Transmission Electron Microscopy Investigation on Defect Structures of Molybdenum Oxides

Dangsheng Su
Di Wang
Robert Schlögl

Fritz Haber Institute of the Max Planck Society
Berlin

Johore Bahru 17 December 2002
Why I come here?

born in China.

Ph.D in Austria

work in Germany

look like Malay
Reduction/Oxidation of Mo Oxides

◆ XRD and XAS studies on reduction of MoO₃

\[
\begin{align*}
T & < 698K & \text{MoO}_3 + \text{H}_2 & \rightarrow & \text{MoO}_2 + \text{H}_2\text{O} \\
T & > 698K & 3\text{MoO}_3 + \text{MoO}_2 & \rightarrow & \text{Mo}_4\text{O}_{11} \\
& & \text{Mo}_4\text{O}_{11} + 3\text{H}_2 & \rightarrow & 4\text{MoO}_2 + 3\text{H}_2\text{O}
\end{align*}
\]

No Crystalline intermediates is formed

◆ XAS studies on reduction/oxidation of MoO₃₋ₓ

Presence of edge-shared octahedra with short Mo-Mo distance in MoO₃₋ₓ
(T. Ressler, etc., J. Catalysis (2000) 191, 75)

Short range order defect structure forms molybdenium suboxide?
Visualisation and detection by means of HREM and electron diffraction?
Homologous series of Mo suboxides

Shear Structures

- $\text{Mo}_n\text{O}_{3n-2}$ ($17 \leq n \leq 25$)
 $\text{Mo}_{18}\text{O}_{52}$, ... derived from MoO_3 (layered structure)

- $\text{Mo}_n\text{O}_{3n-1}$ ($n < 10$)
 Mo_8O_{23}, ... derived from ReO_3-type structure

Other structures

- Mo_4O_{11},
- Mo_5O_{14}, ...
Structure Model of MoO$_3$

Space group: Pbnm

Structure type: Orthorhombic

a=3.92 Å
b=13.94 Å
c=3.66 Å
Structure Model of MoO$_2$

Space group: P2$_1$/c

Structure type: Monoclinic

a=5.61 Å
b=4.86 Å
c=5.63 Å
β=120.9°
Principles of Shear Operation
Structure Model of $\text{Mo}_{18}\text{O}_{52}$

- Space group: p-1
- Structure type: triclinic
- $a=8.15$ Å
- $b=11.89$ Å
- $c=21.23$ Å
- $\alpha=102.7^\circ$
- $\beta=67.8^\circ$
- $\gamma = 110.0^\circ$
Simulated EDP and HREM images of $\text{Mo}_{18}\text{O}_{52}$ on [100] projection

<table>
<thead>
<tr>
<th>Sample Thickness(Å)</th>
<th>24.4</th>
<th>73.3</th>
<th>97.7</th>
<th>146.6</th>
</tr>
</thead>
</table>

EDP

HREM Image

Defocus: -400 Å

Defocus: -600 Å
EDP and HREM of Mo$_{18}$O$_{52}$
Structural Principles of Mo$_8$O$_{23}$

Space group: P2/a

Structure type: Monoclinic

a=16.8 Å
b=4.04 Å
c=13.4 Å
$\beta=106.5^\circ$
Simulated EDP and HREM images of Mo$_8$O$_{23}$ on [010] projection

Sample Thickness (Å)

| Sample Thickness (Å) | 20.2 | 60.6 | 101.0 | 141.4 |

EDP

HREM Image

Defocus: -400 Å

Defocus: -600 Å
EDP and HREM of Mo_8O_{23}
Structure Model of Mo_4O_{11}

Space group: $\text{P}2_1/\text{a}$

Structure type: Monoclinic

$a=24.54$ Å
$b=5.44$ Å
$c=6.70$ Å
$\beta=94.3^\circ$
Simulated EDP and HREM images of Mo$_4$O$_{11}$ on [010] projection

<table>
<thead>
<tr>
<th>Sample Thickness(Å)</th>
<th>EDP</th>
<th>HREM Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.76</td>
<td></td>
<td>![HREM Image](t=21.76A def=-400Å)</td>
</tr>
<tr>
<td>65.27</td>
<td></td>
<td>![HREM Image](t=65.27A def=-400Å)</td>
</tr>
<tr>
<td>108.78</td>
<td></td>
<td>![HREM Image](t=108.78A def=-400Å)</td>
</tr>
<tr>
<td>152.29</td>
<td></td>
<td>![HREM Image](t=152.29A def=-400Å)</td>
</tr>
</tbody>
</table>

Defocus: -400 Å

Defocus: -600 Å
EDP and HREM of Mo_4O_{11}
Structure Model of Mo_5O_{14}

Space group: P4/mbm
Structure type: tetragonal
$a=45.99$ Å
$b=45.99$ Å
$c=3.94$ Å
Simulated EDP and HREM images of Mo$_5$O$_{14}$ on [001] projection

EDP
Thickness: 50 Å

Sample Thickness (Å)

<table>
<thead>
<tr>
<th>Sample Thickness (Å)</th>
<th>19.7</th>
<th>59.1</th>
<th>98.4</th>
<th>137.8</th>
</tr>
</thead>
</table>

HREM Image

Defocus: -400 Å

Defocus: -600 Å
Crystallographic shearing is important in understanding the oxygen diffusion and phase transition mechanism of transition metal oxides in catalytic reactions.

CS plane produces well defined satellite spots in electron diffraction pattern

Application of TEM in the investigation of the reaction mechanism in solid state chemistry

HREM, supported by image simulation, allows the visualization of the CS structures at nanometer scale

Opens the possibility for the in-situ HREM investigation of real catalytic reaction at atomic scale.