FD trials.  

 

Experimental procedure 

 

The paradigm operated with three experimental conditions (Figure 5-1b):  

1. Perceptual categorisation task for moderately masked, highly visible object images of 

pianos and chairs (HV);  

2. Perceptual categorisation task for strongly masked (invisible) noise images, which 

also had to be categorised as pianos or chairs (IV) and  

3. Free decision task (FD) in which participants had to choose object categories (pianos 

or chairs) independent from the visual presentation (of invisible noise images)  

 

Participants were given written instructions first, explaining that they had to perform two 

different kinds of task, a perceptual categorisation task and a free decision task, indicated 

by the colour of the fixation cross in the beginning of each trial. Participants were not told 

that in the IV and FD trials, no object images were actually presented. During the FD task, 

participants were instructed to look at the screen but to spontaneously choose the category 

that first came to their mind, independent of the presentation. Additionally, it was pointed 

out that they should not change their mind during the trial but always keep the first decision. 

Most importantly, participants were instructed to initially choose an object category instead 

of a response button to ensure that a semantic rather than a motor decision was made, 

comparable to the perceptual categorisation task. The instruction text balanced the words 

“piano” and “chair” with respect to the order of their appearance to avoid biasing partici-

pants’ subsequent decisions. Participants were asked to make a decision on each trial, even 
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if uncertain (in categorisation trials). In this case, they were instructed to follow their 

intuition or to guess rather than not to respond.  

Participants were told to fixate upon a cross in the middle of the screen throughout 

the entire experiment. Upon the start of each trial, the task cue was given via a change in the 

colour of the fixation cross during the 750 ms before target presentation. A red cross 

indicated a perceptual categorisation trial; a green cross indicated a free decision trial. In 

half of the perceptual categorisation trials, moderately masked images of pianos and chairs 

were presented (HV); in the other half, only the neutral noise image was presented between 

strongly effective masks (IV). In free decision trials (FD), again only the strongly masked 

noise image was presented. Depending on the condition, the target image was presented for 

66.7 ms (highly visible object) or 16.7 ms (noise image). The sequence of masked images 

(pre-mask 150 ms; post-mask 500 ms minus target image duration) was shown three times 

in direct succession to prolong the overall visual stimulation and to enhance the ratio of 

signal to noise in fMRI data acquisition (compare Experimental Section II). Finally, a 

response-mapping screen was presented for 2000 ms. Participants indicated their choice by 

pressing one of two response buttons (right index- and middle finger), corresponding to the 

position of the letters “K” (“Klavier”, German for piano) and “S” (“Stuhl”, German for 

chair), which were presented on either side of the fixation cross. The position of letters was 

pseudo-randomised on a trial-by-trial basis, separately for all three experimental conditions. 

This procedure ensured that motor responses were dissociated from participants’ category 

choices. Following the response mapping screen, the white fixation cross was shown again, 

completing a jittered delay of seven, eight or nine seconds per trial (Figure 5-1a). Partici-

pants performed six runs (72 trials per run). In each run, 48 trials were perceptual categori-

sation trials (24 HV, 24 IV) and 24 were free decision (FD) trials. The same object image 

was never shown twice in one run. The order of object images was individually randomised 

for each participant. Participants first performed ten practice trials outside the scanner. 

During the fMRI experiment, stimuli were presented using a projector (resolution 1024x768 

pixel) placed at the head-end of the scanner, projecting onto a screen behind the partici-

pants’ heads. They watched the stimulation via a mirror attached to the head coil. The 

estimated angle of vision was � ~ 7.2° for all stimuli. The presentation was carried out using 

the Cogent toolbox for MATLAB 7.0 (The MathWorks, Inc.). After the experiment, partici-

pants completed a self-administered questionnaire, which asked about the levels of per-

ceived difficulty, adherence to the instructions and the timing of the free decisions 

(Appendix C, Figure C-3).  
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Figure 5-1: Experimental paradigm and conditions. a) Left side: A pre-mask was presented for 150 ms, 

immediately followed by the target image, which was a piano or a chair (HV) or a noise image (IV, FD). Noise 

images were shown for 16.7 ms, object images were shown for 66.7 ms. The post-mask duration was calculated 

as 500 ms minus target duration, resulting in 433.3 ms (HV) and 483.3 ms (IV, FD). The sequence of masked 

images was directly repeated three times (right side), preceded by a cue (750 ms), indicating the task via the 

colour of the fixation cross (red = categorisation task; green = free decision). The total duration of this presenta-

tion was 2700 ms, followed by a response-mapping screen (2000 ms) with a pseudo-randomised order of 

response buttons associated with the categories to avoid confounds of categorical choices with motor responses. 

Subsequently, a fixation period completed the total trial duration of 7000 ms, 8000 ms or 9000 ms. b) Each 

experimental condition was presented in one third of all 72 trials per run: 24 trials categorisation task with highly 

visible object images of pianos and chairs (HV; left side); 24 trials categorisation task with strongly masked 

noise images, which also had to be classified as pianos or chairs (IV; middle); 24 trials free decision task with 

strongly masked noise images (FD; right side) in which participants had to choose object categories independent 

from the presentation. Participants were not aware that in IV and FD trials no objects were shown. Trials from all 

three conditions were presented in an individually randomised order for each run and each participant. 

target object
piano or chair 66.7 ms
or noise image  16.7 ms

post-mask
500 ms minus target duration

pre-mask
150 ms

3x repetition
    of masked target
           1950 ms

response mapping screen
K = Piano (Klavier)
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fixation
until trial ends
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cue
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750 ms

HV
high visibility categorisation
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invisibility categorisation
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free decision

a) Paradigm

b) Experimental conditions
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Functional Imaging 

 

Functional imaging was conducted on a Siemens TIMTrio 3T scanner (Erlangen, Germany) 

with a standard head coil. Gradient-echo EPI functional MRI volumes of the whole brain 

were acquired (42 axial slices, TR = 2800 ms, echo time TE = 30 ms, matrix size 64 x 64, 

voxel size 3 x 3 x 2 mm3 with 1 mm interslice gap). In each of the six functional runs, 208 

EPI volumes were acquired for each participant. The first two images of each run were 

excluded from the analyses to allow for magnetic saturation effects. 

 

Data Analyses 

 

Data analysis was performed separately for the HV, the IV and the FD condition. In order to 

minimise the risk of false positive results, there were restrictions as to which participants 

and which runs were included in the following analyses. Participants were only included in 

the analysis for the HV condition if their performance exceeded 80% for both object catego-

ries in more that half of the runs (> 3 runs) and did not drop below 70% overall for any 

category. Participants’ data were excluded from the analyses for the IV and FD condition if 

they were less balanced than a decision ratio of 20:80 (or 80:20; meaning less than 4 trials 

per condition) in a single run. The estimation of decision-related signals was likely to be 

distorted in these cases. If a participant’s choices were strongly imbalanced in more than 

half of the runs, that participant’s data were completely excluded from the analysis. 

The first stage of data processing involved motion correction to the first image of the 

first run using SPM2. No additional normalisation or smoothing were performed at that 

stage in order to maximize the sensitivity for information encoded in the fine-grained voxel 

patterns (Haynes & Rees, 2005a,b, 2006; Kamitani & Tong, 2005). A GLM was then used 

for statistical analyses on the individual subject level. A high-pass filter with a cut-off of 

128 s removed low frequency drifts in the time series at each voxel. Trials were assigned to 

piano- and chair-trials according to the participants’ choices. For each run, the onsets of 

events, beginning with the presentation of the cue, were convolved with the canonical 

haemodynamic response function (HRF), to obtain the regressors. The parameter estimates 

for each voxel position formed the basis of subsequent decoding analyses. 
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Again, a searchlight approach of multivariate pattern classification was used to ana-

lyse the data (Haynes & Rees, 2006; Haynes et al., 2007; Kriegeskorte et al., 2006; Norman 

et al., 2006). The analysis sought to find brain regions that allowed participants’ categorical 

choices to be decoded from fine-grained patterns of activity as measured by the BOLD 

signal. In all cases, participants’ choices were limited to pianos and chairs and chance level 

for correct prediction was 50%. Trials with no decisions were excluded from the analyses. 

The procedure was largely identical to the previous study but will be briefly described 

again. Starting with an arbitrary voxel position vi, a spherical cluster with the radius of four 

voxels was defined around vi containing N surrounding voxels (vi…N). The parameter esti-

mates of these voxels were transformed into two pattern vectors, one for decisions for 

pianos, the other one for decisions for chairs. For each run of each participant, such a pair of 

pattern vectors was extracted. Five of the six pairs of pattern vectors served as the “training 

data set” for multivariate pattern classification analysis. A linear support vector classifier 

(Müller et al., 2001) was used with a fixed regularisation parameter C = 1 (LIBSVM 

implementation). The remaining pair of pattern vectors served as the “test data set” and was 

to be classified based on the classification hyperplane estimated from the training data. The 

procedure was reiterated six times, each time leaving out the pattern vectors of a different 

run to be used as a “test data set”. Thus, a six-fold cross-validation was achieved by averag-

ing the decoding accuracies from all six iterations (or if less than six runs were used, then a 

five- or four-fold cross-validation was performed). The average decoding accuracy [%] was 

then assigned to the central voxel of the searchlight cluster. This procedure was repeated 

using the next searchlight cluster, constructed around the next spatial position at voxel vj. 

After performing this procedure for every voxel in the brain, a three-dimensional map of 

decoding accuracies could be created for each condition (HV, IV, FD) and each participant. 

In a last step, these maps were spatially normalised to a standard stereotaxic space (MNI 

EPI template), re-sampled to an isotropic spatial resolution of 3 x 3 x 3 mm3 and smoothed 

with a Gaussian kernel of 6 mm FWHM using SPM2. The resulting maps were fed into 

random-effects group analyses in order to identify common regions across all participants 

that displayed high decoding accuracies and therefore contained relevant information about 

the participants’ choices. 

In addition, a cross-condition classification analysis was performed for the IV condi-

tion and the FD condition. This analysis aimed at searching for regions in which the activity 

patterns used for the prediction of decision outcomes were interchangeable between the two 

conditions. This means, the patterns from one condition should allow the prediction of 
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decision outcomes from the other condition and vice versa. Finding such a brain region 

would speak for a similar neural code for both decisions. The pattern vectors from one 

condition (e.g. IV) were therefore used to train the classifier to distinguish between choices 

for pianos and chairs, but instead of predicting this participants’ choices in the one remain-

ing run within the same condition, it was used to predict decision outcomes from the left-out 

run for the other condition (e.g. FD) (Figure 5-2). Note that this procedure maximised the 

comparability with the previous analyses (e.g. the number of training and test data sets and 

cross-validation steps) (Walther et al., 2009). Both ways of cross-condition classification 

were performed and an ANOVA was applied followed by an inclusive conjunction test for 

both contrasts. Only regions that successfully supported both directions of cross-condition 

classification were considered significant.  

 Additional control decoding analyses were conducted. The first analysis decoded the 

category of objects presented during HV trials. Trials were therefore modelled according to 

the object category presented. The regressors for pianos and chairs were then used for 

subsequent decoding, which was identical to the analysis described above. A second control 

analysis was conducted to decode the motor responses by using different regressors for left 

and right button positions, i.e., the finger that operated the response box on each trial. This 

served to ensure that the decoding of choices was not confounded with the decoding of 

motor responses. The minimal statistical threshold used for all analyses was p < .0001 

(uncorrected) with a voxel-threshold of ten voxels. 



  

 99 

 
Figure 5-2: Cross-condition pattern classification. The pattern vectors from decision outcomes of the IV 

condition were used to train the classifier to distinguish between choices for pianos and chairs. Instead of 

predicting participants’ choices from the one remaining run within the same condition, it was used to predict 

decision outcomes from the left-out run for the FD condition. The same six-fold cross-validation procedure was 

used as described for the regular decoding analysis and an average decoding accuracy was calculated for the 

respective cluster. Again, a searchlight algorithm was applied; the analysis was repeated for all possible 

searchlight clusters (r = 4 voxels). The resulting 3-dimensional decoding accuracy maps quantified how good 

patterns from IV predicted FD decision outcomes. The same analysis was repeated training the classifier with 

activation patterns from the FD condition and predicting the decision outcomes from the IV condition. The 

normalised decoding accuracy maps from each participant were used for an ANOVA. Only those regions were 

considered significant in which both ways of cross-condition classification were successful above chance level. 
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5.3 Results 

 

The hit rate for both highly visible pianos (85.2%) and chairs (91.5%) was very high. Only 

one participant showed an exceptionally bad performance for one category (s15 <70% for 

chairs; see Figure 5-3) and was excluded from the decoding analysis for the HV condition. 

Another two participants were excluded from this analysis because they did not reach the 

criterion of >80% hit rate for both categories in at least half of the runs, which challenged 

the assumption that they identified enough objects in these runs.  

In total, participants were highly balanced in their choices for pianos and chairs in 

the IV as well as in the FD condition (Figure 5-4). In the IV condition, participants chose 

pianos in 47.5% and chairs in 51.2% of all trials (1.3% trials missed). In the FD condition, 

participants chose pianos in 51.5% and chairs in 47.5% of all trials (1.0% trials missed). 

The individual performance varied more strongly, but only one participant had to be ex-

cluded from the analyses due to being too imbalanced in more than half of all runs (s5 was 

above the ratio of 80:20 for pianos – chairs). For four participants, data from one run was 

excluded due to imbalanced decisions; for two participants, data from two runs were 

excluded (for details see Appendix C, Choice ratios fMRI experiment). 

The analysis of the questionnaire indicated that participants adhered to the instruc-

tions. The perceptual categorisation task was perceived as being rather difficult and most 

participants believed there to be 3 to 4 levels of difficulty. This confirmed that participants 

did not notice the two-fold scaling of visibility. As instructed, free decisions were reported 

to be made with regard to categories instead of randomly pressing response buttons. Free 

decisions were made early in the trial, which was similar in perceptual decisions. Addition-

ally, in almost all cases, participants reported that they did not recognise any (illusory) 

objects during free decisions. These results confirmed that the experimental manipulations 

were successful. For details see Appendix C (Figure C-4). 
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Figure 5-3: Mean hit rates for each participant. Hit rates for pianos and chairs are shown for the high 

visibility categorisation condition (HV). Displayed are the mean values [%] across all runs and the standard 

errors (SE) for each participant individually. After excluding participant s15 because of an exceptionally low hit 

rate, the average hit rates were 87.3% for pianos (bright dashed line) and 91.1% for chairs (dark dashed line). 

The difference was not significant (t-test, p > .05). 

 

 

Figure 5-4: Average choice ratios. Ratio of 

choices for pianos and chairs in the invisible 

categorisation condition (IV; left) and the free 

decision condition (FD; right) for all n = 15 

participants. In the categorisation task, participants 

chose pianos in 47.5% and chairs in 51.2% off all 

trials (1.3% trials missed). In the free decision 

task, participants chose pianos in 51.5% and chairs 

in 47.5% off all trials (1.0% trials missed). The 

overall ratios were close to being perfectly 

balanced (50%) in both conditions. See Appendix 

C for individual results. 
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Multivariate decoding was used to investigate which brain areas encoded decision outcomes 

in perceptual decision making when object images were highly visible (HV). Decoding 

accuracies significantly above chance level (50%) could be found bilaterally in extrastriate 

visual cortex extending to the LOC, with greater extensions on the right side (see Figure 5-

5a). The peak decoding accuracy was 61%. The same method was applied to decode deci-

sion outcomes for perceptual decision making without visible objects (IV). The analysis 

revealed two regions in medial parietal cortex, mainly located in the right precuneus, which 

encoded the choices (Figure 5-5b). The first cluster extended to the posterior cingulate 

cortex (PCC) and peaked with 61% accuracy. The second cluster was located more dorsally 

and posteriorly, extending laterally to the inferior parietal lobe, peaking with 60% decoding 

accuracy. Decoding accuracies in left precuneus were just below threshold. No further 

regions could be found displaying above chance accuracies for the IV condition. 

 Decoding free decisions (FD) revealed an extended cluster in bilateral anterior 

medial prefrontal cortex. The peak decoding accuracy was 64% (Figure 5-5c). The regions 

in the precuneus, which encoded the decision outcome for the IV task (as well as clusters 

nearby) also displayed high decoding accuracies for free decisions. These, however, missed 

the strict statistical threshold due to higher variance (peaking at 58% accuracy; p = .009). 

When inclusively masked with decoding results form the IV condition (p < .0001 uncor-

rected), a cluster in the precuneus remained marginally significant for free decisions (p < 

.01 uncorrected). For an illustration of the overlap see Figure 5-6. 

 To further investigate the relationship between guessing in perceptual decision 

making (IV) and free decisions (FD), cross-condition classification analyses were con-

ducted. Pattern vectors associated with decision outcomes from the IV task were taken to 

predict those from the FD task and vice versa. Two clusters, again bilaterally located in the 

precuneus, were found to allow bi-directional interchange between the predictive activation 

patterns (Figure 5-5d). One cluster was located close to the second precuneus cluster that 

encoded decision outcomes in the IV task. The other cluster was located more ventral at the 

border between precuneus, cuneus and inferior parietal lobe. The peak decoding accuracy 

was 57%. When the threshold was relaxed, a greater extent of regions in the precuneus 

could be revealed (see Figure 5-6). No other combination of cross-classification analyses 

showed any significant clusters.  

Conventional univariate analyses could not reveal any differences between decisions 

for pianos and chairs for any of the conditions, confirming that information about decision 
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outcomes was only present in the fine-grained patterns of activation rather than reflected in 

differences in the average amplitude of the BOLD signal (see Appendix C, Univariate 

analyses). 

 

 
Figure 5-5: Decoding decision outcomes using multivariate pattern classification. Displayed are mean 

decoding accuracies and standard errors (SE) for searchlight decoding with a radius of r = 4 voxels. All results 

are displayed using a threshold of p < .001 (uncorrected) for better visualisation. a) Results for perceptual 

decision making for highly visible objects (HV). Decoding accuracies significantly above chance level (50%) 

were found bilaterally in extrastriate visual cortex extending to the LOC with a greater extension on the right 

side (MNI [36 -66 -15]; peak accuracy 61%; p < .0001 uncorrected; MNI [-12 -93 -3]; peak accuracy 58%; p < 

.0001 uncorrected). Decoding IV and FD decisions outcomes did not significantly exceed chance level in these 

regions. b) Results for guessing decisions in perceptual decision making (IV). Decoding was possible from two 
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clusters located in (A) precuneus extending to posterior cingulate cortex (PCC) (MNI [24 -45 18]; peak accuracy 

61%; p < .0001 uncorrected) and (B) precuneus extending to inferior parietal cortex (MNI [30 -63 51]; peak 

accuracy 60%; p < .0001 uncorrected). No other regions were found to encode the decision outcomes in this 

condition. c) Results for decoding free decisions (FD). Decoding accuracies significantly above chance level 

were found in bilateral medial prefrontal cortex (MNI [3 48 21]; peak accuracy 64%; p < .00001 uncorrected). 

Additionally, high decoding accuracies could be found in precuneus but were just short of the statistical 

threshold (MNI [33 -60 45]; peak accuracy 57%; p = .009 uncorrected; not displayed). d) Results for cross-

condition classification for IV and FD. Pattern vectors from decision outcomes for the IV task were taken to 

predict decision outcomes for the FD task and vice versa. Two clusters in bilateral precuneus allowed both 

directions of decoding (C: MNI [6 -84 39]; peak accuracy 55%; p < .000001 uncorrected; D: MNI [-12 -48 48]; 

peak accuracy 57%; p < .000001 uncorrected). 

  

A further decoding analysis was performed to predict the true categories of the objects 

during HV trials. The category of the presented object and participants’ choices were highly 

correlated under high visibility, hence, not surprisingly the strongest cluster was located in 

bilateral visual cortex and LOC, peaking with 61% accuracy in right visual cortex / LOC 

(Appendix C, Figure C-6b). To confirm that the decoding results for participants’ choices 

were not confounded with the motor responses, an additional decoding analysis for button 

presses was performed. It could be shown that for all conditions, the motor responses were 

encoded in left motor cortex only (58% peak accuracy; Appendix C, Figure C-6a) and not in 

any choice-related areas. Further analyses were conducted to ensure that individual differ-

ences in decision balance did not drive the decoding effects. For this, the data was divided 

into groups of more balanced and less balanced participants by median-split and decoding 

accuracies were compared between groups. No differences in decoding accuracies could be 

found between more or less balanced participants. This held true for the whole brain volume 

as well as for the best searchlight clusters in precuneus and MPFC (for details see Appendix 

C, Choice ratios and decoding accuracies).  

 

5.3.1 Comparison to results of the previous study 

 

One remaining question was if the precuneus regions in the present study were comparable to 

the ones found to encode perceptual choices about poorly visible objects in the previous 

study. There was no complete overlap between the single clusters revealed by the respective 

analyses, even when a similar task was performed (Figure 5-6; compare blue: previous study 
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– poorly visible object categorisation, and red: present study – invisible object categorisation). 

One cluster in precuneus / PCC appeared to be spatially isolated, yet it was not functionally 

dissociable. All clusters, however, strongly overlapped with the cluster revealed by Soon et 

al., 2008 (see Figure B-16). The precuneus regions revealed by the previous study overlapped 

with the precuneus regions in the present study that encoded the IV decision outcomes and 

allowed IV and FD cross-classification. Additional analyses using ROIs derived from the 

previous study to analyse the present data yielded a similar encoding profile compared to the 

whole-brain searchlight decoding analyses (for details see Appendix C, ROI analyses). Taken 

together, these parietal clusters formed a patchy but connected ensemble, reaching from 

bilateral medial ventral parts of the precuneus to the lateral surface of the inferior parietal 

lobe.  

 

 
Figure 5-6: Direct comparison of precuneus regions between both masking studies. Medial views of the left 

and right hemisphere and one posterior view. Blue: The cluster from the previous study that allowed decoding of 

decisions about poorly visible objects. Red: The comparable cluster from the present study (IV). Green: Areas 

from which cross-condition classification between free decisions (FD) and IV was successful. Yellow: Clusters 

from which FD could be decoded in the present study (p < .01, uncorrected; after inclusively masking with IV 

decoding with p < .0001, uncorrected). Orange: Overlap of cross-condition classification (IV and FD) with IV. 

Pink: Clusters encoding only FD in the present study. In summary, searchlight decoding analyses from both 

studies revealed a rather widespread, overlapping cluster in precuneus / PPC. A second, functionally not 

dissociable cluster was located in anterior precuneus / PCC. Both clusters overlapped with the regions encoding 

free decisions revealed by Soon et al. (2008). For comparison a threshold of p < .0001 was used for displaying 

all clusters. p = posterior; a = anterior; l = left; r = right; d = dorsal; v = ventral. Peak coordinates and accuracies 

can be found in the text. 
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5.4 Discussion 

 

This study demonstrated that the precuneus was informative about outcomes of guessed 

decisions when visual information was insufficient for a perceptually based decision. It 

therefore confirmed the previous findings by excluding the possibility of any residual 

visibility driving the effects, because a non-meaningful strongly masked noise image 

replaced the object images in a true invisibility condition. A direct comparison between 

guessing and free decisions was achieved by using the same visual stimulation while 

participants freely and spontaneously chose object categories. Decoding accuracies for free 

decision outcomes were highest in aMPFC, but activation patterns in the precuneus were 

found to be interchangeable for guesses and free decisions. Comparing the different clusters 

in precuneus / PPC from which decoding was possible between these studies, a wide-spread 

medial posterior parietal network emerged. This might be the neural substrate of a symme-

try-breaking network, which is engaged during different kinds of internal decision making.  

 

5.4.1 Two modes of perceptual decision making 

 

The present results entirely confirmed the findings about perceptual decision making from 

the previous study. Again, a double dissociation emerged between the LOC, which encoded 

decision outcomes for highly visible objects only, and the precuneus, which encoded the 

decisions made with insufficient visual input (or guessing). These findings are at odds with 

models derived from SDT (Parker & Newsome, 1998; Swets, 1961), which predict that 

decisions about perceptual entities, even invisible ones, should still be based on the same 

dimension of sensory signal. If stimuli cannot be discriminated, trial-by-trial noise fluctua-

tions in the same system should determine the choices. Several studies using single cells 

recordings in monkeys to quantify choice probabilities (e.g. Britten et al., 1996; Huk & 

Shadlen, 2005; Kim & Shadlen, 1999; Purushothaman & Bradley, 2005; Romo et al., 2002; 

2004; Salinas et al., 2000; Shadlen & Newsome, 2001; Uka et al., 2005) suggested the 

existence of neural systems for perceptual decisions for all levels of stimulus ambiguity. 

The present findings, however, strongly support the conclusion of the previous study: that a 

switch from perceptual decisions to internal, stimulus-independent decisions occurs in the 



  

 107 

absence of sufficient stimulus information. It was argued above that, contrary to classical 

studies using random dot motion or flutter discrimination, extended temporal integration 

was not required with the present paradigm due to the use of static images (Philiastides & 

Sajda, 2006). Under these circumstances a switch to a decision mechanism that generated 

random outcomes was facilitated. This switch could be explained within a framework that 

assumes that if a perceptual decision cannot be made because of insufficient sensory input 

or equal evidence for each alternative, a symmetry-breaking network becomes important. A 

similar model has been proposed for the generation of free decisions (Haggard, 2008). For a 

detailed discussion, see Experimental Section II. 

The finding that decision outcomes about highly visible objects was encoded in the 

LOC is in line with previous studies linking the LOC to the processing of object categories 

(e.g. Grill-Spector & Malach, 2004; Haushofer et al., 2008a; Haxby et al., 2001; Op de 

Beeck et al., 2008a,b; Reddy & Kanwisher, 2006; Schwarzlose et al., 2008), but more 

importantly, to successful object categorisation performance (Grill-Spector et al., 2000; 

Williams et al., 2007). The LOC was more strongly activated for the categorisation task 

with highly visible objects than for the free decision task. Interestingly, there was no 

difference in activation when categorisation of highly visible objects and invisible objects 

were compared. Given that these differences in activation were clearly present in the 

previous study, the reduced number of trials per condition and therefore the limited statisti-

cal power might be an explanation. Accordingly, the decoding effects found in LOC were 

also much weaker compared to the previous study. It might be that the lower proportion of 

highly visible objects presented (50% in the previous study; 33% in the present study) also 

made perceptual decisions seem more difficult in general and reduced effects in the LOC.  

The motor responses were again dissociated from the decisions by using randomised 

response mapping screens. Additional decoding analyses confirmed that motor responses 

were encoded in left motor cortex only, confirming that participants’ decisions were always 

related to the objects, not the buttons. In the previous study, one concern was that residual 

visibility might have been responsible for decision encoding in the precuneus, as it has been 

shown that PPC can process object information (Konen & Kastner, 2008). This issue was 

addressed in the present study by using strongly masked neutral noise images instead of real 

objects to ensure that target images were truly invisible and only the illusion was created 

that objects were presented. By taking this path, it was possible to avoid any concerns 

regarding d' values greater than zero (Schmidt & Vorberg, 2006). Results from the detailed 

post-experimental questionnaire confirmed the effectiveness of this manipulation. It can be 
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concluded that neither the present nor the previous results were significantly influenced by 

residual visibility effecting encoding in the precuneus. The subjective experience of not 

having perceived the objects might be the important factor that triggered the involvement of 

the symmetry-breaking network. 

 There is still the possibility, however, that other mechanisms drove the encoding of 

decisions in precuneus. For instance, the precuneus might have been engaged in mental 

imagery (Fletcher et al., 1995; Knauff et al., 2003) of objects as interpretations of the (non-

meaningful) visual stimulation, driven by the expectation of object images. A comparison 

with images from memory could also have involved the precuneus (Tulving et al., 1994). 

These alternatives cannot be fully dismissed by the present study. However, as argued 

before, mental imagery should have involved the respective sensory systems instead of 

excluding those (Kosslyn et al., 2001). The results therefore strongly support the alternative 

hypothesis: The precuneus might have been engaged in the generation of internal decisions 

with random outcomes rather than in the creation of mental object images.  

The crucial analysis involved identifying brain activity patterns common to guesses 

and free decisions. It was found that a rather wide-spread area in precuneus / PPC demon-

strated those pattern similarity effects and cross-predicted the decision outcomes in both 

directions, even though statistically significant decoding was only possible for guessing but 

barely for free decisions alone. It has to be noted, however, that decoding of free decisions 

from the precuneus was statistically weak but still possible with comparable accuracy. 

Second, the results suggest that the classification hyperplane related to free decisions was 

estimated based on comparably less stable patterns in the precuneus (as demonstrated by the 

classifier’s performance). This hyperplane, if also meaningful for the “guessing” condition, 

should nonetheless be able to successfully classify the more stable patterns underlying 

guesses, which was demonstrated. Likewise, if stable and informative patterns were used to 

estimate a meaningful and applicable classification hyperplane, it should also successfully 

classify weaker patterns in most cases, as observed for classifying free decisions based on 

the hyperplane estimated from guessing. The cross-classification analysis therefore validly 

tested the similarity of the underlying activation patterns.  

Overlaid with the findings from the previous study, a wide-spread, patchy and par-

tially overlapping cluster in precuneus / PPC emerged for internal decisions (see Figure 5-

6). These clusters also strongly overlapped with the cluster revealed for free decisions by 

Soon and colleagues (2008) (also see Appendix B, Figure B-16). As argued before, the 
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precuneus / PPC has also been found to be involved in other internal tasks such as focussing 

on one’s own intentions (e.g. Blakemore et al., 2007; Cavanna & Trimble, 2006; den Ouden 

et al., 2005), internally selecting actions (Jenkins et al., 2000; Mueller et al., 2007), inten-

tional self-processing (Kircher et al., 2000; 2002), prospective memory (Burgess, et al., 

2001), the formation of free decisions (Cui & Andersen, 2007; Pesaran et al., 2008) and 

movement intentions (Desmurget et al., 2009). Taken together, these findings strongly 

support the hypothesis that regions in medial and posterior parietal cortex play a dominate 

role in the generation of intentions and free decisions. The specific role of the precuneus 

could be to break the symmetry of choice alternatives in the absence of sufficient perceptual 

input (guessing) or in the absence of a more valuable alternative (free decisions) in order to 

make an internal decision.  

 

5.4.2 From guessing to free decisions 

 

So far, it was argued that guessing resembles internal free decisions, both resulting from the 

same process of symmetry-breaking. It is obvious, however, that there are also differences 

between these two kinds of decisions: first, a network of brain regions was differentially 

activated during guessing and free decisions. Second, when looking at free decisions, the 

highest decoding accuracies were found in anterior medial PFC while outcomes of guesses 

could not be decoded from this region. Medial prefrontal cortex was also found to be 

activated by the voluntary selection of task-sets (Forstmann et al., 2005; 2006), by self-

related motivational factors (Kouneiher, Charron & Koechlin, 2009) and by reflecting on 

one’s own mental states (Amodio & Frith, 2006). More importantly, widespread anterior 

medial PFC regions have been found to directly encode freely formed intentions to perform 

arithmetic tasks (Haynes et al., 2007). The most anterior part of medial PFC was found by 

Soon and colleagues (2008; in prep.) to encode free decision outcomes. Note that differ-

ences in precise localization might be due to the temporal aspects of the generation of 

decisions, which cannot be resolved here due to differences in modelling. Some processes 

might only be visible when using unconstrained models (such as FIR) and monitoring 

decisions or intentions across longer timescales.  

In the present study, cross-condition classification clearly points towards a shared 

neural substrate of guessing and free decisions in the precuneus. Only free decisions, 
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however, were additionally encoded in medial PFC. These differences might be explained 

by what made the tasks distinct. Both tasks required the generation of an internal decision, 

which was not based on external input and had equally valuable outcomes. Only in the free 

decision task, however, did participants intend to make an internal decision. Likewise, in 

most studies that demonstrated medial PFC involvement, participants were instructed to 

make free decisions and therefore intended to do so (Deiber et al., 1999; Forstmann et al., 

2005; 2006; Haynes et al., 2007; Jenkins, et al., 2000; Mueller et al., 2007; Soon et al., 

2008; in prep.). Contrarily, the categorisation task required participants to select their 

response on the basis of (insufficient) visual input. Even though the behavioural outcome 

was indistinguishable compared to the free decision task, the initial intention was not to 

produce a random decision outcome. A likely interpretation for the differences in encoding 

is therefore that the precuneus is always involved in symmetry-breaking when no choice 

alternative is more likely or valuable. However, only when participants consciously intend 

to make a free decision, the aMPFC is additionally involved in generating the decision 

outcome. This might then be achieved in concert with the precuneus / PPC (Soon et al., 

2008), hypothetically by strong synchronisation between neural activity in medial PFC and 

(medial) PPC (Pesaran et al., 2008).  

 

5.4.3 Posterior parietal cortex and high self-reference 

 

The exact nature of the suggested symmetry-breaking network has to be further investigated 

in the future. It can only be speculated that central noise fluctuations might play an impor-

tant role (Deco & Romo, 2008; Faisal et al., 2008). The extraordinary role of the precuneus 

in self-processing (Cavanna & Trimble, 2006) suggests that self-reference could be the 

linking element. Self-reference is usually given by values and preferences; these mecha-

nisms would guide decisions in most situations. One’s self-related value system is therefore 

a candidate for a symmetry-breaker: in the absence of more or less valuable outcomes, noise 

fluctuations in one part of this system could guide the decisions.  

There is little direct evidence for this hypothesis, even though it has been suggested 

that random value-based decisions could exploit the same mechanisms as random percep-

tual decisions (Gold & Shadlen, 2007). In support of this, some studies have shown that a 

network including the precuneus, posterior cingulate cortex and posterior parietal cortex is 
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involved in value- and reward-based decision making as well as in decision making under 

uncertainty (Hsu, Bhatt, Adolphs, Tranel & Camerer, 2005; Huettel, Song & McCarthy, 

2005; Luhmann, Chun, Yi, Lee & Wang, 2008; McCoy & Platt, 2005; Platt & Huettel, 

2008; Volz, Schubotz & von Cramon, 2004). It has been pointed out that the integration of 

sensory evidence and prior knowledge (e.g. about reward and values) in parietal cortex 

might unify decision systems at their final stages (Glimcher, 2001). PPC might therefore be 

critical for many kinds of value judgements (Kable & Glimcher, 2007; Platt & Huettel, 

2008). For example, Platt and Glimcher (1999) found that a population of neurons in 

monkey parietal cortex was directly involved in decision processes if the outcomes were 

valuable for the decision maker. Using fMRI in humans, Vickery and Jiang (2009) showed 

that a region in the inferior parietal lobe was modulated by feedback in a simple decision 

task, suggesting a role in constructing a value representation under uncertainty. A recent 

study demonstrated that while participants were passively watching images of different cars 

of varying value, subsequent purchase intentions could be decoded from regions including 

PPC / precuneus (Tusche et al., 2010). One interpretation linking these studies and the 

present findings is that the precuneus and PPC are part of an internal decision making 

system that is usually engaged in value- and preference-based decisions. Normally, the 

attachment of values determines the decision outcome. In cases of equal or no valence, for 

instance in guessing as well as equivocal free decisions, noise fluctuations in this system 

could determine a decision and serve as a symmetry-breaker. These interpretations, how-

ever, remain speculative and have to be addressed in future studies. 

 

5.4.4 Conclusion 

 

The present study confirmed that the precuneus encoded guessing when no relevant percep-

tual input was provided. Activation patterns in this region were found to be interchangeable 

with those for free decisions. These findings strengthened the interpretation that the precu-

neus might be part of the neural substrate of a symmetry-breaking network, involved in the 

generation of different kinds of internal decisions with random outcomes. Anterior medial 

prefrontal cortex, however, only encoded decision outcomes when decisions were intended 

to be internal and might therefore be exclusively important for free decisions made without 

an external frame of reference. 
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6 General Discussion 

 

This final part discusses the implications of the three experimental sections beyond the 

respective discussion sections. A short interpretation of the present results will be given 

within a broader framework of the transformation of stimuli to responses. Methodological 

problems will be addressed, in particular, the limitations and challenges faced by multivari-

ate pattern classification as implemented here. Ideas for future experiments, which resulted 

from the present findings, will then be discussed, finally followed by a concluding sum-

mary. Of course, there would also be much to say about limitations of fMRI in general; 

some problems were already addressed in the introduction to methods section. For more 

detailed discussions, which go beyond the scope of the present work, refer to e.g. Logothetis 

(2002; 2003; 2008), Logothesis and Wandell (2004) as well as Heeger and Ress (2002) for 

the relationship of the BOLD signal and activity of single neurons, Raichle and Mintun 

(2006) for details about brain metabolism, Brett and colleagues (2002) for the problem of 

localisation, Haynes and Rees (2006) as well as Norman and colleagues (2006) for the 

limits of univariate analyses and Kriegeskorte and colleagues (2009) for potential problems 

with circularity in fMRI data analyses in general. 

  

6.1 Information encoding in parietal cortex 

 

The present studies made use of new decoding approaches to investigate different aspects of 

the transformation of stimuli to motor responses. In the first study, the temporal decoding of 

task-sets demonstrated that abstract rules were encoded in the IPS even before a target 

stimulus was presented. Interestingly, rule information in parietal cortex preceded the build-

up of rule information in VLPFC. These findings stressed that a network of prefrontal and 
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parietal regions is involved in rule-guided behavior (e.g. Brass & von Cramon, 2004a; 

2004b; Bunge, 2004; Bunge & Wallis, 2007). This finding clearly goes beyond the current 

literature by demonstrating in humans that parietal cortex also encoded rules in an abstract 

form. So far, this has only been shown in monkeys (e.g. Gail & Andersen, 2006; Stoet & 

Snyder, 2004; 2007). The role of parietal cortex in rule-guided behavior has been hitherto 

undervalued. Many authors focused on PFC (Sakai, 2008) or neglected the similarity of 

activation profiles in parietal cortex compared to PFC (e.g. Brass & von Cramon, 2004a; 

2004b; Crone et al., 2008); only few acknowledged the lack of differences between these 

regions (e.g. Rowe et al., 2008). The present findings also ruled out that the role of parietal 

cortex is restricted just to attention or the preparation of motor responses following abstract 

rule processing in PFC (Bunge, 2004). Parietal cortex might therefore function as an active 

information integration hub, as proposed recently (Singh-Curry & Husain, 2009). The 

second study adds to this view by demonstrating that decision outcomes of guessing in 

perceptual decision making were encoded in posterior parietal cortex, spanning from the 

medial part of the precuneus to the inferior parietal lobe. It was concluded that medial PPC 

is involved in symmetry-breaking and the generation of internal decisions in the absence of 

sufficient perceptual information. This is in line with recent findings demonstrating precu-

neus and PPC involvement in the generation of free decisions (Cui & Andersen, 2007; 

Pesaran et al., 2008; Soon et al., 2008). The third study supported and extended this view by 

showing that local activity patterns in PPC from intended free decisions could be used to 

predict guessing decisions and vice versa. Decoding from medial PFC, however, was 

limited to intended free decisions. Taken together, it was possible to decode different kinds 

of internal decisions from a network of mostly medial posterior parietal regions, which were 

hypothesised to be important for symmetry-breaking. A highly self-referential decision 

context could be the linking element between the PPC and internal decisions, given the 

involvement of PPC in reward- and value-based decisions (Platt & Glimcher, 1999; Platt & 

Huettel, 2008; Vickery & Jiang, 2009). It is therefore believed that the present studies 

provided strong new evidence for the importance of posterior parietal regions in high-level 

cognitive processes related to internal decision making.  

How could PPC (including precuneus) guide the formation of internal decisions? It 

was already speculated that in the absence of values and reward to guide internal decision 

making, noise fluctuations in a part of one’s internal value system, located in PPC, could 

produce random decision outcomes. As mentioned before, a recent study used electrical 

cortical stimulation in human patients and demonstrated that it was possible to evoke the 
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desire or “will” to move different body parts - or even the strong illusion that a movement 

had actually been carried out - by stimulating posterior parietal cortex (Desmurget et al., 

2009). The authors concluded that motor intentions and the awareness of one’s own inten-

tions could arise from activity in parietal cortex. This activity might be used to predict and 

anticipate the consequences of intended actions beforehand, being the basis for the percep-

tion of subsequent movements and the self-ascription of authorship (Desmurget et al., 2009; 

for a related framework see also Wegner, 2003). In a similar manner, the anticipation (and 

understanding) of others’ actions has been suggested to be based on re-enactment of those 

actions in one’s own neural system (Prinz, 2006b). The relevance of Desmurget’s study for 

the interpretation of the present work might be criticised since it only demonstrated the 

induction of motor intentions and not decisions about object categories or other abstract 

decisions. It is, however, unlikely that an arbitrary abstract intention or decision could be 

elicited by cortical stimulation without additionally providing meaningful context. It would 

be reasonable to assume that cortical maps for motor intentions in parietal cortex (Andersen 

& Buneo, 2002) also form the basis for more abstract intentions, which, in turn, could be the 

basis for other internal decisions. These maps might be flexibly re-codable depending on the 

context, similar to what was suggested for PFC (Duncan, 2001). This is likely since, first, 

most abstract decisions are usually closely linked to motor action; and second, it has been 

proposed that evolutionary newer functions coming with cultural development could make 

use of already existing neural structures evolved for more basic but similar functions 

(Dehaene & Cohen, 2007). This explanation would prevent the unlikely assumption that 

single neurons (or EINs) are hardwired for all possible abstract intentions and decisions. 

Importantly, this idea is also supported by recent findings pointing towards the same neural 

substrate for simple motor intentions and abstract intentions in prefrontal cortex and precu-

neus (Soon et al., in prep.).  

In conclusion, the presented studies have illustrated that parietal cortex plays a far 

more active and important role in human decision making and cognitive control than 

assumed so far. This was achieved by providing direct evidence for information encoding in 

parietal cortex. At the same time, recent views stressed capacity limitations of high-level 

prefrontal areas for cognitive control (Koechlin & Hyafil, 2007). The interaction between 

PFC and PPC in controlling behavior (Quintana & Fuster, 1999) might therefore be less 

dominated by PFC than previously thought. While earlier work on PPC predominantly 

focussed on its role in attention and visual processing (e.g. Milner & Goodale, 1993; 

Rizzolatti & Matelli, 2003; Ungerleider & Mishkin, 1982), recent research (mostly from 
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studies with monkeys) revealed its role in a variety of high-level cognitive functions such as 

the integration of sensory and cognitive information and motor actions (Gottlieb, 2007), the 

formation of highly abstract intentions and movement plans (Andersen & Buneo, 2002; 

Quiroga et al., 2006), as well as keeping the cognitive system goal-focussed and in a task-

engaged state (Singh-Curry & Hussain, 2009). Of course, the present work does not ques-

tion the well established findings of the tremendous importance of PFC in cognitive control 

and executive functions (e.g. Badre & D’Esposito, 2009; Duncan, 2001; Goldman-Rakic, 

1996; Miller & Cohen, 2001; Passingham, 1995). However, it hopefully inspires future 

research focused on the fronto-parietal network and the fast interplay of processes within 

this system (Pesaran et al., 2008). The application of information decoding approaches for 

human fMRI data could serve as a key tool for the dissociation of different aspects and 

functional specialisation within this network. Specifically, it could be useful when the 

correspondence between monkey and human sub-regions is not clear (Orban et al., 2006; 

Singh-Curry & Hussain, 2009), when the cognitive functions under investigation are 

uniquely human, or when detailed verbal reports about perception or decision certainty are 

required. As demonstrated here, multivariate pattern classification can be used to go beyond 

classical fMRI studies and reveal a direct link between the outcome of high level cognitive 

processes and the underlying neural substrate. This might show important contributions of 

brain areas that would have been overlooked otherwise. On the other hand, it is important to 

be aware of some limitations of this approach that will be discussed in the next paragraph. 

 

6.2 General methodological considerations 

 

The studies presented in this work demonstrated that information about higher cognitive 

processes such as rules and decisions can be decoded from brain activity using a combina-

tion of fMRI and multivariate pattern classification (Haynes & Rees, 2006; Norman et al., 

2006). While the spatial resolution of fMRI is still far from the scale of single neurons or 

EINs, this method breaks through the conventional limits imposed by voxel size (Haynes & 

Rees, 2005a; Kamitani & Tong, 2005; Kamitani & Sawahata, 2010; Swisher et al., 2010). 

Nevertheless, it still can only reveal what was called “a lower bound of information” 

(Haynes, 2009); it must be considered that more information might be encoded in brain 

regions that cannot be revealed with the current methods. An illustration of this limitation is 
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when too few neurons (or local EINs) coded for single properties, such that the signals from 

these voxels were dominated by noise. Too little is known about the proportion of informa-

tion-carrying and information-irrelevant neurons that is sufficient for the build-up of stable 

detectable biases within a voxel, given the restrictions on measurement repetitions in a 

typical fMRI experiment. Another problem arises if a population of neurons flexibly 

changed their coding with changes of the task context, as suggested for prefrontal cortex 

(Duncan, 2001). For example, it has been demonstrated that task rules were encoded by the 

same neural populations in PFC, but in orthogonal patterns during different phases of task 

preparation (Sigala et al., 2008). Averaging across activation patterns from different task 

phases – wrongly assuming pattern stability – would make it impossible to decode anything. 

These problems could potentially also arise for parietal cortex in which neurons are tuned 

for several properties in a wide range of sub-regions (e.g. Quintana & Fuster, 1999).  

While pattern classification algorithms are usually trained on the individual activa-

tion patterns of non-normalised images, they are not susceptible to differences in micro-

level brain anatomy between participants. Individual spatial variation of informative clusters 

in the range of several centimetres, however, could be problematic. These individual “hot 

spots” could get lost due to averaging in group-level analyses. A potential solution (as 

performed in the present studies) is to additionally smooth the resulting decoding accuracy 

maps, similar to conventional univariate analyses that face the same localisation problems 

(Brett et al, 2002). So far, searchlight decoding still lacks a comprehensive systematic 

methodological assessment (for a first approach see Kriegeskorte et al., 2006) including 

effects of different smoothing kernels, searchlight radii and potential decoupling of informa-

tion and activation, as observed in the present studies and others (Harrison & Tong, 2009; 

Serences et al., 2009; Soon et al., 2008). It would also be useful to address whether individ-

ual decoding accuracy maps (of prefrontal and parietal regions) might reveal distinguishable 

sub-types of information-to-anatomy mapping on a macro-anatomical level.  

The usability of pattern classification might also depend on the functional organisa-

tion of the brain region under investigation. Such a region-specific lack of power, however, 

could also be problem in conventional univariate analysis and should be less problematic in 

multivariate analyses because many voxels contribute to the activation patterns. Wherever 

multivariate pattern classification is able to successfully decode distinct mental states, it can 

be concluded that information was indeed encoded in this region. Of course, this does not 

imply that the brain uses this information in the same way as it was read out by the rather 
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crude classification algorithm (Haynes & Rees, 2005a), nor does it suggest a higher-level 

‘interpretation area’ elsewhere in the brain, as pointed out before (Haynes, 2009).  

Decoding information from a brain region is still no evidence that the respective re-

gion plays a causal role in the underlying process; the nature of the relationship between 

activity patterns and mental states is – however tempting it is to assume otherwise – still a 

correlative one. In principle, information encoding could be an epi-phenomenon of a non-

detected process elsewhere in the brain. Nevertheless, local activation during decision 

making and decoding of decision outcomes differ in terms of the quality of the revealed 

information. Stronger activation could more easily be explained by general preparatory 

activity, unrelated to the formation of the specific decision outcome. The possibility of spill-

over effects of activation between highly interconnected regions makes it hard to pinpoint 

the role of single areas in cognitive processes, even if cortical excitability is probed directly 

(Bode, Koenecke & Jäncke, 2007; Eisenegger, Herwig & Jäncke, 2005). Demonstrating 

information encoding in a brain region, however, is more likely to point to a causal in-

volvement in the cognitive process. Of course, this argument does not exclude the presence 

of unused information. On the other hand, the latter assumption needs an even greater 

amount of explanation compared to the causal interpretation. Information decoding is 

therefore conceptually closer to the underlying function than detecting activation differ-

ences with univariate methods. However, an experiment should always be referable back to 

psychological models instead of just demonstrating encoding. This can be done by demon-

strating the behavioural relevance of information (Walther et al., 2009; Williams et al., 

2008), the generalisation of information (Eger et al., 2009; Harrison & Tong, 2009: Experi-

mental section III) or temporal or functional double-dissociations (Experimental Section I, 

II, III). 

 

6.3 Future directions 

 

The present studies are believed to provide new insights into the mechanisms of task 

preparation and decision making. They also provide starting points for further research by 

raising new questions. The first study revealed lateral regions in prefrontal and parietal 

cortex encoding task rules in cued task conditions, whereas the last study revealed medial 

PFC and predominantly medial parietal regions encoding participants’ internal decisions. 
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The existence of a general lateral-medial gradient for increased degrees of freedom in 

decision making could be hypothesised, as suggested for PFC (Forstmann et al., 2005; 

Haynes et al., 2007; Kouneiher et al., 2009). One direct test for this assumption is to extend 

the paradigm used for the first study to free decisions. A task cue could either indicate a 

cued decision trial or a free decision trial. In cued decision trials, a second rule cue would 

indicate the rule. In free decision trials, participants would freely choose the rule to apply. 

After each trial, an additional response screen could explicitly ask for the rule used to avoid 

random responses. Additional switch cues could instruct the participants to immediately 

switch from the rule in mind (cued or freely chosen) to the alternative rule during some 

trials. Pattern classification could then be applied to test the following hypothesis: If an 

instructed switch occurred from a cued task rule to the alternative rule, it should be possible 

to decode both rules from the same regions in prefrontal and parietal cortex, which were 

found in the first study. If the switch occurred from a freely chosen rule, however, it could 

be assumed that the instructed switch transforms an initially free choice into a forced choice 

and the switch cue would have the same power as a rule cue. This should be accompanied 

by a shift of task rule information from regions encoding free decision outcomes (medial 

PFC / medial PPC) to regions encoding cued choices (lateral PFC / IPS). Taken together, 

the proposed experiment would elegantly close the loop between the first and the third study 

presented here. 

 Another question resulting from experiments two and three is whether encoding of 

choices in the LOC and the precuneus / PPC depends on trial-by-trial variations in stimulus 

detection or decision certainty. This could be directly tested by establishing a fixed medium 

level of visibility, as done by Williams and colleagues (2007). Unlike this study, however, it 

would be of interest to decode the decision outcomes as in the studies presented here. One 

hypothesis, as predicted by SDT (Swets, 1961), would be that LOC encodes the decision 

outcomes regardless of decision correctness, given that it receives the same (and sufficient) 

amount of visual information on each trial. Fluctuations in choice should then be due to 

trial-by-trial fluctuations in the underlying sensory signal. An alternative hypothesis would 

be that a constant switch occurs between information encoding in LOC and precuneus / 

PPC, depending on the subjective decision certainty (as opposed to its correctness), which 

could involve symmetry-breaking. This could also be investigated using e.g. magnetoen-

cephalography (MEG) or EEG, which have a better temporal resolution than fMRI. Addi-

tionally, the strength of functional coupling between LOC and precuneus could be 

addressed under different conditions of correctness and certainty (Haynes et al., 2005). It 
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would also be worth investigating the possibility of a transition of information encoding 

from one region to the other by using several levels of visibility (e.g. Grill-Spector et al., 

2000). To date, however, it is not clear how relative values of decoding accuracy (reflecting 

information) could be satisfactorily compared. The interpretation of significant differences 

in decoding accuracies between regions is not valid because the underlying BOLD signal 

can differ for various reasons (Logothetis, 2008). Interpreting accuracy differences within a 

region between tasks might also be problematic, because of imperfect reliabilities of the 

measurement tools (for imaging and for pattern classification). Also, to interpret a signifi-

cant drop of information encoding (e.g. as 20% less information) within a region would 

require the unproven assumption of a linear relationship between decoding accuracy and 

neural information encoding. Local information encoding above a certain threshold might 

be sufficient for successful task performance, rendering differences above the threshold 

meaningless. At the moment, in most cases the safest interpretation is to regard information 

decoding as a dichotomy: information is either present or not.  

 Finally, it would be worth testing if the involvement of a symmetry-breaking net-

work generalises to other task contexts. A perceptual decision making task could be used for 

other modalities. Sound discrimination (Binder, Liebenthal, Possing, Medler & Ward, 2004) 

or flutter discrimination (Romo & Salinas, 2003), however, also operate with prolonged 

temporal integration due to long stimulus exposure, rendering these approaches problematic 

for the investigation of the symmetry-breaking network. One radically different approach 

would be to investigate symmetry situations in logical deductive decisions. For example, a 

task similar to the Raven standard progressive matrix test (Raven, 1996) could be imple-

mented. Participants would be asked to select the abstract symbol that is logically the 

missing element in a matrix or an array. In many trials, however, none of the given alterna-

tive solutions would be correct such that participants would have to guess. So long as it is 

possible to keep the choice alternatives the same such that they could be used for decoding, 

this paradigm could test whether the precuneus still encodes guessed decisions, which 

would then point to a general symmetry-breaking mechanism. Again, believing that one did 

not find the correct solution might moderate the involvement of the proposed mechanism.  

These examples illustrate ways to directly test and extend the interpretations drawn 

from the present studies. These approaches could be combined with enhanced methods such 

as optimised classification algorithms, surface-based decoding techniques (Chen et al., in 

prep.), high-resolution fMRI (Kriegeskorte & Bandettini, 2007a; Swisher et al., 2010) or 

ultra high-field fMRI (Bode et al., in prep.; Swisher et al., 2010), which might allow the 
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investigation of finer-scaled activation patterns. The present studies are believed to provide 

an exciting basis for even more sophisticated investigations of human decision making in 

the future. 

 

6.4 Concluding summary 

 

Every day, humans are constantly required to react on stimuli in their dynamically 

changing environment. Appropriate behaviour therefore requires the ability to flexibly adapt 

to environmental cues, such as road signs or traffic lights. Different contexts might require 

different reactions to the same cues; a competence that has been conceptualised as task 

switching. An even more basic precondition is the ability to successfully detect sensory 

stimuli in a noisy environment, i.e., perceptual decision making. Only if, for instance, a stop 

sign can be identified as such in a hail storm, can the car driver act according to the associ-

ated rule. In a series of functional magnetic resonance imaging (fMRI) experiments, this 

present work investigated the neural encoding of these different components along the chain 

from sensory stimuli to behavioural responses.  

The first experiment tracked the information flow from the encoding of task rules (or 

task-sets) to stimuli and to motor responses using a task switching paradigm. Each trial, 

participants were presented with one of two rule cues. These cues defined the joystick 

movement that had to be performed in response to one of two distinct visual target stimuli. 

Multivariate pattern classification (Haynes & Rees, 2006; Norman et al., 2006) was applied 

to the fMRI data in order to search for brain regions that encoded the temporal sequence of 

information about rules, target stimuli and motor responses. It was found that first, preced-

ing the presentation of the target stimulus, the left intraparietal sulcus (IPS) encoded the 

abstract rule. Subsequently, a build-up of rule information was observed in left posterior 

ventrolateral prefrontal cortex (VLPFC), coinciding with the presentation of the target 

stimulus. The target stimuli were encoded in visual cortex. Motor responses could be 

decoded from supplementary and primary motor regions as soon as they could be prepared. 

Around the time of the motor response, the rules and target stimuli were encoded in left 

anterior VLPFC. A comparison with fixed task rules confirmed that information about 

stimuli and rules was encoded in prefrontal and parietal cortex only if a flexible switch 

between task rules was required. This study emphasised the importance of parietal cortex in 



  

 122 

establishing abstract task-sets during early stages of rule-guided task preparation (Stoet & 

Snyder, 2004; Gail & Andersen, 2006). This function has often been linked to prefrontal 

cortex alone (Bunge, 2004). In the present work, however, encoding in parietal cortex even 

preceded encoding in prefrontal cortex. 

 The second project investigated whether networks for perceptual decision making 

depend on stimulus visibility. Participants categorised images of masked objects as belong-

ing to one of three categories. Multivariate pattern classification of spatial patterns of fMRI 

signals was used to decode the participants’ category choices, separately under high and low 

visibility conditions. From signals in the lateral-occipital complex (LOC), it was possible to 

decode participants’ category choices about highly visible objects but not about poorly 

visible ones. This finding could be replicated using decoding from individual object-

selective regions of interest (ROIs) derived from independent localizer scans. When partici-

pants were trying to classify poorly visible objects, however, the signals encoding the 

choices shifted to the precuneus / posterior parietal cortex (PPC). These findings suggest 

that participants’ choices were based on different neural population signals for low and high 

visibility conditions, challenging current signal detection theory models of perceptual 

decision making (Swets, 1961). These predict that decisions about perceptual entities should 

be based on the same dimension of sensory signal for all levels of visibility. If stimuli 

cannot be discriminated, trial-by-trial noise fluctuations in the same system should deter-

mine the choices. Contrarily, the present findings suggest that the precuneus / PPC might be 

involved in “symmetry-breaking” when no alternative is more supported by sensory evi-

dence. These regions could act as the brain’s generator of internal random decisions in the 

absence of useful perceptual information, comparable to the generation of free decisions 

(Soon et al., 2008).  

 Finally, the last project directly tested whether decisions made by guessing (in 

perceptual decision making with insufficient visual input) resemble intended free decisions 

about the same object categories, using the same visual stimulation. Participants had to 

either guess the presented category or freely select a category, independent from the presen-

tation. In order to avoid biasing participants’ decisions, the target stimuli did not contain 

meaningful object images, yet nonetheless created the illusion that there was an object 

stimulus presented, albeit difficult to detect. Pattern classification was used to search for 

regions in which activation patterns were interchangeable between the two decision condi-

tions. It could be shown that a network in precuneus / PPC encoded outcomes of guessing 

and to some extent free decisions. The activation patterns for both kinds of decisions were 
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demonstrated to be interchangeable in this region. The precuneus therefore appears to be 

generally involved in the generation of random internal decisions. Anterior medial prefron-

tal cortex, however, only encoded decision outcomes when decisions were intended to be 

free and might therefore be exclusively important for free decisions made without an 

external frame of reference. 

Taken together, the present work highlights the importance of parietal cortex in con-

trolling both rule-guided (IPS) and self-determined (precuneus / PPC) behavior in humans. 

Parietal cortex functions might be best described within a framework that acknowledges its 

capacity for multi-modal information integration and processing of intentions with high 

self-reference. The present findings also confirmed the power of multivariate pattern 

classification for decoding high-level mental states from brain activity. By directly decoding 

the content of rules and decisions, it is believed that these studies revealed a closer link 

between cognitive mechanisms and brain functions than has been shown in humans before. 

It is hoped that the present work thereby prepared the ground for a deeper understanding of 

flexible human behavior in the future. 

 

6.5 Zusammenfassung 

 

Wir leben in einer dynamischen, sich ständig verändernden Welt. Zu jeder Zeit die richtigen 

Entscheidungen zu treffen und Handlungen auszuwählen, hängt maßgeblich von der 

Fähigkeit ab, flexibel auf Hinweisreize (wie z.B. Straßenschilder oder Ampeln) reagieren zu 

können. Verschiedene Situationen verlangen dabei oft unterschiedliche Reaktionen auf 

identische Reize. So erfordert das Überqueren der Straße in Deutschland zuerst die 

Beachtung des Verkehrs von links, in Australien hingegen Aufmerksamkeit für Verkehr von 

rechts. Situationsabhängiges flexibles Reagieren auf identische Reize kann im Rahmen des 

Aufgaben-Wechsel Paradigmas (engl. task-switching) konzeptualisiert und untersucht 

werden. Noch grundlegender ist die Fähigkeit, einen Hinweisreiz unter sub-optimalen 

Bedingungen überhaupt als solchen zu erkennen. So erfordert beispielsweise die 

Wahrnehmung eines Stop-Schildes während eines schweren Hagelsturms zuerst eine 

perzeptuelle Entscheidung. In der vorliegenden Arbeit wurden in einer Serie von 

Experimenten die neuronalen Grundlagen der Verarbeitung dieser Komponenten, von 
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visuellen Reizen bis hin zu adäquaten Reaktionen, mittels funktioneller 

Magnetresonanztomographie (fMRT) untersucht. 

Das erste Experiment bediente sich des Aufgaben-Wechsel Paradigmas, um den 

Informationsfluss, beginnend mit der neuronalen Enkodierung abstrakter Regeln, über 

visuelle Reize, bis hin zur Auswahl einer motorischen Reaktion, zu untersuchen. In jedem 

Durchgang wurde den Teilnehmern eine von zwei Regeln (task-sets; Sakai, 2008) 

vorgegeben, welche die Zuordnung zwischen zwei möglichen visuellen Reizen und zwei 

motorischen Antworten festlegte. Im Folgenden wurde einer der visuellen Reize präsentiert, 

auf den gemäß der aktiven Regel reagiert werden sollte. Mittels Anwendung von 

multivariaten Mustererkennungsverfahren auf die fMRT Daten (Haynes & Rees, 2005; 

Norman et al., 2005) wurde nach Hirnregionen gesucht, welche die zeitliche Abfolge der 

Informationen über Regeln, visuelle Stimulation und motorische Antwort enkodierten. Der 

intraparietale Sulcus (IPS) enkodierte dabei die abstrakte Regel noch bevor der relevante 

visuelle Stimulus präsentiert wurde. Mit dessen Präsentation konnte im Folgenden ein 

Zuwachs an Regel-Information im linken posterioren ventrolateral Präfrontalkortex 

(VLPFC) beobachtet werden. Die visuellen Stimulationsreize selbst waren im visuellen 

Kortex enkodiert. Die motorischen Antworten waren, sobald sie geplant werden konnten, 

aus dem supplementären und primären motorischen Kortex dekodierbar. Während der 

motorischen Antwort schließlich konnten die visuellen Reize und abstrakten Regeln aus 

dem linken anterioren VLPFC ausgelesen werden. Ein Vergleich mit festen Zuordnungen 

von Reizen und Antworten bestätigte, dass Informationen über visuelle Reize und Regeln 

nur dann im präfrontalen und parietalen Kortex enkodiert waren, wenn flexibel zwischen 

Regeln gewechselt werden musste. Diese Studie demonstriert vor allem die Relevanz des 

parietalen Kortex für die Verarbeitung abstrakter Regelinformationen, welche bisher oft 

ausschließlich dem präfrontalen Kortex zugeschrieben wurde (Bunge, 2004). Diese 

Funktionen beziehen jedoch den parietalen Kortex mit ein (Stoet & Snyder, 2004; Gail & 

Andersen, 2006), dessen Beteiligung jener des präfrontalen Kortex sogar vorausgehen kann. 

 Das zweite fMRT Projekt untersuchte die Abhängigkeit neuronaler Netzwerke für 

perzeptuelle Entscheidungen von der Sichtbarkeit visueller Reize. Dafür wurden Probanden 

Bilder von stark oder schwach maskierten Objekten dargeboten, die bezüglich ihrer 

Kategoriezugehörigkeit zu klassifizieren waren. Erneut wurden Mustererkennungsverfahren 

benutzt, um aus lokalen Aktivitätsmustern im Gehirn für beide Sichtbarkeitsbedingungen 

einzeln vorherzusagen, für welche Kategorie sich die Probanden entschieden. Signale aus 

dem ventralen temporalen und okzipitalen Kortex (lateral-occipital complex, LOC) 
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erlaubten dabei die Vorhersage von Entscheidungen für gut sichtbare Objekte, aber nicht für 

stark maskierte Objekte. Es war jedoch möglich, die kategoriellen Entscheidungen für stark 

maskierte Objekte aus dem Precuneus im medialen dorsalen Parietalkortex vorherzusagen. 

Diese doppelte Dissoziation legt nahe, dass Entscheidungen unter hoher und niedriger 

Sichtbarkeit auf verschiedenen Mechanismen (Netzwerken) beruhen. Dieser Befund 

widerspricht Annahmen der Sigal-Entdeckungs-Theorie (Swets, 1961), die vorhersagt, dass 

auch unter niedriger Sichtbarkeit Signale in den gleichen sensorischen Arealen für 

perzeptuelle Entscheidungen ausschlaggebend sein sollten. In diesem Falle sollten zufällige 

Fluktuationen („noise“) im perzeptuellen System statt echtem sensorischen Input eine 

zufällige Entscheidung produzieren. Die Befunde der vorliegendnen Studie sprechen jedoch 

dafür, dass im Falle des Vorliegens unzureichender sensorischer Information (sensorische 

„Symmetrie“ bezüglich der relevanten Alternativen) der Precuneus in die Generierung einer 

zufälligen internalen Entscheidung involviert ist. Diese Interpretation wird durch eine 

kürzlich publizierte Studie gestützt, die zeigen konnte, dass der Percuneus auch an der 

Bildung freier zufälliger Entscheidungen beteiligt ist (Soon et al., 2008).  

 Basierend auf den vorausgegangenen Befunden, testete das dritte fMRT Experiment 

direkt die Vergleichbarkeit der neuronalen Mechanismen von Rate-Entscheidungen, die bei 

unzureichendem visuellem Input getroffen werden, mit geplant freien Entscheidungen 

(Haggard, 2008). Hierzu wurden Probanden in einem Teil der Durchgänge gebeten, erneut 

eine perzeptuelle Entscheidung über die Kategorie von stark maskierten Bildern zu treffen. 

Alternativ sollte in anderen Durchgängen bei gleicher visueller Stimulation eine spontane, 

freie Entscheidung für eine der Kategorien getroffen werden. Um jegliche Beeinflussung 

der Entscheidungen durch das verwendete Stimulusmaterial zu vermeiden, wurde in beiden 

Fällen kein echtes Objekt präsentiert, was durch die kurze Darbietungszeit und starke 

Maskierung jedoch nicht wahrnehmbar war. Erneut wurden Mustererkennungsverfahren auf 

die fMRT-Daten angewendet und Hirnregionen identifiziert, deren Muster regionaler 

Signale die Vorhersage der Entscheidungen erlaubten. Insbesondere war von Interesse, nach 

Regionen zu suchen, in denen die Aktivierungsmuster der Rate-Entscheidungen und der 

freien Entscheidungen eine so große Ähnlichkeit aufwiesen, dass sie austauschbar waren. Es 

konnte erneut gezeigt werden, dass der Precuneus, bis hin zum lateralen posterioren 

Parietalkortex, Rate-Entscheidungen enkodierte, wenn diese unter Abwesenheit nützlicher 

visueller Information getroffen werden mussten. Zusätzlich war diese Region auch begrenzt 

prädiktiv für freie Entscheidungen und zeigte außerdem die vermutete Austauschbarkeit 

neuronaler Muster für Rate-Entscheidungen und freie Entscheidungen. Aus 
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Aktivierungsmustern des medialen anterioren Präfrontalkortex hingegen, konnten wie in 

früheren Experimenten (Haynes et al., 2007; Soon et al., 2008), nur geplant freie 

Entscheidungen vorhergesagt werden.  

Die vorliegende Arbeit demonstriert die große Beteutung parietaler Areale, sowohl 

für die Kontrolle regelgeleiteter Handlungen (IPS) als auch für selbstbestimmte Handlungen 

(Precuneus / posteriorer Parietalkortex). Der parietale Kortex kann somit als multi-modales 

Integrations-Modul verstanden werden, das an der Auswahl von Handlungszielen und 

dessen Aufrechterhaltung, sowie an der Verarbeitung von Intentionen und Entscheidungen 

mit hohem Selbstbezug beteiligt ist. Vom methodischen Standpunkt betrachtet, bestätigt die 

vorliegende Arbeit den großen Nutzen multivariater Mustererkennungsverfahren für die 

Analyse von fMRT Daten, auch für höhere kognitive Prozesse. In den hier vorgestellten 

Studien konnte die Möglichkeit demonstriert werden, aus lokalen Aktivierungsmustern 

direkt vorherzusagen, welche abstrakte Regel ein Proband gerade anwendet oder welche 

Entscheidung er trifft. Diese Methodik erlaubt es, einen stärkeren Bezug zwischen 

menschlichen kognitiven Funktionen und den ihnen zugrunde liegenden neuronalen 

Netzwerken herzustellen als es mit nicht-invasiven bildgebenden Verfahren bislang möglich 

war. Damit verknüft ist die Hoffnung, dass die vorliegende Arbeit auch eine Grundlage für 

weitere Forschung und ein tieferes Verständnis der neuronalen Basis von flexiblen 

menschlichen Entscheidungsprozessen für die Zukunft darstellen kann. 
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Appendix A 

 

Joystick and custom-made plexiglass table for fMRI 

 

 
Figure A-1: Joystick and custom-made fMRI compatible plexiglass table. a) The joystick was fixed on the 

plexiglass construction using plastic screws. Only left and right movements could be performed. Movements in 

both directions required the same amount of muscle strength, adjustable by using different in-built bridge layers 

b) The plexiglass table comprised two similar parts, each of which featuring striations on the side. Being 

perpendicular to their counterparts, these striations allowed fixing the upper part of the table in every desired tilt 

angle using plastic screws. This assured that the participants’ arms rested in a comfortable position throughout 

the entire experiment. The lower part of the plexiglass table was placed below the scanner mattress, such that 

participants’ weight prohibited any movement of the table (photo: Stephan Liebig). 
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Univariate fMRI data analysis 

 

Only trials with correct responses were included in the univariate data analysis. The fMRI 

data were motion corrected, spatially normalised to a standard stereotaxic space (Montreal 

Neurological Institute EPI template) and re-sampled to an isotropic spatial resolution of 3 x 

3 x 3 mm3 in SPM2. Data were smoothed with a Gaussian kernel of 8 mm FWHM to 

account for anatomical variability and to satisfy the assumption of Gaussian random field 

theory. For statistical analyses, a FWE corrected threshold of p < .05 was used. The analysis 

aimed to find brain regions that were significantly activated during processing of the cue 

(task-set), the perception of the target stimulus and the execution of the motor response. 

Furthermore, the contrasts between the different task-sets, between target stimuli and 

between responses were calculated. A GLM as implemented in SPM2 was used for the 

analyses. It consisted of six boxcar regressors, each convolved with a canonical HRF. The 

first two regressors modelled cue “A” and cue “B”, the third and fourth regressors modelled 

target 1 and target 2, and the last two regressors modelled the responses (left and right). 

The analysis searched for regions with an overall increase in activation during the 

different stages of information processing. During processing of the rule beginning with the 

presentation of the cue, increased activation was found in visual cortex, intraparietal sulcus 

(IPS), the medial frontal gyrus corresponding to supplementary motor cortex (SMA) and 

pre-SMA (Table A-1). During presentation of the target, the visual cortex was also acti-

vated, along with several regions of prefrontal cortex, including the left insula, premotor 

cortex (predominantly left) and left primary motor cortex. This presumably indicates that 

motor preparation was already taking place during the early stages of target stimulus 

presentation (Table A-2). During response execution, activation was increased primarily in 

motor-related areas including primary motor cortex, premotor cortex, basal ganglia and 

cerebellum as well as in temporal cortex (Table A-3). No brain region could be identified 

that was more activated during the presentation of cue “A” compared to cue “B” nor was 

there conversely a brain region that was more activated during the presentation of cue “B” 

compared to cue “A”. The same held true for the comparison of target stimuli as well as 

comparing left and right motor responses (note that both, left and right responses with the 

joystick were performed with the right hand only).  
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Table A-1: General peak activation for cue presentation. 

Anatomical area L/R T-value x y z 

      

Middle occipital gyrus L 8.85 -27 -84 -6 

 R 7.32 30 -84 0 

Calcarine sulcus L 7.86 -15 -93 -6 

 R 7.82 15 -90 -9 

      

Intraparietal sulcus L 7.14 -30 -54 54 

      

Medial frontal gyrus L 6.29 -6 15 51 

 L 6.01 -27 -3 54 

      

Note: The coordinates are given according to MNI space with their T-values. L = left hemisphere, R = right 

hemisphere; all FWE-corrected (p < .05; voxel threshold = 10 voxels). 

 

Table A-2: General peak activation for target stimuli. 

Anatomical area L/R T-value x y z 

      

Calcarine sulcus L 9.63 -15 -90 -9 

Medial occipital gyrus R 8.94 30 -75 -12 

Inferior occipital gyrus R 9.05 36 -79 3 

Cuneus R 7.20 9 -72 12 

 L 5.68 -12 -75 12 

      

Medial superior frontal sulcus L 8.04 -6 -18 51 

Medial superior frontal gyrus L 7.20 -6 0 48 

      

Precentral gyrus L 6.32 -9 -30 54 

 L 7.58 -33 -15 42 

Central sulcus L 6.75 -27 -27 48 

Postcentral gyrus R 5.65 63 -15 39 

      

Insula L 6.40 -42 3 3 

      

Note: The coordinates are given according to MNI space with their T-values. L = left hemisphere, R = right 

hemisphere; all FWE-corrected (p < .05; voxel threshold = 10 voxels). 
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Table A-3: General peak activation for motor responses. 

Anatomical area L/R T-value x y z 

      

Cerebellum L 14.85 -48 -69 -27 

 R 14.41 51 -57 -30 

      

Basal ganglia R 14.81 18 0 27 

 L 6.19 -18 0 -9 

      

Precentral gyrus R 10.73 6 -27 78 

Postcentral gyrus R 8.26 3 -51 72 

 L 7.88 -3 -51 72 

      

Superior temporal gyrus L 7.42 -51 -6 6 

Medial temporal gyrus L 5.88 -66 -48 -3 

      

Note: The coordinates are given according to MNI space with their T-values. L = left hemisphere, R = right 

hemisphere; all FWE-corrected (p < .05; voxel threshold = 10 voxels). 
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Decoding of target stimuli 

 

 
Figure A-2: Decoding target stimuli. The figure shows decoding accuracy [%] of target stimuli collapsed 

across both task-sets, which made it possible to dissociate encoding of stimuli from encoding of motor responses 

(radius = 4 voxels). The graphs show mean decoding accuracies and standard errors over time. Regions dis-

played showed decoding above chance level (50%; voxel threshold = 10 voxels) in time bins 3-5. The cue was 

presented at the beginning of each trial (onset 0 sec), followed by the target stimulus (onset 4.2 sec) and the 

motor response (onset 8.4 sec). It was necessary to account for the temporal delay of the BOLD signal such that 

time bins were shifted by 2 volumes (i.e. time bin 1 is the earliest that could reflect cue related activity). Visual 

cortex encoded the target stimulus from time bin 3 on, peaking in bin 4 (p < .05 FWE corrected). Anterior 

ventrolateral prefrontal cortex showed significant decoding accuracy in time bins 4 and 5, peaking at 56% (p < 

.001 uncorrected). No other regions were predictive above chance for target stimuli in any other time bin. 

Coordinates displayed are MNI coordinates. 
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Decoding of motor responses 

 

 
Figure A-3: Decoding motor responses. The figure shows decoding accuracy [%] of motor responses collapsed 

across both task-sets, which makes it possible to dissociate encoding of motor responses from encoding of target 

stimuli (radius = 4 voxels). The graphs show mean decoding accuracies and standard errors over time. The cue 

was presented at the beginning of each trial (onset 0 sec), followed by the target stimulus (onset 4.2 sec) and the 

motor response (onset 8.4 sec). It was necessary to account for the temporal delay of the BOLD signal such that 

time bins were shifted by 2 volumes (i.e. time bin 1 is the earliest that could reflect cue related activity). Regions 

displayed allowed decoding of motor responses above chance level (50%; voxel threshold = 10 voxels) after 

FWE correction (p < .05) in time bins 3-5. Bilateral premotor cortex, bilateral primary motor cortex and left 

medial occipito-temporal sulcus encoded the motor response. All regions showed similar information time 

courses, reaching their maxima in the third or fourth time bin (peak of 77%). No other regions were predictive 

above chance for motor responses in any other time bin. Coordinates displayed are MNI coordinates. 
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Decoding of stimulus-response combinations 

 

In an additional analysis, the question was addressed whether the four individual combina-

tions of rules and target stimuli were also encoded in prefrontal and parietal cortex. Asaad 

and colleagues (1998) demonstrated in monkeys that lateral PFC can encode combinations 

of stimuli and rules. It should be noted that the conditions defined by rule-stimulus combi-

nations can also be regarded as stimulus-response combinations. This analysis therefore 

cannot disentangle target stimuli from motor responses. For this analysis, the fMRI data 

were motion corrected and re-sampled to an isotropic spatial resolution of 3 x 3 x 3 mm3 in 

SPM2 as described for the main analyses. Again, a GLM approach as implemented in SPM2 

was used, consisting of four boxcar regressors modelling the trials according to the rule-

stimulus combination involved. Each regressor was convolved with a canonical HRF. 

Finally, a searchlight pattern classification analysis was implemented (as described in 

methods in Experimental Section I) to decode the four individual combinations of rules and 

target stimuli.  

First, the searchlight clusters in pVLPFC, aVLPFC and IPS that encoded the abstract 

rules and target stimuli were analysed (Table A-4). All regions encoded the individual rule-

stimulus combinations with decoding accuracies between 7 to 12% above chance level 

(25%). Nevertheless, this trend did not reach statistical significance using the same thresh-

old as used for the other analyses reported here (all p > .001 uncorrected). Statistically 

significant accuracies for decoding individual rule-stimulus combinations could only be 

found in visual cortex and pre-motor as well as motor areas (Figure A-4). These findings 

confirm that combinations of stimuli and rules are also simply combinations of stimuli and 

responses, hence, encoded in the respective areas. Further regions, which could also encode 

these combinations, might not have been detectable because of the decrease in statistical 

power due to the increase in distinct conditions (four instead of two as in the main analyses) 

and the decrease of trials per conditions. 
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Table A-4: Decoding rule-target combinations from parietal and prefrontal regions. 

Anatomical area L/R Decoding 

accuracy 

SE T-value x y z 

        

Intraparietal sulcus L 32 % 2.1 2.86 -24 -45 42 

        

Posterior prefrontal cortex L 32 % 2.7 2.05 -48 12 21 

        

Anterior prefrontal cortex (I) L 36 % 4.9 1.97 -51 33 3 

Anterior prefrontal cortex (II) L 37 % 4.1 2.85 -51 33 -12 

        

Note: Listed are only results for the searchlight clusters in IPS, pVLPFC and aVLPFC that showed high 

decoding accuracies for task-sets and target stimuli in the main analyses. Chance level was 25% for four rule-

target combinations. The coordinates are given according to MNI space with their corresponding T-values. L = 

left hemisphere, R = right hemisphere. None of the decoding accuracies significantly exceeded chance level (all 

p > .001, uncorrected). 

 

 

 

Figure A-4: Unconstrained decoding 

of rule-target combinations. 

 Decoding was performed using a 

moving searchlight (radius = 4 

voxels). Displayed are mean decoding 

accuracies and standard errors in 

regions showing the highest accuracies 

above chance (25%) as well as corpus 

callosum as a non-significant control 

region. A statistical threshold of p < 

.00001 (uncorrected) and a voxel 

threshold of 10 voxels were used. 

Significant accuracies could be found 

in visual cortex (peak accuracy 46%; 

MNI [-9 -93 7]), pre-SMA (peak 38%; 

MNI [-18 31 32]) and SMA/M1 (peak 

34%; MNI [3 -14 62]). Combinations 

of stimuli and rules are also combina-

tions of stimuli and responses, 

explaining the high accuracies in 

visual and motor areas. 
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Appendix B 

 

Behavioural pre-tests I: Selection of categories and masking procedure 

 

Participants and procedure 

The pre-test aimed at selecting optimal object categories and a masking procedure for the 

fMRI experiment. Ten participants (seven female, mean 24 years, SD = 2.31) took part in 

this experiment. None of them took part in any other pre-test or the final fMRI study. All 

participants were right-handed and had normal or corrected to normal visual acuity. Partici-

pants were paid 7 € for their participation. Stimuli were grey-scaled object images (400 x 

400 pixels) from four different categories (pianos, chairs, shoes, cars) in natural back-

grounds. Their construction is described in the main text (see Methods). Twelve images (out 

of thirty) from each category were used for the experiment. Two different types of masking 

were tested: backward-masking (Grill-Spector et al., 2000) and sandwich-masking, which 

used an additional pre-mask. As characteristics of the mask may be critical determinants of 

the degree of invisibility that can be achieved, differences between two mask compositions 

were additionally examined. For this purpose, every target picture was scrambled into 

random square tiles of either 40 x 40 pixels or 50 x 50 pixels in size (see Methods). The size 

of the tiles in the masks served as an additional experimental condition. For the sandwich-

masking procedure, two different masks with the respective tile size were used. The back-

ward masking procedure required only one mask. In sum, masking conditions tested were 

backward- and sandwich-masking with masks consisting of randomised but non-meaningful 

picture parts, namely 10 x 10 (small) or 8 x 8 (big) tiles.   

Different masking strengths were achieved by varying the target duration with re-

spect to the post-mask duration in all masking conditions. The pre-mask was kept constant 

with 167 ms for sandwich-masking. The four presentation durations of the target stimulus 

were a) 16.7 ms (very short; visible for 1 frame given a monitor refresh rate of 60 Hz) with 

a post-mask duration of 483.3 ms, b) 33.3 ms (short; 2 frames) with a post-mask duration of 

466.7 ms, c) 50.0 ms (long; 3 frames) and a post-mask duration of 450.0 ms and d) 66.7 

(very long; 4 frames) ms resulting in a post-mask duration of 433.3 ms. The masking 

methods (backward vs. sandwich) were used in distinct experimental blocks. The order of 
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blocks was pseudo-randomised between participants. In every block, each of the twelve 

objects from the four different categories was shown once in every visibility condition. This 

equated to a total of 192 trials performed per block. Each trial was followed by a two 

second delay, allowing time for responses. All stimuli were shown on a 17'' TFT screen 

using a Barebone Shuttle Pentium4 personal computer (Megware Computers); the presenta-

tion software used was the Cogent toolbox for MATLAB 7.0 (The MathWorks, Inc.). 

Comparable to the fMRI study the estimated angle of vision of � ~ 0.72° for all stimuli. The 

background was kept a constant dark-grey. Participants had to fixate on the white cross that 

was always superimposed. On each trial, they were instructed to report the category they 

believed the presented object to have by pressing one of four buttons on a response device, 

each randomly assigned to one of the four categories, with their right and left middle- and 

index fingers. In the case that participants could not make a decision or were unsure, they 

were instructed to guess. The data was analysed by calculating a d-prime (d') visibility 

index for each condition as described for the main experiment (see Methods and caption of 

Figure B-1). This procedure allowed a direct comparison of distributions of visibility 

characteristics between the experimental conditions for each category. 

 

Results 

The distribution of visibility indices for the different categories in each visibility condition 

are shown in Figure B-1. Because of the low number of participants and the explorative 

nature of the pre-test, no statistical tests were performed. From visual inspection it became 

obvious that sandwich-masking led to stronger masking and less visibility in all conditions. 

Sandwich-masking showed a gradual increase in visibility with increasing target duration 

and seemed to be the more appropriate procedure. In general, cars and shoes were detected 

more easily compared to pianos and chairs, even under strong masking conditions. Partici-

pants’ self-reports also led to the conclusion that the characteristic shapes of cars and shoes 

were detected too easily. Chairs and pianos demonstrated better and highly similar visibility 

characteristics and were selected for the fMRI experiment. Target durations of 16.7 ms and 

66.7 ms were selected for the fMRI experiment because they facilitated a maximum differ-

ence in object visibility. Since the difference in tile sizes of the masks did not lead to 

substantial differences, the one tending to yield slightly better masking properties was 

selected, namely the mask comprised of 40 x 40 pixel tiles. 
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Figure B-1: Visibility characteristics of categories and masking procedures. a) Sandwich-masking using 400 

x 400 pixel masks comprised of 10 x 10 tiles (each 40 x 40 pixels), randomly chosen from different images. 12 

target images from four categories (cars, chairs, shoes, pianos) were tested in a perceptual category detection 

task. Displayed are mean d' values [d' = z(hits) – z(false alarms)] and standard errors for four visibility condi-

tions (target durations of 16.7 ms, 33.3 ms, 50.0 ms, 67.7 ms; post-mask duration 500 ms minus target duration; 

pre-mask duration was kept constant at 167 ms) for N=10 participants. b) Sandwich-masking as described for (a) 

but using masks comprised of 8 x 8 scrambled image tiles (50 x 50 pixel). c) Backward-masking using a 400 x 

400 pixel mask comprised of 10 x 10 scrambled image tiles (40 x 40 pixel) shown directly after target image 

presentation. d) Backward masking as described for (c) using a 400 x 400 pixel mask comprised of 8 x 8 squares 

of scrambled image pieces (50 x 50 pixel). Since the gradual increase of visibility was best in sandwich-masking 

and target durations of 16.7 ms and 66.7 ms gave best separation between conditions, these were selected for the 

fMRI experiment. Pianos and chairs were found to be most comparable and hardest to detect; these were also 

chosen for the fMRI experiment. 
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Behavioural pre-tests II: Repetitive masking 

 

Participants and procedure 

Additional behavioural pre-tests were conducted to test a four-time repetition of target and 

masks in rapid succession to extend the total visual stimulation duration without substan-

tially changing the visibility characteristics (Macknik & Livingstone, 1998).  

The sample consisted of ten right-handed participants with normal visual acuity 

(seven female, M = 23.9, SD = 2.69). None of the participants took part in any other pre-test 

or the final fMRI study. Participants were paid 7 € for their participation. Sixteen masked 

stimuli from three object categories (chairs, pianos and noise) were presented using repeti-

tive backward-masking and repetitive sandwich-masking in separate blocks (masks 10 x 10 

scrambled tiles). Two visibility conditions (high: target 66.7 ms, post-mask 433.3 ms; low: 

target 16.7 ms, post-mask 483.3 ms; chosen from pre-test I) were used, resulting in 96 trials 

in total per block. Every presentation of masked targets was repeated four times in direct 

succession before the participants were allowed to respond (three seconds response delay). 

The task and setting was the same as for the first pre-test (see above). Responses (left 

middle and index fingers, right index finger) were randomly assigned to the three categories 

on a trial-by-trial basis.  

 

Results 

Statistical analyses were not performed due to the small pre-test sample; however, the 

general pattern of visibility characteristics using the different masking procedures was 

similar to those obtained in the first pre-test. While the visibilities achieved using sandwich 

masking were very low and uniform for all categories, the indices for backward masking 

were already high using 66.7 ms target duration (Figure B-2). Visibility indices might have 

plateaued and showed a ceiling effect using backward masking. Values around d' = 5 can be 

considered nearly perfect, at which point the masking can be assumed ineffective. In 

summary, optimal masking could only be achieved using repetitive sandwich-masking. 

Additionally, considering the more balanced distribution of mean d'-values between catego-

ries using repetitive sandwich-masking, this approach was confirmed to be the most suitable 

method for the final fMRI experiment.  
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Figure B-2: Visibility of object categories using repetitive masking. Shown are the d' values (for n=10 

participants) for a) backward-masking (only post-mask, duration of 500 ms minus target duration) and b) 

sandwich-masking (duration of 167 ms for the pre-mask and 500 ms minus target duration for the post-mask), 

for two different target durations (16.7 ms and 66.7 ms). While the visibility achieved using sandwich-masking 

was still reduced for 66.7 ms target duration (right side), visibility showed a ceiling effect using backward-

masking (left side). Optimal masking could only be achieved in the condition of 16.7 ms target presentation with 

repetitive sandwich-masking.  
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Behavioural pre-test III: Selection of target stimuli 

 

The purpose of the third pre-test was to select object images from a pool of images for each 

category that showed distinct visibility characteristics under the final two masking condi-

tions, such that the highest degree of comparability was maintained across categories. 

  

Participants and procedure 

An independent sample of nine participants (5 female, M = 26, SD = 3.5) participated in 

this pre-test. They were also exclusively right-handed, had normal or corrected to normal 

visual acuity and were paid 7 € for their participation. The general procedure and material 

was exactly the same as in the second pre-test but using the repetitive sandwich-masking 

approach only (see pre-test II). The final two visibility conditions used target durations of 

16.7 ms (low visibility: post-mask duration of 483.3 ms) and 66.7 ms (high visibility: post-

mask duration of 433.3 ms). 30 target objects of each category were presented once per run 

in both visibility conditions, resulting in 180 trials. The order of trials was individually 

randomised for each participant and each run. All participants performed two experimental 

runs. 

The overall percentage of hits was calculated for each object in all three categories. 

Note that for single-object analyses, false alarms were impossible to calculate. Only objects 

that showed substantially different visibility characteristics under the two visibility condi-

tions were selected for the fMRI experiment while objects showing exceptional visibility 

characteristics were discarded. More specifically, objects had to be classified correctly in 

more that 55% of all cases under high visibility and in more than 25% but not more than 

75% under low visibility. Objects that were misclassified even more often were considered 

systematically misleading and were therefore discarded. Some objects were dismissed 

because of too characteristic picture properties (according to subjects’ reports). 

 

Results 

A complete overview of the visibility characteristics is given in Table B-1. The best 24 

object images were chosen for the final fMRI experiment (Figures B-3, B-4 and B-5). 
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Table B-1: Descriptive statistics (hits) for criteria-based selection of target objects. 

 Pianos Chairs Noise 

Object 
number 

low 
visibility 

high 
visibility 

low 
visibility 

high 
visibility 

low 
visibility 

high 
visibility 

1 44.44 100.00 61.11 100.00 27.78 77.78 
2 38.89 72.22 61.11 100.00 22.22 55.56 
3 50.00 100.00 61.11 100.00 27.78 38.89 
4 50.00 77.78 77.78 100.00 25.22 66.67 
5 27.78 55.56* 50.00 100.00 50.00 61.11 
6 44.44 100.00 66.67 100.00 33.33 88.89 
7 22.22 94.44 38.89 100.00 50.00 83.33 
8 61.11 100.00 50.00 100.00 44.44 83.33 
9 50.00 94.44 66.67 88.89 27.78 88.89 

10 22.22 94.44 66.67 100.00 38.89 83.33 
11 38.89 77.78 88.89 100.00 61.11 72.22 
12 55.56 100.00 38.89 100.00 27.78 88.89 
13 50.00 100.00 44.44 88.89 33.33 72.22 
14 44.44 100.00 27.78 94.44 38.89 61.11 
15 38.89 100.00 55.56 100.00 27.78 55.56 
16 38.89 94.44 50.00 94.44 33.33 77.78 
17 55.56 88.89 83.33 100.00 44.44 88.89 
18 38.89 100.00 72.22 100.00 27.78 22.22 
19 27.78 100.00 61.11 100.00 61.11 66.67 
20 66.67* 88.89 22.22 72.22 38.89 77.78 
21 44.44 94.44 33.33 66.67 55.56 72.22 
22 38.89 100.00 44.44 83.33 16.67 50.00 
23 50.00 100.00 55.56 100.00 38.89 88.89 
24 61.11 88.89 72.22 100.00 38.89 88.89 
25 55.56* 100.00 77.78 100.00 27.78 72.22 
26 50.00 94.44 38.89 100.00 22.22 33.33 
27 27.78 100.00 33.33 50.00 22.22 66.67 
28 50.00 83.33 38.89 77.78 50.00 77.78 
29 33.33 50.00 61.11 100.00 38.89 55.56 
30 55.56 94.44 38.89 100.00 33.33 77.78 

 

Note: Mean hit rates [%] are reported for all possible target images from the selected categories under two 

visibility conditions (sample of n = 9 participants). Target durations were 16.7 ms (low visibility) and 66.7 ms 

(high visibility). Post-mask duration was calculated 500 ms minus target duration, pre-mask duration was always 

167 ms. The selection criteria are given in the text. Some objects were dismissed because of too characteristic 

picture properties (*). Those images whose visibility characteristics did not satisfy the criteria (red) are high-

lighted in grey. The selected images are can be found in Figures B-3 (pianos), B-4 (chairs) and B-5 (noise 

images). 
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Figure B-3: Images of pianos used for fMRI masking experiment. The figure displays the final selection of 

24 different images (400 x 400 pixels) of pianos (for selection procedure see above).  

 

 
Figure B-4: Images of chairs used for fMRI masking experiment. The figure displays the final selection of 

24 different images (400 x 400 pixels) of chairs (for selection procedure see above).  

Pianos

Chairs
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Figure B-5: Phase-randomised noise images used for fMRI masking experiment. The figure displays the 

final selection of 24 different noise images (400 x 400 pixels; for selection procedure see above). The images 

were created from all piano and chair images using a phase-randomisation procedure following a 2-D Fourier 

transformation (for details see Methods).  

Noise images
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Confusion matrix in perceptual decision making 

 

 

Figure B-6: Confusion matrix in perceptual decision making. For each category (here illustrated for pianos 

as the target category), four cases are possible when objects have to be classified. “Hit” refers to correct 

classification of an object from the target category; “false alarm” refers to the incorrect classification of the 

object as belonging to the target category while a different category was presented; “correct rejection” refers 

to the classification as a non-target category object while a non-target category object was presented; “miss” 

refers to the classification as a non-target category object while the target category was presented. Note that in 

the present study, there were always two non-target categories such that object categories have to be sorted 

individually. The decoding analyses averaged across each combination of the two cells (choices, independent 

from real stimuli; stimuli, independent from choices; errors vs. correct responses). Cell-wise analyses could 

not be performed due to the small number (and uneven distribution) of trials per cell. 

HIT

e.g. piano presented,
piano chosen

CORR. REJECTION

e.g. chair (noise) presented,
chair (noise) chosen

Decoding choices

Decoding stimuli

Decoding errors vs.
correct responses

FALSE ALARM

e.g. chair (noise) presented,
piano chosen

MISS

e.g. piano presented,
chair (noise) chosen
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Mean hit rates for fMRI masking experiment 

 

 
Figure B-7: Mean hit rates for object categories.  a) Behavioural data was analysed by calculating hit rates as 

a visibility index for each condition (high visibility = dark bars; low visibility = bright bars). Displayed are mean 

hit rates and standard errors for the final sample (N=14). The statistical results were highly comparable to the 

analyses by means of d' values. Following an ANOVA for repeated measures [F(5,65) = 57.71; Eta2 = 0.75; p < 

.001], post-hoc Sheffé-tests correcting for multiple comparisons revealed significant differences between high 

and low visibility for all object categories (p < .001 for all comparisons; pianos: high visibility 89%, SD = 2.99; 

low visibility 34%, SD = 2.79; chairs: high visibility 93%; SD = 1.80; low visibility: 45%, SD = 2.93; noise: 

high visibility 79%, SD = 3.24; low visibility 46%, SD = 5.74). Highly visible objects achieved significant hit 

rates above chance level (p < .001 for all). In the low-visibility condition, only the hit rate for chairs slightly 

exceeded chance level (pianos: p > .05; chairs: p < .01; noise: p > .05). b) Individual visibility indices. The graph 

displays individual hit rates for each participant for both visibility conditions and all three categories. Dark lines: 

categories in “high visibility” condition (mean 87.0%; SE 2.68); bright lines: categories in “low visibility” 

condition (mean 41.7%; SE 3.82). Nearly all participants showed a clear separation between visibility conditions 

(exception participant 4 in one case). The same category was never perceived better under “low visibility” 

compared to “high visibility” by any of the participants. 

20

30

40

50

60

70

80

90

100

H
it

 ra
te

 [%
]

pianos chairs noise

***
***

***

* p < .05
** p < .01

*** p < .001

chance

*

*** *** ***

**

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14

mean high

mean lowH
it

 r
at

e 
[%

]

Subjects (N = 14)

Pianos high visibility
low visibilityChairs

Noise

a) b)

low visibilityhigh visibility



 

 xxi

Univariate fMRI data analysis 

 

Conventional univariate analyses were used to identify brain regions where the overall level 

of activity was significantly increased during the presentation of objects shown in different 

visibility conditions; it was also used to contrast processing of real object images (pianos 

and chairs) with noise images in both visibility conditions. For these analyses the data of the 

main experiment underwent motion correction, spatial normalisation to a standard stereo-

taxic space (Montreal Neurological Institute EPI template) and re-sampling to an isotropic 

spatial resolution of 3 x 3 x 3 mm3 with SPM2. Additionally, data were smoothed with a 

Gaussian kernel of 8 mm FWHM to account for anatomical variability and to satisfy the 

assumption of Gaussian random field theory. A general linear model (GLM) as imple-

mented in SPM2 was used. It consisted of six boxcar regressors, each convolved with a 

canonical haemodynamic response function (HRF). These modelled the presentation of 

pianos, chairs and noise images (individually for “high visibility” and “low visibility”). 

For the “high visibility” condition, stronger activations for real objects compared to 

noise images were found exclusively in left LOC and in a region in right anterior temporal 

cortex, which has been linked to semantic memory and conceptual knowledge about so-

cially used stimuli (Simmons & Martin, 2009). No region showed stronger activations for 

real objects compared to noise images under low visibility. Also, no region could be found 

that showed the inverse effect of stronger activations for noise images than for real object 

images, neither in the “high visibility” nor in the “low visibility” condition. Next, the 

contrast of “high visibility” versus “low visibility” was calculated across all categories. 

Only the same region in right anterior temporal cortex showed stronger activation for “high 

visibility” than for “low visibility”. Conversely, a region in dorso-medial frontal cortex in 

the rostral cingulate zone (RCZ) was stronger activated in the “low visibility” condition 

compared to the “high visibility” condition for all categories (all results are reported in 

Table B-2, Figure B-8). The RCZ and adjacent regions have been linked to different aspects 

of decision uncertainty (Nachev et al., 2008) and guessing (Elliott, Rees & Dolan, 1999). 

Next, it was investigated if any region was more activated for error trials compared 

to correct trials and vice versa. Again, a GLM was used as described above. It consisted of 

three boxcar regressors, each convolved with a canonical HRF. These modelled (i) the 

correct trials for the low visibility condition, (ii) the error trials for the low visibility 
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condition as well as (iii) all trials for the high visibility condition (there were not sufficient 

errors under high visibility to allow an independent estimation of correct / error). Only the 

first two regressors were of interest. A group level analysis was conducted as described 

above. No region showed a difference between correct trials and error trials for the low 

visibility condition, even when a very low threshold of p < .01 (uncorrected; 10 voxels 

threshold) was applied. Additionally, the analyses were restricted to three regions of interest 

(ROIs), namely the left LOC [-21 -51 6], the right LOC [27 -39 -12] and the precuneus [-9 -

63 30] defined by the results of the independent pattern classification analysis for partici-

pants’ choices (applying a threshold of p < .0001 for ROI definition). Again, no brain region 

showed such a difference (Figure B-9), supporting the interpretation that the images have 

not been processed at the object-level when strong masking was used. 

 

Table B-2: Table of activation contrasts for univariate analysis. 

Contrast Anatomical area L/R T p < x y z 

        

Objects > Noise (all) ---       

Noise > Objects (all) ---       

        

Objects > Noise (HighVis) LOC L 3.45 .001 -18 -39 -12 

Noise > Objects (HighVis) ---       

        

Objects > Noise (LowVis) ---       

Noise > Objects (LowVis) ---       

        

Low > HighVis (all) medial frontal / RCZ L/R 5.52 .05 * -6 21 45 

High > LowVis (all) anterior temporal R 5.34 .05 * 21 6 -18 

        

Low > HighVis (Objects) medial frontal / RCZ L/R 5.59 .05 * -6 21 42 

High > LowVis (Objects) anterior temporal R 4.10 .001 21 6 -18 

 LOC L 4.07 .001 -24 -48 -9 

        

Low > HighVis (noise) ---       

High > LowVis (noise) ---       

  
Note: * FWE corrected; LowVis = “low visibility” condition; HighVis = “high visibility” condition; LOC = 
lateral-occipital complex; RCZ = rostral cingulate zone; Objects = images of pianos and chairs; Noise = phase-
randomised noise images; voxel threshold = 5 voxels in all analysis; coordinates refer to the MNI coordinate 
system. 
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Figure B-8: Activation contrasts for visual stimulation. a) Contrast of activations related to stimuli presented 

under high visibility versus low visibility. When all categories were included, a region in right anterior temporal 

cortex showed stronger activation for high visibility compared to low visibility (red; MNI [21 6 -18]; p < .05 

FWE-corrected). When only the real object categories (pianos and chairs) were used for the same contrast, this 

region again demonstrated stronger activation but at a lower statistical threshold, along with a cluster in left LOC 

(green; MNI [-24 -48 -9]; p < .001 uncorrected) b) Areas more strongly activated under low visibility than under 

high visibility. Regardless of whether all categories or only real object categories were included in the analysis, 

only one area located in medial frontal cortex / rostral cingulate zone (RCZ) was more strongly activated 

(yellow; MNI [-6 -21 42]; p < .05 FWE-corrected). Coordinates are MNI coordinates. 

 

 

Figure B-9: Results of univariate 

error analyses for low visibility 

condition. a) Contrast estimates for 

correct trials (dark) and incorrect trials 

(bright) for peak voxels of searchlight-

clusters from which decoding of 

participants’ choices was possible. 

None of these regions displayed any 

differences between correct and 

incorrect trials (p > .01 uncorrected). 

No other region could be found 

displaying such a difference. 
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Two-class pattern classification for presented objects 

 

Decoding participants’ categorical choices in the “high visibility” condition was possible 

from regions in bilateral LOC while decoding the presented object categories was possible 

from a wider range of visual areas (compare Figures 4-4 and 4-5). Additional multivariate 

decoding analyses were therefore performed to test the hypothesis that the wide spread of 

regions in the second case was caused by greater differences in low-level features between 

the real objects (pianos and chairs) compared to the noise images. In these analyses, only 

two categories of objects were used for classification at a time, thus, analyses for all three 

combinations of paired categories were conducted separately. The process of classification 

followed the same searchlight approach as described above (see Methods). The only differ-

ence was that by using two instead of three classes at a time, the chance level for decoding 

accuracy was 50%. The resulting brain maps of decoding accuracies of the two analyses 

using one real object category and the noise category were averaged (both based on the 

same number of images per category), preventing the use of uneven distributions in pattern 

vectors for single decoding analyses. Hence, the analyses resulted in two decoding accuracy 

maps: “decoding objects” and “decoding objects from noise”. 

Using only real object categories (pianos and chairs), decoding was possible for the 

“high visibility” condition from left LOC (see Figure 4-5b). Decoding object from noise 

images under high visibility was possible from a wider range of bilateral visual regions and 

LOC (Table B-3), highly overlapping with the regions found for three-class searchlight 

decoding. Again, under “low visibility” conditions no region allowed decoding. Taken 

together, these results confirmed that patterns in several visual areas could distinguish 

between visible objects and non-objects, pointing to the importance of differences in low-

level features of real objects and noise images (Kay et al., 2008; Walther et al., 2009). The 

LOC, on the other hand, was the only region revealing information encoding about distinct 

object categories, underlining its exclusive role in processing object category information in 

the ventral visual pathway. 
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Table B-3: Results of two-class decoding analyses for object categories. 

Decoding Anatomical 

area 

L/R Accuracy 

 

T p < x y z 

   M SE      

          

Obj only (LowVis) ---         

Obj only (HighVis) LOC L 58 1.6 5.26 .00001 -27 -60 -6 

          

Obj – Noise (LowVis) ---         

Obj – Noise (HighVis) VisCortex L 66 1.8 8.93 .05* -36 -87 12 

  R 60 1.3 7.78 .05* 45 -84 -6 

 dorsal VisC L 62 1.6 7.75 .05* -36 -54 42 

  R 63 1.6 7.77 .05* 3 -81 30 

 LOC L 67 2.0 8.42 .05* -36 -45 -6 

  R 71 2.5 8.39 .05* 33 -45 -24 

 
Note: * FWE corrected; LowVis = “low visibility” condition; HighVis = “high visibility” condition; LOC = 

lateral-occipital complex; VisCortex = visual cortex; Obj = images of pianos and chairs; Noise = phase-

randomised noise images; Voxel threshold = 5 voxels in all analysis; in the second part of the table, averaged 

decoding accuracies from two analyses (piano and noise images / chair and noise images) are reported. Coordi-

nates refer to the MNI coordinate system. 
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Correlation analysis of confusion matrices 

 

Using an additional approach, the detailed confusion matrix of classification results pro-

duced by the support vector machine classifier was correlated with the overall confusion 

matrices of the participants’ categorical choices. In other words, the analysis searched for 

regions in which the overall classifier performance (the errors of the classifier) and overall 

behavioural performance (the errors of the participants) showed a similar pattern, again 

separately for each visibility condition (for a similar approach see Walther et al., 2009). 

First, a confusion matrix was created for each condition, containing the percentage of how 

often the classifier predicted the chosen category to be piano, chair or noise with respect to 

the presentation of each category. Such a matrix was compiled for the classifier’s results of 

each searchlight cluster at each voxel position in the brain. The same was done for the 

participants’ behavioural choices with respect to the presented objects for the whole 

experiment, separately for both visibility conditions. For each searchlight cluster, the 

classifier’s and the participants’ confusion matrices were transformed into two-dimensional 

vectors and correlated. A Fisher’s Z-transformation was performed on the correlation 

coefficients. The Z-values were reconstructed into 3-dimensional brain maps for each 

participant. These were again normalised to the MNI EPI template and smoothed with a 

Gaussian kernel of 6 mm FWHM, allowing for group-level voxel-wise statistical analyses.  

This approach, however, only allowed a general correlation analysis between the 

classifier’s and participants’ performance across the entire experiment. Nevertheless, it was 

able to mirror the similarity of performance including the classification errors, which could 

systematically vary between presented object categories and is not reflected in the global 

decoding accuracy value. Regions displaying a high similarity between the pattern classi-

fier’s performance and the participants’ performance across all participants were located in 

bilateral visual cortex, the LOC and left orbito-frontal cortex when objects were highly 

visible (see Figure B-10b, green regions). Orbito-frontal cortex has been linked to object 

recognition before (Bar, 2004). For poorly visible objects, a high correlation could be found 

in the precuneus, located slightly dorsal to the precuneus cluster found for searchlight 

decoding. A second region was located on medial frontal gyrus (Figure B-10b, red regions). 

The analyses again revealed no overlap between the high and low visibility conditions. 
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Figure B-10: Correlation analysis of confusion matrices. a) Illustration of the confusion matrix approach by 

means of one participant’s data (classifier data taken from arbitrary searchlight clusters in the LOC and the 

precuneus). The pattern classifier’s performance for each searchlight cluster was transformed into a confusion 

matrix, displaying the classification errors for the entire experiment. The same transformation was done with 

participants’ categorical choices relative to the presented object. For each participant, one confusion matrix was 

conducted for the high visibility condition (left side in green) and one for the low visibility condition (right side 

in red). Since participants’ choices closely matched the presented categories for highly visible objects, both 

matrices had to depict high values in their diagonal cells in order to be highly correlated (left side). Additionally, 

similarities in tendency to systematic classification errors also added to a high correlation between the matrices. 

For poorly visible objects high correlations depended on similarities in overall performance of classifier and 

participant, hence similar errors (right side). b) Results: High correlations could be found for highly visible 

objects in bilateral visual cortex (peak:  MNI [42 -81 3]; Z = .55; p < .000001, uncorrected), bilateral LOC (peak: 

MNI [33 -48 -18]; Z = .52; p < .000001, uncorrected) and left orbito-frontal cortex (peak: MNI [-15 24 -18]; Z = 

.25; p < .0001, uncorrected). For the low visibility condition, high correlations could be found in the precuneus 

(peak: MNI [-12 -42 57]; Z = .71; p < .05, FEW corrected) and right medial frontal gyrus (peak: MNI [33 36 42]; 

Z = .70; p < .05, FWE corrected). 
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Individual searchlight patterns for decoding of choices 

 

 
 

 

Figure B-11: Individual 
searchlight patterns in 
LOC. The individual 
searchlight patterns are 
rendered onto the coronal 
slice containing the 
cluster from which 
decoding of participants’ 
category choices for 
highly visible objects 
was most robust. The 
displayed cluster belongs 
to the medial temporal 
cortex, extending to the 
LOC. Grey-matter voxels 
are colour-coded accor-
ding to the category 
choice that elicited the 
strongest BOLD response 
(blue = pianos; red = 
chairs; green = noise). 
Activation values are re-
scaled and transformed 
into colour values; strong 
saturation represents a 
stronger activation for a 
single decision. The 
patterns were stable 
within participants but 
unique for each partici-
pant. One participant was 
excluded from the 
analysis because the 
noise category was never 
selected in one run. 
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Figure B-12: Individual 
searchlight patterns in 
the precuneus. The 
individual searchlight 
patterns are rendered 
onto the coronal slice 
containing the cluster 
from which decoding of 
participants’ choices for 
poorly visible objects 
was most robust. The 
displayed cluster belongs 
to the precuneus. Grey-
matter voxels are colour-
coded according to the 
category choice that 
elicited the strongest 
BOLD response (blue = 
pianos; red = chairs; 
green = noise). Activa-
tion values are re-scaled 
and transformed into 
colour values; strong 
saturation represents a 
stronger activation for a 
single decision. The 
patterns were stable 
within participants but 
unique for each partici-
pant. One participant was 
excluded from the 
analysis because the 
noise category was never 
selected in one run. 
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Behavioural control experiment: Decision confidence and hit rates 

 

A behavioral control experiment was conducted outside the scanner with a different sample 

of 11 participants (6 female, mean age 27.0; range 18-31). All of them were right-handed, 

had normal or corrected to normal visual acuity, did not take part in any of the other ex-

periments and were paid 7 € for their participation. Participants performed three runs of the 

main experiment (see Methods) under similar viewing conditions (see pre-test I for setup 

and material). Participants additionally indicated their decision confidence on a five-point 

scale (1 = “no confidence” to 5 = “very confident”) after each trial. Responses were given 

via keyboard (buttons 1-3 for categories; buttons 1-5 for confidence rating). Visibility was 

strongly associated with decision confidence (for details see Figure B-13). 

 

  

Figure B-13: Decision confidence and visibility. Eleven different participants were presented with 3 runs of the 

main experiment outside the scanner. They additionally indicated their decision confidence (1 = “no confidence” 

to 5 = “very confident”) after each trial. The graph displays mean confidence ratings and hit rates with standard 

errors (SE). Confidence ratings mirrored hit rates with significantly higher decision confidence for highly visible 

objects compared to poorly visible objects for each category (two-tailed t-tests: pianos: t(10) = 9.51, p < .001; 

chairs: t(10) = 18.05, p < .001; noise: t (10) = 11.06, p < .001). The correlation (Pearson’s r) between hit rates 

and decision confidence was highly significant for each category (pianos: r = .89, p < .001; chairs: r = .90, p < 

.001; noise: r = .76, p < .001). 
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Decoding results from conventional LOC ROIs  

 

 
Figure B-14: Decoding category choices from LOC based on localizer-defined ROIs. a) Decoding accuracies 

are averaged for the three pair-wise classification processes of the three categories (chance level always 50%) for 

n = 8 participants. Bars are standard errors (SE). Left LOC showed significant decoding accuracy [65%; t(7) = 

5.94; p < .001] and right LOC just missed the threshold, still displaying a high accuracy of 61% [t(7) = 2.10; p = 

.07] for the “high visibility” condition. For the “low visibility” condition, left LOC [52%; t(7) = 0.61; p = .56] as 

well as right LOC [56%; t(7) = 1.68; p = .13] did not encode the categorical choices. b) Detailed analyses of the 

single pair-wise classification processes: The analyses revealed that for the “high visibility” condition, above 

chance classification was possible from left LOC for chairs and noise at 65% [t(7) = 3.56; p < .01] and pianos 

and noise at 73% [t(7) = 4.92; p <.01] but barely for pianos and chairs [57%; t(7) = 1.37; p = .21]. The right LOC 

consistently showed lower values: 65% accuracy for pianos and noise [t(7) = 3.56; p < .01] and non-significant 

accuracies for chairs and noise [63%; t(7) = 1.77; p = .12] as well as pianos and chairs [56%; t(7) = 0.91; p = 

.39]. For the “low visibility” condition, neither the left LOC nor the right LOC was predictive above threshold 

for any category. In sum, the left LOC was especially predictive for participants’ choices of categories in the 

“high visibility” condition while LOC was not predictive for choices in the “low visibility” condition. The 

statistical power was reduced compared to the main analyses due to the smaller sample size. These findings, 

however, generally confirm the results from searchlight decoding in the LOC regions.  

 

 

40

45

50

55

60

65

70

75

80

85

45

50

55

60

65

70

75

high visibility low visibility

D
ec

o
d

in
g

 A
cc

u
ra

cy
 [%

]

chance

a) Mean decoding all chosen categories 
(pairwise: pianos, chairs, noise) 

D
ec

o
d

in
g

 A
cc

u
ra

cy
 [%

]

chance

high visibility low visibility

chairs -
noise

chairs -
noise

pianos -
noise

pianos -
noise

pianos -
chairs

pianos -
chairs

right LOC ROI

left LOC ROI

b) Decoding pairs of chosen categories in detail

*** ** **

** * p < .05
** p < .01
*** p < .001



 

 xxxii

 
Figure B-15: Decoding presented categories from LOC based on localizer-defined ROIs. a) Decoding 

accuracies are averaged for the three pair-wise classification processes of the three categories (chance level 50%) 

for n = 9 participants. Bars are standard errors (SE). The statistical power was reduced compared to the main 

analyses due to the smaller sample size. Significant decoding accuracies above chance, however, were found for 

both the left LOC [69%; t(8) = 7.67; p < .001] and the right LOC [60%; t(8) = 3.42; p < .01] for the “high 

visibility” condition. For the “low visibility” condition, decoding accuracies for left LOC [50%; t(8) = .01; p = 

.99] and right LOC [54%; t(8) = 1.55; p = .16]) did not exceed chance level. Post hoc tests revealed that the 

difference in decoding accuracy between the “high visibility” and the “low visibility” condition was significant 

(p < .001) for the left LOC. b) For the “high visibility” condition, the single pair-wise analyses revealed that left 

LOC was always more informative than the right LOC, confirming the results from the searchlight decoding 

analysis. Separate t-tests revealed that above chance classification was possible from left LOC for chairs and 

noise at 74% [t(8) = 5.12; p < .001], pianos and noise at 74% accuracy [t(8) = 4.41; p < .01] as well as pianos 

and chairs at 60% [t(8) = 4.40; p < .01] for the “high visibility” condition. The right LOC consistently showed 

lower accuracies: 66% for chairs and noise [t(8)= 2.64; p < .05], 66% accuracy for pianos and noise [t(8)= 4.15; 

p < .01] and 50% for pianos and chairs, which did not reach statistical significance [t(8)= 0.01; p = .99]. For the 

“low visibility” condition, neither the left LOC nor the right LOC was predictive above threshold in any category 

analysis.  

 

 

40

45

50

55

60

65

70

75

80

85

45

50

55

60

65

70

75

high
visibility

low
visibility

D
ec

o
d

in
g

 A
cc

u
ra

cy
 [%

]

chance

**

a) Mean decoding of all presented
categories (pairwise: pianos, chairs, noise) 

D
ec

o
d

in
g

 A
cc

u
ra

cy
 [%

]
chance

high visibility low visibility

chairs -
noise

chairs -
noise

pianos -
noise

pianos -
noise

pianos -
chairs

pianos -
chairs

right LOC ROI

left LOC ROI

b) Decoding pairs of categories in detail

***
***

*
**

**

**

* p < .05
** p < .01
*** p < .001



 

 xxxiii

Comparison of precuneus regions with Soon et al. (2008) 

 

 
Figure B-16: Comparison of precuneus regions. In red: Medial view of precuneus region that encoded 

perceptual choices made with insufficient visual input in the present study. Black line: Medial view of precuneus 

region that encoded free decisions in Soon et al. (2008). Data from the present study and from Soon et al. (2008) 

are both displayed using a threshold of p < .0001 (uncorrected) for better visualisation. The regions display 

substantial overlap but the cluster from Soon et al. (2008) extents more anterior to posterior cingulate cortex 

(PPC). Differences might also be due to differences in modelling and the analysed time periods. 
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Appendix C 

 

Behavioural pre-test 

 

Behavioural pre-tests were conducted in order to assess the suitability of the experimental 

stimuli. First, they must create the illusion that hard-to-detect object stimuli were presented 

in all trials. Also, if participants experienced the two-fold scaling of visibility they would 

have given up on hard categorisation trials and only performed on easy categorisation trials. 

Second, the stimuli must not induce a systematic bias in participants’ choices towards any 

particular category. A sample of nine independent participants (5 female; mean age 24.8; 

range 20-30; right handed, normal or corrected to normal visual acuity; 7 Euros for partici-

pation) took part in the experiment outside the scanner. The setup was the same as for the 

pre-tests of the previous study (17'' TFT monitor, refresh rate of 60 Hz, resolution 1024 x 

768 pixel screen; presentation using the Cogent toolbox for MATLAB 7.0; estimated angle 

of vision � ~ 7.2° comparable to the fMRI experiment). The paradigm was the same as for 

the fMRI experiment (see Methods), using noise images for invisible categorisation (IV) 

and free decisions (FD). Participants consecutively performed two experimental blocks, 

which tested two variants of the paradigm (short: 66.7 ms target durations vs. long: 83.3 ms 

target duration for HV, while IV and FD were unchanged in both variations). The order of 

variants was randomised between participants. Participants were not informed about these 

differences. After performing each block, a self-conducted questionnaire was used to assess 

details about their impressions (Figure C-3). Finally, they were informed about the experi-

mental manipulation and asked if they noticed any missing object stimuli.  

Hit rates for the HV condition under both variants were comparably high. Partici-

pants were nearly equally well balanced in for the IV and the FD condition, close to 50% (p 

> .05 for all t-tests) (see Figure C-1). The shorter variant was perceived as harder by trend 

and was associated with slightly earlier decisions for the FD task (see Figure C-2). The 

illusion achieved by the noise stimuli was successful: participants made decisions for object 

categories in free decision trials and did not notice the missing objects. Given the slightly 

more challenging nature of the short duration variant and better comparability with the 

former study, the short duration variant was used for the fMRI study. 
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Figure C-1: Results of behavioural pre-test. a) Hit rates in the categorisation task for highly visible objects 

(HV). Displayed are the mean hit rates and standard errors for all participants (n = 9) using both variants of the 

paradigm (left side: “short”, 66.7 ms target duration and 433.3 ms post-mask duration; right side: “long”, 83.3 

ms target duration and 417.7 ms post-mask duration). Hit rates were 93.5% for pianos and 96.3% for chairs 

(short) and 95.4% for pianos and 98.6% for chairs (long), indicating that the “short” variant was slightly more 

challenging, however not significant. b) Choice ratios for invisible detection task (IV) and the free decision (FD) 

task for both variants of the paradigm. The variants did not differ in stimulation for these conditions. Participants 

were close to perfectly balanced on average (dotted line) in all conditions for both variants (short: 49% pianos 

and 51% chairs for IV task, 50% pianos and 50% chairs for FD task; long: 53% pianos and 47% chairs for IV 

task, 51% pianos and 49% chairs for FD task). 
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Figure C-2: Comparison of questionnaire results between paradigm variants. Given are the mean values for 

participants’ approval to the question on a five-point scale (from “1 = never” ranging to “5 = always”) after the 

pre-test. Questions 1-12 are sorted from left to right. The mean values for the questions are: question 1 (short: M 

= 3.7, SD = 0.5; long: M = 3.4, SD = 0.7), question 2 (short: M = 3.0, SD = 0.7; long: M = 3.4, SD = 0.7), 

question 3 (short: M = 3.6, SD = 1.7; long: M = 3.2, SD = 1.4), question 4 (short: M = 2.1, SD = 1.3; long: M = 

2.6, SD = 1.3), question 5 (short: M = 1.9, SD = 1.3; long: M = 2.1, SD = 1.3), question 6 (short: M = 4.1, SD = 

1.1; long: M = 4.1, SD = 0.8), question 7 (short: M = 1.3, SD = 0.7; long: M = 1.3, SD = 0.7), question 8 (short: 

M = 3.4, SD = 0.9; long: M = 3.1, SD = 1.5), question 9 (short: M = 1.4, SD = 0.5; long: M = 1.6, SD = 0.9), 

question 10 (short: M = 2.0, SD = 0.9; long: M = 1.8, SD = 1.1), question 11 (short: M = 2.2, SD = 0.8; long: M 

= 2.1, SD = 1.2), question 12 (short: M = 4.4, SD = 0.5; long: M = 3.8, SD = 1.3). 
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Figure C-3: Post-experimental questionnaire. The questionnaire was filled in after the pre-test and after the 

fMRI experiment.  
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Results questionnaire fMRI experiment 

 

 
Figure C-4: Results from post-experimental questionnaire for fMRI experiment. The questionnaire was the 

same as for the pre-test. It asked for participants’ rating on a five-point scale (“1 = never” to “5 = always”). 

Questions are sorted from left to right. The graphs show the distribution of participants’ responses in percent (n = 

15 = 100%). The categorisation/detection task was perceived as rather difficult (question 1: 3 = 33.3%; 4 = 

46.7%; 5 = 20%). Most participants thought that at least three levels of difficulty were used, confirming the 

successful illusion (question 2: 2 = 13.3%; 3 = 60%; 4 = 26.7%). Free decisions were made rather early in the 

trial (question 3: free decisions during cue presentation: 3 = 26.7%; 4 = 26.7%; 5 = 13.3%; question 4: free 

decisions during target presentation: 1 = 13.3%; 2 = 53.3%; 3 = 33.3%; question 5: free decisions during 

response mapping presentation: 1 = 60%; 2 = 33.3%; 3 = 6.7%). Free decisions were nearly always made for 

object categories instead of response buttons, as instructed (question 6: free decisions for object categories: 2 = 

6.7%; 4 = 26.7%; 5 = 66.7%; question 7: free decisions for buttons instead of categories: 1 = 73.3%; 2 = 26.7%). 

Participants did not pay much attention to the presented objects during free decision trials (question 8; 1 = 

13.3%; 2 = 46.7%; 3 = 26.7%; 4 = 13.3%) and did not believe they identified any presented objects (question 9: 

1 = 53.3%; 2 = 46.7%). The majority seldom believed that they identified a chair during free decisions (question 

10: 1 = 40%; 2 = 26.7%; 3 = 13.3%; 4 = 20%) or a piano (question 11: 1 = 40%; 2 = 46.7%; 3 = 13.3%). Instead, 

the majority indicated that they had not seen anything (question 12: 2 = 6.7%; 4 = 53.3%; 5 = 40%). 
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Choice ratios fMRI experiment 

 

 
Figure C-5: Individual choice ratios from fMRI experiment. Choice ratios for pianos (bright) and chairs 

(dark) for invisible categorisation (IV; no frame) and free decisions (FD; white frame). a) Ratios for all partici-

pants including all runs. One participant was extremely imbalanced (s5: > 80:20 for pianos-chairs in IV, dotted 

line) and was excluded completely. b) Ratios after excluding s5 (circle) and individual unacceptably imbalanced 

runs from six participants (boxes; 2 runs excluded for s4, s7; 1 run excluded for s3, s8, s12, s15). Runs were 

considered unacceptably imbalanced if the decision ratio was more extreme than 20:80 or 80:20 for one 

category. Individual decision ratios were closer to optimal decision ratio of 50:50 (solid line) after correction. 
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Choice ratios and decoding accuracy 

 

After excluding imbalanced individual participants and single runs, there were still differ-

ences in decision ratios between participants (see Figure C-5). These differences are a 

logical consequence of the guessing and free decision task and speak for randomness in 

decisions rather than against it. There was no trend towards one choice option across 

participants. Nevertheless, stronger imbalance might have influenced the decoding accu-

racy. To control for this possibility, additional analyses were conducted. The 14 participants 

were divided into two groups with respect to their decision balance. The absolute difference 

in percentage of decisions (averaged across IV and FD) was taken as a balance indicator 

(BI): 

BI = ( | pianos(%) – chairs(%) | ) 

Groups (BIhigh mean = 26.19%; SD = 8.45; BIlow mean = 9.23; SD = 4.41) were divided by 

median split (BI = 10%). Two-tailed t-tests for independent samples were conducted to test 

whether these groups differed in decoding accuracies for i) average searchlight decoding 

results for the whole brain volume (pointing to general methodological problems caused by 

decision imbalance) or ii) decoding results for the best searchlight clusters in precuneus and 

MPFC (pointing to specific regional biases caused by decision imbalance).  

There were no significant differences in the overall decoding accuracies between the 

two groups, neither for the IV condition (BIhigh 51.7%, SD 2.45; BIlow 49.6%, SD = 2.71; 

t(6) = 1.41; p = 0.21) nor for the FD condition (BIhigh 51.2%, SD 2.24; BIlow 50.6%, SD = 

2.40; t(6) = 0.44; p = 0.68).  

There were also no significant differences in decoding accuracies for the specific 

searchlight clusters for guessing decisions in a) precuneus / PCC (MNI 24 -45 18; BIhigh 

60.5%, SD = 12.60; BIlow 57.6%, SD = 4.29; t(6) = 0.60; p = 0.57) and b) precuneus / PPC 

(MNI 30 -63 51; BIhigh 63.2%, SD = 10.37; BIlow 58.1%, SD = 10.15; t(6) = 1.29; p = 0.25). 

Again, no differences could be found for decoding accuracies for free decisions in MPFC 

(MNI 3 48 21; BIhigh 61.3%, SD = 9.21; BIlow 65.9%, SD = 8.15; t(6) = -1.06; p = 0.33). The 

same picture emerged when BIs were calculated for each condition (IV, FD) separately to 

compare BIhigh and BIlow groups (p > .05 for all comparisons). It can therefore be concluded 

that differences in decision ratios cannot explain the present findings.  
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Univariate fMRI data analysis 

 

Conventional univariate analyses were conducted on the fMRI data to investigate whether 

any areas showed differences in general activation when participants were presented with 

(or chose) pianos compared to chairs. Additionally, areas should be identified that differed 

in activation for the HV task, the IV task and the FD task. First, all data was motion cor-

rected to the first volume of the first run using SPM2. All volumes were then normalised to 

MNI space, re-sampled to a voxel size of 3 x 3 x 3 mm3 and smoothed with a Gaussian 

kernel of 8 mm FWHM. A GLM was used for statistical analyses on subject level. Model-

ling was the same as described for the multivariate analyses, resulting in separate regressors 

for piano and chair trials, individually for each experimental condition and each run. T-tests 

were used for random effects group statistics and again a statistical threshold of p < .0001 

(uncorrected) was applied. Contrasts between pianos and chairs were calculated for each 

condition. The three experimental conditions were contrasted across object categories. 

 For all experimental conditions, strong activation could be found in large parts of the 

brain when contrasted against baseline. The overall peak was consistently located in bilat-

eral visual cortex and LOC (see Table C-1). No region was found to show stronger activa-

tion related to the presentation (or choice) of pianos compared to chairs or vice versa in any 

condition. Contrasting FD trials with perceptual decision trials in general (HV as well as 

IV), a network of brain regions could be revealed that showed stronger activation for FD. 

This network included bilateral inferior parietal lobe, bilateral precuneus, bilateral ventro-

lateral prefrontal cortex (VLPFC), bilateral dorsolateral prefrontal cortex (DLPFC) and the 

left inferior temporal sulcus. These findings are in line with an earlier study using Positron 

Emission Tomography (PET) that revealed a similar network for self-initiated actions 

(Jenkins, et al., 2000). Contrasting HV with FD demonstrated stronger activation for HV in 

bilateral visual cortex and LOC as well as in the right orbito-frontal cortex (see Bar, 2004). 

No other contrast revealed any significant differences for any of the conditions (for all 

results see Table C-1). Interestingly, the information-encoding parietal regions were again 

not strongly activated during guessing but during free decisions. Given that object categori-

sation was reported to be challenging, it is unlikely that low task difficulty can explain these 

findings. It rather demonstrates again that guessing and free decisions differed in important 

aspects and cannot be regarded as being completely identical. 
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Table C-1: Table of activation contrasts for univariate analysis. 

Contrast Anatomical area cluster 
size § 

T p < x y z 

        
HV > IV -       
        
IV > HV -       
        
HV > FD R LOC 4 5.03 .00001 36 -39  -12 
 L LOC 7 4.43 .0001 -33 -39 -15 
 R orbito-frontal 8 4.7 .0001 24 36 -12 
        
FD > HV R DLPFC 

 
402 7.65 .05* 

 
33 36 45 

 L inf parietal lobe 
 

397 7.54 .05* -60 -48 33 

 R inf parietal lobe 
 

302 7.31 .05* 57 -60 39 

 bil precuneus 167 7.3 .05* 
 

15 -54 36 

 L DLPFC 191 7.07 .05* 
 

-36 24 45 

 L inf temp sulcus 140 6.82 .05* 
 

-60 -36 -6 

 L VLPFC 92 6.5 .05* 
 

-51 27 -6 

 R VLPFC 26 4.77 .0001 57 18 -6 
        
IV > FD -       
        
FD > IV L inf parietal lobe 366 7.32 .05* 

 
-57 -57 30 

 L VLPFC 35 6.25 .05* 
 

-51 27 -6 

 R inf parietal lobe 198 6.18 .05* 
 

57 -60 39 

 L DLPFC 95 6.01 .05* 
 

-33 27 48 

 L inf temp sulcus 62 5.83 .05* 
 

-60 -36 -9 

 bil precuneus 54 5.6 .05* 
 

12 -54 36 

 R DLPFC 42 5.19 .05* 
 

30 39 42 

        
overall peak        
        
HV > baseline bil vis cortex/LOC  22.44 .05* 

 
30 -93 3 

IV > baseline bil vis cortex/LOC  20.73 .05* 
 

-27 -96 3 

FD > baseline bil vis cortex/LOC  19.55 .05* 
 

-27 -96 3 

Note: HV = perceptual decision task with highly visible objects; IV = perceptual decision task without visible 

objects (invisible); FD = free decision task; L = left; R = right; inf temp sulcus = inferior temporal sulcus; LOC = 

lateral-occipital complex; DLPFC = dorsolateral prefrontal cortex; VLPFC = ventrolateral prefrontal cortex; bil 

vis cortex = bilateral visual cortex; * FWE (family-wise error) correction for multiple comparisons; § cluster size 

is always given for a statistical threshold of p < .0001 uncorrected. Coordinates are MNI coordinates. 
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Decoding motor responses and visual stimulation 

 

 
Figure C-6: Decoding of motor responses and true object categories. Displayed are the clusters showing the 

highest decoding accuracies for the respective analyses using a searchlight pattern classification approach with a 

radius of r = 4 voxels. All results are displayed using a threshold of p < .001 (uncorrected) for better visualisa-

tion. a) Button presses were performed using the index- and middle finger of the right hand. Motor responses 

could be decoded from left motor cortex (peak accuracy 58%; SE = 2.0; p < .0001 uncorrected; MNI [-45 -21 

57]) for all experimental conditions. The analysis confirmed that the participants’ categorical choices were made 

on a category level rather than being motor decisions (which would have been expected for non-adherent 

response behaviour). b) The peak decoding accuracy for true presented object categories (pianos and chairs) was 

located in the right visual cortex extending to LOC (also found in the left hemisphere when a more liberal 

statistical threshold was applied). The peak accuracy was 61% (SE = 1.8; p < .0001 uncorrected; MNI [33 -90 -

3]). These regions showed a great overlap with visual/LOC regions found to encode perceptual choices for 

highly visible objects.  

l r

ap

l r

a

v

a) Decoding the motor responses b) Decoding the presented images

peak decoding accuracy:  61.2 % (SE 1.81)
right visual cortex / LOC [33 -90 -3]

peak decoding accuracy:  58.3 % (SE 2.0)
left motor cortex [-45 -21 57]
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ROI analyses  

 

To investigate how similar the present posterior parietal regions were in terms of the quality 

of information encoding compared to the posterior parietal regions found in the previous 

study, ROI analyses were conducted. Only those voxels were sampled for the analysis of the 

present data that constituted the significant searchlight clusters in the previous study. In order 

to define the ROIs, an uncorrected threshold of p < .0001 (precuneus; decoding choices for 

poorly visible objects) and p < .05 FWE corrected (LOC; decoding choices for highly visible 

objects) was applied for the searchlight decoding group-analyses from the previous study. The 

left and right LOC ROIs were combined to a bilateral LOC ROI (238 voxels) in order to be 

comparable in size with the precuneus ROI (360 voxels). Since the ROIs had to be applied to 

normalised data (decoding was performed on individual non-normalised data but group 

analyses were performed on normalised accuracy maps), the ROIs were used to extract 

searchlight decoding results from normalised decoding accuracy maps of the present study. 

The decoding accuracies from each ROI were averaged and tested against chance level for 

each condition using ANOVA and t-tests. These averaged accuracies strongly underestimate 

the information encoded in the ROIs, but it can be used as an approximation for the compari-

son of searchlight decoding profiles from both studies. Note that any effects were expected to 

be small due to averaging values from a relatively high number of voxels in each ROI. These 

included mainly voxels that were not significant in the searchlight decoding analyses. 

The LOC ROI was found to be informative about choices in the HV condition [t(11) = 

2.66; p = .006], but the precuneus ROI was not [t(13) = 1.11; p = .14]. For the IV condition, 

the LOC ROI was not informative [t(11) = 0.92; p = .18] but the precuneus ROI was indeed 

weakly informative about decision outcomes, marginally missing the statistical threshold 

[t(13) = 1.35; p = .09]. As expected from the searchlight results of the present study, neither 

ROI encoded decision outcomes for free decisions [LOC ROI: t(11) = 0.92; p =.18; precuneus 

ROI: t(13) = 0.77; p = .22]. Nevertheless, cross-condition classification between FD and IV, 

incorporating both directions of cross-classification in an ANOVA, was significant for the 

precuneus ROI [F(1,12) = 4.01; p = .03] but not for the LOC ROI [F(1,12) = 0.74; p = .49]. In 

summary, these results yielded a similar profile of results for ROIs derived from the previous 

study compared to the whole-brain searchlight decoding results from the present study. 

Choices for poorly visible and truly invisible objects (and to some extend for free decisions) 

were similarly encoded in a rather wide-spread region in precuneus / PPC. 
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Abstract 

In a dynamically changing environment, we are constantly required to flexibly react to 

stimuli. It is therefore necessary to adapt behaviour to environmental cues, as well as to 

successfully perceive relevant stimuli. The present work addressed the question of which 

brain areas form the basis for task preparation and decisions along the processing chain 

from stimuli to responses. It combined functional magnetic resonance imaging with 

multivariate pattern classification to search for the encoding of specific contents of mental 

processes. The first study demonstrated, using a task switching paradigm, that task-sets 

were first encoded in left intraparietal sulcus, preceding left posterior ventrolateral 

prefrontal cortex. This finding emphasises the importance of parietal cortex in establishing 

abstract rules in a cued task context. In the second study, the visibility of response-relevant 

target objects was varied. It was found that the lateral-occipital complex (LOC) only 

encoded perceptual decisions about highly visible objects. The precuneus, on the other 

hand, encoded random guessing decisions made with insufficient visual input. Contradicting 

classical signal detection models, this finding emphasises the notion of two modes for 

perceptual decision making depending on stimulus visibility. The third study demonstrated 

a shared neural substrate for random guessing and free decisions in the precuneus, 

suggesting a general role for the generation of internal decisions. Additionally, anterior 

medial prefrontal cortex was exclusively engaged when decisions were intended to be made 

without an external frame of reference. In summary, the present work highlights the 

importance of parietal cortex in controlling both rule-guided and self-determined behavior 

in humans. Parietal cortex functions might be best described as related to multi-modal 

information integration and processing of highly self-referenced intentions. 
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