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Abstract

Many everyday life predictions rely on the experience and memory of event frequencies, i.e., natural samplings. We used functional
magnetic resonance imaging (fMRI) to investigate the neural substrates of prediction under varying uncertainty based on a natural sampling
approach. The study focused particularly on a comparison with other types of externally attributed uncertainty, such as guessing, and on the
frontomedian cortex, which is known to be engaged in many types of decisions under uncertainty. On the basis of preceding stimulus cues,
participants predicted events that occurred with probabilities ranging from p � 0.6 to p � 1.0. In contrast to certain predictions in a control
task, predictions under uncertainty elicited activations within a posterior frontomedian area (mesial BA 8) and within a set of subcortical
areas which are known to subserve dopaminergic modulations. The parametric analysis revealed that activation within the mesial BA 8
significantly increased with increasing uncertainty. A comparison with other types of uncertainty indicates that frontomedian correlates of
frequency-based prediction appear to be comparable with those induced in long-term stimulus-response adaptation processes such as
hypothesis testing, in contrast to those engaged in short-term error processing such as guessing.
© 2003 Elsevier Science (USA). All rights reserved.

Introduction

Predictions are made on the basis of expectations about
which event is the most probable to occur. Dependent on the
frequency with which we experienced that an event e has
followed the type of situation we face again, predictions are
made with more or less certainty. In order to come up with
a stable representation about event frequencies we must face
the same type of situations over and over again, i.e., within
a so-called natural sampling (Gigerenzer, 1994; Hasher and
Zacks, 1979; Kleiter et al., 1997). The acquired representa-
tion of probabilities of an event’s occurrence are applied to
external stimulus properties, so that a distinction between
differently probable events is possible. The high accuracy of
frequency estimations observed in humans confirm the vital
meaning of a correct estimation of event frequencies in

many adaptive behaviors (Betsch et al., 2001; Sedlmeier,
1999).

Like guessing and gambling, probability-based predic-
tions are charged by externally attributed uncertainty. In
contrast to internally attributed types of uncertainty in de-
cision making, externally attributed uncertainty occurs
whenever we think that it is caused by events in the world
that we do not control (Kahneman and Tversky, 1982;
Howell and Burnett, 1978). The typical coping strategy that
is used in such situations is to rate the relative frequency of
such events. Brain correlates of this externally attributed
uncertainty have been investigated in guessing paradigms
confronting subjects with two or more events of equal
probability (Elliott et al., 1999; Elliott and Dolan, 1998;
Paulus et al., 2001). However, in many real life situations
we do not expect one out of several events to occur with the
same probability. Rather, we describe situations as indicat-
ing varying event probabilities, for instance, when saying “I
am very certain that it will rain tomorrow” or “I am quite
certain that Peter will be late.” Hence, in contrast to predic-
tions that we make in guessing or gambling situations, our
real life predictions usually depend on extensive experi-
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ences and memories of event frequencies. Accordingly, we
were interested whether activations induced by uncertainty
in a natural sampling prediction would be different from or
similar to those induced by uncertainty in guessing or gam-
bling. A similarity is suggested by the fact that both types
are so-called externally attributed types of uncertainty. A
difference is suggested by the fact that predictions that are
based on a natural sampling refer to a learning process,
whereas guessing and gambling do not.

We used functional magnetic resonance imaging (fMRI)
to investigate the neural correlates of predictions based on a
virtual natural sampling. Participants were presented with
stimulus combinations that determined the probability of a
subsequently following event which occurred with a prob-
ability of p � 0.6, 0.7, 0.8, 0.9, or 1.0. Using a parametric
design, we tested the hypothesis of whether brain activation
within the region of interest, i.e., frontomedian areas, would
increase with decreasing event probability. Many different
tasks that require decisions or overt responses under uncer-
tainty are known to draw on frontomedian areas (Bechara et
al., 1996; Elliott et al., 1999; Elliott and Dolan, 1998; Paulus
et al., 2001, 2002; Critchley et al., 2001, Rogers et al., 1999;
Goel and Dolan, 2000). However, uncertainty is reported to
be reflected within posterior frontomedian areas, including
mesial BA 8 or anterior BA 6, corresponding to the pre-
supplementary motor area (pre-SMA), and BA 24/32, i.e.,
the anterior cingulate cortex (ACC). Accordingly, though
the engagement of frontomedian areas in behaviors under
uncertainty is clearly indicated in the literature, we are
ignorant about the correlates of uncertainty that we typically
face in everyday behavior, i.e., natural samplings. One cen-
tral aim of the present study was therefore to clarify the
anatomical location within the posterior portion of the fron-
tomedian wall that covaries positively with increasing un-
certainty in prediction in a natural sampling.

In addition to posterior frontomedian areas, orbitofrontal
areas are known to be engaged in uncertain decisions, par-
ticularly those induced by reward expectancy, and depend-
ing on varying task-corresponding emotional attitudes
(O’Doherty et al., 2001; Rogers et al., 1999; Critchley et al.,
2001; Breiter et al., 2001; Elliott et al., 1999). However, due
to technical restrictions of the T2* sequence in a 3T NMR
system that usually causes signal voids (Norris et al., 2002),
medial orbitofrontal activations could not be detected in the
present study. We therefore focus our present study on
posterior frontomedian areas, including mesial BA 6, mesial
BA 8, BA 32, and BA 24.

The cognitive representation of event frequencies (like
“2 out of 10”) are reported to differ crucially from those of
event probabilities (like “20%”) (Gigerenzer, 1994; Giger-
enzer and Hoffrage, 1995). As we worried that strategies
like coding event frequencies by event probabilities could
emerge after extensive behavioral training, we decided to
dismiss a training. Without a presession training, however,
we expected slow learning effects during the course of the
experimental session, and therewith a slow decrease of

general uncertainty. As we were interested specifically in
the probability-dependent uncertainty varying between
blocks, we had to control for this slow learning effect. We
did this by employing an additional statistical regressor that
modeled learning effects (see Methods).

Methods

Participants

Sixteen right-handed, healthy volunteers (5 female, mean
age 24.9, range 21–35) participated in the study. After being
informed about potential risks and screened by a physician
of the institution, subjects gave informed consent before
participating. The experimental standards were approved by
the local ethics committee of the University of Leipzig. Data
were handled anonymously.

Procedure

Participants were instructed immediately before the MRI
experiment. In the MRI session, subjects were supine on the
scanner bed with their right and left index finger positioned
on the response buttons. In order to prevent postural adjust-
ments, the subject’s arms and hands were carefully stabi-
lized by tape. In addition, form-fitting cushions were used to
prevent arm, hand, and head motion. Participants were pro-
vided with earplugs to attenuate scanner noise. Immediately
prior to the functional imaging session, subjects spent 20
min in the scanner, so that they could acclimate to the
confinement and sounds of the MR environment.

Stimuli and task

Stimuli consisted of pairs of pictures showing comic
figures. Four different figures were employed (in the fol-
lowing referred to as A, B, C, and D), resulting in six
possible figures combinations (A-B, A-C, A-D, B-C, B-D,
and C-D). Each of the six pairings of figures was system-
atically associated with a particular probability, and these
associations were consistent throughout the experiment.
Participants were instructed to press the right or left re-
sponse button corresponding to the figure they expected to
win (uncertain prediction condition) or the figure that was
indicated to win (control condition). Depending on the pair-
ing in the uncertain prediction condition, the feedback
showed one of two figures with a mean probability of 0.6
(that D wins against C), 0.7 (that D wins against B), 0.8
(that B wins against C), 0.9 (that C wins against A), and 1.0
(that A wins against D), respectively. One figure combina-
tion (A-B) was used as a control condition, in which con-
currently presented arrows in the middle of the screen in-
dicated which figure would win. In this condition, arrows
pointed to A and to B equally often; i.e., A won against B
with a probability of 0.5. Accordingly, average winning
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probabilities were almost balanced between the four figures
(A, 0.533; B, 0.533; C, 0.500; and D, 0.433). By balancing
the probabilities in this way, we aimed to avoid cross-talk
between pairings and subsequent effects like latent inhibi-
tion to operate between blocks.

We used a block presentation design, with probabilities
varying between each block (0.6, 0.7, 0.8, 0.9, 1.0) and each
block consisting of five subsequently presented trials of the
same figure pairing (for instance, A plays five times against
B). Within each trial, one pair of figures was presented for
2 s during which the participant’s response was recorded.

Presentation was followed by a feedback presented for
1.5 s. In order to enhance the BOLD signal we employed a
jittering that allow for assessing the BOLD response at
different times relative to the event onset. We jittered both
the beginning of each block and the inter-trial interval (ITI).
We kept the trial duration constant at 3.5 s, and the trial
onset asynchrony at 5 s. In contrast, the ITI varied, with a
mean duration of 1.5 s, and a jittering of 0, 500, 1000, or
1500 ms assigned randomly to the trials.

Blocks were separated by a 5-s break. Overall, 10 blocks
were presented for each of the five probabilities and the
control condition, resulting in 60 blocks or 300 trials alto-
gether. Blocks were presented in randomized order, and
order was also randomized and balanced between subjects.
The frequency of block-block transitions was balanced
across the experimental session.

The order of blocks was balanced between subjects, such
that the group-averaged event probability was 0.75 to each
time during the course of the entire experimental session
(see also comments on the regressor modeling slow learning
effects). That is, subject 01 started, for instance, with the
block order 0.7, 0.6, 1.0, and so on, whereas subject 02
started with 0.1, 0.8, 0.6, and so on. Regressor 1 (group-
averaged error score for each condition) and regressor 2
(group-averaged error score for each trial) were thereby
statistically independent in each subject. That is, none of the
correlations were significant (two subjects r � �0.11, three
subjects r � 0.10, two subjects r � �0.17, three subjects r
� �0.04, three subjects r � 0.02, three subjects r � 0.13).

Imaging

Imaging was performed at 3T on a Bruker Medspec
30/100 system equipped with the standard bird-cage head
coil. Slices were positioned parallel to the bicommissural
plane (AC-PC) with 16 slices (thickness 5 mm, spacing 2
mm) covering the whole brain. A set of 2D anatomical
images was acquired for each participant immediately prior
to the functional experiment, using a MDEFT sequence
(256 � 256 pixel matrix). Functional images in plane with
the anatomical images were acquired using a single-shot
gradient EPI sequence (TE � 30 ms, 64 � 64 pixel matrix,
flip angle 90°, field of view 19.2 cm) sensitive to BOLD
contrast. During each trial, 2 images were obtained from 16
axial slices at the rate of 2.5 s. In a separate session,

high-resolution whole brain images were acquired from
each participant to improve the localization of activation
foci using a T1-weighted 3D segmented MDEFT sequence
covering the whole brain.

Data analysis

The MRI data were processed using the software pack-
age LIPSIA (Lohmann et al., 2001). In the preprocessing,
low-frequency signals were suppressed by applying a 1/170
Hz highpass filter. A spatial Gaussian filter with 5.65 mm
FWHM was applied. The increased autocorrelation caused
by the filtering was taken into account during statistical
evaluation by the adjustment of the degrees of freedom. To
correct for the temporal offset between the slices acquired in
one image, a sinc-interpolation algorithm based on the
Nyquist Shannon theorem was employed. To correct for
movements, the images of the fMRI time series were geo-
metrically aligned using a matching metric based on linear
correlation. The anatomical registration was done in three
steps: First, the anatomical slices geometrically aligned with
the functional slices were used to compute a transformation
matrix, containing rotational and translational parameters,
that register the anatomical slices with the 3D reference
T1-data set. In a second step, each individual transformation
matrix was scaled to the standard Talairach brain size (Ta-
lairach and Tournoux, 1988) by applying a linear scaling.
Finally, these normalized transformation matrices were ap-
plied to the individual functional raw data. Slice gaps were
scaled using a trilinear interpolation, generating output data
with a spatial resolution of 3 � 3 � 3 mm (27 mm3).

The statistical analysis was based on a least-squares
estimation using the general linear model (GLM) for seri-
ally autocorrelated observations (random effects model;
Friston, 1994; Worsley and Friston, 1995; Zarahn et al.,
1997). The design matrix was generated with a synthetic
hemodynamic response function (Friston et al., 1998; Jo-
sephs et al., 1997). The model equation, including the ob-
servation data, the design matrix, and the error term, was
convolved with a Gaussian kernel of dispersion of 4 s
FWHM. The model includes an estimate of temporal auto-
correlation. The effective degrees of freedom were esti-
mated as described in Worsley and Friston (1995) and in
Seber (1977). In the following, contrast maps, i.e., estimates
of the raw scores, were generated for each subject. As the
individual functional data sets were all aligned to the same
stereotactic reference space, a group analysis was subse-
quently performed. Groups of activated voxels were
searched for (Z � 3.09 (Holmes and Friston, 1998) and at
least 6 activated voxels) using the method of Braver et al.
(2001) which also eliminates the requirement to make al-
lowance for multiple comparisons and reduces the sensitiv-
ity to false positive activations (see also Norris et al., 2002).

Effects of prediction uncertainty were analyzed using a
parametric design with two regressors (Büchel et al., 1996,
1998; Lange, 1999). In order to model the effects of pre-
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diction uncertainty as measured by performance, a regressor
was used which consisted of the average prediction error per
probability of event occurrence, i.e., the group-averaged
error score for each of the five experimental conditions
(regressor 1). Within the same model, we tested for slow
learning effects by using a second regressor, consisting of
the group-averaged error score for each experimental trial
(regressor 2). Note that such a second regressor can only be
useful if it models a different source of variance than the
first regressor, i.e., block-dependent uncertainty. As learn-

ing effects were expected to depend on block-wise proba-
bilities of event occurrence, we employed a group-related
regressor for learning effects. This group-averaged learning
effect was statistically independent from the block-wise
variation of uncertainty. This was achieved by balancing the
order of event probabilities between subjects, such that the
group-averaged event probability was the same for each
time during the course of the entire experimental session
(see also stimuli and task section). Both regressors referred
to the same sample of trials, including all uncertain predic-

Fig. 1. Main task effect (Z � 3.09) for prediction under uncertainty versus control condition. Group-averaged activations are shown on coronal (y � 12),
saggital (x � 8), and axial (z � �6) slices of an individual brain normalized and aligned to the Talairach stereotactic space. For activation coordinates, please
see Table 1. Abbreviations: vST, ventral striatum; BA8, mesial Brodmann area 8; Tha, thalamus; VTA, midbrain area; Cu, cuneus, Ce, cerebellum.
Fig. 2. Parametric effects of prediction uncertainty. The upper panel shows the group-averaged activations on a saggital (x � 4) and an axial (z � 36) slice.
Voxels covarying positively with prediction uncertainty were located within the mesial BA 8 (1), the middle frontal gyrus (2), and the inferior parietal lobule
(3). Coordinates of further activations are given in Table 2. An example for a regressor for one subject is plotted on the lower panel. Regressors were
determined individually, depending on the presentation order of blocks. The level of uncertainty was modeled by the mean prediction error made for each
of the five probabilities. Bars for each experimental block are shown in different intensities of gray. Note that the 10 blocks of control condition did not enter
the parametric analysis and are therefore not shown in the figure.
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Fig. 3. Parametric effects of learning. The upper panel shows the group-averaged activations on a left saggital slice (x � 43) and an axial slice (z � 3). Voxels
covarying positively with the decreasing error rates in the course of the experimental session were found within the left posterior parahippocampal gyrus (1)
(x � �18, y � �44, z � �3; Z � 4.1) and within the right inferior frontal junction area (2) (x � 43, y � 0, z � 26; Z � 3.5). The lower panel shows the
regressor that modeled decreasing uncertainty due to slow learning effects across subjects (gray bars). The regressor based on the group-averaged mean
prediction error for each trial of the experimental condition (5 trials per block, 50 blocks � 250 trials). The red line indicates the linear learning trend, showing
that erroneous predictions decreased from about 36% at the beginning to 28% at the end of the session (expected maximal performance was 25%). As in Fig.
2, the 50 trials of control condition are not plotted as they did not enter the parametric analysis.
Fig. 4. Comparison between frontomedian activations of the present study (a, e) and those of other studies on decisions under uncertainty. The right
fronomedian wall of a white matter segmented individual brain is shown from the midline. The outer frame shows coordinates from Talairach and Tournoux
(1988). Crosshairs cut through the anterior and the posterior commissure (AC-PC), with vertical orientation lines (VAC-VPC) perpendicular to AC-PC,
respectively. Brodmann areas 6, 8, 24, and 32 are outlined. Red-yellow spheres refer to activation foci within mesial BA 8, green-blue spheres to those within
BA 24/32. The red sphere a corresponds to the main task effect of prediction under uncertainty, compared to the control condition (see also Fig. 1). The sphere
e corresponds to the parametric effect of increasing prediction uncertainty (see also Fig. 2). Other letters and spheres correspond to the following studies;
b, Schubotz and von Cramon, 2002 (prediction difficulty); c, Elliott and Dolan, 1998 (hypothesis testing); d and g, Goel and Dolan, 2000 (rule application);
f, Ullsperger and von Cramon, 2001 (response competition); I, Ullsperger and von Cramon, 2001 (error detection); m, Elliott and Dolan, 1998 (committing
oneself to choice); n, Critchley et al., 2001 (uncertainty and arousal); o, Elliott et al., 1999 (guessing); p, Rogers et al., 1999 (risky choice).
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tion conditions, but excluding the control condition. The
control condition was modeled as a separate onset vector
within the same model. By including both regressors within
one statistical model, contrast maps could be generated that
extracted the three effects of interest independently from
each other. Three contrast maps were generated from that
statistical model. In the first, all uncertain prediction blocks
were collapsed and contrasted against certain prediction,
i.e., the control condition. Thereby, we tested for the main
task effect only. In the second contrast, the effects of prob-
ability-dependent uncertainty in prediction were tested us-
ing regressor 1. In the third contrast, the effects of time-
dependent uncertainty were tested using regressor 2. Note
that regressor 1, which was different for each subject ac-
cording to the order of blocks, and regressor 2, which was
the same for each subject, modeled statistically independent
sources of variance and did not correlate.

Results

Behavioral data

Performance was measured by the rate of erroneous
predictions and reaction times of correct predictions. A
repeated-measures ANOVA with the 6-level factor uncer-
tainty (P � 0.6, 0.7, 0.8, 0.9, 1.0, and control) yielded a
significant main effect for both erroneous predictions
(F(5,75) � 110.8, P � 0.0001) and reaction times (F(5,75)
� 6.93, P � 0.001). Main effects were also significant when
the control condition did not enter the ANOVA (erroneous
predictions F(4,60) � 54.5, P � 0.0001; reaction times
F(4,60) � 5.95, P � .001). A two-sided Pearson correlation
between erroneous predictions and time was found to be
significantly negative (r � �0.19; P � 0.001). Accord-
ingly, the explained variance of the slow learning effect was
1.69%. Likewise, reaction times got significantly shorter in
the course of the experiment, as indicated by a significantly
negative two-sided Pearson correlation (r � �0.43; P �
0.0001). Together, decreasing rates of both erroneous pre-

dictions and reaction times indicated significant slow learn-
ing effects over time.

FMRI data

In order to test for the main task effect in a first step, we
collapsed all levels of prediction under uncertainty and
contrasted them together against the control condition. As
listed in Table 1 and shown in Fig. 1, significant activations
were elicited within right frontomedian cortex (mesial BA
8/6), the right anterior insula, the cuneus, the cerebellar
vermis extending laterally into the paramedian portion of
the left cerebellar hemisphere, and within a subcortical
network, including the ventral striatum, the thalamus, and
the right midbrain area (VTA).

When testing for the parametric effects of prediction
uncertainty, we found positively covarying voxels to be
located within the right posterior frontomedian cortex (me-
sial BA 8), the right thalamus, the right anterior insula, and
the left cerebellar cortex (Table 2 and Fig. 2). Hence, the
right mesial BA 8 was the only cortical area that was found
to be activated both in contrast to the control condition
(main task effect) and in the parametric modulation of
probability-dependent prediction uncertainty (parametric ef-
fect). Some areas that were activated significantly in the
main task effect did not covary positively with increasing
uncertainty. Additional activations were located within the
right middle frontal gyrus and superior frontal sulcus, and
the midportion of the right intraparietal sulcus. Though
these areas were also slightly activated in the main task
effect, maximal Z-scores remained below the statistical
threshold.

Finally, we tested for voxels that covaried positively with
decreasing uncertainty due to slow learning effects in the
course of the experimental session (Fig. 3). As a result, we
found significant activation within only two areas, one lo-
cated at the junction of the right inferior precentral sulcus
and the right inferior frontal sulcus (inferior frontal junction
area, IFJ), the other within the left posterior parahippocam-
pal gyrus. Hence, there was no area that was commonly
activated by probability-dependent uncertainty in prediction
and by decreasing uncertainty due to slow learning effects.

Table 1
Anatomical specification, hemisphere, Talairach coordinates (x, y, z),
and maximal Z-scores (Z) of significantly activated voxels in prediction
under uncertainty (all levels collapsed) in contrast to prediction under
certainty (control condition)

Area Hemisphere x y z Z

Frontomedian cortex (BA 8/6) R 8 18 46 4.4
Ventral striatum L �12 12 �3 4.5

R 21 15 �6 4.0
Thalamus L �15 �18 12 3.4

R 8 �17 6 4.2
Midbrain area R 8 �17 �6 3.9
Anterior insula R 40 19 6 4.1
Cerebellum R 1 �68 �23 4.7
Cuneus R 4 �71 14 4.1

Table 2
Anatomical specification, hemisphere, Talairach coordinates (x, y, z),
and maximal Z-scores (Z) of voxels covarying positively with increasing
prediction uncertainty

Area Hemisphere x y z Z

Frontomedian cortex (BA 8) R 4 30 46 3.9
Thalamus R 8 �11 9 3.4
Anterior insula R 37 12 �3 3.6
Cerebellum L �18 �71 �29 4.0
Superior frontal sulcus R 17 3 46 3.6
Middle frontal gyrus R 37 21 36 3.7
Inferior parietal lobule R 46 �53 38 4.0
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Discussion

The present fMRI study investigated brain areas partic-
ularly within the frontomedian cortex that covary positively
with a parametric modulation of prediction uncertainty in a
virtual natural sampling approach. To that end, different
degrees of prediction uncertainty were induced by different
probabilities of event occurrence. In contrast to a control
condition that allowed a certain prediction on the basis of
external cues, prediction under uncertainty engaged the me-
sial BA 8. Though the maximally activated voxel of the
frontomedian activation was located on the border between
BA 6 and BA 8, closer inspection revealed that voxels
activated above the statistical threshold were only found
anteriorly to the activation maximum, that is, within BA 8,
but not within BA 6. This was further supported by the
parametric analysis. When testing for voxels that covary
positively with increasing uncertainty in prediction as mea-
sured by the mean prediction error across blocks, we found
activation to be clearly located within mesial BA 8.

In contrast to the control condition, prediction under
uncertainty induced also activation within a sample of sub-
cortical areas, including several foci within the midbrain
(ventral tegmental area, VTA), the ventral striatum (nc.
accumbens), and the dorsal thalamus. These structures be-
long to a striatal-thalamo-cortical network basically prom-
inent in reward-based learning functions (Graybiel, 2000;
Breiter et al., 2001; Delgado et al., 2000; Elliott et al.,
2000). As in the currently employed natural sampling ap-
proach, such types of learning are typically characterized by
a slow delayed acquisition rate of implicit stimulus-re-
sponse associations. In particular, the nc. accumbens is
taken to support the ability to work for delayed rewards
(Cardinal et al., 2002). It is suggested that erroneous pre-
dictions function as a “teaching signal” for phasic changes
in dopaminergic activity (Hollerman and Schultz, 1998;
Schultz and Dickinson, 2000; Schultz, 1998). Thereby, do-
paminergic projections from the VTA through the ventral
striatum and the frontomedian cortex (Williams and Gold-
man-Rakic, 1998) provide phasic signals to modify and
update stimulus-response mappings (Inase et al., 1999).
Activations that we found within these areas can be recon-
ciled with the idea of a summative, value-based attitude
formation in natural samplings (Betsch et al., 2001). This
approach assumes that, in natural samplings, the responses
evoked by perceptual events are automatically recorded and
summed up. Subsequently, these summary evaluations can
serve as a basis for predictions and corresponding behav-
ioral responses.

However, it must also be considered that uncertainty was
not the only aspect to vary between conditions. Rather, the
expectancy and the experience of positive and negative
prediction outcome varied too. Since a positive prediction
outcome could be seen as a kind of reward, a related issue
here is whether expectancy and experience of reward can be
dissociated on the brain level. Recent imaging studies have

indicated that expectancy and previous experience mostly
share common neural substrates (Breiter et al., 2001), as
already suggested by the work of Mellers and colleagues
(1997, 1999). Accordingly, the frontomedian areas found to
be activated in the present study could be differently mod-
ulated by either the expectancy or the experience of positive
prediction outcomes.

Increasing uncertainty reflected within mesial BA 8

Uncertain versus certain prediction elicited activation
within mesial BA 8. The maximally activated voxel was
located at the border to mesial BA 6, i.e., the pre-SMA,
whereas the parametric effect of increasing uncertainty in-
duced maximal activation anteriorly within mesial BA 8.
Though this outcome raises the question of functional dif-
ferences and similarities between anterior mesial BA 6/pre-
SMA and mesial BA 8, these are difficult to determine in the
literature. On the one hand, the pre-SMA role in higher
movement organization is long established, in contrast to
hierarchically lower movement output organization attrib-
uted to the posteriorly adjacent SMA proper (Picard and
Strick, 1996, 2001; Shima and Tanji, 1998). Specifically,
the pre-SMA receives converging and rich input from all
lateral prefrontal areas, which in turn are target regions from
sensory cortices (Bates and Goldman-Rakic, 1993; Luppino
et al., 1993). The pre-SMA is therefore suggested in “cog-
nitive” rather than motor aspects of voluntary behavior,
particularly in the anticipatory processing of sensory (visu-
al) information in view of a potential decision making or
motor selection (Ikeda et al., 1999; Picard and Stick, 2001).
On the other hand and in contrast to the pre-SMA, less is
known about the functional profile of the anteriorly adjacent
mesial BA 8. Projections between the monkey homologue
of the pre-SMA, area F6 (Matelli et al., 1985), and anteri-
orly adjacent areas of the frontomedian wall suggest a close
functional relationship (Luppino et al., 1993). Tracer studies
in the monkey do not explicitly differentiate between mesial
BA 6 and adjacent 8, but in contrast point out that rich
prefrontal projections target the rostral SMA so anteriorly
that this target area may include Walker’s medial area 8b
(Bates and Goldman-Rakic, 1993). In accordance with fron-
toparietal projections investigated in the monkey, we found
right frontal and parietal areas together with mesial 8 to be
increasingly activated by increasing prediction uncertainty.

Also in imaging studies, mesial BA 8 and pre-SMA are
often reported to be engaged in the same task and contrast.
For instance, mesial BA 8 and preSMA together show
increased activation whenever conflicts arise about the cor-
respondence between perceived events and appropriate mo-
tor selections (Ullsperger and von Cramon, 2001). Like-
wise, predicting serial events in increasingly complex
stimulus trains increased pre-SMA activation near the bor-
der or even including a portion of mesial BA 8 (Schubotz
and von Cramon, 2002). More clearly separated from BA 6
are functions of the mesial BA 8 in hypothesis testing
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(Elliott and Dolan, 1998) and rule application (Goel and
Dolan, 2000). Elliott and Dolan discuss mesial BA 8 acti-
vation in terms of a response selection guided by mnemonic
representations of adaptive stimulus-response mappings,
rather than by internally guided guessing. Similarly, Goel
and Dolan refer to the anticipatory functions of BA 8,
suggesting that subjects anticipate stimuli in view of acti-
vated response rules for these stimuli. Note, however, that
these authors refer to mesial BA 8 as pre-SMA. Indirect
evidence for a functional difference between mesial BA 8
and pre-SMA may come from findings that indicate the
pre-SMA do not covary with the amount of errors made in
a visuo-manual learning paradigm (Sakai et al., 1999). In
contrast, mesial BA 8 activation was found to covary with
errors in our study. A cautious suggestion may therefore be
that BA 6 (pre-SMA) and mesial BA 8 are both involved in
the acquisition of stimulus-response associations, with the
latter to modulate this learning process by error evaluation.

Uncertain predictions based on natural samplings in
contrast to other types of decisions under uncertainty

The aim of the present study was to figure out whether
prediction based on a natural sampling induces similar or
different frontomedian activations as other externally attrib-
uted types of uncertainty, particularly guessing or gambling.
When comparing activations from the present study with
those of other types of uncertainty-inducing tasks, two dif-
ferent activation clusters emerge. As plotted in Figure 4,
activations reported in guessing paradigms (Elliott et al.,
1999), error detection (Ullsperger and von Cramon, 2001),
and risky choice (Rogers et al., 1999; Crtichley et al., 2001)
elicited activations within BA 24/32. In contrast, we found
our activations to be located similarly as those of hypothesis
testing (Elliott and Dolan, 1998), response competition (Ull-
sperger and von Cramon, 2001), rule application (Goel and
Dolan, 2000), and sequence-based stimulus prediction
(Schubotz and von Cramon, 2002), i.e., within mesial BA 8
and 6.

This comparison indicates that activations induced by
uncertainty in a natural sampling prediction are indeed dif-
ferent from those induced by uncertainty in guessing, al-
though both types are so-called externally attributed types
of uncertainty. As suggested in the introduction, differences
in frontomedian correlates may instead reflect that predic-
tions based on a natural sampling refer to a learning process
and memory, whereas guessing and gambling do not. In
comparison to further activations induced by decision under
uncertainty, a common characteristic of tasks that elicit
similar activations like our natural sampling approach may
be that uncertainty is reduced in the long run. They involve
the setting up of a model that is tested and that helps us to
adapt our behavior stepwise and in a cumulative manner. In
contrast, guessing and risky choices involve a short-term
error processing, but no long-term behavioral adaptation to

valid stimulus-response rules. Accordingly, the main differ-
ence between tasks activating BA 24/32 and those activat-
ing BA 8/6 may be that the former do not allow for learning
and adaptation processes, but function more as an alerting
system. This difference may include also emotional pro-
cesses, which should have higher impact on fast behavioral
adaptations rather than on long-lasting learning. Accord-
ingly, BA 24/32 is suggested in the integration of cognitive
processing of uncertainty with corresponding adaptive
changes in bodily states (Critchley et al., 2001) or evalua-
tive processes related to the emotional consequences of a
(risky) choice (Elliott and Dolan, 1998).

Together with results discussed in the literature, we take
our findings to indicate that the mesial BA 8 is particularly
engaged in feedback-based testing models or hypothesis on
valid stimulus-response associations that lead to long-last-
ing behavioral modifications. In contrast, BA 24/32 appears
rather to be engaged in the fast correction of response errors,
including or modulated by a short-term emotional evalua-
tion.

Decreasing uncertainty by slow learning effects over the
course of the experimental session

We expected learning effects during the course of the
experiment to decrease uncertainty related to knowledge.
We controlled for learning effects by modeling a second
regressor using the group-averaged error score for each trial.
In addition, however, we also looked directly for the effects
of regressor 2 in order to confirm nonoverlapping brain
activations for slow learning and frequency-dependent un-
certainty. As a result, significant activations were found
only within two regions, the right IFJ and the posterior
parahippocampal gyrus. Activations within the posterior
frontolateral cortex have been reported in a shifting cogni-
tive set, i.e., the switching from one response tendency
based on previous experiences to a currently more suitable
one (Brass and von Cramon, 2002; Konishi et al., 1999;
Monchi et al., 2001; Nakahara, 2002). According to this
view, a decline in IFJ activation would reflect decreasing
requirements on switching between different stimulus-re-
sponse associations. With increasing familiarity with the
stimulus pairings and their probabilistic meaning, the re-
quirements on behavioral switching and flexibility may de-
cline during the course of the experimental session. This
would also apply to decreasing activation within parahip-
pocampal sites, which show slow sustained modulations
during new stimulus-response learning (Cahusac et al.,
1993). However, the crucial implication of this finding is
that slow learning effects and the reduction of prediction
uncertainty draw on different, nonoverlapping brain areas,
so that learning effects did not distort the activation pattern
we were interested in.
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