Zirconium oxynitride as novel support for Cu in methanol steam reforming

A. Dennstedta, A. Trunschkea, R. Schlögla, N. Frenzelb, M. Lerchb, T. Resslerb

a Fritz-Haber-Institut der MPG, Abteilung Anorganische Chemie, Faradayweg 4-6, 14195 Berlin, Germany
b Institut für Chemie, TU Berlin, Sekr. C2, Straße des 17. Juni 135, 10623 Berlin, Germany

Introduction
Supported copper catalysts have been used for steam reforming of methanol. This reaction could be potentially important for on-board systems which convert liquid methanol and water to hydrogen for use in a fuel cell to power a vehicle [1]:

\[
\text{CH}_3\text{OH} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + 3\text{H}_2
\]

\(\text{ZrO}_2\) was used as a support for Cu in previous work of our group. Szizybalski et al. [2] suggested a different metal support interaction as compared to Cu/ZnO catalysts. In order to tune the support interaction by modifying the cation lattice, co-precipitated (Cu,Ce,Zr)O\textsubscript{2-x} catalysts were synthesized. These catalysts showed varying interaction between Cu and (Ce,Zr)O\textsubscript{2} with increasing Cu content. Here, we investigated the influence of modifying the anion lattice of ZrO\textsubscript{2} by nitrogen (3O\textsubscript{O}° + N\textsubscript{2} \rightarrow 2N\textsubscript{O}° + V\textsubscript{O}°° + 3/2O\textsubscript{2}).

The aim of this study was to elucidate the implications of substitution in the anion lattice of ZrO\textsubscript{2} on the structural and catalytic properties of the supported Cu.

Preparation
Two different supports with different nitrogen-content were used. The first one was prepared by ammonolysis of ZrO\textsubscript{2} stabilized with 6 mol\% Y\textsubscript{2}O\textsubscript{3}, which was prepared by co-precipitation. The second one was prepared by ammonolysis of commercial ZrO\textsubscript{2} [3]. These materials were loaded with Cu by impregnation with either Cu citrate or Cu nitrate solution. Drying was performed at 120 °C followed by calcination in air at 250 °C.

Results
The products and intermediates were characterized by X-ray diffraction (XRD), BET, infrared spectroscopy (IR), X-ray absorption spectroscopy (XAS), hot-gas extraction,
temperature programmed reduction (TPR), and thermogravimetry. Furthermore, activity tests for methanol steam reforming were performed. XAS of the support showed that Y was incorporated at the Zr lattice position. Incorporation of nitrogen took place in the vicinity of the Y atoms and caused vacancies around the Zr atoms. Thermogravimetry showed that conversion of the Cu precursors to CuO was complete at 250 °C. Above 400 °C nitrogen was detected by mass spectrometry. A concurrent increase in mass was observed, which is consistent with incorporation of oxygen by replacing the nitrogen. XRD revealed Gerhardtite \((\text{Cu}_2\text{(NO}_3\text{)}\text{(OH)}_3)\) as a Cu phase after the impregnation with Cu-nitrate, which was in agreement with IR results. In the calcined precursors, CuO was found as the copper containing phase. Compared to the Cu-citrate-route, higher crystallinity of CuO was detected in the material obtained by the Cu-nitrate-route. In addition, the BET surface area of the calcined nitrate-derived catalyst is lower compared to the ZrON support, whereas an increase of the BET surface area was observed during the Cu-citrate-route. TPR traces of the calcined samples showed either two (Cu-citrat-route) or three (Cu-nitrate-route) peaks (Fig. 1), indicating different particle size distributions of CuO in the calcined catalysts. In either case, the reduction was complete below 250 °C. Thus, reduction and steam reforming of methanol were performed at 250 °C. The results of the catalytic testing and the corresponding structure activity relationships will be discussed.

References: