The impact of nitrogen mobility on the activity of zirconium oxynitride catalysts for ammonia decomposition

H. Soerijantoa,b, C. Rödela, U. Wildb, M. Lercha, R. Schomäckera, R. Schlöglb and T. Resslera,b

aTechnical University Berlin, Institute for Chemistry, Straße des 17. Juni 135, D-10623 Berlin, Germany
bFritz-Haber-Institute of the MPG, Department of Inorganic Chemistry, Faradayweg 4-6, D-14195 Berlin, Germany

Abstract

A zirconium oxynitride catalyst was used for the decomposition of ammonia to hydrogen and nitrogen. The onset of catalytic activity at \(\sim 550 \) °C coincided with the onset of nitrogen ion mobility in the material and a phase change from the initial \(\beta' \) phase (\(\sim Zr_7O_{11}N_2 \)) to the nitrogen-rich \(\beta'' \) ZrON phase (\(\sim Zr_7O_{9.5}N_3 \)). No hydrazine formation during an extended time on stream was detectable. Moreover, the onset of activity was also correlated to a rapid change in the electronic structure of the surface accompanying formation of the more active \(\beta'' \) ZrON phase. The results presented here show for the first time a direct correlation among the onset of ion conductivity as a bulk property, a modified electronic structure of the surface, and the catalytic performance of a heterogeneous catalyst.