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The parcellation of cortical areas using replicator dynamics in fMRI
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In this paper, we show that replicator dynamics can be used as an

exploratory analysis tool to detect subregions of cortical areas on the

basis of the similarity between fMRI time series. As similarity measure,

we propose to use canonical correlation, a multivariate extension to the

typically employed Pearson’s correlation coefficient. We applied the

replicator process to data obtained from two different experimental

paradigms in the search for subregions within the left lateral frontal

cortex (LFC). In both cases, the replicator process resulted in a

parcellation that corresponds to a recently suggested subdivision of the

LFC in anterior–posterior direction. Most notably, these results were

very consistent when compared across different measurements of a

single subject and across a group of subjects.

D 2006 Elsevier Inc. All rights reserved.

Introduction

One of the main goals in functional magnetic resonance

imaging (fMRI) is the parcellation of cortical areas with respect to

their different functionality. The usual approach is to design a

functional experiment such that it consists of a number of

experimental conditions which are assumed to involve different

cognitive processes. Hemodynamic responses corresponding to

two or more such conditions are then compared, and the statistical

significance of the contrast is represented in a statistical

parametric map. If a cortical area shows a significant contrast

between two conditions, this area is assumed to pertain to a

functionality that is necessary to process one condition but not the

other. This model-based approach thus facilitates the dissociation

of cortical areas by directly manipulating the underlying

cognitive processes.

In recent years, exploratory analysis techniques such as

Principal Component Analysis (Friston et al., 1999; Thirion and

Faugeras, 2003; Viviani et al., 2005), Independent Component

Analysis (McKeown et al., 1998; Calhoun et al., 2003), and

clustering (Goutte et al., 1999; Baumgartner et al., 1998; Dodel

et al., 2002) have provided a viable alternative to the model-
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based statistical analysis of fMRI data. Such techniques explore

the inherent structure of the data independently of the experi-

mental design or any pre-defined model of the hemodynamic

response. Clustering, for example, is based on the assumption

that the pattern of cortical activation is structured such that

activated voxels can be divided into few groups according to

their similarity (Goutte et al., 1999). The most commonly used

clustering methods like hard or fuzzy k-means or hierarchical

clustering perform this grouping directly on the fMRI time

series. Other techniques such as cross-correlation or spectral

clustering operate on an interaction or similarity matrix which is

derived from the correlation or covariance of fMRI time series

(Dodel et al., 2002; Voultsidou et al., 2004; Worsley et al.,

2005).

Recently, replicator dynamics was introduced as an exploratory data

analysis technique to functional imaging (Lohmann and Bohn, 2002).

The aim of the present study is to show that the iterative application of

replicator dynamics can be employed to detect subregions in cortical

areas which in model-based statistical analyses appear as homogeneous

activated regions. The method can be viewed as a form of clustering in

the sense that similar items are grouped together and separated from less

similar ones. Specifically, it is related to cross-correlation or spectral

clustering in that it exploits the structure of a similarity matrix derived

from the correlation between fMRI time series. However, replicator

dynamics differs frommost clustering techniques in two aspects which,

we would argue, make it a particularly suitable tool for this application.

Firstly, groups or clusters emerging from a replicator process

exhibit different coherence properties than results from most

other clustering techniques. While clustering typically identifies

star-shaped topologies, where each cluster member is closely

related to a single representative in the cluster center, replicator

dynamics searches for network topologies where each network

member is closely related to all other network members

(Lohmann and Bohn, 2002). This complete pairwise similarity

seems a plausible assumption on a functional cortical area, as

such a region should only consist of voxels that all reflect the

same underlying functionality. While in some applications this

difference to other clustering techniques might be negligible, we

will show that it can also lead to quite different solutions when

compared, for example, with results from the closely related

Principal Component Analysis.

http://dx.doi.org/10.1016/j.neuroimage.2006.02.039
http://www.sciencedirect.com


1 In the following, we will use the terms ‘‘network’’, ‘‘cluster’’, and

‘‘group’’ interchangeably, accounting for the fact that our application of

replicator dynamics addresses the coherence of voxels within the same

cortical area, resulting in topologically connected clusters of voxels rather

than in distributed networks.
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Secondly, in contrast to most other clustering techniques,

replicator dynamics does not attempt to partition the entire feature

space, i.e. to assign each voxel to one cluster. Rather, the replicator

process selects from all input voxels groups of voxels exhibiting

strong coherence properties among each other. This suits the task

of detecting groups of strongly coherent voxels within a region of

interest as voxels not belonging to the ‘‘core’’ of the region will not

be artificially assigned to one of the clusters.

Replicator dynamics originated from theoretical biology

(Fisher, 1930; Schuster and Sigmund, 1983) but today has a wide

range of applications, including game theory, optimization,

hierarchical pattern matching, and finding maximum cliques in

graphs (Taylor and Jonker, 1978; Hofbauer and Sigmund, 1988a;

Menon et al., 1995; Pelillo, 2001; Pelillo et al., 1999; Bomze et al.,

2000). In the context of functional neuroimaging, it can be

employed on various levels, reaching from the analysis of single

subject data to meta-analytic studies (Lohmann and Bohn, 2002;

Neumann et al., 2005).

We applied replicator dynamics to two fMRI experiments

addressing cortical activation related to cognitive control process-

es: a color–word matching Stroop task (Stroop, 1935) and a cuing

version of the task switching paradigm (Forstmann et al., 2005).

Our results show a parcellation in the left lateral frontal cortex

(LFC) in anterior–posterior direction. This is in accordance with

recent findings suggesting a functional gradient within the left LFC

(Forstmann et al., 2005).

The only prerequisite for the application of a replicator process

is a non-negative, real-valued, symmetric similarity matrix, which

in our case encodes the similarity between fMRI time series. This

facilitates the use of different similarity measures such as the

previously used Pearson’s correlation coefficient and Spearman’s

rank correlation (Lohmann and Bohn, 2002). We propose to use

canonical correlation as a measure for the similarity of fMRI time

series. The rationale behind this choice is as follows.

One critical question in the analysis of functional neuroimaging

data is whether the obtained results are generalizable. That is, we

wish to be able to compare results between different imaging

sessions and subjects in order to arrive at conclusions that can be

generalized to the population from which the subjects are drawn.

This requires analysis tools that are robust against the spatial

variability of the raw data which is unavoidably introduced by

measurement artifacts and anatomical differences between sub-

jects. Bivariate measures such as Pearson’s correlation coefficient

are strongly affected by such variability as they only represent the

relationship between two single voxels. A slight difference in the

location of one voxel, for example, the center of a cortical

activation, can cause significantly different correlation coefficients.

This will in turn affect any process that takes the similarity between

voxels as input. Therefore, a similarity measure which compen-

sates for the spatial variability between subjects is desirable. One

such measure is the canonical correlation.

Canonical correlation is a multivariate extension to bivariate

correlations, providing a measure of similarity between two sets of

variables. Different applications of canonical correlation in the

analysis of fMRI data have recently been proposed by Friman et al.

(2003) and Worsley et al. (2004). In our application, canonical

correlation is used to represent the similarity of fMRI time series

between two groups of voxels. Our variability analysis shows that

using canonical correlation as input to the replicator dynamics

yields results that are very consistent across repeated measurements

of single subjects as well as across different subjects.
The remainder of the paper is organized as follows. We first

introduce replicator dynamics and canonical correlation as the two

main building blocks of our analysis method. We then present the

application of our method to the left LFC in the two experimental

tasks and provide a detailed analysis of the within-subject and the

between-subjects variability of the results.
Methods

Replicator dynamics

In the following, we will only present the basic principles of the

replicator process that are necessary for the understanding of the

paper. The mathematical framework of replicator dynamics in the

context of fMRI data analysis is described in great detail in Lohmann

and Bohn (2002). A modification of the method for the analysis of

meta-analytic imaging data can be found in Neumann et al. (2005).

The use of replicator dynamics in fMRI is based on the idea that

functional networks or groups of functionally coherent voxels can

be detected by analyzing pairwise similarity measures between

time series. Given a matrix W = (wij) where wij represents a

similarity measure between time series of voxel i and j, we wish to

find a maximally coherent network, cluster, or group1 of voxels. In

this context, a coherent network is defined as a network for which

each member is closely connected with every other member.

A group of voxels exhibiting this coherence property can be

found by determining the vector x = (x1, x2,. . ., xn) with xi � 0 and

~xi = 1 that maximizes xTWx. Here, n is the number of voxels

included in the analysis, and xi represents the degree of

membership of voxel i in the maximally coherent group.

Membership in this group is a fuzzy concept since xi can take

on any value between 0 and 1. It can be ‘‘defuzzified’’ by defining

a membership function that declares all voxels to be members of

the group for which xi > 1/n. In other words, after the vector x has

been found, all voxels i are regarded as member of the maximally

coherent group for which xi > 1/n.

The maximization of xTWx under the given constraints is

known to be NP-hard, if W has positive eigenvalues (Gibbons et

al., 1997; Pardalos and Vavasis, 1991). This is the case in our

application as W is not guaranteed to be negative semi-definite.

Note that the problem can also be interpreted as the search for the

maximum-weighted clique in an undirected graph which, again, is

known to be an NP-hard problem (Bomze et al., 2000).

Consequently, exact algorithms are guaranteed to return the global

solution only in a time that increases exponentially with the

number of entries in W and are therefore only applicable to very

small problems. However, a local maximizer x̄ can be easily found

using the following dynamical system:

d

du
xi uð Þ ¼ xi uð Þ Wx uð Þð Þi � x uð ÞTWx uð Þ

h i
; i ¼ 1 N n ð1Þ

This equation is known as replicator equation from theoretical

biology, where it is used to model the evolution of self-replicating

interacting entities over time (Schuster and Sigmund, 1983,
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Hofbauer and Sigmund, 1988b). Replicators are entities in the

evolutionary process. In each replicator i, i = 1n, which in our

application are the voxels in the region of interest, is associated

with a fitness, encoded in the matrix W, and with a proportion xi,

indicating the percentage of the population that is identical to i.

The term x(u)TWx(u) denotes the mean fitness of the population at

a given time point u. The discrete-time version of the replicator

equation is given by

xi uþ 1ð Þ ¼ xi uð Þ
Wx uð Þð Þi

x uð ÞTWx uð Þ
: ð2Þ

The dynamics of a replicator system are described by the

fundamental theorem of natural selection (Fisher, 1930, Kimura,

1958). It states that, if W is a non-negative, real-valued, symmetric

matrix, then the function x(u)TWx(u) is strictly increasing with

increasing u along any non-stationary trajectory x(u) under both

continuous-time (1) and discrete-time (2) replicator dynamics.

Furthermore, any such trajectory converges toward a stationary

point x, and a vector x Z Rn with xi = 0, i = 1. . .n and ~xi = 1 is

asymptotically stable if and only if it is a strict local maximizer of

xTWx (Hofbauer and Sigmund, 1988b). This means that, starting

from an initial vector x = (x1, x2,. . ., xn), we can find in an iterative

process a vector x that maximizes xTWx. If no assumptions can be

made about differences of the individual replicators, the vector x =

(x1, x2,. . ., xn) should be initialized with xi = 1 / n for all i = 1. . .n
in order to avoid additional bias in the input data (Lohmann and

Bohn, 2002).

During the iterative maximization process, replicators with a

particularly good fitness will be assigned a high proportion, while

the proportion of replicators with poor fitness will decrease. After

convergence and applying the membership function, we arrive at a

maximally coherent group of voxels, often referred to as

‘‘dominant network’’. This group consists of voxels whose

individual fitness increased during the maximization process above

the average fitness of all voxels. These can be interpreted as the

Fstrongest_ or Fmost important_ members of the system, according

to the coherence measure chosen.

In order to find subsequent groups which again show a coherent

behavior among all voxels, the replicator process can be started

again and reapplied to a fitness matrix from which the members of

previous groups are deleted. Thus, it is possible to extract a series of

coherent groups from the data. The degree of coherence among the

voxels is thereby decreasing from application to application. If the

true number of coherent groups in the data is not known in advance,

a suitable stopping criteria for the repeated application of the

replicator process needs to be defined. In our application, we wish to

find groups of voxels whose coherence most likely reflects a

common underlying functionality. Therefore, members of a coherent

group should form a topologically connected cluster. Consequently,

the application of the replicator process is repeated, and groups of

voxels are extracted until they no longer form a topologically

connected region. This seems intuitively plausible since a common

underlying functionality would not be expected for voxels which are

not topologically connected, even if they show a stronger coherence

than the remaining voxels in the investigated region.

The coherence within a cluster and the separability of the

extracted groups of voxels can be visualized using multidimen-

sional scaling (MDS). MDS is a technique that transforms

similarity values of high-dimensional data into Euclidean distance

values in low-dimensional space as closely as possible. This allows

the visualization of high-dimensional data like fMRI time series in
2-dimensional space such that relative distances between data

points represent the similarity between them. Details of this

methodology and its application, for example, in clustering, can

be found in Davidson (1983) and Everitt et al. (2001).

In our application, data points in MDS are the time series of the

voxels extracted as members of a coherent network by the

replicator process. Therefore, MDS is applied to the similarity

matrixW that serves as input to the replicator process. Labeling the

voxels with their network membership then shows how well the

different extracted networks are separable.

Given the constraints on the fitness matrix W described above,

a number of different similarity measures for fMRI time series are

conceivable. Previously, Pearson’s linear correlation coefficient

and Spearman’s rank correlation were used (Lohmann and Bohn,

2002). However, these measures only describe the similarity of

pairs of voxels and ignore the spatial dependencies between

neighboring voxels in functional MR images. We will in the

following introduce canonical correlation as similarity metric for

fMRI time series, a multivariate correlation that allows to take into

account the spatial dependencies of neighboring voxels.

Canonical correlation

Canonical Correlation Analysis (CCA) was developed by

Hotelling (1936) and has become a standard tool in multivariate

data analysis. A full discussion of the method and its relation to

other multivariate analysis techniques can be found, for example,

in Anderson (2003) and Rencher (2002).

Consider two sets of variables x = (x1, x2,. . ., xp) and y = ( y1,

y2,. . ., yq). The covariance structure associated with x and y is

C ¼ Cxx Cxy

Cyx Cyy

��
; ð3Þ

where Cxx and Cyy are the p � p and q � q within-set covariance

matrices of x and y, respectively, and Cxy = Cyx
T is the p � q

between-sets covariance matrix. Let then q1
2, q2

2,. . ., qs
2 be

the eigenvalues of

C�1xx CxyC
�1
yy Cyx ð4Þ

with s = min( p,q). The square roots of the eigenvalues q1,

q2, . . . ,qs are called canonical correlation coefficients. Note that

the same canonical correlation coefficients can be found as

eigenvalues of

C�1yy CyxC
�1
xx Cxy; ð5Þ

however, the corresponding eigenvectors differ. It can be shown

that the largest squared canonical correlation q1
2 is the maximum

squared correlation between the linear combinations

aTx ¼ a1x1 þ a2x2 þ N þ apxp; ð6Þ

bTy ¼ b1y1 þ b2y2 þ N þ bqyq; ð7Þ

where a and b are the eigenvectors corresponding to q1
2 obtained

from Eqs. (4) and (5), respectively (Rencher, 2002).

In our context, x and y represent time series of groups of

voxels, i.e. x(t) = [x1(t), x2(t),. . ., xp(t)] and y(t) = [( y1(t), y2(t),. . .,
yq(t)] with t = 1,. . ., T, where T is the number of measured time

steps. For the applications presented in the following section, we

use single voxels and their respective 6-neighborhoods in 3D space



J. Neumann et al. / NeuroImage 32 (2006) 208–219 211
in order to form x and y, i.e. p = q = 7. Thus, the largest canonical

correlation coefficient q1 provides a measure of how well the time

series of a voxel and its 6 immediate neighbors correspond to the

time series of another voxel and its 6-neighborhood.

It should be noted that canonical correlation coefficients are in

general larger than (or at least equal to) the Pearson correlation

coefficients for the same voxels. This can be explained by the fact

that the canonical correlation coefficient between x = (x1, x2,. . .,
xp) and y = ( y1, y2,. . ., yq) represents the maximum correlation

between linear functions of x and y. Consequently, it exceeds the

simple correlation between any xi and yj, 1 � i � p and 1 � j � q

(Rencher, 2002). The absolute values of Pearson and canonical

correlation coefficients are therefore not directly comparable.

However, in our application, this is not problematic since the

result of the replicator process is determined solely by the relative

differences between canonical correlation coefficients of voxels.

The second, more interesting, difference between Pearson’s and

canonical correlation is illustrated in Fig. 1 where both coefficients

are calculated between a seed voxel and voxels in the same cortical

area. As can be seen, moving away from the seed voxel, the

gradient of Pearson’s correlation coefficient is much steeper than

the gradient of the canonical correlation coefficient. While the

canonical correlation coefficient is still relatively high in two

voxels’ distance from the seed voxel, Pearson’s correlation

coefficient drops very quickly as we move away from the seed

voxel. This can be explained by the fact that voxels which show a

relatively low similarity with the seed voxel in their fMRI time

series, but are neighboring a voxel with a high similarity to the
Fig. 1. A comparison of the Pearson correlation coefficient (left) and the

canonical correlation (right). The seed voxel is marked with a white square.

For the canonical correlation, sets were formed from a voxel and its 6

immediate neighbors in 3D space. The 21 voxels with the highest

correlation to the seed voxel in this slice are enlarged in the bottom row.

Data are taken from a single subject performing the color–word matching

Stroop task described below.
seed voxel, benefit from this proximity when canonical correlation

is applied. To be more precise, assume that the time courses of the

seed voxel and its immediate neighbors are represented by x and

the time courses of another voxel of interest and its neighbors are

stored in y. If y contains a time course that is very similar to the

time courses in x, it will be assigned a high coefficient in the linear

combination in Eq. (7), resulting in a high eigenvalue

corresponding to b. This eigenvalue is then assigned as the

canonical correlation coefficient to the voxel of interest, even if its

own time course is less similar to those in x. In other words, the

similarity of a voxel’s surrounding to the seed voxel is taken into

account when determining the canonical correlation coefficient. In

that sense, canonical correlation could be interpreted as a spatial

filter on the correlation of time series. This property makes

canonical correlation a particularly suitable measure for the

similarity of fMRI time series if this similarity measure is to be

compared across different imaging sessions and subjects.

For n voxels, the largest canonical correlation coefficients for

any pair of two voxels i and j with 1 � i � n and 1 � j � n and

their respective neighborhoods can be represented in an n � n

similarity matrix. This matrix is symmetric, non-negative, and real-

valued and thus meets the criteria for an input to the replicator

process described above.

The algorithm

The various parts of our method for detecting clusters of

coherent voxels within a region of interest can be summarized in

the following steps:

1. After defining a region of interest (ROI), calculate for each

voxel in this region the canonical correlation with all other

voxels in the region.

2. Store the largest canonical correlation coefficient between any

pair of voxels in the fitness matrix W.

3. Initialize the elements of the proportion vector x = (x1, x2,. . .xn)
with 1/n, where n is the number of voxels in the ROI.

4. Apply the replicator process until convergence, thereby

extracting the most coherent voxels.

5. Delete all members of the extracted group from the ROI and

from W.

6. Repeat the process from step 3 until the extracted group no

longer forms a topologically connected cluster.

Relation to other methods

Replicator dynamics has close relations to other multivariate

data analysis techniques. Like spectral clustering (e.g. Weiss, 1999)

and cross-correlation clustering (Dodel et al., 2002), it explores the

structural properties of some similarity matrix and can be

reformulated as a graph partitioning problem for fully connected

bidirectional weighted graphs. Cross-correlation clustering relies

on graph-theoretic notions such as ‘‘cliques’’ and ‘‘connectivity

components’’ in order to find subgraphs corresponding to clusters.

Spectral clustering explores the eigenstructure of the Laplacian L,

which is related to the similarity matrix W that serves as input to

the replicator process. In the simplest form, L is defined as L = D�
W, where W is some n � n similarity matrix as defined above and

D denotes a diagonal matrix with entries di = ~ j = 1
n wij. The

elements of the second eigenvector of L then indicate a partitioning



Fig. 3. The two experimental paradigms. (a) Examples of the three

conditions in the color–word matching Stroop task. For the top row, the

correct answer would be ‘‘NO’’, for the bottom row ‘‘YES’’. (b) The two

different cue types (left) and an example of the cue and target presentation

in the task switching paradigm.

J. Neumann et al. / NeuroImage 32 (2006) 208–219212
of the input data into two disjunct groups. The inclusion of more

eigenvectors provides a further sub-clustering.

Another related approach which, like replicator dynamics,

operates directly on W rather than on the Laplacian is Principal

Component Analysis (PCA). Given some data z, the first

principal component of z is the linear combination y = xTz with

maximum variance. This component is found by choosing the

vector x which maximizes the objective function xTCzx under

the constraint ~xi
2 = 1. Here, Cz is the covariance matrix of the

data, and it turns out that the first eigenvector of Cz is the

solution for x. In a similar manner, the replicator process finds a

vector x that maximizes the objective function xTCx. C is now

the matrix of canonical correlation coefficients for our observa-

tions. The only difference in the two methods lies in the different

constraint ~xi = 1 with xi � 0, 1. . . , n on the solution of the

replicator process. Note that the latter is a priori met in our

particular application of the replicator process since the matrix C

contains only positive entries.

As one of our reviewers pointed out, the difference between

PCA and replicator dynamics might be negligible in some

applications. However, the results of both methods can differ

significantly as is shown in the following example. Consider the

graph in Fig. 2 where nodes represent voxels within some region

of interest and arcs between nodes represent strong similarities

between voxels. Our aim is to find groups of voxels, where each

voxel shows a strong similarity with all other voxels in the

group. Consequently, in the example graph, nodes should be

chosen that have connections to other strongly connected nodes

and are also all connected to each other. The replicator process

provides the following result vector: (0.001 0.001 0.499 0.499

0.000 0.000)T, where the value at position i indicates the

importance of the ith node in the graph. Applying the

membership function of our method selects nodes 3 and 4 as

solution of this problem as the values for these two nodes

increased above the initialization of 1/6 during the replicator

process. In contrast, applying PCA results in the first eigenvector

(0.468 0.468 0.437 0.437 0.298 0.298)T. Here, nodes 1 and 2

have the highest values. While these two nodes are indeed

connected to many other nodes in the graph, they do not have a

direct connection and thus do not meet the requirements on our

solution. Replicator dynamics thus seems to be the method of

choice for this particular application.
Fig. 2. Example graph showing different solutions for the application of

PCA and replicator dynamics to the problem of finding highly inter-

connected subgraphs.
Experimental data

Given a region of voxels that are activated within the

experimental contrast of interest, replicator dynamics may be able

to further subdivide this region into voxels belonging to different

coherent clusters, thus indicating different functionalities of

subregions or a functional gradient. Such a gradient was recently

suggested for the lateral frontal cortex (LFC) in the anterior–

posterior direction (see e.g. Brass and von Cramon, 2004 and

Forstmann et al., 2005). More specifically, it should be possible to

distinguish between an area lying in the vicinity of the inferior

frontal sulcus and the precentral sulcus, the so-called inferior

frontal junction (IFJ), and an area anteriorly located to the IFJ

along the inferior frontal sulcus. Given this clear hypothesis, we

used this cortical area as a test case. While its functional

subdivision was impossible to detect on the basis of statistical

significance of contrasts alone (Brass and von Cramon, 2004;

Forstmann et al., 2005), we would expect to find a clear

parcellation when the replicator process is applied to this region

and clusters of coherent voxels are extracted.

We applied the replicator process to two data sets from

previously performed fMRI experiments addressing cortical

activation related to cognitive control processes. The first

experiment employed an event-related single-trial version of the

color–word matching Stroop task (Zysset et al., 2001, Neumann et

al., 2003). Four subjects were examined each performing nine

experimental sessions taking place within a time range of 9 weeks.

There were three experimental conditions (neutral, congruent, and

incongruent) which are exemplified in Fig. 3. In each session, trials

were presented in a different randomized order.



Fig. 4. Example results from applying the replicator process to the Stroop

data (top) and the task switching data (bottom). Cluster 1 (blue), 2 (green),

and 3 (red) are mapped onto anatomical slices (x = �42) of the individual
subjects.
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In a second experiment, data were analyzed from 14 subjects

performing a cuing version of the task switching paradigm

(Forstmann et al., 2005). Subjects were presented with digits

between 1 and 9 (except 5) on the screen and had to perform two

different tasks, judging whether the presented digit was smaller or

larger than 5 (magnitude task), or judging whether it was even or

odd (parity task). A task cue or a transition cue instructed

participants on which task they had to perform next. Examples

of the cue and target presentation are shown in Fig. 3. Trials were

presented in a different pseudo-randomized order to each subject,

with equal numbers of task switch and repetition trials and equal

transition probabilities between conditions and cue types.

Both experiments were carried out on a 3 T scanner (Medspec

30/100, Bruker, Ettlingen). Axial slices, parallel to the AC–PC

plane and covering the whole brain, were acquired using a single

shot, gradient recalled EPI sequence (TR 2000 ms, TE 30 ms, 90-
flip angle). Prior to the functional runs, corresponding anatomical

T1-weighted MDEFT (Ugurbil et al., 1993, Norris, 2000) slices

and T1-weighted EPI slices were acquired.

Data were processed with the software LIPSIA (Lohmann et al.,

2001). This software package contains tools for preprocessing,

registration, statistical evaluation, and presentation of fMRI data.

In LIPSIA, statistical evaluation is implemented as a two-stage

random-effect analysis (Holmes and Friston, 1998) based on the

least-squares parameter estimation of a GLM for serially autocor-

related observations (Friston, 1994, Worsley and Friston, 1995,

Zarahn et al., 1997).

Functional data were corrected for motion using a matching

metric based on linear correlation. To correct for the temporal

offset between the slices acquired in one session, a sinc

interpolation based on the Nyquist –Shannon Theorem was

applied. A temporal high-pass filter with a cut-off frequency of

1/100 Hz and 1/84 Hz was used for baseline correction of the

signal in the task switching and the Stroop experiment, respec-

tively. Furthermore, a spatial Gaussian filter with 4.24 mm FWHM

(r = 0.6) was applied. To align the individual functional data slices

onto the corresponding 3D stereotactic coordinate reference

system, a rigid linear registration with six degrees of freedom (3

rotational, 3 translational) was performed. The rotational and

translational parameters were acquired on the basis of the MDEFT

and EPI-T1 slices to achieve an optimal match between these slices

and the individual 3D reference data set.

More specific information on the experimental design and

modeling in the two experiments can be found in Neumann et al.

(2003) and Forstmann et al. (2005), respectively. For the

application of the replicator process, a region of interest was

determined for each experiment separately using the group average

(one-sample Student’s t test of contrasts maps across subjects and

sessions) of the incongruent vs. neutral contrast in the Stroop

paradigm and the contrast between the two different cue types in

the task switching paradigm. These were the primary contrasts of

interest for the investigated paradigms. In previous studies, the left

IFJ was localized at Talairach coordinates x between �47 and �35,
y between �4 and 10, and z between 27 and 40 (Brass et al., 2005,

Derrfuss et al., 2004, 2005, Forstmann et al., 2005, Neumann et al.,

2005). Therefore, ROIs were determined from the peak activation

coordinate within these boundaries and all topologically connected

voxels showing significant activation (z > 3.09, corresponding to

P < 0.001). The resulting ROIs consisted of 100 and 210 voxels for

the Stroop and the task switching paradigm, respectively. For three

subjects performing the task switching paradigm, no functional
data could be obtained for some voxels included in the mask

volume. These three subjects were excluded from the subsequent

analysis. Note again that the ROIs consisted of voxels that all

showed significant activation in the contrasts relevant for the

experimental tasks. The ROIs could not be further subdivided

based on experimental manipulations.
Experimental results

Subdivision of the ROIs

The replicator process was applied repeatedly to both data sets

in order to find separable groups of coherent voxels. For each

subject and measurement, the application was stopped after the

voxels in the extracted groups did not form a single topologically

connected cluster anymore. For the Stroop paradigm, this

procedure resulted in three consecutive clusters for all nine

imaging sessions of each of the four subjects. Subsequent groups

consisted of very few voxels distributed over the entire mask

volume. The extracted voxels covered on average 75% of the mask

volume. A randomly chosen result is presented for a single

imaging session of one subject in the top row of Fig. 4.

The same procedure was applied to the data obtained for the

task switching paradigm. Again, the application of the replicator

process resulted in three topologically connected clusters of voxels

for each subject. Subsequently, extracted voxels did not form

topologically connected regions. The three extracted networks

covered on average 40% of the mask volume. Note, however, that

the mask volume was about twice as large as for the Stroop

paradigm due to the higher anatomical variability between the 11

analyzed subjects. A randomly chosen result from a single subject

can be seen in the bottom row of Fig. 4.

The separation between groups was then visualized using MDS.

MDS maps for the examples in Fig. 4 are shown in Fig. 5a. In both

data sets, the first and third group can clearly be separated from the



Fig. 5. Multidimensional scaling maps for the coherent groups presented in Fig. 4. (a) Left: Stroop data, right: task switching data. Note that relative distances

as determined by MDS are represented by the x and y axes. However, absolute distance values are arbitrary and cannot be interpreted. (b) Individual MDS map

of group 2 for the task switching data. The mapping shows that the apparent subdivision of group 2 in the task switching data (top right) is the result of

simultaneously mapping all three groups rather than the reflection of an inherent sub-clustering.
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second. Group 3 shows a relatively high similarity to group 1 but is

still clearly separable. This similarity corresponds to the physical

location of the groups, with the third group neighboring the first

one in anterior direction. Note that the apparent subdivision of

group 2 in the task switching data is a result of the MDS projection

together with groups 1 and 3 rather than a representation of an

inherent clustering. This can be seen in Fig. 5b where group 2 is

mapped independently of the other two groups. This mapping

shows an almost homogeneous cluster.
Fig. 6. Three example results from applying the replicator process to the spatially ra

The same subjects and anatomical slices as in Fig. 4 are shown. The extracted grou

topologically connected clusters.
As stated in Methods, canonical correlation can be viewed as a

spatial filter on the correlation between time series. Specifically,

one could argue that it favors the coherence between spatially

close voxels as they share some voxels in their respective

neighborhoods. In order to verify that the parcellation of the

ROIs is not exclusively driven by this effect but reflects true

similarity of voxels within the same coherent group, we applied

CCA and replicator dynamics to ROIs containing spatially

randomized voxels. Spatially permuted ROIs were constructed
ndomized ROI of the Stroop data (top) and the task switching data (bottom).

ps vary between different randomizations, and some groups no longer form
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by 1000 swaps of randomly selected pairs of voxels. This simple

procedure ensures that the permuted ROIs are of the same size and

physical location and contain exactly the same input time courses

as the original data, only the positioning of the voxels within the

ROI has changed. For comparability with the original data sets, a

spatial Gaussian filter with 4.24 mm FWHM was applied after

permutation.

Results of three permutation tests for the two subjects presented

in Fig. 4 are shown in Fig. 6. For comparison, three groups of

coherent voxels were extracted. If the parcellations obtained from

the original data were exclusively driven by the use of canonical
Fig. 7. (a) Within-subject variability of the extracted groups from subject 1 perform

as extracted in all nine experimental sessions is shown. (b) Example results (x = �
the nine repeated measurements, two measurements were chosen at random for e
correlation, one would expect the application to spatially permuted

ROIs to result in patterns very similar to the original data. In

particular, extracted groups should have the same size and the same

number of extracted coherent groups should form topologically

connected clusters. Visual inspection of the results in Fig. 6 is

sufficient to see that this is not the case. Positioning and size of the

extracted groups varied between different permutation tests, and

voxels within the same group did not form topologically connected

clusters. We would therefore argue that the results obtained from

the original data truly reflect the intrinsic structure of the

investigated ROIs.
ing the Stroop task. A sagittal view (x = �42) of the three coherent groups
42) for the remaining three subjects performing the Stroop paradigm. Out of

ach subject.



Table 1

Within-subject variability of extracted coherent groups

Subject Average no. of voxels Overlap (9 sessions) Overlap (6 or more sessions)

Group 1 Group 2 Group 3 Group 1 Group 2 Group 3 Group 1 Group 2 Group 3

1 29.3 28.0 18.8 25 18 14 27 26 19

2 31.7 27.7 18.6 17 14 13 29 26 18

3 32.4 20.7 22.0 14 12 14 31 20 22

4 30.3 23.8 17.1 11 7 – 24 19 10

Note. The table shows for all four subjects the average number of voxels forming a coherent group, the number of voxels that were members of the same group

in all nine experimental sessions, and the number of voxels that were members of the same group in at least two thirds of the experimental sessions.
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Within-subject variability

The reliability of the results was first investigated for repeated

measurements of single subjects performing the Stroop interference

task. For the first three subjects, the groups of coherent voxels were

extracted in very similar anatomical locations and in the same order

from all nine experimental sessions. This is exemplified for the first

subject in Fig. 7a where results from all nine imaging sessions are

shown.

From two sessions of subject 3, group 2 and group 3 were

extracted in reversed order, that is, the most anterior group was

found second, the most posterior one last. For subject 4, the first

and second groups were comparable across all nine sessions.

However, in three sessions, the third group was not located anterior

but posterior to the first, neighboring the second group in dorsal

direction. Two randomly chosen example results for subjects 2 to 4

are presented in Fig. 7b.

The results can be quantified by calculating the overlap of

voxels in the extracted groups in all or the majority of imaging

sessions. Table 1 shows for all subjects the average number of

voxels forming a coherent group, the number of voxels that were

members of the same group in all nine experimental sessions, and

the number of voxels that were members of the same group in at

least two thirds of the experimental sessions.

For the first three subjects, at least half of the extracted voxels

were members of the same group in all experimental sessions, in

some cases even more than two thirds. For subject 4, at least some

voxels were found consistent members of groups 1 and 2 in all

sessions. The size of the overlap in two thirds of the sessions

almost matched the average size of the extracted groups for all

subjects.

For comparison, the process was repeated using Pearson’s

correlation coefficient first without spatial smoothing then with

spatial filters of different sizes. Gaussian filters of sizes between
Table 2

Within-subject variability of extracted groups using Pearson correlation and Gaus

Filter (FWHM) Average no. of voxels Overlap (9 se

Group 1 Group 2 Group 3 Group 1

None 15.3 13.1 11.8 –

4.24 mm 15.3 13.1 11.7 –

7.06 mm 17.7 15.2 13.0 –

5.65 mm 16.7 14.1 11.9 –

8.48 mm 19.3 16.4 13.8 3

Note. The table shows for the first subject and different filter sizes the average nu

members of the same group in all nine experimental sessions, and the number of

experimental sessions. Coherent groups were obtained using the Pearson correlati

spatial filtering.
4.24 mm and 8.48 mm FWHM (r = 0.6 and r = 1.2) were used. In

Table 2, results are exemplified for subject 1. Similar results were

obtained for the other three subjects. The analysis revealed again

three separable groups of coherent voxels, showing that the strong

coherence within the detected groups is not caused by spatial

filtering alone. However, the size and location of the obtained

groups were less stable across repeated measurements.

Between-subject variability

The between-subject variability was assessed in the same

manner, now using the multi-subject data of the task switching

experiment. The location of the three coherent groups was again

very consistent across subjects. The order in which the groups were

extracted was more variable than in the within-subject analysis.

Most consistently, for 8 subjects, the most posterior group was

extracted second, in the other three cases, it was extracted last. For

7 subjects, the first coherent group was located between group 2

and 3 in anterior–posterior direction, in the remaining 4 cases, the

most anterior group was extracted first followed by the most

posterior one.

Table 3 presents the average number of voxels in the coherent

groups as well as the number of overlapping voxels for 6 and more

subjects. As the table shows, the maximum number of subjects for

which voxels were found as members of the same group is 8, 9 and

11 for the three groups, respectively. Moreover, all three coherent

groups contained a reasonable number of voxels that were group

members in at least 6, i.e. more than half of the subjects.

The overlap of groups across subjects is visualized in Fig. 8.

The top row shows group borders when all voxels were included

that were group members in at least 6 subjects. The bottom row

shows the three groups separately in sagittal slices that contained

the group centers, i.e. the voxels with the maximum overlap of

subjects. The number of subjects where a voxel was a group
sian spatial filters

ssions) Overlap (6 or more sessions)

Group 2 Group 3 Group 1 Group 2 Group 3

2 2 4 17 18

2 2 4 17 16

5 2 10 20 21

8 3 11 22 18

4 4 17 19 27

mber of voxels forming a coherent group, the number of voxels that were

voxels that were members of the same group in at least two thirds of the

on coefficient instead of the canonical correlation coefficient and Gaussian



Table 3

Between-subject variability of extracted groups

Cluster Average no. of voxels Overlap (6 or more subjects)

6 7 8 9 10 11

Anterior 26.8 18 12 7 – – –

‘‘Middle’’ 29.0 20 14 9 3 – –

Posterior 26.9 26 15 13 6 4 2

Note. The table shows the average number of voxels in the coherent groups

and the number of overlapping voxels for 6 and more subjects.
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member is color-coded from white (1) to red (11). As can be seen,

the most consistent voxels, i.e. voxels within the borders in the top

row and shown in red in the bottom row, form group centers that

are clearly separated.
Discussion

For two experimental paradigms, we were able to assemble

voxels located in the left LFC into different coherent groups based

on purely exploratory data analysis techniques. This subdivision

was predicted from previous studies (e.g., Forstmann et al., 2005).

For the task switching paradigm, the present analysis revealed a

distinction of the IFJ from two clusters more anteriorly located

along the inferior frontal sulcus. These two clusters showed a

relatively high similarity in their fMRI time series revealed by their

close proximity in the MDS maps. However, the IFJ could be

clearly separated from both of them. For the Stroop paradigm, three

distinct groups were found, again arranged in anterior–posterior

direction. Interestingly, Müller et al. (2003) reported very similar

results from applying an entirely different methodology to the same

region and experimental paradigm. Using a combination of

wavelet-based statistics and the general linear model for the

evaluation of contrasts, they found a chain of clearly dissociable
Fig. 8. Between-subject variability of the extracted groups from all subjects perfo

coherent groups including voxels that were group members in at least 6 subjects

from left to right. The number of subjects for which a voxel was member of the
activations reaching from the anterior tip of the inferior frontal

sulcus to the IFJ. Note, however, that our automatically determined

mask volume extended beyond the IFJ in posterior direction. One

cluster was therefore found in posterior direction at the border of

the inferior part of the precentral sulcus.

An important aspect of the presented work is the reproducibility

of the results and their comparability across multiple imaging

sessions and subjects. Correlation-based analysis methods typically

employ bivariate measures which capture the similarity between

pairs of voxels. Using such bivariate measures as input to a

replicator process has been shown to yield good results in single

subject analyses (Lohmann and Bohn, 2002). However, they are

strongly affected by the spatial variability of the input data when

results from repeated measurements or different subjects are

compared. As the results in Table 2 show, hardly any overlap of

clusters can be observed for multiple imaging sessions, even after

applying large spatial filters to the input data. Such overlap would

have been expected, however, given that the data were obtained

from the same subject.

Our analysis revealed that canonical correlation as similarity

measure between fMRI time series much alleviates this problem. It

compensates for the variability of the input data, resulting in a

largely increased overlap of clusters both between repeated

measurements and across subjects. Canonical correlation accounts

for the fact that fMRI time series always exists in a spatial context

and captures the additional information provided by the relation-

ship between neighboring voxels. We wish to point out, however,

that care should be taken when using canonical correlation in the

analysis of single subject data, in particular, if the precise

anatomical localization of correlated cortical areas is to be

determined. As canonical correlation functions like a spatial filter

on the input data, boundaries between areas of correlated and

uncorrelated areas can be blurred, and areas of highly correlated

voxels are likely to appear larger than in analyses based on

bivariate Pearson or rank correlation.
rming the task switching experiment. Top: sagittal view (x = �42) of the
. Bottom: group centers shown individually in anterior–posterior direction

coherent group is color-coded from white (1) to red (11).
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It is important to note that the replicator process is a selection

process, that is, it always extracts a network of voxels with

maximal coherence from the input data, whether or not this

reflects the natural structuring inherent in the data. The degree of

coherence in the network, i.e. the similarity between the network

members, and the dissimilarity to the remaining voxels cannot be

deduced directly from the result. This can be problematic if there

exists no inherent structure in the input data at all. The extracted

groups would then be meaningless and the underlying cortical

area should really be treated as a homogeneous region. This

problem is not exclusive to replicator dynamics. Most traditional

clustering techniques would also result in some artificial

structuring if no natural structure is inherent in the data, in

particular, if the number of clusters has to be specified in

advance. However, a post hoc assessment of the compactness and

separability of the obtained clusters or the use of re-randomiza-

tion techniques can help to distinguish between an inherent and

an artificial clustering of the data. We have used spatial

randomization of the time courses in the mask volume in order

to verify that the results of the replicator process reflect some

inherent rather than artificial structure of the data. When three

coherent groups of voxels were extracted from spatially random-

ized time courses, these groups differed in size from the original

results and no longer formed topologically connected clusters.

This indicates that the inherent structure of the data was

destroyed by the randomization process and, most importantly,

the obtained groups are not simply a result of the spatial filtering,

the particular similarity measure or the parcellation procedure

used.

An important parameter in our method is the number of

different networks or groups of voxels that should be extracted

from the data, i.e. the number of subsequent applications of the

replicator process once a network has been detected. Again,

finding the optimal number of groups in some data is not specific

to the multiple application of replicator dynamics but is in common

with clustering techniques such as k-means. In general, clustering

algorithms have to be provided with the expected number of

clusters or, in case of hierarchical clustering, need some stopping

criteria. Unfortunately, a universal solution to this problem does

not exist as the appropriate number of clusters not only depends on

the structure of the input data but also on the objective of the

clustering process (Halkidi et al., 2001). In our application, we

propose to repeatedly apply the replicator process until the

extracted network does not form a topologically connected cluster

of voxels anymore. This is in line with the assumption that voxels

which are not topologically connected would not be expected to

reflect a common functionality.

Finally, we wish to point out again the two important

differences between replicator dynamics and traditional clustering

techniques such as k-means as they reflect the advantages of our

method over other clustering techniques when groups of function-

ally closely related voxels are sought. Firstly, clusters derived from

traditional clustering techniques and networks detected by a

replicator process exhibit different coherence properties. While

the former contain elements which are all similar to some

representative cluster center, the latter contain only elements which

are closely connected to all other network members. In other

words, traditionally clustering pertains to finding star-shaped

topologies in the input data. In contrast, replicator dynamics

results in network topologies. This can lead to quite different

results in some cases, as was seen in the example of Fig. 2.
Secondly, in classical clustering procedures, each input element

is assigned to one cluster. For example, if we wish to partition the

input space into three clusters by k-means, each element in the

input space will be a member of one of the three clusters. In

contrast, the repeated application of a replicator process selects

from a set of input elements different groups of elements which

show a coherent behavior. Consequently, the extracted groups do

not necessarily contain all elements. This way, outliers and voxels

showing no strong correlation with other voxels are not forced to

be a member of a cluster and thus do not affect the choice of cluster

boundaries.
Conclusion

The present study was designed to investigate whether

replicator dynamics facilitates the parcellation of cortical areas

into subregions which were revealed by prior model-based

statistical analysis as single homogeneous regions. We found that

replicator dynamics indeed suits this task. However, we propose to

use canonical correlation instead of the typically applied Pearson’s

correlation coefficient as a measure for the similarity of the fMRI

time series. Combining replicator dynamics and canonical corre-

lation yielded results that were very stable when compared across

measurements of the same subject and, most notably, in the

analysis of different subjects.
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