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Zusammenfassung

Räumlich ausgedehnte Systeme fern des thermodynamischen Gleichgewichts zeichnen sich

durch die Fähigkeit aus, spontan raumzeitliche Strukturen und Turbulenz auszubilden. Die

vorliegende Arbeit beschäftigt sich theoretisch und experimentell mit der Steuerung und

Kontrolle derartiger Phänomene. Als Beispiel wird die katalytische Oxidationsreaktion von

Kohlenmonoxid auf einer Platin-Einkristalloberfläche untersucht. Um Turbulenz zu unter-

drücken sowie um neuartige Muster in dieses System zu induzieren werden zwei verschie-

dene Steuerungsverfahren, globale verzögerte Rückkopplung und periodische Forcierung,

eingesetzt.

Die Effekte einer künstlich implementierten globalen Rückkopplungsschleife werden

zunächst in einem mathematischen Reaktions-Diffusions-Modell der CO-Oxidation auf

Pt(110) mit Hilfe numerischer Simulationen untersucht. Durch Variation eines globalen Kon-

trollparameters in Abhängigkeit einer räumlich gemittelten Systemgröße lässt sich chemi-

sche Turbulenz in dem Modell unterdrücken und ein homogen oszillierender Zustand stabi-

lisieren. Weiterhin kann eine Vielzahl komplexer raumzeitlicher Strukturen, beispielsweise

”
phase flips“, asynchrone Oszillationen, intermittente Turbulenz in Form chaotischer Kas-

kaden von Blasen und Ringstrukturen, zelluläre Strukturen und verschiedene Arten von

Domänenmustern induziert werden. Die simulierten raumzeitlichen Muster werden mit Hil-

fe einer zuvor entwickelten Transformation zu Phasen- und Amplitudenvariablen charak-

terisiert und analysiert. Es zeigt sich, daß die erhaltenen Strukturen große Ähnlichkeit mit

dem Verhalten eines generischen Modells, der komplexen Ginzburg-Landau-Gleichung mit

globaler Kopplung, aufweisen.

Eine globale verzögerte Rückkopplung kann in Experimenten mit der CO-Oxidation

auf Pt(110) durch eine externe, zustandsabhängige Variation des CO-Partialdrucks in der

Reaktionskammer realisiert werden. Die sich auf der Platinoberfläche ausbildenden Be-

deckungsmuster werden dabei mit Hilfe von Photoemissions-Elektronenmikroskopie sicht-

bar gemacht. In solchen Experimenten kann chemische Spiralwellenturbulenz erstmals

unterdrückt und ein Großteil der vorhergesagten Muster – unter anderem intermitten-

te Turbulenz, Domänenmuster und zelluläre Strukturen – tatsächlich nachgewiesen wer-

den. Die experimentell beobachteten Muster werden ebenfalls durch eine Phasen- und
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Amplitudendarstellung charakterisiert.

In weiteren Experimenten wird die Wirkung periodischer Partialdruckmodulationen auf

chemische Turbulenz untersucht. Auch mittels dieser Methode lässt sich Spiralwellenturbu-

lenz unterdrücken und eine Vielfalt komplexer Muster induzieren. Als resonante Strukturen

sind irreguläre Streifenmuster in subharmonischer Resonanz sowie Domänenmuster mit ko-

existenten Resonanzen zu nennen. Zudem treten auch nichtresonante Muster in Form inter-

mittenter Turbulenz und ungeordneter zellulärer Strukturen auf.

Die Resultate dieser Arbeit zeigen somit, daß sich mit Hilfe globaler Rückkopplung

und periodischer Forcierung Turbulenz und Strukturbildung in der betrachteten Ober-

flächenreaktion wirkungsvoll kontrollieren und manipulieren lassen. Ähnliche Phänomene

können auch in anderen Reaktions-Diffusions-Systemen erwartet werden.
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Abstract

Spontaneous pattern formation and spatiotemporal chaos (turbulence) are common features

of spatially extended nonlinear systems maintained far from equilibrium. The aim of this

work is to control and engineer such phenomena. As an example, the catalytic oxidation

of carbon monoxide on a platinum (110) single crystal surface is considered. In order to

control turbulence and to manipulate pattern formation in this reaction, two different control

methods, global delayed feedback and periodic forcing, are employed.

The effects of a global delayed feedback on the self-organized behavior of the system

are first studied numerically in a reaction-diffusion model of CO oxidation on Pt(110). By

applying a global control force generated by the spatially averaged state of one of the system

variables, turbulence can be suppressed and uniform oscillations can be stabilized. Moreover,

global delayed feedback can be used as a tool to produce a variety of complex spatiotempo-

ral patterns, including phase flips, asynchronous oscillations, intermittent turbulence repre-

sented by irregular cascades of ring-shaped objects on a uniformly oscillating background,

cellular structures, and different types of cluster patterns. The simulated structures are an-

alyzed using a newly developed transformation to phase and amplitude variables designed

for non-harmonic oscillations. The obtained patterns resemble the structures exhibited by a

general model, the complex Ginzburg-Landau equation with global feedback.

The simulated phenomena of pattern formation are then tested in laboratory experiments

with CO oxidation on Pt(110). Global delayed feedback is introduced into the system via a

controlled state-dependent variation of the CO partial pressure in the reaction chamber. The

spatiotemporal patterns developing on the catalytic surface are imaged by means of photoe-

mission electron microscopy. In such experiments, it is shown that chemical turbulence can

be suppressed and a large part of the predicted patterns, including intermittent turbulence,

clusters, and cellular structures, can be indeed observed. The experimentally obtained pat-

terns are also transformed into the corresponding spatial distributions of oscillation phase

and amplitude.

In a further set of experimental investigations, the effects of periodic external forcing on

chemical turbulence in CO oxidation on Pt(110) are studied. Using this method, turbulence

can be also suppressed and several complex patterns can be induced. The observed frequency
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locked structures are represented by irregular stripes in subharmonic resonance with the

forcing and cluster patterns with coexistent resonances. In addition, non-resonant patterns

such as intermittent turbulence and disordered cellular structures are found.

Thus, the results of this work demonstrate that by means of global delayed feedback and

periodic forcing, turbulence and pattern formation can be effectively controlled and manip-

ulated in the considered surface reaction. Similar phenomena are expected to arise also in

other reaction-diffusion systems of various origins.
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Chapter 1

Introduction

Pattern formation in dissipative systems is a field of research that has been growing rapidly

during the last two decades. The field is based on the observation that systems out of thermo-

dynamic equilibrium are capable of generating complex self-organized spatial and temporal

patterns (dissipative structures) [1]. Prominent examples of such nonequilibrium structures

include flow patterns in hydrodynamic systems such as convection rolls and turbulence [2],

processes of self-organization in nonlinear optical systems [3, 4] and semiconductors [5],

excitation waves in the heart [6], spiral patterns of a signal transmitter in populations of

the amoeba dictyostelium discoideum [7], and traveling waves and turbulence in chemical

reactions [8–10].

The concepts of self-organization and dissipative structures go back to Schroedinger and

Prigogine [1,11–13]. The spontaneous formation of spatiotemporal patterns can occur when

a stationary state far from thermodynamic equilibrium is maintained through the dissipation

of energy that is continuously fed into the system. While for closed systems the second law of

thermodynamics requires relaxation to a state of maximal entropy, open systems are able to

interchange matter and energy with their environment. By taking up energy of higher value

(low entropy) and delivering energy of lower value (high entropy) they are able to export

entropy, and thus to spontaneously develop structures characterized by a higher degree of

order than present in the environment.

The research direction of nonlinear dynamics [14] has substantially contributed to a more

detailed understanding of self-organization phenomena far from equilibrium. Studies of non-

linear phenomena can be traced back to Poincaré [15] in the end of the nineteenth century,

but first received considerable interest when in the second half of the last century oscilla-

tions and traveling wave patterns were observed in chemical reactions [8]. Following stud-

ies made possible to quantitatively understand abrupt changes in the behavior of a system
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(bifurcations). One of the most important findings was that complex behavior such as deter-

ministic chaos [16] is possible even in systems with only a few degrees of freedom.

The interdisciplinary character of the field of nonequilibrium pattern formation is em-

phasized by the concept of synergetics which has been introduced by Haken [17]. In this

approach, dissipative structures are analyzed in a system-independent way, based on the ob-

servation that there are fundamental similarities between the models that are used to describe

phenomena of self-organization in physics, chemistry, biology, and social sciences. Due to

this universality, studies devoted to a particular system may also be relevant for other systems

of entirely different origin.

The present work is focused on pattern formation in a chemical reaction. Chemical sys-

tems are well suited for the investigation of processes of self-organization. They can be op-

erated as open systems by constant supply of fresh reagents and continuous removal of the

products. Moreover, the kinetics of many reactions are sufficiently well understood and they

can be conducted under well-defined conditions. In typical experiments (e.g., experiments

in liquid phase that employ an open gel reactor [18]), advective motion of the reagents is

prevented and spatiotemporal concentration patterns arise from the interplay of reaction and

diffusion processes.

Pattern formation in chemical reaction-diffusion systems is closely related to the spon-

taneous appearance of temporal oscillations in a corresponding system without spatial de-

grees of freedom. The most prominent example of a pattern forming chemical system is the

Belousov-Zhabotinsky (BZ) reaction [8], which is a homogeneously catalyzed reaction in

aqueous solution. It involves several reagents and various intermediate species; the central

reaction step is the oxidation of malonic acid by bromate, catalyzed by metal ions. Chemical

oscillations in the BZ system were first reported by Belousov in 1951 (see Ref. [19]) in a

continuously stirred reactor. Two decades later, Zhabotinsky and Winfree observed traveling

waves of chemical activity in an unstirred reactor [20,21]. Since then, the majority of studies

of pattern formation in chemical reactions have focused on the BZ reaction [8, 9].

Typical nonequilibrium phenomena in chemical reaction-diffusion systems include the

formation of traveling waves and rotating spiral waves, target patterns, and spatiotemporal

chaos (turbulence) [22,23]. The properties of spiral waves have been extensively studied for

many years. Recent studies of the BZ reaction identified different spiral instabilities leading

to spiral breakup and turbulence [24]. Alternatively, chemical turbulence may spontaneously

develop from a uniformly oscillating state in absence of spiral waves [25]. In systems with
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strongly differing diffusion constants for the individual species also stationary, spatially pe-

riodic patterns (hexagons and stripes) can occur. The mechanism for the formation of such

structures was proposed already in 1952 by Turing [26] in the context of morphogenesis, but

it was not before 1990 that they were observed experimentally in a chemical system [27,28].

A problem of much practical and scientific interest is to control and engineer pattern

formation in spatially extended nonequilibrium systems. The main objectives are control

of spatiotemporal chaos, modification of existing patterns, and production of new kinds of

patterns. Controlling and understanding spatiotemporal chaos is one of the central problems

in nonlinear dynamics. By exploring the response of a self-organizing chaotic or regular

system to an external stimulus, one can gain information on the principles and mechanisms

of pattern formation. Such studies are particularly important to understand the behavior of

natural systems subject to external driving forces (e.g., circadian rhythm). The control of

complex nonequilibrium systems also offers a variety of potential applications. For instance,

by externally applying an acting force, one can potentially increase the yield and selectivity

of chemical reactions taking place in cars, chemical factories, or the atmosphere [29–31].

Spatiotemporal chaos usually is undesired in industrial processes, and chaos control may

improve their performance. The production of well-defined patterns may, for example, prove

important for information storage and retrieval in distributed systems.

In order to control pattern formation and turbulence in spatially extended systems, global

control methods are practical since local access to all system elements is often difficult to

achieve. Global methods act on a single parameter that affects the dynamics of the entire

medium. In the present work, two different types of global control strategies, uniform peri-

odic forcing and global delayed feedback, are used to control pattern formation and turbu-

lence in a surface chemical reaction. In case of periodic forcing, the control signal is given

a priori, whereas it adjusts to the current state of the medium when feedback control is

implemented. Previous studies performed in the framework of abstract models have theo-

retically investigated the effects of periodic forcing [32–35] and different schemes of global

feedback [36–38], suggesting that turbulence and pattern formation can be successfully con-

trolled in reaction-diffusion systems. Recent experimental studies [39–42] employing the

oscillatory Belousov-Zhabotinsky reaction concentrated on the application of global control

methods in a non-turbulent parameter regime and showed the formation of several types of

spatiotemporal structures.

The reaction considered in this work is the catalytic oxidation of carbon monoxide on

a platinum(110) single crystal surface, an idealized setting of the reaction that proceeds in
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the catalytic converter of a car exhaust. In contrast to catalytic reactions in liquid phase such

as the BZ reaction, surface reactions represent heterogeneously catalyzed chemical systems,

where catalyst and reagents are present in different phases. The investigation of oscillatory

surface reactions has a tradition of several decades (see Ref. [43] for a review). The system-

atic exploration of oscillations and spatiotemporal patterns in such systems has been started

by Ertl and co-workers [44, 45]. Among surface chemical reactions, by far the richest va-

riety of spatiotemporal patterns has been found in CO oxidation on Pt(110). The observed

phenomena include propagating and standing waves, rotating spirals, target patterns, and

turbulence [46]. The CO oxidation reaction on Pt(110) involves only a few species and its

mechanism is well understood.

The effects of global delayed feedback on the self-organized behavior of CO oxidation

on Pt(110) are studied both in a theoretical model of this reaction and in laboratory exper-

iments. Two cases are considered, differing by the state of the unperturbed reaction: in the

first case the system displays stable uniform oscillations or stable rotating spiral waves, while

the second case is characterized by the presence of chemical turbulence. The influence of pe-

riodic forcing on pattern formation is studied in the second case and experimentally only. It

is found that the chosen control methods allow to suppress turbulence, and that they can be

successfully used as a tool to produce various complex patterns.

The following chapters are divided into three parts. The first part (Chapter 2-4) describes

the background of this work. First a brief introduction into pattern formation and turbulence

in reaction-diffusion systems is given in Chapter 2. Following this, the later used control

methods – periodic forcing and global feedback – are explained and some of their possible

effects are illustrated in Chapter 3. Subject of Chapter 4 is an introduction into phenomena,

mechanism, and mathematical modeling of catalytic CO oxidation on Pt(110).

The theoretical investigations of CO oxidation on Pt(110) are presented in the second part

of this work (Chapter 5-6). In Chapter 5, first the equations used for mathematical modeling

are specified and their numerical implementation is briefly discussed. Then a method for

the interpretation of simulated patterns is developed which allows a transformation of model

variables into amplitude and phase variables. Thereafter, in Chapter 6, a detailed numerical

study of CO oxidation under global delayed feedback is presented. In two different series

of simulations, such feedback is applied first in a non-chaotic parameter regime, and then

to control spatiotemporal chaos in the model. In both cases, various different spatiotemporal

structures are obtained and subsequently analyzed.
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The third part of this work (Chapter 7-9) is devoted to surface chemical experiments

employing the CO oxidation on Pt(110). The used experimental setup is described in Chap-

ter 7. In Chapter 8, experiments with global delayed feedback are reported that have been

performed to test the theoretical predictions made in Chapter 6. Both in a non-chaotic and

in a turbulent parameter region, several previously predicted spatiotemporal patterns are ob-

served. The amplitude and phase characterization of such structures is achieved by employ-

ing a similar technique as was used before to analyze the simulated patterns. Furthermore, in

Chapter 9, experiments with uniform periodic forcing are reported. The effects of such forc-

ing are studied in the case when the unforced reaction exhibits chemical turbulence. Finally,

the results of this work are summarized in Chapter 10.





Part I.
Background
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Chapter 2

Theoretical description of reaction-diffusion
systems

Subject of this work are phenomena of spatiotemporal pattern formation in systems of

reaction-diffusion type. In this chapter, the theoretical background of reaction-diffusion sys-

tems is described. Consider a spatially extended medium consisting of many identical active

elements with deterministic dynamics. The momentary state of each individual element shall

be uniquely defined by a set of variables u � �u1�u2� ����un�. Assuming diffusive interaction

between the elements, the spatiotemporal dynamics of the distributed system u�x� t� in the

continuum limit shall be governed by a set of coupled, in general nonlinear partial differential

equations (PDE’s) of the form

∂u
∂t

� f�u�p��D∇2u � (2.1)

where f denotes a set of n differentiable functions fi, p represents the system parameters, and

D is the diffusion matrix. In chemical systems, the variables ui may represent different chem-

ical species and the functions fi describe the reaction kinetics. It is assumed that diffusion

follows Fick’s second law, ∂tu � D∇2u (provided that diffusion is constant in space). When

the reagents diffuse independently of each other, the diffusion matrix has diagonal form.

The above description is a mean field approach, implying a characteristic diffusion length

l �
�

Dτ, where τ is the characteristic time scale of the reaction. To accurately describe

phenomena occurring on spatial scales smaller than l, nanoscopic or mesoscopic approaches

are necessary (see, e.g., Ref. [47]).

Reaction-diffusion systems of the form (2.1) are capable of generating a broad variety

of complex spatiotemporal patterns [22, 23]. Such structures result from the interaction of

nonlinear local dynamics (reaction) and spatial coupling due to diffusion. To understand
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the collective behavior of distributed systems, it is helpful to first consider the dynamics of

isolated elements, while neglecting their mutual interaction. This is done in Section 2.1. In

Section 2.2, active media are classified into bistable, excitable, and oscillatory systems, and

their basic properties are discussed. A standard model of a distributed oscillatory system, the

complex Ginzburg-Landau equation, is described in Section 2.3. Its regular and spatiotem-

porally chaotic solutions provide generic examples of oscillatory reaction-diffusion patterns.

2.1 Limit sets, stability, and bifurcations

The dynamics of a single element of an active medium is obtained from equation (2.1) by

simply dropping the diffusion term. This yields a usually low-dimensional set of n coupled

ordinary differential equations (ODE’s) of the form

u̇ � f�u�p� � (2.2)

The theory of low-dimensional nonlinear dynamical systems is well established [14, 16, 48].

Dynamical processes correspond to trajectories in phase space spanned by the variables

(u1�u2� ����un). Starting from an initial condition u�t0�, the trajectory of the solution u�t� is

uniquely defined because the time derivative in system (2.2) is of first order. The subsets of

phase space that are approached by the trajectories as t ��∞ are called limit sets. Attractors

are limit sets that are approached in the limit t � �∞. They may correspond to stationary,

periodic, quasiperiodic, or chaotic dynamical states.

The stationary limit sets (fixed points) u� of system (2.2) fulfill the condition u̇ � 0. The

linear stability of such a fixed point u� is tested by perturbing it slightly, u � u��δu. After

linearization with respect to δu, the perturbation then evolves according to the equation

�δ̇u� � J�u��δu � where Ji j �
∂ fi

∂u j
� (2.3)

Thus, the eigenvalues λ1� ����λn of the linear evolution matrix J evaluated at a fixed point u�

govern its stability. The fixed point is stable if the real parts of all eigenvalues λi are negative;

it is unstable if the real part of at least one eigenvalue is positive.

In two-dimensional phase space, the eigenvalues λ1 and λ2 may either be real or complex

conjugated. Thus, five different types of fixed points are possible, see Fig. 2.1. Two real nega-

tive (positive) eigenvalues correspond to a stable (unstable) node, and a saddle point is given

by the combination of one positive and one negative real eigenvalue. Complex conjugated

eigenvalues correspond to a focus, whose stability depends on the real parts.
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  (a)                       (b)                        (c)

  (d)                         (e) Figure 2.1: Fixed points in two-
dimensional phase space: (a) sta-
ble node, (b) saddle point, (c) un-
stable node, (d) stable focus, and
(e) unstable focus.

The stability of a fixed point may be changed when at least one of the eigenvalues changes

its sign, a process which is termed bifurcation. The simplest example of a bifurcation leading

to nonstationary dynamical behavior is the supercritical Hopf bifurcation, see Fig. 2.2. As an

appropriate control parameter µ is varied beyond its critical value µc, a stable focus becomes

unstable and simultaneously a stable limit cycle is born. Sufficiently close to the bifurcation

point, the associated oscillations are harmonic and their amplitude grows as A � �µ�µc .

At a larger distance from threshold, the oscillations might become strongly anharmonic,

depending on the properties of a given system.

� � �� � � �� � � ��

Figure 2.2: Phase space portraits
in the vicinity of a supercritical
Hopf bifurcation.

Further examples of local bifurcations include the subcritical variant of the Hopf bifurca-

tion, where an unstable focus changes into a stable focus and an unstable limit cycle, and the

saddle-node bifurcation, where a saddle point and a node are created (or destroyed). More

detailed discussions of limit sets and their stability can be found in Ref. [49].

2.2 Bistable, excitable, and oscillatory systems

Depending on the number and kind of limit sets, the dynamical behavior of many systems

of the form (2.2) can be classified as monostable, bistable, excitable, or oscillatory [22]. In

this section, this classification is illustrated by considering the nullclines of a system of two
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variables u1 and u2. The nullclines are defined as the lines in phase space obeying u̇1 � 0 and

u̇2 � 0. Their intersection points are the fixed points of the system. Schematic drawings of

the phase space in the cases of bistable, excitable, and oscillatory dynamics are displayed in

Fig. 2.3.

(a) (b) (c)

u  =0
u  =0

1
2

u1

u2

Figure 2.3: Schematic phase space drawings illustrating (a) bistable, (b) excitable, and (c)
oscillatory dynamics.

Bistable systems

The nullclines of bistable systems typically possess three intersection points, which corre-

spond to two stable fixed points separated by a saddle point. This situation is illustrated in

Fig. 2.3(a). The direction of the flow is indicated by small arrows. The straight nullcline

u̇2 � 0 is attracting with respect to u2: the value of u2 decreases above the nullcline, whereas

it increases below. Accordingly, the declining branches of the nullcline u̇1 � 0 are stable

with respect to changes in u1; however, its rising middle branch is unstable. To carry over the

system state from one stable fixed point to the other, a sufficiently strong perturbation that

crosses the middle branch of the nullcline u̇1 � 0 is needed. In a distributed system consisting

of many diffusively coupled bistable elements, the propagation of a front (trigger wave) can

induce such a transition. Trigger waves travel with constant velocity and represent the basic

type of pattern in extended bistable media.

Excitable systems

Excitable systems are characterized by special dynamical properties in the vicinity of a sta-

ble fixed point. Small (subthreshold) perturbations of the stationary state straightly decay,

but sufficiently large (superthreshold) perturbations induce a long excursion in phase space
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before the system again relaxes to its stationary state. The trajectory of such an excitation is

depicted in Fig. 2.3(b). The rising branch of the nullcline u̇1 � 0 acts as excitation threshold.

The time needed to recover from an excitation is called the refractory period of a system.

Typically, excitable elements cannot be excited again within this period.

Spatially extended excitable media can support the steady propagation of excitation

waves. The system relaxes in the tail of a traversing pulse and, in contrast to trigger waves

in bistable systems, subsequent identical pulses may pass through the same region, one after

another. Pulses usually annihilate upon head-on collisions. In two space dimensions, broken

excitation waves can curl and form self-sustained rotating spiral waves. The shape and ro-

tation frequency of such spirals are uniquely determined by the properties of the medium.

Furthermore, rigidly rotating spiral waves may undergo instabilities leading to meandering

of the spiral tip [50] and, via spiral breakup, to turbulence in excitable media [51].

Oscillatory systems

Periodic oscillatory systems are characterized by the presence of an unstable fixed point and

a stable limit cycle. This situation is illustrated in Fig. 2.3(c) where the nullclines intersect on

the unstable branch of u̇1 � 0. The limit cycle is depicted by the dashed line. In autonomous

systems of the form (2.2), trajectories cannot intersect in phase space, and therefore periodic

limit cycle oscillations are the most complex type of oscillatory behavior possible in the case

of two independent variables. In systems described by three or more variables, chaotic oscil-

lations are also possible. Throughout this work, only spatially extended media are considered

whose isolated elements display periodic oscillations.

Typical spatiotemporal patterns in diffusively coupled arrays of periodic oscillators in-

clude rotating spiral waves, target patterns, and spatiotemporal chaos (turbulence). The rota-

tion frequency of spiral waves is, as in excitable media, a unique property of a given medium.

Target patterns are patterns of concentric waves sent out by a wave source called pacemaker.

Target waves are typically emitted by inhomogeneities of a medium, but in homogeneous

systems described by at least three independent variables also stable self-organized pace-

makers are possible [52, 53]. Turbulence occurs when diffusive coupling destabilizes uni-

form oscillations. This situation is encountered when existing phase gradients are steepened

by diffusion rather than damped.

To understand the latter behavior, it is instructive to consider the phase dynamics of a field

of periodic (but possibly anharmonic) oscillators [22,25]. The momentary state of each oscil-

lating element shall be given by its oscillation amplitude and phase. Under the condition that
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the variation of the oscillation phase across the medium is sufficiently smooth, the character-

istic time scale for the evolution of phase distributions is large as compared to the amplitude

relaxation time for an individual oscillator. Then a universal phase equation can be derived.

This equation describes the dynamical evolution of the (smooth) phase distribution φ�x� t�
and is of the generic form

∂φ
∂t

� a�∇φ�2�b∇2φ � (2.4)

where the coefficients a and b depend on the particular system. By the Hopf-Cole transfor-

mation φ � �b�a� lnQ, equation (2.4) can be reduced to the linear equation

∂Q
∂t

� b∇2Q � (2.5)

If the coefficient b is positive, equation (2.5) is a standard diffusion equation and any local-

ized perturbation in Q (and therefore also in φ) spreads out and decays as time proceeds. In

contrast, if the value of b is negative, a localized perturbation increases in magnitude. Fluctu-

ations on the smallest spatial scale typically show the most rapid growth. However, as phase

variations are steepened, the condition of a sufficiently smooth phase field may no longer

be fulfilled, and equation (2.4) may not be applicable anymore. Then the resulting turbulent

state cannot be consistently described within the phase dynamics approximation and its prop-

erties must be determined from the complete set of reaction-diffusion equations. However, a

universal description is possible for systems close to a supercritical Hopf bifurcation. This

approach is followed in the next section.

2.3 The complex Ginzburg-Landau equation

The derivation of an amplitude equation leads to a simplified description of the universal

properties of a system close to a bifurcation point [9, 25]. The behavior of any reaction-

diffusion system that undergoes a supercritical Hopf bifurcation, regardless of its nature, is

described by the complex Ginzburg-Landau equation (CGLE). Though the CGLE is strictly

valid only sufficiently close the onset of oscillations, its predictions may remain qualitatively

correct in a larger neighborhood of the bifurcation. The CGLE is one of the most-studied

equations in nonlinear physics (see Ref. [54] for a recent review). It displays a wealth of

phenomena, ranging from stable plane waves and spiral waves to spatiotemporal chaos. Se-

lected solutions of the CGLE are discussed below, because they provide generic examples
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of regular and turbulent spatiotemporal regimes that will be referred to in later parts of this

work.

The CGLE describes harmonic oscillations in terms of the complex amplitude

A � �A�eiφ, where �A� is the amplitude modulus and the phase is given by φ � arg�A�. In

rescaled, dimensionless form the evolution equation for the complex field A�x� t� reads

∂A
∂t

� �1� iω�A� �1� iβ��A�2A��1� iε�∇2A � (2.6)

where β and ε are real parameters denoting the nonlinear shift of the oscillation frequency

and the dispersion coefficient, respectively. The term (�iωA) can be eliminated by going to

a rotating coordinate frame A� Aexp�iωt� and therefore is often omitted. The derivation of

the CGLE parameters from a reaction-diffusion system is explained in Refs. [25, 55].

The dynamics of a single isolated element is described by omitting the diffusion term

�1� iε�∇2A in equation (2.6). Such an element performs harmonic limit cycle oscillations

A � exp��iω0t� with frequency ω0 � ω � β. In the distributed system, it follows from a

linear stability analysis that the state of uniform oscillations is unstable with respect to small

perturbations if the Benjamin-Feir condition

1� εβ� 0 � (2.7)

is satisfied. The Benjamin-Feir instability corresponds to the occurrence of a negative coef-

ficient b in the phase dynamics equation (2.5).

The chaotic spatiotemporal regimes beyond the Benjamin-Feir instability are known as

chemical turbulence [23, 25]. When crossing the Benjamin-Feir boundary with spatially al-

most uniform initial conditions, at first phase turbulence develops. This state is characterized

by weak phase and amplitude variations, such that trajectories still lie in the vicinity of uni-

form oscillations. In one space dimension, narrow regions with increased oscillation ampli-

tude (shocks) randomly travel through the medium, see Fig. 2.4(a) for an example. Statistical

analysis reveals that, though this state is chaotic, long-range spatial correlations are retained

and oscillations of distant elements remain almost synchronous [56].

Farther away from the Benjamin-Feir boundary, strong phase fluctuations become more

probable, such that phase slips occur with a nonzero average rate. Phase slips correspond to

dynamical defects which are represented by narrow regions in the amplitude field where �A�
locally nearly vanishes, see Fig. 2.4(b). The transition from phase turbulence to such ampli-

tude turbulence (or defect turbulence) is characterized by a qualitative change of the spatial
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Figure 2.4: Different turbulent
regimes in the one-dimensional
CGLE: (a) phase turbulence, (b)
amplitude turbulence, and (c) in-
termittent turbulence. The space-
time diagrams display the real
oscillation amplitude �A� in gray
scale; defects are seen in (b) and
(c) as dark spots. The system size
is L � 256 and the time interval
shown is ∆t � 500. The parame-
ters are (a) β � �1, ε � 1�5, (b)
β � �2, ε � 2, and (c) β � �1�4,
ε � 0�6.

correlation function for the complex amplitude. The correlation radius decreases strongly

as defects appear in the system and becomes close to the mean distance between the de-

fects [56].

Depending on the values of b and ε, the transition between phase and amplitude tur-

bulence may involve hysteresis. For appropriate parameter values, there is a region termed

bichaos where both phase and amplitude turbulence can occur, depending on the initial con-

ditions. Defects may even persist into the Benjamin-Feir stable range where they coexist

with plane waves [56–58]. In the latter regime of intermittent turbulence, defects cannot in-

definitely reproduce to infect the entire medium. Instead, cascades of localized defects are

observed on a laminar background of plane waves, see Fig. 2.4(c).

In two space dimensions, rotating spiral waves are solutions of the CGLE. Individual

spiral waves may be stable, see Fig. 2.5(a), or spiral-breakup may occur due to absolute or

convective instabilities, leading to turbulence [54]. Spiral waves provide topological defects

of the phase distribution field. Along any closed contour around the center of the spiral wave,

the phase changes by ∆φ � �2π. Therefore, the phase is not defined in the center, which
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Figure 2.5: Different patterns in the two-dimensional CGLE: (a) rotating spiral wave, (b)
amplitude turbulence, and (c) phase turbulence. The variables φ (top) and �A� (bottom) are
displayed in gray scale; defects are seen in the bottom images of frames (a) and (b) as dark
spots. The system size is L � 128 for each pattern. The parameters are (a) β ��0�6, ε � 2,
(b) β ��1�8, ε � 0, and (c) β ��0�752, ε � 2.

requires that the oscillation amplitude vanishes there. Simple spirals are associated with a

topological charge defined as Q ��1, where the sign depends on the rotation direction. The

total topological charge of a medium with periodic boundary conditions is conserved, and

topological defects can only be created or annihilated in pairs of opposite charge [22].

Two types of disordered regimes representing amplitude and phase turbulence can be

distinguished in the two-dimensional case [59]. Amplitude turbulence, see Fig. 2.5(b), is

characterized by the persistent creation and annihilation of (topological) defects. If the den-

sity of defects is large, they appear and disappear rapidly and only rarely form spirals. The

statistics of defects has been investigated in Ref. [60]. In contrast, in phase turbulence no

defects occur, see Fig. 2.5(c). The resulting state consists of a disordered cellular structure

of shock lines, with only large-scale modulations of the phase field. Phase turbulence in

two space dimensions is always metastable with respect to defect turbulence or frozen spiral

regimes [54]. The latter non-chaotic state is characterized by spiral waves that occupy the in-

dividual cells of a network of shocks [59, 61]. The investigation of turbulent states and their
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statistical properties in the CGLE in one, two, and three space dimensions is still an active

field of research.
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Chapter 3

Strategies for controlling turbulence and pattern
formation

To control turbulence and pattern formation in extended nonequilibrium systems, different

approaches have been proposed in the literature [36, 62–71]. Some of the proposed tech-

niques require spatially resolved access to the medium under control, because the control

force is applied locally or the variation of the control signal is continuous in space. In con-

trast, global control schemes act on a single system parameter that simultaneously affects

the dynamics of the entire medium. In typical experimental situations, global methods are

more practical because spatially resolved access to the system elements is often difficult, but

a global system parameter (such as temperature) can be easily controlled.

In this chapter, two types of global control methods, uniform periodic forcing and global

feedback, are considered. Possible effects of periodic forcing are outlined and then illustrated

at two examples in Section 3.1. In Section 3.2, different schemes of global feedback are

introduced and the effects of global feedback in the complex Ginzburg-Landau equation are

reviewed.

3.1 Periodic forcing

3.1.1 Resonance phenomena

Periodic forcing is abundant in nature (e.g. circadian rhythm, beating of the heart). Applied

to a distributed oscillatory system, periodic forcing can lead to the formation of various

complex spatiotemporal patterns. To understand the occurring phenomena, it is helpful to

first consider the response of a single oscillatory element to a periodic stimulus.
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Assume a nonlinear oscillator that periodically oscillates at its natural frequency ω0.

When the system is now driven by a periodic force with frequency ω f , it can become en-

trained to the external stimulus. In such a resonant case, the forced system oscillates at

a frequency ω that is rationally related to the applied frequency ω f . This phenomenon is

known as frequency locking [14]. Frequency locking has been observed in various nonlinear

systems of physical, chemical, and biological origin [39, 72–77].

The simplest type of entrainment occurs when the forcing frequency ω f is sufficiently

close to the natural frequency ω0. In this case, the system adapts its oscillation frequency

to the frequency of the driving force, such that it oscillates in harmonic resonance with

the stimulus. However, entrainment can also lead to locking at other frequency ratios. The

n : m resonance (where n and m are integers) is defined such that the oscillator entrains at

a frequency ratio
ω f
ω � n�m. For example, a system entrained in 2:1 resonance oscillates

exactly once per two periods of the driving force. If n � m, the entrainment is denoted as

subharmonic, and for n� m it is called superharmonic.

The frequency range for resonant locking at a given ratio n : m depends on the forcing

amplitude. The frequency-amplitude plane of the driving force shows tongue-shaped entrain-

ment bands (Arnol’d tongues [79]), see Fig. 3.1 for an example. At low forcing amplitudes

γ, these resonant bands are separated by regions where the response to the periodic stim-

ulus is quasiperiodic, i.e., in the resulting oscillations a finite number of incommensurate

modes is excited. At higher forcing amplitudes, the entrainment bands overlap and various

bifurcations can occur, leading to period doubling and temporal chaos. The entrainment of
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Figure 3.1: Frequency locked re-
gions in a periodically forced two-
variable model of a nonlinear
chemical oscillator, the paramet-
rically forced Brusselator model
(see the next section). Shaded re-
gions show frequency locked be-
havior, where the system is en-
trained with the indicated ratios.
Outside the resonant bands, the
system response is quasiperiodic
or locked with higher ratios. From
Ref. [78].
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single oscillatory elements has been studied extensively and is well understood (see, e.g.,

Ref. [80]).

Much less is known on frequency locking in spatially extended systems. The response of

a distributed oscillatory system to a periodic stimulus is more complicated than that of a sin-

gle oscillator since it is possible for individual elements to oscillate with different magnitude

and phase with respect to each other. Moreover, the ability of individual oscillatory elements

to entrain to a periodic stimulus may change through the influence of diffusive coupling. For

example, the dominating contribution of the diffusion terms can prevent frequency locking

at small forcing amplitudes [35, 81]. On the other hand, close to the boundaries of Arnol’d

tongues stable frequency locked patterns may exist at forcing parameters where single oscil-

latory elements are not locked [35]. Thus, depending on the parameter values, diffusion may

either enhance or suppress frequency locking.

So far, most of the theoretical studies [32–35, 62, 82–84] on resonant pattern formation

in reaction-diffusion systems have concentrated on the forced complex Ginzburg-Landau

equation [85, 86], which is the normal form of such a forced system near the soft onset of

oscillations. In presence of periodic forcing with frequency ω f � n
m �ω0� ν�, where n�m

is an irreducible integer fraction and ν denotes the detuning of the forcing frequency from

exact resonance, the CGLE becomes

∂A
∂t

� �µ� iν�A� �1� iβ��A�2A��1� iε�∇2A� γnÃn�1� (3.1)

Here, the parameter µ� 0 represents the distance from the Hopf bifurcation, γn is the forcing

amplitude, and Ã denotes the complex conjugate of A. Note that equation (3.1) is independent

of m. The resonance is specified only by the parameter n.

The stationary solutions of equation (3.1) mean frequency locking. Without the diffusion

term, linear stability analysis of the stationary state yields the Arnol’d tongue of a single

oscillator. In each resonance, frequency locking of a single oscillator is found in a V–shaped

region in the plane spanned by the forcing parameters ν and γn [35].

There are n equivalent stable stationary solutions for n : m resonances, which differ only

by a phase shift of 2π�n [62]. In spatially extended systems, each individual oscillatory

element may lock to one of these n different states. If diffusive coupling synchronizes spatial

domains of oscillators, phase patterns consisting of different domains that belong to the n

different phase values can occur. The phase domains are then separated by fronts that shift

the oscillation phase from one domain to another. Typically, 2π�n phase fronts are stationary
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in the case n � 2 and travel in the cases n � 3�4, thereby forming n-armed spiral patterns in

two space dimensions [35,62]. Domain patterns are also referred to as n-phase clusters [42].

Starting from strong resonance, the phase fronts can undergo a variety of bifurcations

as the forcing parameters are varied. In particular, instabilities leading to motion of π-fronts

and to the formation of labyrinthine patterns have been reported in the case n � 2 [32, 87]

(such instabilities are illustrated in the next section). Another bifurcation causes a transition

from rotating four-phase patterns to standing two-phase patterns in the 4:1 resonance [33,

83, 88]. Similar phenomena have been found also in the 2k:1, k � 2 entrainment bands [33,

83]. Other interesting effects arise due to competition between the diffusion-induced phase

instability and periodic forcing. Such phenomena include the development of stripe patterns

and hexagonal structures [32], and the spontaneous formation of phase kinks [34] in the case

n � 1.

In addition to the amplitude equation, also other reaction-diffusion models are useful

to study the effects of periodic forcing on pattern formation. Kinetic models such as the

Brusselator, Oregonator, or FitzHugh-Nagumo model allow a numerical investigation of the

resulting behavior farther away from the onset of oscillations [40,78,84,88]. In such models,

the forcing is introduced as a periodic modulation of an otherwise constant parameter. Some

of the occurring phenomena are illustrated in the next section at the example of the forced

Brusselator reaction-diffusion model [78].

Experimental studies of resonant pattern formation in oscillatory reaction-diffusion sys-

tems have been conducted only recently and almost exclusively focused on the periodically

forced Belousov-Zhabotinsky (BZ) reaction [39,40,42,88]. So far, all experiments were per-

formed in a non-chaotic parameter regime where stable spiral waves were present in absence

of forcing. Such experiments revealed a variety of resonant spatiotemporal patterns, depend-

ing on the forcing parameters. Some experimentally observed phenomena are also further

described below.

The response of excitable media to a periodic stimulus has been studied in related

works [89–92]. It was found that the motion of spiral waves can be effectively controlled,

and a variety of resonant spiral tip trajectories has been reported. In subexcitable media,

sustained wave propagation could be achieved due to the effects of periodic forcing [93].
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3.1.2 Examples of pattern formation under periodic forcing

In order to illustrate some possible resonant phenomena, effects of periodic forcing on two

oscillatory reaction-diffusion systems, the Brusselator model and the Belousov-Zhabotinsky

reaction, are briefly exemplified below.

Brusselator model with periodic forcing

First the periodically forced Brusselator reaction-diffusion model is considered. The results

of this study have been presented in detail in Refs. [40, 78, 88]. The Brusselator [12, 94] is

a hypothetical scheme of chemical reactions from which a simple set of reaction-diffusion

equations can be derived. The model describes the kinetics of two chemical species u and v.

By adding a parametric forcing term γsin�ω f t�u2v, the model reads

∂u
∂t

� A� �B�1�u�u2v �1� γsin�ω f t���∇2u� (3.2)

∂v
∂t

� Bu�u2v�δ∇2v� (3.3)

Here A � 0�5 and B � 1�5 are constant parameters, δ � 5�0 denotes the ratio of the diffusion

coefficients of species u and v, the parameter γ specifies the forcing amplitude, and ω f is

the forcing frequency. At the above specified parameters, unforced isolated system elements

perform non-harmonic limit cycle oscillations. For appropriate initial conditions, rotating

spiral waves are stable solutions of the reaction-diffusion equations.

Pattern formation in model (3.2)-(3.3) has been studied numerically in two space di-

mensions using a partial differential equation solver [95]. Here the attention is focused on

the 2:1 locked band. Typical examples of patterns observed near and inside this resonance

are displayed in Fig. 3.2. Outside the frequency locked regions, unlocked spiral waves with

underlying quasiperiodic oscillations are present, see Fig. 3.2(a) for a typical example. Do-

main patterns with anti-phase oscillations prevail in the center of the 2:1 locked band, see

Fig. 3.2(b).

Below a critical forcing amplitude γc � 0�007 and near the high-frequency edge of the

2:1 resonance, the fronts in the phase domain patterns undergo an instability. This so-called

nonequilibrium Ising-Bloch (NIB) bifurcation causes a transition from standing to traveling

two-phase patterns. The NIB bifurcation has been analyzed previously by Coullet et. al. in

the framework of the forced CGLE [32,62]. Through the front bifurcation a stationary (Ising)

phase front loses stability to a pair of counter-propagating (Bloch) fronts. While Bloch fronts
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Figure 3.2: Patterns in the forced Brusselator model in the vicinity and within the 2:1 sub-
harmonic entrainment band. The images display snapshots of the spatial distribution of con-
centration u: (a) unlocked spiral wave, (b) frequency locked standing two-phase pattern, (c)
locked rotating two-phase spiral, and (d) locked labyrinthine pattern. The values of the forc-
ing parameters ω f �ω0 and γ are, respectively, (a) 1.58, 0.05; (b) 1.66, 0.07; (c) 2.12, 0.05;
and (d) 2.40, 0.06. From Ref. [78].

continuously shift the oscillation phase from one spatial domain to the other, along an Ising

front the phase is constant except in the front center. At that point there is an oscillation

node where the oscillation amplitude vanishes and the phase undergoes a jump of π. The

NIB instability is also observed later in simulations of catalytic CO oxidation under global

delayed feedback.

As a consequence of counter-propagating fronts, rotating two-phase spiral patterns can

arise in two space dimensions, see Fig. 3.2(c). Such patterns develop due to the following

mechanism: assume a continuous, initially straight phase front consisting of an upper and a

lower part that travel in opposite directions. For continuity reasons, there exists a kink at the

boundary between the two front parts which does not move. During the further evolution, the

front will curl in the vicinity of the kink, thereby forming a two-phase spiral that rotates with

constant angular velocity. Such a pattern can also develop from less special initial conditions,

provided that a kink is present.

A different, transverse front instability leads to the formation of labyrinthine patterns in

the 2:1 resonance of the Brusselator model, see Fig. 3.2(d) for a fully developed example.

The growth mechanism of the labyrinthine patterns is as follows: starting with an initially

planar phase front with superimposed noise, lateral perturbations along the front grow in

time and evolve into fingers. Evolving fingers repel each other if they come too close. They

also can undergo tip-splitting, thereby creating further branches. The growth of such objects

is not saturated until finally the full system is covered by a standing labyrinthine structure.
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Belousov-Zhabotinsky reaction with periodic forcing

A rich variety of resonant spatiotemporal patterns has been also found in laboratory exper-

iments using the Belousov-Zhabotinsky (BZ) reaction [39, 40, 42, 88]. To provide an exper-

imental example of possible resonance phenomena and to introduce a method for pattern

characterization, the results of a study by Lin et al. [40] are summarized below.

The BZ reaction consists of the oxidation of malonic acid by bromate, catalyzed by metal

ions in acidic aqueous solution. The reaction is known to exhibit oscillatory behavior for a

wide range of control parameters when maintained in a nonequilibrium state [8,19]. The ex-

periments described in Ref. [40] have used a light-sensitive ruthenium-catalyzed version of

the BZ reaction, where forcing can be externally applied as spatially uniform, time-periodic

light pulses. The reaction proceeds in a thin porous membrane (0.4 mm thick, 22 mm in di-

ameter) sandwiched between two continuously refreshed reservoirs of reagents. Quasi-two-

dimensional patterns in the spatial distribution of the ruthenium catalyst Ru(II) are imaged

by measuring the light transmission through the membrane.

When periodic light pulses with intensity γ2 and frequency f are applied, several reso-

nances (1:1, 2:1, 3:1, 3:2, 4:1) occur. The most complex behavior is found in the subharmonic

resonance with 2:1 frequency ratio and includes various qualitatively different types of pat-

terns, see Fig. 3.3. In the top row of Fig. 3.3, snapshots of reactor images are displayed. To

detect resonance in the experimental data, the temporal response of each resolving pixel of a

pattern forced with frequency f was determined. To do this, the fast Fourier transform (FFT)

was calculated for the time series of each pixel. In a 2:1 resonant case the average power

spectrum over all pixels exhibits a dominant peak at f�2.

To extract information on the local oscillation magnitude and phase in a pattern, for each

pixel the complex Fourier coefficient a that corresponds to the f�2 mode was then plot-

ted into the complex plane. The resulting phase portraits are shown in the middle row of

Fig. 3.3. Each point in the phase portraits corresponds to a pixel in the patterns. The oscilla-

tion magnitude �a� of the considered mode for each point in the complex plane corresponds

to its distance to the plane origin, and the phase arg�a� is given by the polar angle. Hence,

phase portraits allow to simultaneously image the amplitudes and phases of all oscillating

elements at the expense of information on their spatial arrangement. Finally, the bottom row

of Fig. 3.3 displays a histogram of the distribution of phase angles for each pattern.

The unforced BZ system exhibits stable rotating spiral waves, see Fig. 3.3(a). The circu-

lar distribution of points in the corresponding phase portrait and the phase histogram show
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that the phase angles are uniformly distributed in the interval [0,2π]. When strong forcing

is introduced, frequency locked patterns as shown in Figs. 3.3(f) (labyrinthine patterns) and

3.3(g) (Ising front patterns) form. Both pattern types show a sharp distribution of phase an-

gles. They consist of stationary spatial domains with synchronous oscillations that are phase

shifted by π. In contrast, the gradient of phase angles in the frequency locked pattern in

Fig. 3.3(b) is so small that there are no distinguishable phase fronts. In the 2:1 resonant pat-

terns shown in Figs. 3.3(c)-3.3(e) the oscillation phase is moderately weighted. The Fourier

coefficients in the complex plane show a rough S-shaped distribution. It can be seen more

clearly in the bottom row of Fig. 3.3 that for each resonant pattern the phase angle distribution

is weighted differently around two π-shifted phases, depending on the forcing parameters.

The above described experiments [40] demonstrate that pattern formation in the BZ reac-

tion can be efficiently manipulated by means of external forcing. Using a similar setup of the

light-sensitive BZ reaction, in a subsequent study Vanag et al. [42] could reproduce some of

the observed patterns and additionally found further types of cluster patterns. Other studies

��� ��� ��� ��� ��� ��� ���

Figure 3.3: (top row) Typical reactor images (9�9mm2) of different patterns observed in the
Belousov-Zhabotinsky reaction: (a) unforced rotating spiral wave, (b) rotating spiral wave
fragments, (c) mixed rotating spiral and standing wave pattern, (d)-(g) qualitatively differ-
ent standing wave patterns. Patterns (b)-(g) exhibit a 2:1 resonance in the average temporal
power spectrum of the pattern. (middle row) The complex Fourier amplitudes a after fre-
quency demodulation at f�2 for all pixels in each pattern: the abscissa is Re�a�; the ordinate
is Im�a�. (bottom row) Histograms of phase angles for all the pixels in each image; the
abscissa range is [0,2π] and the ordinate range is arbitrary. For each pattern the parameter
values of f (Hz) and γ2(W/m2) are, respectively, (a) 0, 0; (b) 0.1000, 119; (c) 0.0625, 214;
(d) 0.0556, 248; (e) 0.0417, 358; (f) 0.0455, 386; (g) 0.0385, 412. The figure was taken from
Ref. [40].
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of the forced BZ reaction have also reported resonant patterns locked at different frequency

ratios [39, 88].

3.2 Global feedback

3.2.1 Overview of feedback schemes

Feedback techniques differ from periodic forcing by the fact that the control signal is not

fixed a priori, but an acting force is generated by the system itself. Feedback techniques

were originally designed for the control of chaos in dynamical systems with only a few

degrees of freedom [96–99], but were later extended for the application to high-dimensional

systems governed by partial differential equations [36, 63–71].

In global feedback methods, information continuously gathered from all system elements

is summed up and used to generate a control signal which acts back on a common parameter

that affects the dynamics of the entire medium. Such a feedback loop can be easily imple-

mented into many experimental systems, and does not require the knowledge of the govern-

ing equations. The action of global feedbacks on chaotic extended systems has been recently

investigated experimentally for arrays of electrochemical oscillators [100], and theoretically

for semiconductors [38] and surface chemical reactions [101, 102]; effects of global feed-

back also have been discussed in the general context of the complex Ginzburg-Landau equa-

tion [36, 37]. Furthermore, various forms of global feedback have been successfully applied

to control pattern formation in non-chaotic oscillatory [41,103,104] and excitable [105–109]

chemical systems.

A feedback method useful to control chaotic oscillatory dynamics has been developed by

Pyragas [97]. This method of time-delay autosynchronization (TDAS) is based on a compar-

ison between present and past system states. The global variant of this method, designed to

control turbulence in spatially extended systems, is implemented via continuous application

of a global control signal of the form

F�t� � K � ū�t�� ū�t� τ� �� (3.4)

where ū�t� � 1
S

�
S u�x� t�dx denotes the spatial average of a system variable u at time t, and

the parameters K and τ specify feedback intensity and delay time, respectively. When acting

back on the variable u, in the limit τ � 0 such feedback aims to stabilize uniform steady

state solutions of the system. In the limit τ � TUPO, the goal of feedback application is to

stabilize an otherwise unstable periodic orbit (UPO) with period TUPO. In case of successful
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stabilization, the control signal has to compensate only for small fluctuations and practically

vanishes.

As a natural extension of the method described by equation (3.4), not only one but several

past global system states ū�t�mτ� can be considered [99], yielding the global extended time-

delay autosynchronization (ETDAS) scheme

F�t� � K � ū�t�� �1�R�
∞

∑
m�1

Rm�1ū�t�mτ� �� 0� R� 1� (3.5)

where the parameter R controls the contributions of previous states. The simple TDAS

scheme is recovered in the case R=0. It is known that ETDAS is capable of stabilizing un-

stable periodic orbits that cannot be stabilized using the TDAS method [110, 111]. Using

the global ETDAS scheme (3.5) successful control of chaotic spatiotemporal dynamics in a

reaction-diffusion model describing charge transport in a semiconductor has been demon-

strated by Franceschini et al. [38]. Other studies briefly exemplified the effects of global

autosynchronization methods in a surface chemical reaction [101, 102].

A different form of global feedback useful both for the effective synchronization of spa-

tiotemporally chaotic states and for the generation of new spatiotemporal patterns in oscil-

latory systems has been proposed by Battogtokh and Mikhailov [36]. In this method the

forcing signal is directly proportional to the difference of a past global system state and a

reference state,

F�t� � K � ū�t� τ��u� �� (3.6)

where u� denotes the steady state value of the variable u, and K and τ again specify feed-

back intensity and delay time, respectively. Henceforth, this method is referred to as global

delayed feedback. The control force F�t� may be applied to the evolution equation of any

system variable (or even to all of them). Also control forces collectively generated by several

system variables may be considered. The delay can be used to modify the phase relation

between the control signal and the oscillating pattern. Related research [36, 37, 112–114] so

far has been focused on a normal form approach valid close to the soft onset of oscillations.

These previous studies provide a basis for the interpretation of the results obtained in the

present work and so are discussed in more detail below.
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3.2.2 Complex Ginzburg-Landau equation with global feedback

In this section results of previous investigations by Battogtokh and Mikhailov [36, 37] are

reviewed. They studied the normal form of a reaction-diffusion system close to a supercritical

Hopf bifurcation and in presence of a global feedback of the form (3.6). The considered

system is the complex Ginzburg-Landau equation (CGLE) (cf. Section 2.3) supplemented

by an additive force µeiχĀ,

∂A
∂t

� A� �1� iβ��A�2A��1� iε�∇2A�µeiχĀ� (3.7)

where Ā�t� � 1
S

�
S A�x� t�dx is the spatial average of the complex oscillation amplitude, µ

represents the feedback intensity, and χ characterizes an effective phase shift between the

global amplitude and the control force. In the derivation of equation (3.7) the assumption

has been made that the time delay is short as compared to the characteristic evolution times

of the complex amplitude A�x� t�. When this condition is fulfilled, the only (but important)

effect of the delay τ is that it controls the effective phase shift χ � χ0 �ωτ, where χ0 is a

constant and ω denotes the linear oscillation frequency of individual oscillators.

The global feedback in equation (3.7) modifies the frequency and the amplitude of uni-

form oscillations. By substituting A�x� t� � ρe�iΩt one finds that in presence of global feed-

back uniform oscillations have the frequency

Ω ��β�µ�sinχ�βcosχ��

and the modulus of the complex amplitude for uniform oscillations is

ρ � �1�µcosχ�1�2�

These corrections are small when the feedback intensity µ is low.

The linear stability of uniform oscillations is investigated by considering the evolution of

small perturbations. Small homogeneous perturbations always decay. Linear stability analy-

sis of inhomogeneous perturbations δA� e�ikx�Ωt��γkt , where k 	� 0, leads to an equation for

the increment of growth γk of the mode with wavenumber k. This equation has two solutions

�γk�1�2. Depending on the parameters of equation (3.7) and the wavenumber k, these solu-

tions are either real or complex conjugated. Instability of uniform oscillations occurs when

the real part of at least one solution changes its sign and becomes positive.

The stability diagram of uniform oscillations is shown in Fig. 3.4. For this diagram the

parameters (ε � 2, β � �1�4) have been chosen deep in the Benjamin-Feir unstable regime
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(cf. Section 2.3). Hence, uniform oscillations are unstable in absence of feedback (µ� 0) and

the final state reached in numerical simulations of equation (3.7) is characterized by devel-

oped defect turbulence. However, the action of sufficiently strong global delayed feedback

allows to stabilize uniform oscillations within certain intervals of the phase shift χ. In pres-

ence of feedback, uniform oscillations are stable with respect to small perturbations above

the boundary shown by the solid curve.

�

�

�

� �

�

���

�

�

�

Figure 3.4: Stability diagram of
uniform oscillations in the CGLE
with global feedback (ε=2, β=-
1.4). Uniform oscillations are sta-
ble inside the region bounded by
the solid line. Characteristic points
on this curve correspond to the
values of the phase shift χ� �
0�6235π (point A), χ� � 0�275π
(B), and χ� � 0�599π (C). The fig-
ure was reproduced after Ref. [37].

Depending on where the solid line in Fig. 3.4 is crossed, the instability of uniform oscil-

lations leads to the occurrence of different types of spatiotemporal patterns. First, the system

behavior is discussed when the solutions �γk�1�2 are both real. When the curve AB is crossed,

standing waves (periodic spatial modulations superimposed on the state of uniform oscilla-

tions) with wavenumber k 	� 0 appear. Their wavelength λ � 2π�k strongly depends on the

phase shift and diverges as the point B is approached. When the curve BC is crossed, large-

scale domain structures develop, with the characteristic size of domains comparable to the

size of the medium. In this case, the most unstable mode is encountered in the limit k� 0 (in

finite systems, this limit is understood in the sense that the minimal possible wavenumber,

given by the size of the medium and the boundary conditions, is considered).

When the solutions �γk�1�2 are complex conjugated, long-wavelength oscillatory pertur-

bations start to grow when uniform oscillations become unstable. This scenario, which in

numerical simulations leads to turbulent behavior, is encountered when crossing the curves

DA or CE. Again, the least stable mode is the one with k � 0. In contrast to the previously

considered cases, this instability develops under increase of the feedback intensity beyond
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the critical value

µc �� 1
2cosχ

�

Hence, the instability can occur only if cosχ� 0. Note that the critical value for the feedback

intensity does not depend on the parameters ε and β.

Typical two-dimensional structures that result from numerical simulations of equa-

tion (3.7) upon variation of the feedback parameters µ and χ are displayed in Fig. 3.5.

Suppression of defect turbulence by gradually increasing global feedback is achieved by dif-

ferent scenarios, depending on the phase shift χ. Synchronous oscillations emerge through

appearance of a cellular structure [Fig. 3.5(b)], through the regime of intermittent turbulence

[Fig. 3.5(c)], or through the formation of large phase domains [Fig. 3.5(d)].
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Figure 3.5: Different two-dimensional patterns in the CGLE with global feedback (ε=2, β=-
1.4). For each pattern the distributions of phase (top row), amplitude modulus (middle row),
and the phase portraits (bottom row) are displayed. Defects appear dark in the amplitude
images. The parameters of µ and χ are, respectively: (a) 0.18, -0.2; (b) 0.26, -0.2; (c) 0.55, 0;
and (d) 4.0, 0.4.



32 Strategies for controlling turbulence and pattern formation

In all three cases fully developed defect turbulence is first replaced by turbulence on the

background of a cellular structure [Fig. 3.5(a)] when gradually increasing the feedback in-

tensity from µ � 0. Cellular structures initially consist of an irregular, mobile network of

cells which are populated by amplitude defects. The boundaries of the cells are formed by

regions with an increased modulus of the oscillation amplitude (shocks). When µ is further

increased, the cells become less mobile and arrange into more regular structures. Occasion-

ally, defects inside some cells disappear, thereby producing empty inactive cells, or defects

destroy a cell boundary and penetrate into neighboring cells. Upon increase of the feedback

intensity, the number of defects decreases and they gradually lose their ability to destroy the

cell boundaries.

In the first scenario, the global feedback eventually completely eliminates the defects

when µ is further increased, and an ordered pattern of hexagonal cells forms after a slow

relaxation process, see Fig. 3.5(b). Such structures are formed by triplets of standing wave

modes, whose wave vectors satisfy the conditions k1 �k2 �k3 � 0 and �k1� � �k2� � �k3�.
The growth of these modes is saturated by nonlinear effects and thus a steady hexagonal

cellular structure is formed. As can be deduced from the phase portrait in Fig. 3.5(b), the

hexagonal network represents a comparatively small spatial modulation of a uniformly os-

cillating state. At still higher values of µ, the cell boundaries are gradually washed out until

uniform oscillations are established. Due to hysteresis effects, the transition to the uniform

state occurs at a higher feedback intensity then indicated by the solid line in Fig. 3.4.

The second scenario takes place at higher values of the phase shift χ. Empty cellular

structures which form the background dissolve now before the disappearance of cells that are

occupied by defects. As a result, the infected cells form clusters or islands on the background

of uniform oscillations, see Fig. 3.5(c). Size and shape of such turbulent bubbles vary in

time, and they can move through the medium. The turbulent islands shrink as the feedback

intensity is further increased, until all of them finally die out and the system is found in

the state of synchronous oscillations. In comparison to the first scenario, a higher feedback

intensity is needed here to establish uniform oscillations.

The third scenario is observed when the phase shift χ is chosen such that by increasing µ,

the line BC in Fig. 3.4 is crossed. The initial stage of pattern evolution is similar to the pre-

viously described case, where empty cells dissolve and turbulent islands are surrounded by

uniform oscillations. Upon further increase of global feedback, however, the cell boundaries

inside the islands disappear and large, almost uniform domains are formed. At still higher

feedback intensities, such domains shrink and finally disappear.
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When fixing the feedback intensity in the regime of large-scale domains, they slowly re-

arrange their initially complex shape, tending to minimize the curvature of their border lines.

An example of this later stage is displayed in Fig. 3.5(d). Now the domains consist of com-

pletely synchronous oscillations which differ from the background both by their oscillation

phase and amplitude, but have the same frequency. Henceforth, such structures are referred

to as amplitude clusters. The two clusters – one representing the background, the other the

domains – are indicated in the phase portrait in Fig. 3.5(d) by the enlarged dots; the points

distributed on the curved line correspond to pixels in the domain borders.

In summary, it has been found in Refs. [36, 37] that global delayed feedback essentially

influences the properties of developed turbulence in the CGLE and leads to the appearance

of complex patterns. Inside a synchronization window a sufficiently strong feedback sup-

presses turbulence and establishes uniform oscillations. Synchronization develops according

to three different scenarios, i.e. via formation of hexagonal cellular structures, via localized

turbulence on the background of uniform oscillations, and via formation of amplitude clus-

ters.

It should be noted that global delayed feedback can also be efficiently used to modify pat-

tern formation in the CGLE in the Benjamin-Feir stable regime. For an appropriate choice of

the phase shift this kind of feedback has a desynchronizing effect and induces the breakdown

of global oscillations [112]. Moreover, global feedback in the Benjamin-Feir stable regime

allows suppression of spiral waves [37], and can induce phase flips, standing waves, and

amplitude clusters [112, 114].
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Chapter 4

Catalytic CO oxidation on platinum (110)

In this chapter, the oxidation of carbon monoxide on a platinum (110) single crystal surface

is introduced. Spatiotemporal pattern formation in this heterogeneous catalytic reaction is

further investigated theoretically and experimentally in the later parts of this work, where the

control strategies described in Chapter 3 are applied.

Section 4.1 starts with a brief phenomenological overview of CO oxidation on platinum

single crystal surfaces. The mechanism of the reaction on Pt(110) is described in Section 4.2.

Finally, mathematical modeling of this reaction is discussed in Section 4.3.

4.1 Phenomenological overview

Oscillatory kinetics in heterogeneous catalysis was first observed in the early seventies by

the group of E. Wicke, who discovered oscillations of the reaction rate in catalytic oxidation

of carbon monoxide [115,116]. Since then, oscillatory surface reactions have developed into

a very active field of research, the catalytic CO oxidation on platinum surfaces being the

most extensively studied example (see Ref. [43] for a review).

To explain the origin of kinetic instabilities, experiments with single crystal surfaces were

started (see Ref. [117]). Such experiments typically were carried out under low pressure con-

ditions (p � 10�3mbar), where the reaction proceeds in an isothermal way due to low total

reaction rates and high thermal conductivity of the crystal. On single crystal surfaces, os-

cillatory kinetics was first observed in 1982 by Ertl et al. [44] in CO oxidation on Pt(100).

In 1986, oscillations were also reported on Pt(110) [118], where they showed rich behavior,

ranging from periodic and mixed-mode oscillations to deterministic chaos [119]. Further-

more, upon application of periodic forcing, resonance phenomena were observed [75, 120].
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Figure 4.1: Snapshots of PEEM images displaying different patterns in CO oxidation on
Pt(110). Dark areas in the images correspond to predominantly oxygen covered regions, and
bright areas indicate mainly CO covered regions. (a) Rotating spiral waves (from Ref. [121]).
The different spatial wavelengths of spirals are due to the existence of surface defects to
which some of the spirals are pinned. (b) Target patterns [46], (c) standing waves [122], and
(d) chemical turbulence (temperature T � 536K, CO partial pressure pCO � 6�4�10�5 mbar,
oxygen partial pressure pO2

� 20�0� 10�5 mbar). The size of individual frames is (a) 400�
400µm2, (b) 200�300µm2, (c) 300�200µm2, and (d) 360�360µm2.
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The development of spatially resolving techniques such as photoemission electron mi-

croscopy (PEEM) [123, 124] has shifted the focus from purely temporal phenomena to spa-

tiotemporal pattern formation. Measurements employing PEEM allow to display the local

work function, which is changed by the adsorbates, across a surface area of about 500µm in

diameter. The evolution of patterns on the catalytic surface can be followed in real time with

a spatial resolution of about 0�2µm. Among surface chemical reactions, by far the richest

variety of spatiotemporal patterns has been found in CO oxidation on Pt(110). The observed

phenomena include rotating spiral waves, target patterns, standing waves, cellular structures,

chemical turbulence, and solitary waves [45, 46, 121, 125, 126]. Examples of such patterns

are displayed in Fig. 4.1.

Similar spatiotemporal structures have also been observed on other substrates, such

as Pt(100), Pt(210), and polycrystalline Pt samples, and in other surface chemical re-

actions [43]. Further studies of catalytic CO oxidation investigated the effects of cat-

alytic boundarys and microdesigned catalytic domains [127, 128], and the influence of

laser heating on spatiotemporal patterns [129]. While the operation of PEEM is restricted

to pressures below 10�3 mbar, the development of new optical imaging techniques such

as ellipsomicroscopy for surface imaging (EMSI) and reflection anisotropy microscopy

(RAM) [124] made also possible to perform studies of pattern formation up to atmospheric

pressures [130, 131].

4.2 Mechanism of the reaction

The mechanism of CO oxidation on Pt single crystal surfaces is well established (see

Ref. [43] for a review). Under isothermal low-pressure conditions (p � 10�3 mbar), the

net reaction 2CO+O2 �2CO2 follows the Langmuir-Hinshelwood scheme


�CO �� COad�

2
�O2 � 2Oad�

COad �Oad � 2
�CO2�

Here, 
 denotes a free adsorption site on the catalytic surface. Molecules of CO and oxy-

gen have to adsorb before the reaction due to a high energy barrier in the gas phase. The

adsorption of oxygen is dissociative. Adsorbed CO molecules are bound to the surface con-

siderably less strongly than oxygen atoms and hence may desorb as well as diffuse on the

surface; such processes are negligible for Oad under typical reaction conditions (T � 600K).
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At temperatures above 300K, produced carbon dioxide almost immediately desorbs into the

gas phase, leaving again free space for adsorption. The reaction mechanism is illustrated in

Fig. 4.2.

O2
CO

2CO

O
Figure 4.2: Illustrative drawing of
the basic reaction mechanism: ad-
sorption of CO and O2 molecules,
CO diffusion, and reaction.

In a wide range of parameters, the system exhibits bistability between a mainly oxygen

covered, reactive state, and a non-reactive CO covered state. This bistability can be traced

back to an asymmetric inhibition of adsorption. Adsorbed oxygen forms an open structure

where CO molecules still can adsorb and react, whereas a fully CO covered surface com-

pletely inhibits the adsorption of oxygen, and hence poisons the reaction.

Temporal rate oscillations require an additional mechanism, provided by an adsorbate-

driven structural phase transition in the top substrate layer. The clean Pt(110) surface recon-

structs into a 1�2 ‘missing row’ structure, see Fig. 4.3. The reconstruction can be reversibly

lifted by adsorbed CO molecules. Oxygen adsorption is more likely on the non-reconstructed

1�1 phase and therefore the phase transition can cause periodic switching between the two

states with different catalytic activity. The mechanism of oscillations can be understood as

follows [43]: starting with a partwise CO covered 1�1 phase, the adsorption rate of oxygen

will be high. As a consequence, the consumption of adsorbed CO molecults by the reaction

will increase, and hence the CO coverage will decrease. Below a critical value of the CO

coverage, the surface will reconstruct into the 1� 2 phase. On this surface, oxygen adsorp-

tion is low, and consequently the CO coverage will rise. Above threshold, the reconstruction

is lifted, and the initial situation of a CO covered 1�1 surface is established again.

Another reversible restructuring process, where the initially flat surface facets under the

influence of the catalytic reaction into new orientations, was observed on Pt(110) at rela-

tively low temperature (T � 530K). Above this temperature, a thermal reordering keeps the

surface flat. The facets are formed on a time scale of several minutes, and their size is of the



4.2 Mechanism of the reaction 39
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CO coverage
lowhigh

Figure 4.3: Illustration of the CO induced surface phase transition of Pt(110), which is re-
sponsible for the occurrence of rate oscillations.

order of 100Å. The faceting process on Pt(110) is responsible for an induction period in the

development of rate oscillations and for the occurrence of mixed-mode oscillations [118].

An additional feature of the reaction mechanism is the formation of subsurface oxygen.

Under certain conditions, oxygen atoms not only adsorb on the surface, but also an oxygen

species may form below the surface, which in PEEM measurements appears as very bright

patches in the images [132]. After being stored below the surface for a certain time, oxygen

atoms may later be released back onto the surface. The formation of subsurface oxygen is

responsible for the reflective collision of traveling excitation waves [133], a rather unusual

phenomenon in reaction-diffusion systems.

Spatial coupling along the catalytic surface is provided by two different mechanisms.

Surface diffusion of adsorbed CO molecules gives rise to local coupling between neighbored

sites. Diffusion is fast along the [11̄0] orientation of the Pt(110) single crystal surface, while it

is slower by a factor of about 2 parallel to the [001] orientation of the substrate lattice. Due to

this diffusion anisotropy, spatial patterns are elliptically deformed. The second type of spatial

coupling acts via the gas phase as a consequence of mass balance in the reaction. Since the

mean free path in the gas phase is typically large in comparison to the size of the chamber,

local partial pressure variations that result from the consumption of the educts by the reaction

quickly extend to affect the whole system. Therefore, the gas-phase coupling is global. It

has been experimentally found that the interplay between diffusion and gas phase coupling
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can lead to phenomena such as synchronous oscillations [134], standing waves [46] [see

Fig. 4.1(c)], and cellular structures [126]. The accompanying relative variations of partial

pressures typically are less than 2-3% in magnitude.

4.3 Mathematical modeling

A simple mathematical model of CO oxidation on Pt(110), consisting of a set of coupled

ordinary differential equations and neglecting the spatial degrees of freedom, has been devel-

oped by Krischer, Eiswirth, and Ertl [49, 135–137]. The model is based on a decomposition

of the entire reaction into elementary steps. If the coverages of COad and Oad are denoted by

the variables u and v, respectively, their kinetics may be described by the equations

u̇ � k1 pCO s�CO� � k2 u� k3 uv� (4.1)

v̇ � k4 pO2
s�O2� � k3 uv� (4.2)

Both variables can vary in the interval from 0 to 1. The production of carbon dioxide with rate

constant k3 is described by the last term in each equation. The second term in equation (4.1)

quantifies desorption of CO molecules with rate constant k2. The first term in equations (4.1)

and (4.2) describes the kinetics of CO and oxygen adsorption, respectively. The adsorption

rates are determined by the respective impingement rate constants of CO and O2 molecules

k1 and k4, the CO and O2 partial pressures pCO and pO2
, and the sticking coefficients of

molecules impinging on the surface, which are given by the expressions

s�CO� � sCO �1�u3�� (4.3)

s�O2� � sO2 �1�u� v�2� (4.4)

Here, the parameters sCO and sO2 denote the sticking probabilities for CO and oxygen ad-

sorption on the clean surface. The term �1� u3� for CO adsorption describes a precursor

effect [138]: impinging molecules of CO can occupy a state on top of another CO molecule

and from there diffuse to other surface sites. The cubic exponent specifies that the assumed

average number of surface sites tested by CO molecules before returning to the gas phase

is three. The dissociative adsorption of oxygen proceeds via second order kinetics in the

fraction of free sites �1�u� v�.

To account for the 1�1�� 1�2 phase transition, a third variable w, denoting the fraction

of the surface area found in the non-reconstructed 1�1 structure, must be introduced into the
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model. The temporal variation of this additional variable can be described by the equation

ẇ � k5 � f �u��w �� (4.5)

where f �u� is the equilibrium value of w as determined by the CO coverage, and k5 denotes

the temperature dependent rate constant of the phase transition [137]. In the original model,

a piecewise approximation of the function f �u� was used. Later, the following functional

form was proposed [139]:

f �u� �
1

1� exp�u0�u
δu �

� (4.6)

Here, the parameter u0 determines the threshold value above which adsorbed CO molecules

significantly affect the surface structure, and δu specifies the steepness of the threshold. The

function f �u� is plotted as solid line in Fig. 4.4 for parameters which are used later; the

dashed line indicates the original piecewise approximation.

�

����

Figure 4.4: The function f �u� for
parameters u0 � 0�35 and δu �
0�05 (solid line), and its piecewise
original form (dashed line). Be-
low u � 0�2, the surface is found
almost completely in the recon-
structed 1� 2 structure, whereas
the non-reconstructed 1� 1 struc-
ture is almost exclusively present
above u� 0�5.

As already noted in Section 4.2, the oxygen sticking probabilities on the two different

structural states of the surface are different, with s1�1 � 0�6 and s1�2 � 0�4. Thus, equa-

tion (4.5) is coupled to equation (4.4) [and thus to equation (4.2)] via the oxygen sticking

probability sO2, which in fact is given by the expression

sO2 � �s1�1w� s1�2�1�w� �� (4.7)

This coupling provides a negative feedback on the reaction kinetics, such that oscillatory

dynamics becomes possible.

The parameters of the three-variable system (4.1), (4.2), and (4.5) have been previously

determined in independent studies of each elementary reaction step (see Ref. [137]). Three
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external control parameters can be varied freely, namely the partial pressures pCO and pO2
,

and the temperature T , which determines the rate constants k2, k3, and k5 according to the

Arrhenius activation law, i.e.,

ki � νi exp

��Ei

kT

�
�

Numerical integration of the above set of model equations was found to reproduce many

experimental observations. Depending on the control parameters, the model exhibits monos-

table, bistable, oscillatory, or excitable dynamics. The resulting bifurcation diagram has been

studied with the piecewise approximation of the function f �u� by Krischer et al. [137]. The

response of the system to periodic external perturbations was also investigated, yielding de-

tailed insight into the structure of entrainment bands [140].

To reproduce the properties of spatiotemporal pattern formation, the model has been ex-

tended to include surface diffusion of adsorbed CO molecules. Numerical simulations of

the resulting system of partial differential equations (PDE’s) by Bär et al. revealed propa-

gating reaction fronts and solitary-wave phenomena [141, 142]. It was also found that such

behavior can already be described by a reduced version of the model that contains only two

variables [143] and represents a variant of a model proposed by Barkley [144]. The reduced

model was successfully applied to understand the properties of spiral waves [145, 146] and

chemical turbulence [51, 147] under excitable conditions.

Further studies of the three-variable model have concentrated on the effects of intrinsic

global gas-phase coupling on pattern formation [114, 148–153]. Assuming that the CO ki-

netics in the chamber obeys the laws of an ideal gas, the evolution equation of the CO partial

pressure in the reaction chamber reads [151, 153]

∂pCO

∂t
�

1
τ
�p0� pCO��κ

�
S
�k1sCO pCO�1�u3�� k2u�dx� (4.8)

where τ is the residence time of CO molecules in the pumped reaction chamber, p0 denotes

the base CO partial pressure in absence of any reaction, the coupling coefficient κ is speci-

fied by the gas temperature and the chamber volume, u�x� t� denotes the local CO coverage,

and the integration is performed over the entire surface area S. The global variations of CO

partial pressure are given as superposition of the incoming flux of CO molecules, the flux

pumped out of the chamber, and the rate of consumption of CO molecules in the surface

reaction. A similar evolution equation can be derived for the variation of the oxygen partial

pressure. However, in relation to the CO partial pressure variations, the consumption of oxy-

gen molecules produces an effect of less than a quarter, because each O2 molecule provides
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two atoms for the reaction, and the O2 partial pressure is typically at least two times larger

than the CO pressure.

The effects of intrinsic gas phase coupling according to equation (4.8) have been studied

by Falcke and Engel [114,150–152]. Their numerical simulations have shown a large variety

of patterns, including clusters, standing waves, and irregular coverage patterns. By supple-

menting the model by a fourth species [133,139] accounting for the formation of subsurface

oxygen, the experimentally observed pattern of alternating standing waves [46] was later

successfully modeled by von Oertzen et al. [153].





Part II.
Theoretical Investigations of

CO Oxidation on Pt(110)
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Chapter 5

Model equations and pattern characterization

The second part of this work is devoted to theoretical investigations of pattern formation in

CO oxidation on Pt(110). The following chapter is organized as follows: in Section 5.1, the

used reaction-diffusion model of CO oxidation on Pt(110) with global delayed feedback is

described. Subject of Section 5.2 is the numerical implementation of the model equations.

In Section 5.3, a tool developed for the interpretation of numerically generated patterns is

presented.

5.1 Model of CO oxidation with global delayed feedback

The employed model of CO oxidation on Pt(110) is based on the original scheme by

Krischer, Eiswirth, and Ertl [137] which has been introduced in Section 4.3. The model

contains three variables which all depend on both space and time. The variables u and v de-

note the surface coverages of carbon monoxide and oxygen, respectively. The variable w is

related to the structural state of the surface and denotes the local fraction of the surface area

found in the non-reconstructed 1� 1 structure. All three variables can vary in the interval

from 0 to 1. The equations are

∂u
∂t

� k1 pCO sCO �1�u3�� k2 u� k3 uv�D∇2u� (5.1)

∂v
∂t

� k4 pO2
�s1�1w� s1�2�1�w� � �1�u� v�2 � k3 uv� (5.2)

∂w
∂t

� k5

� 1

1� exp�u0�u
δu �

�w
�
� (5.3)

Most parameters of the model are fixed throughout this work; their values are given in Ta-

ble 5.1. The only parameters that are later varied are pCO and pO2
(denoting CO and O2 partial
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Symbol Value Meaning

k1 3�14�105 s�1 mbar�1 Impingement rate of CO molecules

k2 10.21 s�1 Desorption rate of CO molecules
k3 283.8 s�1 Reaction rate

k4 5�860�105 s�1mbar�1 Impingement rate of O2 molecules
k5 1.610 s�1 Rate for the phase transition
sCO 1.0 CO sticking probability

s1�1 0.6 Oxygen sticking probability
on the 1x1 phase

s1�2 0.4 Oxygen sticking probability
on the 1x2 phase

u0� δu 0.35, 0.05 Parameters for the
structural phase transition

D 40µm2s�1 CO diffusion coefficient

Table 5.1: Parameters of the model at T � 545K. All parameters have been previously de-
termined in independent studies of each elementary reaction step (see Ref. [137]).

pressure, respectively). Equations (5.1)–(5.3) take into account the reaction, the adsorption

of CO and oxygen molecules, the desorption of CO molecules, the structural phase transi-

tion of the platinum surface, and the surface diffusion of adsorbed CO molecules. Oxygen

desorption and diffusion are negligible at the considered temperature (T � 545 K). For sim-

plicity, faceting of the surface, the formation of subsurface oxygen, and effects caused by

surface defects are not taken into account. The intrinsic gas-phase coupling is also neglected

because it is weak compared to the typical modulation levels that can be achieved with exter-

nal variations of the partial pressures. Furthermore, state-independent diffusion is assumed,

and the coordinates are rescaled to counterbalance the diffusion anisotropy.

Implementation of global delayed feedback

In surface chemical experiments, global delayed feedback can be artificially introduced by

means of controlled variation of one of the partial pressures in the reaction chamber. There-

fore, to implement global delayed feedback in the CO oxidation model, it is assumed that the

CO partial pressure pCO in equation (5.1) is not constant but varies according to the equation

pCO�t� � p0�µ � ū�t� τ��uref �� (5.4)

where ū�t� � 1
S

�
S u�x� t�dx denotes the spatial average of the CO coverage u at time t. The

integration is performed over the entire surface area S. The two control parameters are the
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feedback intensity µ and the time delay τ. The delay can be adjusted to control the phase

relation between the total CO coverage and the feedback signal. The parameter p0 specifies

the base CO pressure for vanishing feedback. The reference value uref is chosen as the value

of u in the unstable steady state in absence of feedback. In the limit of a small delay τ the

feedback acts towards stabilization of the target state ū � uref.

According to equation (5.4), the integral CO coverage ū is used to generate the feedback

signal. In the surface chemical experiments presented later in this work, the PEEM inten-

sity which is a nonlinear function of both the CO and oxygen coverages is actually used to

compute the control signal. However, the functional form of this dependence is not exactly

known (see Ref. [124]). The description in equation (5.4) therefore is a simplification of the

experimental setup.

5.2 Numerical methods

The system of partial differential equations (5.1)–(5.3), with the parameter pCO varying ac-

cording to equation (5.4), has been solved numerically in one and two space dimensions.

Two different combinations of the parameters pO2
and p0 have been used, and in each case

multiple simulations with varying feedback parameters µ and τ were performed.

The following discretization of space and time is used for one-dimensional systems of

length L:

x � 0�∆x�2∆x� ����N∆x � L�

t � 0�∆t�2∆t� ��� �

A corresponding spatial discretization is employed for x and y in rectangular two-

dimensional systems. A second-order finite difference scheme [154] is used for the approxi-

mation of the second order spatial derivative in equation (5.1). The temporal derivatives are

approximated using an explicit Euler scheme. For instance, equation (5.1) is numerically

solved in one space dimension according to the scheme

un�1
i � un

i �∆t g�un
i �v

n
i ��

D∆t
�∆x�2 �u

n
i�1 �un

i�1�2un
i �� (5.5)

where g�u�v� describes the local dynamics of u, the subscripts denote the spatial position and

the superscripts represent the time step. In two dimensions, the corresponding computation

scheme for the diffusive part is given by a five-point formula.
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In most computations, the system size is L � 0�8mm for one-dimensional systems and

0�4� 0�4mm2 or 0�8� 0�8mm2 for two-dimensional systems. The minimal number of grid

points is 200 (or 200� 200) in one (two) space dimensions, resulting in a mesh size of

∆x � 4µm. Smaller mesh sizes like ∆x � 1µm have not been found to produce qualitatively

different results. A constant time step ∆t � 0�001 is used. This time step well fulfills the

condition for numerical stability of algorithm (5.5) [155],

∆t � �∆x�2

2D
�

Long integration times (t � 3000s) ensure that transients have decayed before the end of

a calculation. Different initial conditions are employed, depending on the problem under

study. The boundary conditions in one-dimensional simulations are either of Neumann (no-

flux) type,

∂u
∂x

���
x�0

�
∂u
∂x

���
x�L

� 0�

or, alternatively, periodic boundaries are imposed,

u�0� � u�L��

In two-dimensional systems, always no-flux boundary conditions are employed. The numer-

ical algorithm has been implemented on a computer using the programming language C.

5.3 Transformation to amplitude and phase
variables

As already pointed out in Section 2.3, the complex Ginzburg-Landau equation (CGLE) is

the amplitude equation of a field of diffusively coupled Hopf oscillators and describes small-

amplitude harmonic oscillations. The oscillations observed in real experimental situations

and in realistic models are usually non-harmonic, and the system is not close to a Hopf bifur-

cation. Nonetheless, the normal form approach is often applied to interpret the data even in

such cases. To provide a link to general studies of pattern formation in oscillatory reaction-

diffusion systems performed in the framework of the CGLE, it would thus be convenient to

have the amplitude and the phase variable also defined for anharmonic oscillations, in such

a way that they can be compared to the amplitude and the phase of harmonic oscillations in
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the normal form theory. It should be noted that the local phases of general anharmonic oscil-

lations were first introduced by Kuramoto [25] in his analysis of phase dynamics. However,

only small amplitude deviations from the non-perturbed limit cycle were then considered.

A recent approach to such a variable transformation has been undertaken by employing

a frequency demodulation technique to filter relevant information from numerical and ex-

perimental data [40] (cf. Section 3.1.2). This technique is efficient when the majority of the

dynamical power is concentrated in a single mode, but it is also limited to this case. The

time-resolved description of oscillatory behavior requires extensive data processing and is

only achievable for sufficiently slow pattern evolutions.

The variable transformation presented below follows a different idea. It is an empirical

method to transform a pair of model variables into an amplitude and a phase after computa-

tional modeling. It cannot be ensured that this transformation is generally applicable. How-

ever, when certain conditions on the spatiotemporal dynamics of the pattern under analysis

are fulfilled, the method turns out to be a useful tool for the time-resolved characterization

of patterns involving anharmonic dynamics.

When a system shows periodic oscillations in absence of spatial coupling, visualization of

two variables is usually sufficient to capture the relevant dynamical features. In the projection

plane of these two variables, the limit cycle then yields a closed trajectory. Assume that the

projection variables are chosen in such a way that this trajectory has no self-intersection.

The idea is that, when spatial coupling is eventually introduced, the projected uniform limit

cycle can be used as a reference for the characterization of the dynamics in a spatiotemporal

pattern.

The developed variable transformation is illustrated in Fig. 5.1. Suppose that u and w

are the projection variables and the reference trajectory is the closed orbit shown in Fig. 5.1.

For any state P with coordinates (u, w) in the projection plane, a pair of new variables R

and φ shall be defined such that R can be interpreted as an amplitude and φ as a phase

corresponding to this local state of the system. To do this, at first some point O inside the

reference orbit is chosen, and it is taken as the coordinate origin in the projection plane.

Hence, any point P is characterized by a radius vector of length ρ � OP. Notice the point

Q where this radius (or it extension) intersects with the chosen orbit. The length ρref � OQ

determines the reference radius for the point P. Next, some ‘initial’ point Q0 is marked on

the orbit and the time T̃ needed to reach point Q along the reference cycle is determined. The

amplitude and the phase are then defined as R � ρ�ρref and φ � 2π T̃�Tref, where Tref is the
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Figure 5.1: Definition of the am-
plitude R � ρ�ρref and phase φ �
2π T̃�Tref for non-harmonic oscil-
lations.

period of the reference orbit.

Note that according to this definition, the amplitude is R � 1 as long as the system stays

on the reference orbit. Moreover, for the motion corresponding to the reference orbit, the

phase φ increases at a constant velocity with time and changes by 2π after each period. When

local oscillations are nearly harmonical and the reference orbit is a circle with point O in its

center, the above definition yields the usual phase and amplitude variables. The coordinate

origin O is best chosen as the unstable uniform steady state of the system to guarantee that a

local suppression of oscillations indeed corresponds to a vanishing amplitude R.

In the following chapter, this empirical amplitude-phase description is applied to quali-

tatively interpret spatiotemporal patterns obtained in numerical simulations of the CO oxi-

dation model with artificial global feedback. To obtain the reference orbit, the projection of

uniform oscillations on the plane with the variables u and w shall be used.

It should be noted that the presence of the feedback may significantly affect the shape

of uniform oscillations. Therefore, different reference orbits are employed for different feed-

back parameters by generating a new reference cycle following each fixed parameter sim-

ulation of the model (5.1)–(5.4). This is done by an additional numerical simulation of the

model (5.1)–(5.3) in absence of diffusion (D � 0), where the feedback signal generated pre-

viously by the full pattern forming system is applied as external pCO forcing. When the result-

ing attractor is periodic it directly can be used as a reference. When the full system generates
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an aperiodic forcing signal the resulting attractor in the projection plane deviates from a

periodic orbit. In such cases, the reference orbit is chosen as the long-time average of the

resulting projected trajectory. The reference orbit is computed and the variable transforma-

tion is performed by a numerical routine that has been numerically implemented using the

programming language PV-Wave.
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Chapter 6

Pattern formation under global delayed feedback

In this chapter, a detailed numerical study of pattern formation in CO oxidation on Pt(110)

with artificial global delayed feedback is presented. Two cases are considered in the fol-

lowing, differing in the initial reaction state. In Section 6.1, the effects of global delayed

feedback on stable uniform oscillations and stable spiral waves are investigated. The ob-

served phenomena include phase flips, asynchronous oscillations, and dynamical clustering.

In Section 6.2, global delayed feedback is applied to a spatiotemporally chaotic state. It

is shown that turbulence can be suppressed by this method, and various chaotic and regular

spatiotemporal patterns are found near the transition from turbulence to uniform oscillations.

6.1 Manipulating non-chaotic patterns

In the numerical study presented in this section, the parameter values of model (5.1)–(5.4) are

chosen in such a way that oscillations are non-harmonic and uniform oscillations are stable

in absence of feedback. At first, the effects of global delayed feedback on pattern formation

are studied in one space dimension. The chosen parameter values of the partial pressures are

p0 � 4�15�10�5 mbar and pO2
� 0�90�10�5 mbar. The reference value of the CO coverage

is uref � 0�4097, which corresponds to the unstable steady state. The other parameters are

given in Table 5.1. Unless stated otherwise, the system size is 0�8mm and periodic boundary

conditions are used.

6.1.1 Overview of feedback effects

Multiple simulations of model (5.1)–(5.4) at different values of the feedback intensity µ and

the delay time τ have been performed. The results are summarized in Fig. 6.1. This diagram

shows the types of stable regimes reached after transients have decayed. The delay time is
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measured in multiples of the natural oscillation period in absence of feedback, T0 � 3�33s

(note that when feedbacks are operating the actual period of uniform oscillations is feedback-

dependent and will to some extent differ from T0). The feedback intensity in Fig. 6.1 is

normalized to the equilibrium CO partial pressure p0 in the reaction chamber in absence

of feedback. Note that the ratio µ�p0 yields an estimate of the relative variation of partial

pressure caused by such a feedback.

Depending on the delay and intensity, the feedback can maintain uniform oscillations

or induce various spatiotemporal patterns. Examining Fig. 6.1, it is seen that as the delay

is increased, the diagram is approximately repeated at integer multiples of T0 (this trend

is continued at larger delays, not shown in Fig. 6.1). However, the stability regions of the

patterns other than uniform oscillations shrink at larger delays.

Uniform oscillations are found in a large region of the two-parameter plane. The uni-

form oscillations show strong hysteresis (bold lines show the boundaries where uniform
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Figure 6.1: Approximate existence regions of various feedback-induced patterns in the one-
dimensional system: uniform oscillations (white), asynchronous oscillations (dark gray),
cluster patterns (light gray), and phase flips (hatched regions). The dashed lines mark the
borders of the hysteresis of uniform oscillations.
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oscillations set on when increasing the feedback intensity, whereas dashed lines indicate the

boundaries where such oscillations break down as the feedback intensity is decreased). In

the hysteresis regions, the final pattern depends on the initial conditions because the uniform

attractor coexists here with the attractor of another pattern.

For comparison, by the dotted line in Fig. 6.1 the boundary is shown where in absence

of diffusion the unstable steady state of the system becomes stabilized by the applied feed-

back (the stabilization takes place at small delays τ�T0 � 0�06 and large feedback intensities

µ�p0 � 0�11�. An example of this process is shown in Fig. 6.2. However, in the full pattern

forming system that includes diffusion, the spatially uniform suppression of oscillations is

never observed. Instead, at small delays the system evades the suppression of oscillations

through the formation of clusters.

Fig. 6.3 displays three typical examples of different nonuniform feedback-induced pat-

terns. In the pattern shown in Fig. 6.3(a), the medium is in the uniform state almost anywhere

except for a narrow interval with strong spatial variation. As it is shown later, this pattern

corresponds to a phase flip traveling across the medium. In contrast to this, the pattern in

Fig. 6.3(b) is characterized by a gradual spatial variation extending over the whole medium.

It is shown below that such patterns are found when desynchronization through the feedback

takes place. In Fig. 6.3(c) the pattern consists of different large regions with almost uniform

distributions separated by narrow interfaces. Such cluster patterns are also discussed below.
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Figure 6.2: Stabilization of the
steady state in the homogeneous
system (D� 0). The temporal evo-
lution of the model variables (top)
and the feedback-induced varia-
tions of the CO partial pressure
(bottom) are shown. The feedback
is switched on at t � 20s. After
successful suppression of the os-
cillations, the control signal van-
ishes. The feedback parameters
are τ�T0 � 0 and µ�p0 � 0�17.
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Figure 6.3: Feedback-induced coverage patterns: (a) phase flip, (b) asynchronous oscilla-
tions, and (c) a cluster pattern. For each pattern the values of the parameters τ�T0 and µ�p0

are, respectively, (a) 0.165, 0.012, (b) 0.781, 0.012, and (c) 0.045, 0.289.

6.1.2 Phase flips

As already noted, for the chosen model parameters uniform oscillations are stable with re-

spect to spontaneous phase modulation in absence of feedback. For the same parameters,

traveling waves (and spiral waves in the two-dimensional system) can also be observed, de-

pending on the choice of the initial and the boundary conditions. Sufficiently strong global

delayed feedbacks suppress all such structures, so that only uniform oscillations are found

inside the white region in Fig. 6.1. After a transient, any initial condition eventually leads

to uniform oscillations here. The time needed to reach uniform oscillations greatly increases

near the instability boundaries of uniform oscillations.

At small feedback intensities corresponding to the hatched areas in Fig. 6.1, either uni-

form oscillations or patterns of propagating phase flips are found in the simulations, depend-

ing on the initial conditions. To produce a phase flip, a simulation is started with a constant

phase gradient of 2π across the system. The feedback tends to establish uniform oscillations,

but, if it is relatively weak, it cannot achieve this in the whole medium. Thus, a narrow region

with strong concentration gradients is formed, see Fig. 6.3(a). This region travels through

the medium. To analyze the properties of such traveling patterns, the variable transformation

technique described in Section 5.3 is used. After transformation to local phase and amplitude

variables, the pattern of a phase flip takes the form displayed in Fig. 6.4(a). It is seen that the

phase φ undergoes a full rotation of 2π inside the nonuniform region, whereas the amplitude

R displays only small modulations. The states of the medium on the left and right side of the

phase flip differ by a phase shift of 2π only and hence are physically indistinguishable.



6.1 Manipulating non-chaotic patterns 59

� ����

�

���

��� ���

Figure 6.4: (a) Spatial dependence of the amplitude R (blue line) and the phase φ (red line)
in a phase flip. The phase portrait (b) shows the same data in polar coordinates. The same
parameters as in Fig. 6.3(a).

A phase portrait of the same structure is shown in Fig. 6.4(b). Here, the amplitudes and

phases of all points along the phase flip are displayed in polar coordinates. The phase φ of a

point is represented by the polar angle and the amplitude R is the distance to the coordinate

origin. The points accumulate in the state corresponding to the uniformly oscillating regions.

Phase flips were first reported for the periodically forced CGLE [62] (see also Ref. [34]).

They have been systematically investigated for the CGLE in the presence of a global feed-

back [37, 112], revealing that, depending on the feedback parameters, a phase flip can stop

and reverse its direction of motion. Following Ref. [112], a phase flip is said to have posi-

tive velocity if the phase is increased by 2π after its passage and the velocity is negative if

the phase decreases by 2π behind it. With this in mind, the dependence of the propagation

velocity of phase flips on the delay time τ has been numerically examined in the currently

investigated model with anharmonic oscillations. As displayed in Fig. 6.5, the velocity de-

creases for higher delays and changes its sign at τ�T0 � 0�155. Another prediction of the

study of the CGLE with global feedback is that, as the feedback intensity µ is decreased,

the width of the phase flip grows as δx � µ�1�2 and in the limit µ � 0 the phase flip trans-

forms into uniform oscillations in a finite system. It has been checked that this effect is also

observed for phase-flip patterns in the presently considered model.

On the other hand, phase flips become unstable in the simulations if the feedback inten-

sity exceeds a certain delay-dependent threshold (see Fig. 6.1). They disappear through the

formation of an amplitude defect if the feedback intensity is increased beyond the critical



60 Pattern formation under global delayed feedback

� ���

�
��
�
��
��
	�


��
�

Figure 6.5: Dependence of the ve-
locity of phase flips on the de-
lay time. The feedback intensity is
constant, µ�p0 � 0�012.
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Figure 6.6: Destruction of a phase flip by strong global feedback. The time interval between
the subsequent snapshots (a)-(c) showing oscillation phases (red lines) and amplitudes (blue
lines) is 3 seconds. The feedback parameters are τ�T0 � 0�167 and µ�p0 � 0�014. The initial
phase flip was obtained using a slightly smaller feedback intensity µ�p0 � 0�012.

value. This process is analyzed in Fig. 6.6 by means of the amplitude and phase characteri-

zation. Before the amplitude defect occurs, the phase variation is steepened, see Fig. 6.6(a).

Then, at some moment the oscillation amplitude drops down to zero inside the phase flip.

When this occurs, the phase makes a slip of 2π at one side of the defect, as illustrated in

Fig. 6.6(b). After the phase slip, the amplitude slowly approaches unity and the phase vari-

ation smears out, eventually giving rise to uniform oscillations. This scenario is in perfect

agreement with the disappearance of phase flips in the CGLE under increasing global feed-

back intensity [37] (the destruction of phase flips by strong external forcing in the CGLE has

also been observed [34]).
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6.1.3 Asynchronous oscillations

Patterns with smooth spatial gradients of chemical variables can be induced by the feedback

in the desynchronization region displayed in Fig. 6.1. Below the dashed lines in this region,

asynchronous patterns develop from any initial condition. The duration of the desynchro-

nization process diverges for feedbacks of vanishing intensity. Applying the transformation

to local phase and amplitude variables, asymptotic asynchronous patterns established in this

regime can be analyzed. Spatial profiles of R and φ in such a pattern are shown in Fig. 6.7(a).

It is found that only the local oscillation phase φ is varying in this pattern, whereas the ampli-

tude R is almost constant. This means that all local oscillations correspond to the same limit

cycle. The phase profile shows smooth variation. When the size of the medium is varied in

simulations, the pattern readjusts to the size of the medium, therefore lacking an intrinsic

wavelength.

In the phase portrait representation of such a pattern, all points are distributed on the

unit circle, see Fig. 6.7(b). However, not all possible phases are occupied, and the density

of points increases towards the ends of the structure which correspond to the extrema of the

phase profile. As time goes on, the structure rotates in the plane with constant velocity.

Under periodic boundary conditions, the total phase gradient along the pattern always

adjusts to an integer multiple of 2π given by the winding number of the initial phase distri-

bution. For a nonzero winding number, the asymptotic spatial profile of the phase φ is linear,
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Figure 6.7: (a) Spatial dependence of the phase (red line) and the amplitude (blue line) and
the phase portrait (b) of a pattern of asynchronous oscillations. A slightly perturbed uniform
distribution was taken as initial condition. The same parameters as in Fig. 6.3(b).
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so that the temporal shift between oscillations at different sites is proportional to their spa-

tial distance. No-flux boundary conditions do not conserve the winding number. In the latter

case, the final total phase gradient does not exceed 2π.

An important consequence of the spatial desynchronization of oscillations is the accom-

panying breakdown of the global oscillations that generate the feedback signal. As shown in

Fig. 6.8, the amplitude of the feedback signal decreases as the desynchronization gradually

develops in the system. Thus, the global feedback effectively induces its own breakdown.

It should be noted that the feedback oscillations do not, however, completely vanish in the

asymptotic state. A small remaining feedback signal that compensates the synchronizing ten-

dency of diffusion is needed to maintain the desynchronized state. Such desynchronization

phenomena have previously been found in numerical investigations of the CGLE with global

feedback [112].
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Figure 6.8: Breakdown of the
feedback-induced CO pressure
variations during the desyn-
chronization of initially slightly
perturbed uniform oscillations.
The feedback parameters are
τ�T0 � 0�781 and µ�p0 � 0�048.

6.1.4 Cluster patterns

The third principal mechanism of feedback-induced pattern formation involves clustering of

oscillations. The cluster regimes include a variety of qualitatively different patterns. Their

common feature is the presence of a small number of synchronized domains, occupied by

one of two possible oscillatory states. No intrinsic spatial wavelength of the domains is ob-

served. In the following, different cluster solutions are divided into amplitude clusters, phase

clusters, and cluster turbulence.
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Amplitude clusters

In amplitude clusters, not only the oscillation phase φ� but also the oscillation amplitude

R is different in the regions occupied by the two different states, as shown in Fig. 6.9(a).

Thus, uniform oscillations within two different clusters correspond to different coexisting

limit cycles of equal period. The phase shift between the oscillations in the two cluster states

(about 0�88π in the example shown) is constant, but depends on the feedback parameters. At

the interface between two stationary cluster domains, the phase φ is monotonously increased

and the amplitude R undergoes small variations. The total size ratio of the domains that

belong to each state is independent of the initial domain sizes and has a characteristic value

that changes with the feedback parameters. The difference in the contributions to global

oscillations coming from the two clusters results in period-doubled oscillations of the control

signal, see Fig. 6.9(b). Amplitude clusters were previously seen in studies of the CGLE with

global feedback [37, 114]. They were also investigated in the model of the CO oxidation

reaction under intrinsic gas phase coupling [114,151] and similar properties were then found.
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Figure 6.9: (a) Phase and amplitude profiles of amplitude clusters. The reference limit cy-
cle for the variable transformation is chosen as the attractor of the cluster state with the
higher amplitude. No-flux boundary conditions are used. Frame (b) shows global oscilla-
tions corresponding to the pattern in frame (a). The feedback parameters are τ�T0 � 0�045
and µ�p0 � 0�072.
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Phase clusters

Phase clusters are characterized by equal oscillation amplitudes and a constant phase shift

between the cluster states. The oscillations in both cluster states correspond now to the same

limit cycle, but are of opposite phase. The phase fronts that separate different cluster domains

exhibit rich behavior, as demonstrated below. At high feedback intensities, stationary phase

clusters prevail, see Fig. 6.10(a) for a space-time diagram. A blue/green/red/yellow color

map, shown on the right in Fig. 6.10, is used here and throughout this chapter. Blue color

corresponds to low values of the shown variable (here the phase φ), and yellow color denotes

high values. Green and red color represent intermediate levels.

The asymptotic spatial formation of the domains in the standing cluster pattern shown in

Fig. 6.10(a) depends on the initial conditions. However, the total fraction of the medium

occupied by the domains of each cluster is balanced, a phenomenon which, following

Ref. [103], is called phase balance. When a simulation is started with a different initial

size ratio, the fronts between the cluster domains slowly drift and finally come to rest in the

state of phase balance. As a consequence, the average that generates the feedback signal is

periodic and resonantly oscillates with a frequency twice larger than that of the periodic local

oscillations inside the cluster domains.
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Figure 6.10: Phase clusters with (a) stationary (Ising) phase fronts and (b) traveling (Bloch)
phase fronts. Both diagrams display the oscillation phase φ in a time interval of 50s, using
the color map shown on the right. The system size is 0�4mm. The values of the parameters
τ�T0 and µ�p0 are, respectively, (a) 0.105, 0.241, and (b) 0.120, 0.096.
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Bifurcation to traveling phase clusters

Stationary phase clusters can undergo a transition to traveling clusters, an example of which

is shown in Fig. 6.10(b). Periodic boundary conditions are necessary for the observation of

such propagating patterns, because they preserve the size ratio between the clusters. This

transition is related to a symmetry-breaking bifurcation known as the nonequilibrium Ising-

Bloch bifurcation [32] (cf. Section 3.1.2), that leads to fronts traveling with constant velocity.

The two branches of this pitchfork bifurcation correspond to counter-propagating fronts with

equal absolute velocity and opposite sign. The dependence of the absolute velocity of travel-

ing phase clusters on the feedback intensity at a fixed delay is shown in Fig. 6.11. It is seen

that a bifurcation from stationary (Ising) fronts to traveling (Bloch) fronts occurs when the

feedback intensity is decreased.
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Figure 6.11: Long-time average of
the phase front velocity in cluster
patterns as function of the feed-
back intensity. The data points
were obtained numerically with a
system size equal to 0�4mm. The
delay time is kept constant, τ�T0 �
0�105.

It is interesting to compare the phase and amplitude properties of oscillations in station-

ary and traveling phase-cluster patterns. The phase portraits of such patterns are shown in

Fig. 6.12. In the stationary cluster pattern displayed in Fig. 6.12(a), the two cluster states

correspond to the ends of the S-shaped structure where the points accumulate. The other

points in this structure correspond to the front which separates the clusters. Note that the

S-shaped structure goes through the origin of the plane, i.e. there is a point inside the front

where the oscillation amplitude R vanishes. At this point the phase φ undergoes a jump of π.

At the transition to traveling Bloch fronts a topological bifurcation is observed in the

phase portrait. When the bifurcation occurs, the S-shaped curve splits into two different

branches that connect the two cluster states. Farther away from the bifurcation point, the

fronts between the cluster states are mapped almost to a circle, as shown in Fig. 6.12(b).

The phase φ undergoes a continuous rotation with a total of π when traversing such a Bloch
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Figure 6.12: Phase portraits of cluster patterns with (a) a stationary Ising phase front and (b)
traveling Bloch phase fronts. The values of the parameters τ�T0 and µ�p0 are, respectively,
(a) 0.045, 0.289, and (b) 0.120, 0.096.

front, whereas R shows only small modulations. By application of the transformation to

phase and amplitude variables, it is thus found that the properties of such Ising and Bloch

fronts are close to those found for the amplitude equation of oscillatory media under external

forcing [32].

Bifurcation to oscillating phase clusters

Furthermore, another phase front instability has been observed: a Hopf bifurcation of a front

that separates two clusters. The origin of this bifurcation is an instability of the phase balance

that gives rise to periodic oscillations of the cluster size ratio. As a consequence, cluster

fronts periodically change their spatial position, see Fig. 6.13. The front position can be

defined as the location within the front where the amplitude R is minimal. The period of the

front oscillations comprises several local oscillations.

Figure 6.14 shows the dependence of the amplitude of front oscillations on the feedback

intensity at a constant delay. The bifurcation from a stationary front to an oscillating clus-

ter front occurs when the feedback intensity is decreased. The parabolic fit (solid line in

Fig. 6.14) is in good agreement with the numerical data close to the bifurcation point where

front oscillations are harmonic. Hence, this is a supercritical Hopf bifurcation for the fronts.

At larger distances from the bifurcation point, the front oscillations become strongly anhar-

monic and zig-zag shaped, see Figs. 6.13(a) and 6.13(b). The spatial amplitude profile of

such an oscillating front is time-dependent. At the turning points of the front the amplitude
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Figure 6.13: Space-time plot of
front oscillations in a cluster pat-
tern with no-flux boundaries. (a)
Oscillation amplitude R and (b)
phase φ in a time interval of
500s. The phase distribution is
displayed in a coordinate frame ro-
tating with the period of the refer-
ence limit cycle. The correspond-
ing quasiperiodic feedback signal
is shown in frame (c). The feed-
back parameters are τ�T0 � 0�105
and µ�p0 � 0�096.
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 Figure 6.14: Oscillation amplitude

of a cluster front as a function of
the feedback intensity. The data
points are obtained numerically
for a system size equal to 0�4mm
and no-flux boundary conditions.
The solid line is a parabolic fit of
the data points close to the bifurca-
tion point. The delay time is kept
constant, τ�T0 � 0�105.

R drops down and nearly vanishes. The control signal generated by two oscillating clusters

becomes quasiperiodic after the Hopf bifurcation, see Fig. 6.13(c). The turning points of the

phase front correspond to the points of maximal amplitude in the feedback oscillations. The

change in the control signal provides a feedback on the phase front and hence is responsible

for its turnaround. Note that the local oscillations in Fig. 6.13(a) are also slightly quasiperi-

odic due to the quasiperiodicity of the driving feedback signal. Though the local amplitude

differs slightly in the two oscillating cluster states, they here still are classified as phase

clusters because they smoothly originate from stationary phase clusters and their phase and



68 Pattern formation under global delayed feedback

amplitude properties are similar. Oscillating phase clusters have previously also been found

in the periodically forced CGLE [82].

Cluster turbulence

Starting from strongly anharmonic front oscillations, a suitable change of the feedback pa-

rameters leads to turbulent phase front behavior. An example of such irregular front behav-

ior is shown in Fig. 6.15, where a front separating two π-shifted clusters branches out in

a cascade of reproductions. The cluster turbulence does not spontaneously develop from a

completely uniform oscillating state, i.e., a sufficiently strong local perturbation is needed to

initiate the cascade. The fronts not only reproduce, but also can die out. Once initiated, the

cluster turbulence can thus either spread over the whole medium, or die out after some time.

The velocities of traveling fronts in this turbulent regime are almost constant. A front

travels for some time, until an amplitude defect with vanishing amplitude R develops inside

it. As a result, the front may split or die out. Phase fronts also sometimes emerge from

smaller heterogeneities in the amplitude and the phase without directly originating from an

amplitude defect. The irregular front behavior leads to turbulent deviations from the cluster

states. Hence, the local oscillations are synchronous only inside cluster regions that were not
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Figure 6.15: Space-time plots of
the reproduction cascade in a tur-
bulent cluster pattern with no-flux
boundaries. (a) Oscillation ampli-
tude R and (b) phase φ in a time
interval of 500s. The phase distri-
bution is displayed in a coordinate
frame rotating with the period of
the reference limit cycle. The cor-
responding chaotic feedback sig-
nal is shown in frame (c). The
feedback parameters are τ�T0 �
0�126 and µ�p0 � 0�193.
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visited by a front for several oscillation cycles. The global oscillations are chaotic in this

regime, see Fig. 6.15(c).

Figure 6.16 shows the existence regions of different cluster patterns at small delays. It has

been found that the type of the developing cluster pattern strongly depends on the initial and

boundary conditions. The dashed line in Fig. 6.16 indicates the stability boundary of uniform

oscillations with respect to small perturbations. On the right side from the dashed line both

cluster patterns and uniform oscillations are possible, depending on the initial conditions.

Note that cluster turbulence always coexists with uniform oscillations. The boundary condi-

tions are important. For instance, in the region in the diagram where amplitude clusters are

present, they were typically found for no-flux boundary conditions. For periodic boundary

conditions, special initial conditions were needed here to obtain amplitude clusters, and trav-

eling phase clusters are usually instead found. In the phase cluster region, for most parameter

values the front behavior strongly depends on both the initial and the boundary conditions.

Stationary phase clusters are only found above the dotted line in the diagram.

As already mentioned, traveling clusters require periodic boundary conditions that main-

tain the phase balance. For the same parameter values, no-flux boundaries either lead to the
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Figure 6.16: Approximate existence regions of different cluster patterns at small delay times.
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Figure 6.17: Space-time plots of the amplitude in different cluster patterns. Traveling phase
clusters (a) under no-flux boundary conditions, the time interval is 500s. Drifting breathing
clusters (b) and clusters with different behavior of the two fronts (c) in a system with periodic
boundary conditions, each within the time interval of 200s. The values of the parameters
τ�T0 and µ�p0 are, respectively, (a) 0.114, 0.072, (b) 0.030, 0.193, and (c) 0.039, 0.193.

formation of stationary amplitude clusters, or to the front behavior shown in Fig. 6.17(a).

When the first front collides with the left boundary, further movement of the second front

would lead to phase imbalance. Instead, during a transient process, where in a part of the

medium the oscillations strongly deviate from the former cluster states, a new cluster front

is created. Again, both clusters travel with constant velocity until the behavior repeats at the

next front collision with the boundary. Figure 6.17(b) shows an example of breathing trav-

eling clusters – this pattern develops when a traveling cluster undergoes a secondary Hopf

bifurcation. As shown in Fig. 6.17(c), even more complex situations, where one of the fronts

is steadily traveling and the other front is oscillating while traveling, are possible. The global

oscillations of all three patterns in Fig. 6.17 are quasiperiodic.

6.1.5 Patterns in two space dimensions

Feedback-induced pattern formation in equations (5.1)–(5.4) has also been numerically ex-

plored in two space dimensions. For the two-dimensional simulations, a slightly different

CO base pressure has been chosen, p0 � 4�19� 10�5 mbar, in order to avoid a feedback-

caused pressure drift into the regime of diffusion-induced turbulence, which in two dimen-

sions occurs below p0 � 4�15� 10�5 mbar. The other parameters are the same as in the

one-dimensional case, except for uref � 0�4484 which again corresponds to the unstable

steady state. Unless stated otherwise, the system size is 0�8�0�8 mm2 and no-flux boundary
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conditions are imposed at all boundaries.

Figure 6.18 shows four examples of different two-dimensional patterns. In the upper

and lower row, the spatial distributions of the oscillation phase and amplitude are displayed,

respectively. In absence of feedback, uniform oscillations are stable, but a rotating spiral

wave can be produced by an appropriate choice of the initial conditions, see Fig. 6.18(a). The

oscillation amplitude vanishes in the spiral core and the phase changes continuously when

traversing the spiral arms. By application of feedback and variation of its parameters, the

spiral wave can be suppressed and uniform oscillations recovered (not shown in Fig. 6.18).

Phase-flip waves [Fig. 6.18(b)], asynchronous oscillation patterns [Fig. 6.18(c)], or (quasi)

stationary cluster patterns [Fig. 6.18(d)] could also be induced by appropriate feedbacks. The

properties of uniform oscillations, phase flips, and desynchronized oscillations are similar to

those of their one-dimensional counterparts.

The development of the asynchronous pattern in Fig. 6.18(c) from slightly perturbed

uniform initial conditions leads to the breakdown of global oscillations. As in the one-

dimensional case, the final asynchronous pattern is characterized by a constant amplitude

��� ��� ��� ���

Figure 6.18: Two-dimensional patterns: (a) a spiral wave in absence of feedback, (b) a phase
flip, (c) asynchronous oscillations, and (d) a cluster pattern. Snapshots of the oscillation
phase (top row) and amplitude (bottom row) distributions are displayed. The system size is
0�8� 0�8 mm2 for each pattern, except for the pattern (b) where it is 1�6� 1�6 mm2. The
values of the parameters τ�T0 and µ�p0 are, respectively, (a) 0, 0, (b) 0.192, 0.010, (c) 0.768,
0.024, and (d) 0.067, 0.119.
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and slow phase gradients. In the desynchronization regime, the feedback cannot destroy spi-

ral waves and they continue to represent a stable solution.

The phase cluster pattern in Fig. 6.18(d) consists of two π-shifted phase states separated

by an almost stationary phase front. The clusters evolved from a nonuniform initial distri-

bution. After the quick formation of the clusters, a slow drift of the front occurs, tending

to minimize the front curvature while preserving the phase balance. The effect of the front

curvature is the only essential difference compared to the corresponding one-dimensional

stationary phase cluster pattern shown in Fig. 6.10(a). Stationary amplitude clusters were

also observed in two-dimensional simulations and exhibited similar behavior as in the one-

dimensional case.

After a bifurcation to traveling phase fronts, counter-propagating front parts can de-

velop in a two-dimensional pattern (as previously noticed in externally forced oscillatory

media [32], see Section 3.1.2). The pattern developing under such conditions is shown in

Fig. 6.19. The initial conditions in the upper and lower half of the originally straight front

were chosen to correspond to the two branches of the pitchfork bifurcation, see Fig. 6.19(a).

Because the two ends of the front propagate in opposite directions, a spiral wave develops

in the central part [Fig. 6.19(b)-(f)], and later spreads out over the whole medium. This pro-

cess is accompanied by the breakdown of the global oscillations, see Fig. 6.19(g). As the

spiral grows, the fraction of the medium occupied by the fronts with rapid phase variation
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Figure 6.19: (a)-(f) Formation of a spiral wave from a cluster pattern with counter-
propagating front parts. Consecutive snapshots of the oscillation phase φ are shown at equal
time intervals of 96 s. (g) Breakdown of the control signal during the pattern evolution. The
parameter values are τ�T0 � 0�067 and µ�p0 � 0�024.
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slowly increases at the expense of the areas occupied by the two uniform phase states. Even-

tually, they become too small to generate a feedback signal sufficient to maintain the clusters.

Therefore, the nonequilibrium Ising-Bloch bifurcation provides an additional scenario for the

breakdown of the global feedback. The final state is characterized by a spiral wave with con-

tinuous phase distribution and nearly vanishing global oscillations, as in absence of global

feedback.

The pattern displayed in Fig. 6.20 was obtained with feedback parameters corresponding

to the case of cluster front oscillations in one space dimension. A nonuniform phase and am-

plitude distribution was taken as initial condition. The frames (a) and (b) show the phase (top

row) and amplitude (bottom row) distributions at time moments separated by half the oscil-

lation period. Instead of front oscillations, which are seen in this case in the one-dimensional

system and are accompanied by quasiperiodic variations of the global control signal, a differ-

ent kind of pattern is observed in two dimensions. The area occupied by each of the clusters

in Fig. 6.20 is almost balanced and no significant oscillations of the fronts take place. The

global oscillations are almost periodic here. The front separating the two clusters is broken

into parts (see the bottom row in Fig. 6.20). As time goes on, the amplitudes in different

front parts periodically drop down at opposite oscillation phases. On a large timescale of

several hundred oscillation periods, weak drift of the clusters and slow gradual variation of

their shapes are observed. The splitting of the front into different parts is a two-dimensional
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Figure 6.20: Snapshots of the os-
cillation phase (top row) and am-
plitude (bottom row) distribution
in a cluster pattern with time-
dependent front profile. The time
interval between the snapshots (a)
and (b) is half of the oscillation
period in the clusters. The param-
eter values are τ�T0 � 0�067 and
µ�p0 � 0�072.
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phenomenon which is typically observed starting from nonuniform initial conditions. How-

ever, if a simulation is started with a straight front, it remains stable with respect to small

perturbations and shows periodic oscillations, as in the corresponding one-dimensional case.

When cluster fronts show irregular motion in one space dimension, the respective two-

dimensional clusters also exhibit complex turbulent evolution. As an example, two subse-

quent snapshots of a turbulent cluster pattern are shown in Fig. 6.21 (top and bottom rows

again correspond to the phase and amplitude distributions). Each cluster consists of different

patches that continuously vary their shape while the separating fronts propagate through the

medium. The front propagation occurs at an almost constant velocity in the planar front parts.

Turbulence is maintained in this system through repeated emergence of bubble-like domains

with the opposite phase inside a cluster region. These bubbles grow for a few oscillation cy-

cles and eventually merge with the larger cluster patches. On the other hand, cluster patches

can also shrink and disappear. New cluster spots usually originate at locations that were pre-

viously visited by the fronts, where amplitude and phase heterogeneities were left. Uniform

oscillations are stable in this parameter region. To initiate a turbulent cascade, sufficiently

strong local perturbations must be applied to the uniform state. The turbulent formation of

cluster spots is different from the birth of spots through self-replication that was previously

reported in bistable systems [156].
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Figure 6.21: Turbulent cluster pat-
tern. The two consecutive snap-
shots of the oscillation phase (top
row) and amplitude (bottom row)
distributions are separated by a
time interval of two oscillation pe-
riods. The parameter values are
τ�T0 � 0�067 and µ�p0 � 0�024.
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In summary, by means of numerical simulations it was found that pattern formation in the

realistic model of CO oxidation on Pt(110) could be efficiently manipulated by implementa-

tion of a global delayed feedback. In the case studied so far, when uniform oscillations were

stable in absence of feedback, variation of the feedback intensity and the time delay allowed

to produce various structures, including phase flips, asynchronous oscillations, amplitude

clusters, and phase clusters with complex front properties.

6.1.6 Comparison with the normal form approach

The amplitude and phase description of the observed feedback-induced patterns provides a

link to the previous studies [36, 37, 112–114] performed in the framework of the complex

Ginzburg-Landau equation with global feedback. This general model is strictly valid only

near the soft onset of oscillations at a supercritical Hopf bifurcation and when the delay

in the feedback loop is not too large. The simulations of the realistic model of CO oxida-

tion have been performed at parameter values not close to a supercritical Hopf bifurcation

and therefore, it is interesting to compare the behavior in both systems to see whether the

predictions of the CGLE still qualitatively hold.

For comparison, additional simulations have been conducted using the CGLE with global

feedback [equation (3.7)]. One-dimensional patterns resulting from such simulations are dis-

played in Fig. 6.22. The used parameter values of β and ε have been derived from the CO

oxidation model with the help of M. Ipsen. They were numerically determined from equa-

tions (5.1)–(5.3) at a CO partial pressure of pCO � 4�1996�10�5 , which corresponds to the

critical value associated with the nearest supercritical Hopf bifurcation.

By using these parameters and additionally including global feedback according to equa-

tion (3.7), the patterns shown in Figs. 6.22(a) and 6.22(b), representing a phase flip and

asynchronous oscillations, respectively, have been generated. Note that the amplitude and

phase plots obtained by the variable transformation in the CO oxidation model with non-

harmonic oscillations are quite similar to the respective plots for the CGLE with global

feedback [compare Fig. 6.22(a) with Fig. 6.4, and Fig. 6.22(b) with Fig. 6.7]. The ampli-

tude clusters observed in the CO oxidation model also resemble the cluster solutions in the

amplitude equation [114] (not shown in Fig. 6.22).

Phase clusters could only be observed in the CGLE with global feedback when the feed-

back term µeiχĀ was replaced by a term accounting for higher-order self-resonance, such
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Figure 6.22: One-dimensional patterns in the CGLE with global feedback. In the top row,
for each pattern the profiles of the amplitude modulus �A� (blue lines) and the phase φ �
arg�A� (red lines) are displayed. The bottom row shows the corresponding phase portraits.
Patterns (a) and (b) result from numerical simulation of equation (3.7), while for pattern (c)
equation (6.1) was used. The parameters are β��0�76 and ε��2�62 (and hence correspond
to the Benjamin-Feir stable case 1�εβ� 0), and (a) µ � 0�1�χ � 0; (b) µ � 2�0�χ � 1�0; and
(c) µ2 � 2�0�χ2 � 1�85.

that the equation read

∂A
∂t

� A� �1� iβ��A�2A��1� iε�∇2A�µ2 eiχ2Ā2A�� (6.1)

Here, A� denotes the complex conjugate of A. A phase cluster solution obtained with equa-

tion (6.1) is displayed in Fig. 6.22(c). Depending on the feedback parameters, stationary or

traveling phase clusters were seen in numerical simulations. However, phase balance was

absent in such patterns, and they transformed into amplitude clusters when both feedback

terms were included. Thus, with the exception of phase clusters, the principle effects of

global delayed feedback on stable uniform oscillations in the model of CO oxidation are in

good agreement with the behavior found in the CGLE with global feedback, even though

oscillations were not harmonic in the realistic model.
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6.2 Controlling chemical turbulence

In the following, the effects of global delayed feedback are further studied in a case where

the system shows chemical turbulence in absence of feedback. As it is shown below, this

leads to the appearance of several new phenomena.

In the model of CO oxidation, chemical turbulence is found in a wide range of control

parameters [151]. To obtain such turbulence, in the following the values of the oxygen partial

pressure (pO2
� 1�30� 10�5 mbar) and the CO partial pressure (p0 � 4�81� 10�5 mbar) are

changed with respect to the parameters used in Section 6.1. The steady state value of the CO

coverage is also adjusted, uref � 0�3358. All other model parameters, given in Table 5.1, are

left unchanged. Unless stated otherwise, the system size is 0�8mm for one-dimensional and

0�4� 0�4 mm2 for two-dimensional media, and periodic (no-flux) boundary conditions are

imposed on one-dimensional (two-dimensional) systems.

6.2.1 Amplitude turbulence

At first, the behavior exhibited by model (5.1)–(5.4) in absence of feedback (µ� 0) is consid-

ered. At the above specified parameters, an isolated system element performs non-harmonic

limit cycle oscillations of period T0 � 2�73s. However, due to a destabilizing effect of the

diffusive coupling between the elements, uniform oscillations are now unstable with respect

to small perturbations and chemical turbulence spontaneously develops.

A space-time diagram showing the evolution of the variable u during the transition from

nearly uniform oscillations to turbulence is displayed in Fig. 6.23(a). The initially small per-

turbations of the uniform state quickly grow, thereby destroying spatial correlations between

distant system elements. In the fully developed turbulent state, the spatially averaged values

of all model variables are almost constant and show only small random fluctuations.

To further characterize the observed turbulent state, the variable transformation described

in Section 6.1 is employed. A space-time diagram of the amplitude field during the transition

to turbulence is shown in Fig. 6.23(b). It is seen that in the state of developed turbulence,

multiple defects are present in the medium. Such objects appear as dark blue regions in

Fig. 6.23(b) and are characterized by a significantly decreased oscillation amplitude. This

state is reminiscent of what has been called amplitude turbulence in the complex Ginzburg-

Landau equation (cf. Section 2.3), and so this term shall also be used here.

At the same parameter values, uniform oscillations are also unstable in two-dimensional

systems. Snapshots of the resulting spatial distributions of CO coverage, phase, and am-
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Figure 6.23: Amplitude turbulence in model (5.1)–(5.4) in absence of feedback (µ � 0). In
frames (a) and (b), space-time diagrams of the CO coverage u and the oscillation amplitude
R, respectively, are shown for a one-dimensional system. The shown time interval is 150s.
Frames (c), (d), and (e) display snapshots of u, phase φ, and amplitude R, respectively, in a
two-dimensional system. The parameter values are pO2

� 1�30�10�5 mbar and p0 � 4�81�
10�5 mbar. Other parameters are given in Table 5.1.

plitude are displayed in Figs. 6.23(c), (d), and (e), respectively. The two-dimensional spa-

tiotemporally chaotic state is characterized by the presence of extended regions of decreased

oscillation amplitude (strings). Perpendicular to such objects, the oscillation phase strongly

varies in space. The two ends of a string usually correspond to topological defects in the

phase field. Fragments of spiral waves are only rarely visible in such a state of developed

amplitude turbulence. The shown behavior represents a typical example of the turbulent state

found in a wide range of model parameters. At different parameter values, spiral-wave tur-

bulence similar to the state shown in Fig. 2.5(b) is also possible.
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6.2.2 Overview of feedback effects

In a first series of numerical simulations, global delayed feedback has been switched on only

after amplitude turbulence had fully developed in the system. The results of such simulations,

performed on one-dimensional systems, are summarized in Fig. 6.24(a). Different types of

stable regimes, represented by different shading, are reached after transients.

Fig. 6.24(a) shows that, if the feedback intensity is sufficiently large, global delayed

feedback allows to suppress amplitude turbulence and induces uniform oscillations in a wide

range of delays (light gray-shaded regions). The minimal value of µ needed to stabilize uni-

form oscillations, and therefore the efficiency of the feedback, strongly depend on the choice

of τ. When the feedback intensity is fixed at an intermediate level, several synchronization

windows alternate with turbulent zones upon variation of the delay. Note that at small delays

in the approximate range 0�03 � τ�T0 � 0�10, turbulence can be suppressed at relatively

low values of the feedback intensity, but the feedback fails to stabilize uniform oscillations

at higher values of µ. It is further seen in Fig. 6.24(a) that in case of even smaller delays,

τ�T0 � 0�03, the suppression of turbulence is impossible for realistic values of µ. The latter

observation, however, is a result of the specific implementation of global delayed feedback

according to equation (5.4). Additional numerical simulations have shown that suppression

of turbulence is also possible at arbitrarily small values of τ when, for instance, the generated

control signal acts on the oxygen partial pressure pO2
instead on the CO partial pressure.

Even if global delayed feedback is too weak to completely suppress turbulence, it still

can alter the properties of the turbulent state. An interesting state is observed close to the

synchronization border [the boundary between the white and the gray-shaded regions in

Fig. 6.24(a)]. Here, usually a large part of the system is already in the state of uniform

oscillations, but a few localized amplitude defects persist. Individual defects either die out

in the further evolution of the system, or they initiate a cascade of defect reproduction. The

resulting state is reminiscent of intermittent turbulence in the CGLE (cf. Section 2.3) and is

investigated more closely below.

At feedback parameters corresponding to the dark gray regions in Fig. 6.24, the turbu-

lent state is suppressed via the formation of cluster patterns. As it is also shown later, two

different types of stable clusters are observed: phase clusters with period-doubled anti-phase

oscillations and amplitude clusters with coexistent limit cycles.

A different synchronization diagram is obtained when a uniform state with small

superimposed random perturbations is taken as initial condition in the simulations, see
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Figure 6.24: Synchronization diagrams for one-dimensional systems in presence of global
delayed feedback, showing the approximate boundaries of different dynamical regimes
reached after transients. The diagrams are based on numerical simulations that started with
(a) developed turbulence and (b) a slightly perturbed uniform state as initial conditions. For
comparison, the synchronization border in frame (a) is additionally shown in frame (b) as
dashed line. The delay time is measured in multiples of the oscillation period of the system
in absence of diffusion and feedback, T0 � 2�73s. The feedback intensity is normalized to
the base CO partial pressure p0 � 4�81�10�5 mbar.
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Fig. 6.24(b). Note that the displayed range of feedback parameters is different from

Fig. 6.24(a). For comparison, the synchronization border in Fig. 6.24(a) is also shown in

Fig. 6.24(b) as dashed line.

Examining Fig. 6.24(b), it is found that the stability region of uniform oscillations ex-

tends far beyond the former synchronization boundary (dashed line). Thus, in a large range

of delays, the uniform state shows strong hysteresis when the feedback intensity is decreased

from large values. Turbulence spontaneously develops from almost uniform initial conditions

only at feedback parameters outside the shaded regions. However, in the intermediate param-

eter range inside the shaded regions but below or to the left of the dashed line, a sufficiently

strong local perturbation of the uniform state is able to initiate a defect cascade, yielding ei-

ther intermittent or developed turbulence. The formation of clusters is not noticeably affected

by hysteresis effects.

Further types of patterns exist in the hatched region in Fig. 6.24(b). In this region, uniform

oscillations are unstable, and wave patterns characterized by an intrinsic wavelength develop

from small random perturbations. Approximately in the parameter region where wave pat-

terns develop in one-dimensional systems, cellular structures are found in two-dimensional

systems. Wave patterns, cellular structures, and their transition to turbulence are also further

discussed in the following sections.

6.2.3 Intermittent turbulence

When global delayed feedback is present but too weak to completely suppress turbulence, it

still can alter the properties of the turbulent state. Turbulent bursts then occur on a laminar

background, and hence a certain degree of long-range order is retained. An example of such

intermittent turbulence is displayed in Fig. 6.25. The chosen parameter values are close to the

synchronization border in Fig. 6.24(a). The resulting state is characterized by repeated cas-

cades of amplitude defects on the background of uniform oscillations. The defects reproduce

until nearly the entire system is covered by turbulence. Then they simultaneously annihilate

in certain parts of the medium. Sometimes only a few defects survive and initiate another

reproduction cascade. In this way, the system behavior alternates between strongly turbulent

states with only short-scale spatial correlations and nearly uniform states with large-scale

spatial correlations. Intermittent turbulence is also observed as a transient above the syn-

chronization border in Fig. 6.24(a); however, all defects finally die out in simulations there.

As the feedback intensity is decreased from large values towards the synchronization border,

the life time of defects strongly increases.
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Figure 6.25: Space-time diagram of intermittent turbulence in a one-dimensional system.
The amplitude R is plotted; dark blue color denotes low amplitude values. Below the space-
time diagram, the corresponding chaotic temporal variations of the CO partial pressure are
shown. The feedback parameters are τ�T0 � 0�293 and µ� p0 � 0�043.

To quantitatively analyze the properties of intermittent turbulence, a real global amplitude

ξ�t� � �η̄� can be defined as the modulus of the spatial average of a complex amplitude η,

where η�x� t� � R�x� t�eiφ�x�t�. For a state of intermittent or developed turbulence, the value

of ξ�t� fluctuates in time with a standard deviation σξ around a time-averaged value �ξ�.

The value of �ξ� vanishes in case of completely uncorrelated oscillations and is equal to

unity in case of uniform oscillations with amplitude R � 1. Thus, the time-averaged global

oscillation amplitude �ξ� can be interpreted as a measure of the degree of synchrony in a

spatiotemporal pattern.

Fig. 6.26(a) shows the dependence of the values of�ξ� and σξ on the feedback intensity

for a constant delay. The state of developed turbulence has been taken as initial condition for

the simulations underlying Fig. 6.26. Starting from small values of µ, both quantities contin-

uously increase with increasing feedback intensity. In the resulting patterns, this behavior is

reflected by an increasing number and average size of the laminar regions. Thus, the quanti-

tative analysis yields that the transition from amplitude turbulence to intermittent turbulence

is smooth. At a critical value of µ, where the value of �ξ� makes a jump, all defects have

died out after transients and the oscillations are uniform. This corresponds to the crossing

of the synchronization border in Fig. 6.24(a). In small systems, the values of �ξ� and σξ
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Figure 6.26: (a) Dependence of the time-averaged global oscillation amplitude �ξ� (black
circles) and the standard deviation σξ (white circles) on the feedback intensity for a constant
delay, τ�T0 � 0�293. The system size is L � 0�8mm. The lines are drawn to guide the eye.
The averaging interval is ∆t � 1000s. (b) Dependence of �ξ� and σξ on the system size at
constant feedback parameters, τ�T0 � 0�293 and µ� p0 � 0�017.

depend on the system size, see Fig. 6.26(b). This dependence saturates for larger systems.

In two space dimensions, intermittent turbulence is characterized by irregular cascades

of nearly circular structures on the background of uniform oscillations. Figure 6.27 displays

subsequent snapshots of the spatial distributions of phase and amplitude in such a pattern.

Additionally, phase portraits are shown in the bottom of Fig. 6.27, obtained by plotting the

amplitudes and phases for all resolving pixels in polar coordinates. At constant feedback pa-

rameters, the pattern evolution is as follows: at a certain point in time, individual bubbles and

ring-shaped structures are present on an almost laminar background, see Fig. 6.27(a). Inside

the localized objects, the oscillation amplitude is strongly decreased. A distinct structure is

then found in the phase portrait, where the uniform background corresponds to the end of

the tail. As time goes on, the bubbles break, reproduce and transform into expanding rings,

see Figs. 6.27(b) and 6.27(c). During this process, the structure in the phase portrait slowly
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Figure 6.27: Snapshots of the phase (top), amplitude (middle row), and phase portraits (bot-
tom) for intermittent turbulence in two space dimensions. The time interval between the
subsequent images shown in each row is ∆t � 5�2s and approximately corresponds to two
periods of the oscillating background.The system size is 0�6� 0�6mm2. The parameter val-
ues are τ�T0 � 0�293 and µ� p0 � 0�056.
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Figure 6.28: Pattern evolution
along a cross-section trough a two-
dimensional pattern representing
intermittent turbulence. A space-
time diagram of the amplitude and
the variation of CO partial pres-
sure are displayed. The same pa-
rameters as in Fig. 6.27.
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scatters. A few oscillation periods later, the turbulent objects have merged and only small

laminar regions are left, as displayed in Fig. 6.27(d). Extended line defects separate the lam-

inar regions from the parts that were invaded by turbulence. Another such cycle is initiated

some time later, when again large parts of the turbulent regions spontaneously synchronize

and only a few localized defects survive. Note that the pattern evolution along a cross section

through the two-dimensional system is characterized by irregular defect cascades similar to

the one-dimensional case, see Fig. 6.28.

6.2.4 Cluster patterns

In the cluster regions in Fig. 6.24, two different types of stable clusters, namely phase clus-

ters and amplitude clusters, have been observed. Similar patterns were already encountered

in Section 6.1.4, and therefore the following description focuses on the differences to the

previously observed structures.

At most feedback parameters inside the cluster regions in Fig. 6.24, two-phase clusters

develop. Starting from amplitude turbulence, consecutive snapshots during the development

of such a pattern are displayed in Fig. 6.29. On the time scale of a few seconds, amplitude

turbulence is gradually suppressed and synchronized domains with anti-phase oscillations

��� ��� ���
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Figure 6.29: Development of phase clusters from amplitude turbulence in two space dimen-
sions. The variable u is displayed at different points in time after global feedback has been
switched on: (a) t � 0s, (b) t � 8�2s, (c) t � 16�4s, (d) t � 28�6s, (e) t � 98�2s, and (f)
t � 294�5s. The parameter values are τ�T0 � 0�147 and µ� p0 � 0�083.
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develop [Figs. 6.29(a)–6.29(c)]. The initial spatial distribution of such domains is random.

During the further evolution, individual cluster domains of equal phase merge and smaller

domains die out [Fig. 6.29(c)–6.29(e)]. A further slow drift of the phase fronts is then still

observed, with a tendency to minimize the front curvature. Finally, a stable stationary dis-

tribution is reached [Fig. 6.29(f)]. As it was also observed when uniform oscillations were

stable in absence of feedback (see Section 6.1.4), in the final state the phase clusters show

the property of phase balance, i.e., the total areas occupied by the different phase domains

are equal.

A difference to the previously observed phase clusters is seen in the space time-diagram

of a one-dimensional pattern displayed in Fig. 6.30. Examining this diagram, it is found that

local oscillations now are characterized by an alternating magnitude of subsequent oscilla-

tion maxima. This phenomenon, which arises from a period doubling of local oscillations,

significantly affects the properties of the phase fronts. While within the synchronous phase

domains, consecutive local oscillation maxima have a large difference, this difference con-

tinuously decreases towards the center of a phase front. In the middle of the front, there is a

point where the oscillations are simple periodic and almost coincide with the global oscilla-

tions in the pattern (black line in Fig. 6.30). Thus, an oscillation node is absent inside such

fronts, in contrast to the previously analyzed domain interfaces in stationary phase clusters

(cf. Section 6.1.4).
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Figure 6.30: Space-time di-
agram of phase clusters in a
one-dimensional system. The
variable u is displayed. The curves
in the bottom show the variation
of u within the different cluster
domains (blue and red lines) and
the variation of ū (black line). The
same parameters as in Fig. 6.29.

Additionally, stable amplitude clusters exist in the large cluster region in Fig. 6.24(a) (the

region at τ�T0 � 0�15) at high feedback intensities, µ� p0 � 0�17. A space-time diagram of

such clusters, which are due to the coexistence of two limit cycles, is shown in Fig. 6.31.

Inside the small domain, oscillations are simple periodic and have a large amplitude, while

the other domains of the pattern show period-two oscillations with much smaller amplitude.
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The domain interfaces are stationary and phase balance is absent in such a pattern. Similar

amplitude clusters have also been observed as effect of global delayed feedback on stable

uniform oscillations, see Section 6.1.4. The main difference is that there, oscillations in both

different domain types were simple periodic.
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Figure 6.31: Space-time diagram
of clusters with coexistent limit
cycles in a one-dimensional sys-
tem. The representation is the
same as in Fig. 6.30. The param-
eter values are τ�T0 � 0�088 and
µ� p0 � 0�200.

6.2.5 Wave patterns and phase turbulence

In the following, the types of patterns found in the region in Fig. 6.24(b) denoted by ‘wave

patterns’ are described. All such structures are stable with respect to small perturbations, but

transform into intermittent or developed turbulence when a sufficiently strong local pertur-

bation is applied.

Close to the upper boundary of this region, oscillatory standing waves with an intrinsic

wavelength are found in one space dimension, see Fig. 6.32 for an example. Such patterns

represent spatially periodic variations of the state of uniform oscillations. Both the spatial dis-

tributions of the oscillation phase and amplitude are periodically modulated, see Fig. 6.32(b).

A local increase of R corresponds to a decrease of φ. These modulations are stationary, so

that all system elements show periodic oscillations, see Fig. 6.32(a). The phase and ampli-

tude variations are small for feedback parameters close to the border to uniform oscillations,

and continuously grow as the feedback intensity is decreased at a constant delay. Standing

waves arising from a finite wavelength instability were previously also observed in the model

of CO oxidation under intrinsic gas phase coupling [114, 151].

Upon a decrease of the feedback intensity, standing waves become unstable when

the amplitude and phase modulations have reached a certain critical size. Neighbored

phase minima then start to weakly oscillate around their mean position, thereby forming
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Figure 6.32: Standing waves in a one-dimensional system. (a) Space-time diagrams of the
phase in a stationary coordinate frame (top) and in a frame rotating with the period of the
reference orbit (middle). The corresponding variations of the CO partial pressure are shown
in the bottom. (b) Snapshots of the phase and amplitude profiles. The parameter values are
τ�T0 � 0�110 and µ� p0 � 0�012.
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Figure 6.33: Space-time dia-
grams of (a) breathing waves
and (b) phase turbulence in a
one-dimensional system. The
phase distribution is displayed in
a coordinate frame rotating with
the period of the reference orbit.
The shown time interval is (a)
100s and (b) 200s. The parameter
values of τ�T0 and µ� p0 are,
respectively, (a) 0.110, 0.010, and
(b) 0.110, 0.008.
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a pattern of breathing waves, see Fig. 6.33(a). When µ is further decreased, the strength

of the breathing becomes comparable to the spatial wavelength of the pattern and its

regularity breaks down. The resulting state is shown in Fig. 6.33(b). Colliding local phase

minima merge and from time to time new such regions are created. However, the phase

and amplitude modulations remain comparatively weak, and the global oscillations are still

nearly periodic. Such a behavior is reminiscent of phase turbulence in the one-dimensional

CGLE [compare Fig. 6.33(b) with Fig. 2.4(a)]. Defects are only spontaneously created in

the system when the feedback intensity is further decreased below the hatched region in

Fig. 6.24(b), where they quickly reproduce to form amplitude turbulence.

6.2.6 Cellular structures

About in the region of feedback parameters where wave patterns and phase turbulence are

found in one space dimension, oscillatory cellular structures develop in two-dimensional sys-

tems. As wave patterns, such structures represent small-amplitude modulations of uniform

oscillations and are replaced by intermittent or amplitude turbulence upon a sufficiently large

local perturbation. Three different types of cellular structures are encountered. Close to the

border to uniform oscillations, the cell arrays are regular and show a hexagonal symmetry,

see Fig. 6.34(a). Such patterns are the result of nonlinear interactions between triplets of

modes of wave vector k with the same wave number �k�� k0 [157]. The observed structures

are stationary in space, but show time-periodic local oscillations.

When the feedback intensity is decreased, stationary cell arrays become unstable at a cer-

tain delay-dependent value of µ. Individual cells then periodically shrink and expand, thereby

forming an array of breathing cells, see Fig. 6.34(b). In the spatial Fourier spectrum of such

a pattern, two independent frequencies are present. As in the one-dimensional system, phase

turbulence develops upon further decrease of the feedback intensity. A snapshot of the re-

sulting state, characterized by the mobility of cells, is shown in Fig. 6.34(c). Individual cells

shrink and expand aperiodically while they slowly travel through the medium. Occasionally,

some of the cells die out or, following an expansion, reproduce through cell splitting, see

Fig. 6.35 for such an event. Phase turbulence is replaced by amplitude turbulence when the

feedback intensity is further decreased.
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Figure 6.34: Different types of cellular structures in two space dimensions. Displayed are
distributions of phase (top) and amplitude (middle row), and spatial Fourier spectra of the
amplitude images (bottom). For the amplitude and phase patterns, the range of the color map
has been adapted to the variations in the images in order to increase the color contrast. The
parameter values of τ�T0 and µ� p0 are, respectively, (a) 0.110, 0.019, (b) 0.110, 0.016, and
(c) 0.110, 0.012.
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Figure 6.35: Splitting process of a cell. The cell that undergoes splitting is indicated by an
arrow. Snapshots of the phase are displayed; only one quarter of the system of size 0�8�
0�8mm2 is shown. The time interval between individual frames is ∆t � 4�8s. The parameters
are as in Fig. 6.34(c).



6.2 Controlling chemical turbulence 91

6.2.7 Discussion and comparison with the normal form approach

The above described simulations have shown that amplitude turbulence in the model of CO

oxidation can be suppressed by means of global delayed feedback in a wide range of feed-

back parameters. Moreover, near the edge of chaos, where global delayed feedback is too

weak to induce uniform oscillations but strong enough to significantly affect pattern forma-

tion, a broad variety of complex patterns was found.

The different observed spatiotemporal structures are summarized in Fig. 6.36. The im-

ages in the top row display distributions of the CO coverage u. Below, the corresponding

spatial distributions of the phase (second row) and amplitude (third row) are displayed. Ad-

ditionally, the bottom row of Fig. 6.36 shows a phase portrait of each pattern.

The unforced turbulent state [Fig. 6.36(a)] is characterized by strong amplitude and

phase fluctuations. This state is similar to developed amplitude turbulence in the unforced

CGLE (cf. Section 2.3). The patterns shown in Figs. 6.36(b)–6.36(e) represent typical two-

dimensional patterns induced by the feedback.

Intermittent turbulence [Fig. 6.36(b)] has been observed close to the synchronization bor-

der under increasing feedback intensity. This regime is characterized by irregular cascades

of bubbles developing into ring-shaped structures on the background of uniform oscillations.

The amplitude is strongly decreased inside such localized objects.

Stationary two-phase clusters [Fig. 6.36(c)] differed from their counterparts in the non-

chaotic regime by a period-doubling of local oscillations. This significantly changed the

properties of the phase fronts. Note that due to the period-doubling, oscillations within the

different cluster domains in Fig. 6.36(c) differ not only in phase, but also in amplitude;

nonetheless, they correspond to the same limit cycle. In addition to phase clusters, amplitude

clusters with coexistent limit cycles were also observed (not shown in Fig. 6.36).

Hexagonal cell arrays [Fig. 6.36(d)] were found in a range of feedback parameters where

standing waves developed in one space dimension. Secondary instabilities led to breathing

cellular structures, and to phase turbulence [Fig. 6.36(e)]. As seen in the corresponding phase

portraits, both the phase and the amplitude are modulated in such structures, though the

amplitude variations are weak.

Similar patterns were also seen in the previous studies [36,37,112–114] of the CGLE with

global feedback (some of them have been reproduced in Fig. 3.5). A comparison of the be-

havior found in the model of CO oxidation and in the general model reveals that intermittent
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Figure 6.36: Distributions of CO coverage (top), oscillation phase (second row), and oscilla-
tion amplitude (third row), and phase portraits (bottom) for several typical two-dimensional
patterns. In the phase portraits (b) and (c), bold dots have been added to indicate the uniform
states. The side length of the simulated system is 0.4mm in frames (a), (c)–(e) and 0.6mm
in frame (b). The values of the feedback parameters µ (10�5 mbar) and τ (s) are: (a) 0, 0; (b)
0.27, 0.8; (c) 0.40, 0.4; (d) 0.09, 0.3; and (e) 0.06, 0.3.

turbulence and hexagonal cells exhibit profoundly similar amplitude and phase properties

in these systems [compare Fig. 6.36(b) with Fig. 3.5(c), and Fig. 6.36(d) with Fig. 3.5(b)].

Turbulent bubbles in the amplitude equation have a stronger tendency to aggregate in the

shown example. The cascades of reproducing and annihilating amplitude defects found in

the model of CO oxidation were also seen in the framework of the CGLE in one space di-

mension [36,113]. Note that intermittent regimes have also been observed in the unperturbed

CGLE [158] (refer to Fig. 2.4(c) for an example), where they, however, showed somewhat

different properties, e.g., no bubble-shaped objects were present in two space dimensions.

Starting from steady hexagonal cells, a decrease of the feedback intensity both in the

model of CO oxidation and in the CGLE with global feedback resulted in a similar transition
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to oscillating cellular structures. Further decrease of the feedback strength in the amplitude

equation led to formation of amplitude turbulence on the background of a cellular structure

[Fig. 3.5(a)], while in the CO oxidation model, a sharp transition from phase turbulence

[Fig. 6.36(e)] to developed amplitude turbulence was observed.

Phase clusters were not present in simulations of the CGLE with the lowest order term

for global feedback, as discussed in Section 6.1.6. Instead, amplitude clusters were observed

in certain intervals of the feedback parameters. A typical two-dimensional example of such

a pattern is displayed in Fig. 3.5(d). Clusters with similar properties were also found in the

CO oxidation model.

In conclusion, it was shown in this chapter that turbulence and pattern formation can be

efficiently controlled, and various complex structures can be induced in a model of CO oxi-

dation on Pt(110) by means of global delayed feedback. The model parameters were chosen

in such a way that oscillations were not harmonic and the system was not close to a super-

critical Hopf bifurcation. Nonetheless, the observed patterns to a wide extent resembled the

structures exhibited by the amplitude equation, which is strictly valid only near this bifur-

cation. It is therefore expected that many of the observed phenomena can be also found in

other reaction-diffusion systems of various origins.
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Chapter 7

Experimental setup

The third part of this work is devoted to experiments with CO oxidation on Pt(110) un-

der global delayed feedback and periodic forcing. These experiments have been performed

under supervision of H. H. Rotermund. The used experimental setup is described in the fol-

lowing chapter. The ultrahigh-vacuum chamber, its pumping system, and the preparation of

the platinum sample are subject of Section 7.1. In Section 7.2, the photoemission electron

microscope used for imaging of the sample surface is described. Finally, in Section 7.3, the

implementation of periodic forcing and global delayed feedback into the experimental setup

is discussed.

7.1 UHV chamber and sample preparation

The ultrahigh-vacuum (UHV) chamber used in surface chemical experiments has been kept

at a base pressure of 10�10 mbar. The reaction chamber is made of stainless steel and has

a volume of about 60dm3. The UHV conditions are maintained by the pumping system

sketched in Fig. 7.1. The evacuation of the chamber is achieved by two turbomolecular

pumps. Their fore vacuum of 10�3 mbar is provided by two rotary pumps, and zeolite traps

prevent that the chamber is contaminated by hydrocarbon arising from their lubrication oil.

The vacuum is further improved by use of a titanium sublimation pump. The overall pressure

in the chamber is measured by means of an ionization manometer. A third turbomolecular

pump provides differential pumping of the photoemission electron microscope (PEEM) that

is used for surface imaging. A differentially pumped quadrupole mass spectrometer (QMS)

allows to accurately measure partial pressures under reaction conditions (up to 10�3 mbar).

The chamber is further equipped with an Ar-ion sputter gun, resistive sample heating, and

devices for low-energy electron diffraction (LEED) and Auger electron spectroscopy (AES).
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Figure 7.1: Schematic drawing of the pumping system. After Ref. [159].

The supply of reaction gases (O2 and CO) is automatically controlled. A feedback mech-

anism which acts on an electromagnetic valve allows to keep constant the partial pressures

within a maximal variation of 0�1% (see Ref. [160] for details). Only purified gases (CO 4.7,

O2 5.6, and Ar 5.0) have been used. By continuous supply and pumping of gases, the system

is operated as a continuous flow reactor.

Preceding each series of experiments, the sample has been prepared by repeated cycles

of Ar sputtering below 470K and subsequent annealing to 750K. To minimize the effects

of internal global gas phase coupling, specially prefabricated single crystals have been used.

About 80% of the Pt(110) single crystal surface (10mm in diameter) has been covered by

microlithographic deposition with Ti. The microlithographic fabrication of the crystal sam-

ples was done at Princeton University with the help of I. G. Kevrekidis. The Ti layer has been

oxidized in the chamber, thereby producing a TiO2 layer which is not catalytically active for

the considered reaction. Only the free Pt areas remained active. In this way isolated surface

reactors of various sizes could be created. For the experiments reactive areas of about 1mm2

have been chosen.

7.2 Visualization of patterns

The formation of spatiotemporal patterns on the catalytic surface has been imaged by means

of photoemission electron microscopy (PEEM) [123, 124]. This method produces real-time

images of the lateral distribution of adsorbed species on the catalytic surface. More precisely,

the distribution of photoelectron emission from the surface under ultraviolet light irradiation
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is displayed. The yield of photoelectrons depends sensitively on the local work function ϕ of

the substrate, which is changed due to the presence of adsorbates. As compared with the free

Pt(110) surface, a monolayer of oxygen coverage increases the work function by ∆ϕ� 0�8eV,

thereby strongly decreasing the brightness of PEEM images. Full CO coverage also increases

the work function but produces a smaller effect (∆ϕ� 0�3eV). When formation of subsurface

oxygen occurs, this species is detected by a strong decrease of the work function and thus

appears as bright patches in the images.

A schematic drawing of the PEEM instrument is shown in Fig. 7.2. The emission of

photoelectrons from the sample is caused by photons that stem from homogeneous illumina-

tion by a deuterium discharge lamp. The ultraviolet light has a continuous spectral intensity

characteristic (see Ref. [161]). The angle of light incidence is about 75Æ from the surface

normal. In order to capture as many produced photoelectrons as possible, the distance be-

tween the sample and the objective is small (d � 4mm). Within this distance, the electrons

are accelerated by a potential difference of about 20kV. A system of three lenses then mag-

nifies the electron image by a factor of 102 to 103. The lens combination also decelerates the

fast electrons to energies for which the channelplate has its highest sensitivity (about 1keV).

The channelplate typically amplifies the electron distribution by a factor of 103. Finally, a
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Figure 7.2: Schematic drawing of the photoemission electron microscope, not to scale. After
Ref. [124].
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phosphor screen converts the electron image into a photon image which then is recorded by

a CCD camera. A small aperture of 300µm in diameter and differential pumping allow the

operation of the PEEM instrument at pressures up to 10�3 mbar in the main chamber.

In the conducted experiments, the spatial resolution of images has been about 1µm with

the typically chosen field of view of 500µm. A frame rate of 25 camera images per second

guaranteed a sufficiently good temporal resolution of the PEEM recordings. Standard image

processing including background subtraction, contrast/brightness adjustments, and image av-

eraging has been performed to improve the signal-to-noise ratio of the images.

7.3 Implementation of the control strategies

Periodic forcing and global delayed feedback have been experimentally implemented via the

gas phase. Partial pressure variations affect the reaction conditions on the catalytic surface

in a uniform way. The automated gas inlet system allowed the controlled modulation of the

CO partial pressure in the chamber by changing the dosing rate of CO molecules. The CO

partial pressure followed the externally applied temporal modulation with a delay τ0 � 0�8s

determined by the residence time of gases in the pumped chamber. Well controlled CO par-

tial pressure variations could be introduced with frequencies up to 0�5Hz at typical relative

amplitudes of about 10%. The applied partial pressure variations were large in comparison

to the internal pressure variations due to global gas phase coupling. During the experiments,

the CO partial pressure was measured with the differentially pumped QMS and therefore its

correspondence with the applied signal could be directly checked.

Periodic external forcing has been implemented by using a frequency generator to control

the dosing rate of CO molecules. In this way, the CO partial pressure in the reaction chamber

could be periodically modulated with a nearly harmonic signal of amplitude γ and frequency

ω f , while its temporal average p0 was kept constant.

In order to introduce global delayed feedback, the instantaneous dosing rate of CO

molecules was made dependent on real-time properties of the developing patterns. The ex-

perimental setup with the applied feedback loop is sketched in Fig. 7.3. While monitoring

the patterns on the surface, the PEEM intensity was simultaneously averaged over the entire

observation window by means of an electronic integrating device. The level of intensity was

scaled such that a CO (oxygen) saturated surface corresponded to a value of 1 (0). From

the resulting global signal I�t�, a reference value Iref was then subtracted using a pre-set

potentiometer. The reference value has been determined in the beginning of each series of
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Figure 7.3: Schematic drawing of the experimental setup with global delayed feedback.

experiments, before global delayed feedback was applied. It was chosen as the time-average

of the global PEEM intensity I�t� in the initially developing state, i.e., chemical turbulence or

stable spiral waves. In the following step, the signal was delayed by a certain time τd using a

computer. Afterwards, the delayed signal was electronically amplified by a factor determin-

ing the feedback intensity. A high-frequency filter was used to reduce electric noise and to

invert the signal. Finally, the control signal was applied back to the reaction by controlling

the automated inlet system for CO gas.

Thus, a global delayed feedback could be artificially introduced, such that

pCO�t� � p0�µ � I�t� τ�� Iref �� (7.1)

where pCO is the CO partial pressure in the reaction chamber, I�t� denotes the total PEEM in-

tensity at time t, τ � τ0�τd is the effective time delay, the parameter µ specifies the feedback

intensity, and p0 and Iref are the CO partial pressure and the mean base level of the integral

PEEM intensity in absence of feedback, respectively. Note that the above specified feedback

loop is of the same form as the feedback implemented in the model of CO oxidation [cf.

equation (5.4)], except that in the model, a simplification was made by using the average CO

coverage ū to generate the control signal.
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Chapter 8

Pattern formation under global delayed feedback

In this chapter, CO oxidation experiments with artificial global delayed feedback are pre-

sented. They provide the experimental counterpart of the theoretical investigations described

in Chapter 6.

In Section 8.1, the influence of global delayed feedback on pattern formation is studied in

a non-chaotic parameter regime, characterized by the existence of stable spiral waves. Three

different types of behavior are observed: synchronization and desynchronization of local

oscillations, and the formation of phase clusters. The effects of global delayed feedback on

chemical turbulence are investigated in Section 8.2. It is shown that chemical turbulence can

be suppressed by this method, and a rich variety of spatiotemporal patterns is found at the

transition from turbulence to uniform oscillations. To characterize the observed patterns, they

are transformed in Section 8.3 into the spatial distributions of phase and amplitude variables.

This is achieved by using a variant of the analytic signal approach.

8.1 Manipulating non-chaotic patterns

The experiments described in the following section have been performed in collaboration

with M. Pollmann to test the theoretical predictions presented in Section 6.1. In these exper-

iments, the parameter values of temperature and partial pressures have been chosen in such

a way that the system was in an oscillatory state and chemical turbulence was absent. The

sample first showed anharmonic uniform oscillations of a period of about 3.5s, which then

were successively replaced by stable rotating spiral waves or target patterns formed around

small surface defects.
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8.1.1 Synchronization and desynchronization of oscillations

When global delayed feedback according to equation (7.1) was applied, it exerted significant

influence on the asymptotic behavior of the system. First the results of experiments are re-

ported where the feedback intensity was kept constant at µ � 0�4� 10�5 mbar and only the

time delay was varied. Figure 8.1 summarizes the results of experiments in which the uni-

formly oxygen covered surface was taken as initial condition. After setting a certain delay,

also the CO valve was opened, and global delayed feedback was applied to the uniformly

oscillating state. Different types of behavior were found after transients, denoted by different

shading in Fig. 8.1.

For delays corresponding to the white regions in Fig. 8.1, the system maintains uniform

oscillations. Due to a synchronizing effect of the feedback, in this parameter region the uni-

form state is not replaced by spiral waves or target patterns even in presence of structural

surface defects. In these intervals of the delay, a process of synchronization can be observed

when the feedback is switched on after spiral waves or target patterns have already devel-

oped in the system. This situation is illustrated in Fig. 8.2. In the shown example, global

oscillations initially are absent due to the presence of traveling wave patterns. During a tran-

sient time between a few seconds and several minutes, the feedback becomes more and more

efficient and the nonuniform patterns are gradually suppressed. Finally, the state of periodic

uniform oscillations is stabilized by the oscillating feedback. The suppression of nonuniform

patterns requires a minimal feedback intensity of µ� 0�4�10�5 mbar.

A different situation is encountered for delays corresponding to the black regions in

Fig. 8.1. At such delay settings, the feedback is unable to synchronize local oscillations, and

even cannot maintain uniform oscillations. Starting from a uniformly covered surface, after

some time local oscillations gradually desynchronize, and different patterns (spiral waves or

Figure 8.1: Dependence of the system behavior on the time delay at constant feedback in-
tensity, µ � 0�4�10�5 mbar. White areas denote synchronization regimes, the black regions
correspond to nonuniform patterns, and in gray shaded regions both types of behavior are
possible (the diagram summarizes the results of several series of experiments). The param-
eter values of temperature, oxygen partial pressure, and base CO pressure are, respectively:
T � 514K, pO2

� 40�0�10�5 mbar, and p0 � 3�0�10�5 mbar. From Ref. [162].
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Figure 8.2: Example of a synchronization process. Top row: PEEM images at different time
moments with a field-of-view of 350µm in diameter. Middle row: space-time diagrams along
the line AB indicated in the first image. Bottom row: temporal variations of the negative
integral PEEM signal -I (black line) and the CO partial pressure (gray line); the time scale
is the same as in the space-time diagram. The feedback parameters are µ � 0�4�10�5 mbar
and τ � 0�7s. The other parameters are as in Fig. 8.1. From Ref. [162].

islands) form. A typical example of such a desynchronization process is displayed in Fig. 8.3.

During the transient, the global oscillations in the pattern almost completely break down

while patterns with asynchronous oscillations evolve. Usually the developing structures are

different as compared to the non-perturbed system (e.g., freely rotating spirals instead of

target patterns pinned to defects). The desynchronization windows shrink at higher feedback

intensities and eventually completely disappear. In the gray shaded regions in Fig. 8.1, in dif-

ferent series of experiments both stable uniform oscillations and a desynchronization process

have been observed due to a small drift of experimental parameters.

It should be noted that the period of global oscillations in the uniform system is strongly

dependent on the applied time delay, see Fig. 8.4 for the result of a typical series of exper-

iments. In case of desynchronization, the period has been extracted from the data shortly
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Figure 8.3: Example of a desynchronization process. The representation is the same as in
Fig. 8.2. The feedback parameters are µ � 0�4�10�5 mbar and τ � 3�8s. From Ref. [162].

Figure 8.4: Global oscillation pe-
riod of the system for different
time delays. The feedback inten-
sity is fixed, µ � 0�4� 10�5 mbar.
From Ref. [162].

before the breakdown of global oscillations occurred. As the delay is increased, at first the

period also increases. At the transition from desynchronization to synchronization taking

place at τ � 3�7s, a jump of the period to one half of its previous value occurs, which

abruptly changes the phase relation between the global oscillations and the feedback signal.

The change of the phase relation is thus responsible for the transition between nonuniform

and uniform spatial patterns.
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8.1.2 Cluster patterns

In further series of experiments, the delay was kept constant and only the feedback

intensity has been changed. Such measurements investigated the behavior starting from the

desynchronization regime at τ � 0�5s. Significant hysteresis effects occurred upon change

of the feedback intensity. When µ was increased from low values, the system showed at

first nonuniform traveling wave patterns. Upon further increase, the desynchronizing effect

disappeared and uniform oscillations were observed. However, when µ was again decreased

from the uniform state, cluster patterns arose in an intermediate range of the feedback

intensity (µ � 3�5� 10�5 mbar). They transformed into traveling wave patterns when the

feedback intensity was further lowered.

Figure 8.5: Typical example of oscillatory clusters. (a) Four snapshots of PEEM images
during one oscillation period. The field-of-view is 350µm in diameter. (b) Space-time plot
along the line AB indicated in the first PEEM image. (c) Temporal variations of the local
PEEM intensity within the two cluster states. The gray line has been shifted downwards
for clarity. (d) Temporal variations of the negative total PEEM signal -I (black line) and
the CO partial pressure (gray line). The time scale is the same as in (b). The parameters
are T � 506K, pO2

� 10�0� 10�5 mbar, p0 � 2�2� 10�5 mbar, µ � 3�5� 10�5 mbar, and
τ � 0�45s.



108 Pattern formation under global delayed feedback

A typical example of an experimentally observed cluster pattern is displayed in Fig. 8.5.

The surface has split into large regions belonging to either one of two different dynami-

cal states, see Fig. 8.5(a). An intrinsic spatial wavelength is missing in such a pattern. The

temporal evolution of the pattern along a cross section is shown in the space-time diagram

in Fig. 8.5(b). It is seen that the clusters are stable and that the interfaces between the dif-

ferent domains are stationary. The local oscillations within the different domains have the

same shape and are shifted in phase by half an oscillation period. Thus, the observed cluster

patterns are identified as phase clusters (cf. Section 6.1.4). Note that the shape of the lo-

cal oscillations is complex; due to a period doubling of oscillations, subsequent oscillation

maxima show an alternating magnitude, see Fig. 8.5(c).

During the formation of phase clusters, a slow movement of the interfaces between dif-

ferent cluster areas occurrs on a time scale of several oscillation cycles. After this transient,

when the interfaces have stopped their motion and the final spatial distribution of the cluster

regions is reached, the total areas occupied by the anti-phase domains are almost equal or, in

other words, the clusters show the state of phase balance. The phase balance becomes evident

from the global oscillations of the pattern shown in Fig. 8.5(d): the evenly weighted contri-

butions of the local anti-phase oscillations sum up to a periodic global signal of twice the

frequency of local oscillations. Cluster patterns are further studied in Section 8.2.4, where

similar structures are observed in feedback experiments starting from a turbulent initial re-

action state.

8.1.3 Discussion

The above described experiments have explored the effects of global delayed feedback in

a non-chaotic parameter regime of the unforced reaction. Well defined alternating synchro-

nization and desynchronization windows occurred upon variation of the time delay in the

feedback loop. While synchronous oscillations were accompanied by a periodically oscil-

lating control signal, the process of desynchronization led to the breakdown of global oscil-

lations. The observations qualitatively agree with the theoretical investigations presented in

Section 6.1, where similar regimes of synchronization and desynchronization in dependence

of the delay were seen. The experimentally observed disappearance of the desynchroniza-

tion windows above a certain feedback intensity was also found in the simulations of the CO

oxidation model.

An additional feedback effect was the production of phase clusters at low time delays. In

experiments with CO oxidation, phase clusters represent a novel type of pattern. They were
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characterized by stationary domain interfaces and period-doubled local oscillations. The total

areas of the anti-phase domains were equal. Phase clusters with partly similar properties were

recently observed in experiments with the light-sensitive Belousov-Zhabotinsky reaction un-

der global feedback [41,104] and under periodic forcing [39,40,42] [see also Fig. 3.3(g)]. In

the model of CO oxidation, not only phase clusters, but also other types of feedback-induced

clusters have been identified (cf. Section 6.1.4). Among these patterns, phase clusters formed

in a relatively large region in the plane of feedback parameters. The simulated stationary

phase clusters showed the experimentally observed property of phase balance. Period dou-

bling of the local oscillations was however only observed when the simulations started from

a turbulent parameter regime.

Thus, it can be concluded that except for phase flips, the experiments have shown all

principle phenomena of pattern formation predicted by the model, namely synchronous os-

cillations, desynchronization, and clustering of oscillations. The fact that phase flips were not

seen in the experiments is probably due to the existence of structural surface defects, whose

activity was not yet suppressed at low feedback intensities where the formation of phase flips

is expected.

8.2 Controlling chemical turbulence

In further experiments, the reaction parameters have been chosen in such a way that in

absence of feedback, uniform oscillations were unstable and chemical turbulence sponta-

neously developed. To this state, global delayed feedback according to equation (7.1) was

then applied. The first series of such experiments, performed at a constant value of the time

delay, has been conducted by M. Kim [163]. The data evaluation and analysis of these initial

experiments, and all further experimental investigations reported below have been done by

myself.

8.2.1 Spiral-wave turbulence

Before considering the effects of global delayed feedback on chemical turbulence, the prop-

erties of this spatiotemporally chaotic state are briefly discussed. Chemical turbulence in

CO oxidation on Pt(110) was first observed by Jakubith et al. [46] in 1990. It is found in

a wide range of temperatures for an appropriate choice of the partial pressures of gases in

the chamber. A characteristic property of such turbulence is the spontaneous creation of ir-

regular wave fronts and multiple rotating spiral waves. The spiral waves repeatedly undergo
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Figure 8.6: Spiral-wave turbulence in CO oxidation experiments in absence of feedback.
Displayed are eight subsequent PEEM images of size 330� 330µm2, and the space-time
diagram along the line ab indicated in the first image. The space-time diagram covers a range
of 30s; the first PEEM image is at time t � 13�2s and the time interval between subsequent
images is ∆t � 2�04s. The parameter values of temperature, oxygen partial pressure, and CO
partial pressure are T � 509K, pO2

� 40�0�10�5 mbar, and pCO � 9�1�10�5 mbar.

breakups, leading to the formation of new spiral fragments at different locations.

A typical example of the resulting state is displayed in Fig. 8.6. The PEEM images are

displayed with a resolution of 256 intensity levels using the color map shown on the right

in Fig. 8.6. Blue color corresponds to low local PEEM intensity and red color denotes high

PEEM brightness. Green color represents intermediate intensity levels. In the top and middle

rows in Fig. 8.6, eight PEEM images of the turbulent pattern are shown at equidistant time

intervals. The space-time diagram below displays the temporal evolution of the pattern in

the cross section along the line ab indicated in the first frame. Multiple events of spiral

breakup are seen. At higher values of temperature (T � 540K), the turbulent state is even

more developed, such that only small fragments of spiral waves are seen [cf. Fig. 4.1(d)].

8.2.2 Suppression of turbulence

Starting from the regime of spiral-wave turbulence, global delayed feedback according to

equation (7.1) was switched on after some time, and its parameters could be varied. In ex-

periments with a systematic variation of the feedback parameters µ and τ, it was observed
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that turbulence could be suppressed and replaced by stable uniform oscillations for any de-

lay time (delays up to τ � 10s have been probed) if the feedback intensity µ was sufficiently

high (up to 5� 10�5 mbar, corresponding to CO partial pressure variations of about 20%).

Usually, the synchronization threshold was significantly lower (about 5% variations in pCO).

The period of uniform oscillations was affected by the feedback and varied approximately

between 3s and 10s, increasing for longer delays and decreasing for stronger feedbacks.

The suppression of chemical turbulence is illustrated in Fig. 8.7. The three frames in

the top row present PEEM images taken at three subsequent time moments. The space-time
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Figure 8.7: Suppression of spiral-wave turbulence. The upper row displays three subsequent
PEEM images with a field-of-view of 500µm in diameter, and the space-time diagram in the
middle row show the evolution along the line ab indicated in the first image. The horizontal
bar in the bottom displays the temporal variation of the CO partial pressure (black line) and
the variation of the negative total PEEM intensity (red line) during the pattern evolution; the
time scale is the same as in the space-time diagram. The parameter values of temperature,
oxygen partial pressure, base CO pressure, feedback intensity, and delay time are, respec-
tively: T � 498K, pO2

� 10�0�10�5 mbar, p0 � 3�15�10�5 mbar, µ � 0�8�10�5 mbar, and
τ � 0�8s. From Ref. [163].
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diagram in the middle row displays the temporal pattern evolution along the line ab indicated

in the first image. Below, the horizontal bar displays the variation of the negative total PEEM

intensity -I (red line) and the feedback-induced modulation of the CO partial pressure (black

line). The global feedback is switched on at time t � 0 and its parameters are kept constant.

In the initial state of spiral-wave turbulence, the integral PEEM intensity is almost constant,

but then its variations (and therefore the pressure oscillations) slowly start to grow. As the

feedback becomes more and more efficient, local oscillations increasingly synchronize and

spiral-wave turbulence is gradually suppressed. Eventually uniform periodic oscillations are

seen. The pressure variations in the reaction chamber follow the applied control signal with

the delay τ � 0�8s and reach an amplitude of about 8%.

8.2.3 Intermittent turbulence

Depending on the reaction and feedback parameters, the feedback does not transform spiral-

wave turbulence into stable uniform oscillations, but leads to the formation of novel spa-

tiotemporal patterns. As the feedback intensity is increased starting from zero, global oscil-

lations set in, and turbulent spiral waves are first replaced by intermittent turbulence. This

state is characterized by turbulent cascades of localized objects on a uniformly oscillating

background. Intermittent turbulence is found independent of the time delay when the feed-

back intensity is increased from low values. Significant hysteresis is present at the transition

from intermittent turbulence to uniform oscillations.

Two different types of localized turbulent objects, namely bubble structures and spiral-

wave fragments, have been identified in feedback experiments. An example of the first type

of intermittent turbulence is displayed in Fig. 8.8. The PEEM images in the top row are taken

within one cycle of the pattern evolution. Starting from a dark, uniform state, bright spots

develop at different locations. When the growing spots reach a certain size, darker regions

develop in the middle of such objects and they transform into ring-shaped structures. After

some time, the whole pattern fades away and is replaced by the uniform dark state. Then

the entire cycle repeats. The temporal evolution of the pattern is illustrated in the space-time

diagram in Fig. 8.8. Expanding bubbles are represented by triangular structures in the cross

section. Examining this diagram, it is found that the bubbles can die and reproduce. When

the bubbles have reproduced until many of them are found, massive annihilation occurs and

only a few of them survive. Thus, an irregular behavior of repeated reproduction cascades is

observed. In a sequence of PEEM images taken at subsequent evolution cycles of the pattern,

this behavior is reflected by a repeated alternation between system states with large and small
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Figure 8.8: Intermittent turbulence represented by reproducing and annihilating turbulent
bubbles on the background of uniform oscillations. Displayed are three subsequent PEEM
images with a field-of-view of 500µm in diameter (top), the evolution along the line ab
indicated in the first image (middle), and the corresponding temporal variations of CO partial
pressure (black line) and negative integral PEEM intensity (red line). The parameters are T �
495K, pO2

� 10�0� 10�5 mbar, p0 � 3�15� 10�5 mbar, µ � 2�0� 10�5 mbar, and τ � 0�8s.
From Ref. [163].

fractions of the surface occupied by turbulent objects, see Fig. 8.9. In the example shown,

the number and size of the turbulent bubbles typically varies on the time scale of about

six evolution cycles. During intermittent turbulence, the variations of the CO partial pres-

sure are aperiodic and are rigidly correlated with the evolution cycles of the pattern, see the

curves below the space-time diagram in Fig. 8.8. Note the similarity between the intermittent

regime described above and the corresponding state found in the model of CO oxidation (cf.

Section 6.2.3), where reproduction cascades of turbulent bubbles on a uniformly oscillating

background and the mutual annihilation of such objects were also observed.

In addition to the turbulent bubble structures, a similar state of intermittent turbulence

characterized by localized fragments of spiral waves has been also observed. The latter state
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Figure 8.9: Subsequent PEEM images of turbulent bubbles on the background of uniform
oscillations (from left to right and top to bottom). A snapshot of size 360�360µm2 is shown
each evolution cycle of the pattern (∆t � 3�5s). The parameters are as in Fig. 8.8.

Figure 8.10: Intermittent turbulence represented by small localized spirals on the background
of uniform oscillations. The PEEM images are snapshots at different points in time with a
field-of-view of 500µm in diameter. The time interval between the first and the second frame
is ∆t � 20�4s and the interval between the second and third frame is ∆t � 5�2s. The param-
eters are T � 537K, pO2

� 40�0� 10�5 mbar, p0 � 11�4� 10�5 mbar, µ � 3�0� 10�5 mbar,
and τ � 0�7s.

predominantly occurs at higher values of temperature, where chemical turbulence in absence

of feedback is more strongly developed and consists of many fragments of small rotating

spirals [cf. Fig. 4.1(d)]. During intermittent turbulence, the localized spirals undergo similar

evolution cycles as the bubble structures. They also reproduce until they occupy almost the

entire monitored surface area, and then annihilate such that only few of them survive. Typ-

ical PEEM images of spiral-wave fragments on the background of uniform oscillations are
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displayed in Fig. 8.10.

By further increasing the feedback intensity from the states of intermittent turbulence,

additional spatiotemporal patterns are observed below the transition to uniform oscillations

for delays in the interval 0�5s � τ � 1�0s. The precise stability regions of these patterns –

two-phase clusters, standing waves, and irregular arrays of cells – strongly depend on the

choice of temperature and partial pressures and have not been systematically determined.

The different types of observed patterns are discussed below.

8.2.4 Cluster patterns

Cluster patterns forced from turbulence are similar to those induced by the feedback in the

non-chaotic regime. The surface divides into large domains in which oscillations are shifted
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Figure 8.11: Two-phase clusters. Displayed are three subsequent PEEM images with a field-
of-view of 500µm in diameter (top), the evolution along the line ab indicated in the first
image (middle), and the corresponding temporal variations of CO partial pressure (black line)
and negative integral PEEM intensity (red line). The parameters are T � 500K, pO2

� 10�0�
10�5 mbar, p0 � 3�07�10�5 mbar, µ � 0�6�10�5 mbar, and τ � 0�8s. From Ref. [163].
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by half a period. Usually, each of the two anti-phase clusters occupies multiple spatial do-

mains on the surface. A typical example of phase clusters forced from turbulence is dis-

played in Fig. 8.11. In the top row, three snapshots taken within a single oscillation cycle of

the pattern are shown. Compared to the first image, predominantly CO covered and oxygen

covered regions have approximately interchanged half an oscillation period later, as seen in

the third frame. At a given time moment, the total size of the opposite phase domains is

approximately balanced within the monitored surface area. The space-time diagram reveals

that the shape of cluster domains undergoes small periodic variations. This breathing mode is

rigidly correlated with the period of local oscillations in the pattern. The spatial distribution

of the different domains is almost repeated after each oscillation period, see Fig. 8.12 for a

sequence of two-dimensional snapshots of the pattern.

Figure 8.13 displays the temporal variations of the PEEM intensity at two sample points

located within the opposite phase domains. As it was also observed in Section 8.1.2, each

maximum of PEEM intensity in the two curves is followed by a second, smaller peak, which

Figure 8.12: Subsequent PEEM images of phase clusters. Pairs of snapshots displayed in
the upper and lower row are half an oscillation period apart, and the time interval between
individual frames within each row is a full period (∆t � 7�5s). The parameters are as in
Fig. 8.11.
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Figure 8.13: Temporal variations
of the PEEM intensity at two sam-
ple points located within different
cluster domains. The same param-
eters as in Fig. 8.11.
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indicates period-doubling of local oscillations. The full oscillation period is about twice that

of uniform oscillations occurring at a slightly increased feedback intensity. By looking at the

time series of the local oscillations at sample points located within the domain interfaces,

it has been found that the difference between subsequent oscillation maxima is strongly

decreased there. The difference nearly vanishes in the center of an interface where the os-

cillations are almost simple periodic and have a medium amplitude. Thus, the properties of

the phase fronts in the experimentally observed phase clusters agree well with the theoretical

predictions for phase clusters with period-doubled oscillations (see Section 6.2.4).

8.2.5 Standing waves

Standing waves are displayed in Fig. 8.14. In this pattern, bright stripes repeatedly develop

from the dark uniform state. The stripes are only visible during relatively short intervals of

each oscillation cycle. They form a spatially periodic array and, depending on the chosen

parameters, have a wavelength of roughly 20� 50µm. The space-time diagram reveals that

the locations of stripes at subsequent oscillation cycles are shifted, and a new stripe develops

in the middle between two stripes seen in the previous cycle. Thus, the initial pattern is re-

peated after two periods of local oscillations. The periodic emergence of the spatial structure

is rigidly correlated with the variations of the CO partial pressure in the chamber.

Standing waves with similar properties have been previously observed in CO oxidation

on Pt(110) due to effects of intrinsic global gas phase coupling [46, 153] [see Fig. 4.1(c)].

In those studies, they were seen only at relatively high temperatures (540�550K), while in

the experiments reported here, such structures have been observed also at significantly lower

temperature values (down to T � 505K in the example shown in Fig. 8.14). Another differ-

ence is that under intrinsic global coupling, usually only a part of the catalytic surface was

covered by the pattern of standing waves, while the rest of the area was in the state of uni-

form oscillations [153]. The pattern was always perfectly synchronized with the uniform os-

cillations and immediately broke down when the oscillations disappeared. Therefore, it was

concluded that via the gas phase, uniform oscillations on other parts of the surface provided

external forcing that acted on the standing waves and stabilized this pattern. In the presently

reported experiments with artificial global feedback, uniformly oscillating regions were not

necessary, and standing waves usually occupied the entire monitored surface area. The re-

quired driving force could be simply generated by choosing a sufficiently large feedback

intensity. The repeated alternation of the stripe positions at subsequent oscillation cycles has

been explained in the previous studies [46, 153] by periodic reflective collisions of traveling
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Figure 8.14: Standing waves with an intrinsic wavelength. Displayed are three subsequent
PEEM images with a field-of-view of 500µm in diameter (top), the evolution along the line
ab indicated in the first image (middle), and the corresponding temporal variations of CO
partial pressure (black line) and negative integral PEEM intensity (red line). The parameters
are T � 505K, pO2

� 10�0� 10�5 mbar, p0 � 3�30� 10�5 mbar, µ � 1�6� 10�5 mbar, and
τ � 0�8s. From Ref. [163].

waves. The occurrence of such collisions has been addressed to the presence of subsurface

oxygen. Alternating standing waves could be reproduced in the model of CO oxidation on

Pt(110) only by additionally taking into account the formation of subsurface oxygen [153].

Therefore, it seems likely that a certain amount of subsurface oxygen was also present in the

above described experiments.

8.2.6 Cellular structures

A further type of pattern seen near the transition from turbulence to uniform oscillations is

represented by arrays of cells. Four snapshots of such a pattern, sampled within a single oscil-

lation period, are displayed in Fig. 8.15. The cellular structure is visible only during two short
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��� ��� Figure 8.15: PEEM images of
cellular structures with a field-
of-view of 500µm in diameter.
The time interval between subse-
quent frames is ∆t � 1�0s. The
parameters are T � 535K, pO2

�
40�0 � 10�5 mbar, p0 � 12�2 �
10�5 mbar, µ � 4�0� 10�5 mbar,
and τ � 0�6s.

time intervals within each period. The appearance of cells at the transition from a predomi-

nantly oxygen covered to a mainly CO covered surface state is displayed in Fig. 8.15(a), and

its recurrence during the transition back to a oxygen covered state is shown in Fig. 8.15(c).As

standing waves, cellular structures usually occupy the entire imaged surface area. The local

oscillations in this pattern are in harmonic resonance with the almost periodic variations of

the global control signal.

Figure 8.16 displays a section of a cell array of side length 210µm and its spatial power

spectrum. As a typical observation, the arrays of cells are fairly irregular. The irregularity

may be explained as a representation of phase turbulence (cf. Section 6.2.6). However, such

irregularity may also, at least partly, be caused by the presence of small structural surface

defects. No unambiguously regular, hexagonal cell arrays have been observed in the experi-

ments described here.

Oscillatory cellular structures also were seen in previous measurements that employed

mirror electron microscopy [126], where their presence was attributed to the action of in-

trinsic global gas phase coupling. The cell arrays were observed at relatively low values of

temperature (T � 430K) and exhibited a temporal period of the order of 30s and a character-

istic cell size of about 1µm. In contrast, the artificially induced cellular structures described

here were found at significantly higher temperature values (525� 550K) and typically ex-



120 Pattern formation under global delayed feedback

��� ���

Figure 8.16: (a) PEEM image and
(b) spatial Fourier spectrum of an
irregular array of cells. The same
parameters as in Fig. 8.15.

hibited an average cell size of approximately 20µm and an oscillation period of about 4s.

8.2.7 Discussion

In the above described experiments, feedback-induced pattern formation has been studied

in a parameter regime where the unperturbed reaction exhibited chemical turbulence. At

first, turbulence could be completely suppressed by applying global delayed feedback. After

successful synchronization of local oscillations, the uniform state was maintained by a pe-

riodically varying control signal which compensated the destabilizing effect of diffusion. It

is left for further investigations whether spatiotemporal chaos in the considered system can

also be non-invasively controlled by means of other feedback methods such as time-delay

autosynchronization (TDAS, see Section 3.2). In a preliminary study, it has been noticed that

synchronization of oscillations can be also achieved using the global TDAS method, but that

a small driving signal might still be required.

Moreover, a large variety of complex spatiotemporal patterns was found when global

delayed feedback was used to bring the system to the boundary between regular and chaotic

dynamics. Probably the most important result is the experimental observation of intermittent

turbulence. This state is characterized by cascades of reproducing and annihilating turbulent

bubble structures or small localized spirals on the background of uniform oscillations. In

addition, phase clusters, which showed similar properties as in the non-chaotic parameter

regime, could be induced. Standing waves and cellular structures represented further results

of the action of global delayed feedback. The latter structures were previously also observed

in CO oxidation experiments as effects of intrinsic global gas phase coupling [46, 126, 153],

but their properties were then significantly different.

The experimental observations agree well with the theoretical predictions presented

in Section 6.2, even though the initial turbulent state in the model of CO oxidation was
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somewhat more developed than in the experimental system (e.g., in the model, spiral waves

only rarely formed in the turbulent state). In both systems, turbulence could be suppressed in

a wide range of feedback parameters. During intermittent turbulence, not only the formation

of bubble-shaped objects on a uniformly oscillating background was indeed experimentally

observed, but also their predicted reproduction cascades could be identified. Phase clusters

were also observed in both systems, and showed similar properties such as stationary phase

fronts, period-doubled local oscillations, and phase balance. While disordered cellular

structures were found both in experiments and simulations, regular arrays of cells were

not seen in the experimental system where fine tuning of the parameters is difficult and

some structural surface defects are always present. In order to reproduce the experimentally

observed patterns of alternating standing waves in simulations employing the CO oxidation

model, it is known that additionally the formation of subsurface oxygen must be taken into

account [153].

8.3 Pattern characterization

To further analyze the patterns observed in the previous section, a variant of the analytic sig-

nal approach [164,165] is employed. This technique is used to transform PEEM images into

the spatial distributions of phase and amplitude variables. In Section 5.3, such a transforma-

tion already has been realized for the characterization of simulated patterns. However, the

developed method cannot be directly applied to the experimental data because, besides the

PEEM intensity, a second variable is necessary for the projection of the dynamics. Moreover,

the intensity value of the unstable steady state is not exactly known in the experiments.

The analytic signal approach can be efficiently employed to solve these problems. Us-

ing this method, a second variable is generated by means of the Hilbert transform. The dy-

namics are then projected into the plane spanned by the PEEM intensity and its Hilbert

transform. An alternative method for the projection of the dynamics is provided by delay

embedding [166, 167]. However, when the latter method was implemented, self-intersection

of orbits frequently occurred in the projection plane, which resulted in difficulties for the

phase definition. The delay for the embedding had to be optimized separately each time the

method was applied. Therefore, the analytic signal approach was preferred.
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8.3.1 Transformation to amplitude and phase variables

The transformation of sequences of typically 250 experimental PEEM images into the time-

dependent spatial distributions of phase and amplitude variables was achieved as follows.

For the local PEEM intensity I�x� t� at an observation point x, its Hilbert transform

Ĩ�x�t� � π�1
� ∞

�∞

�
t� t �

�
�1

I�x� t ��dt � (8.1)

was computed (this could be easily realized by determining the Fourier transform of I, shift-

ing each complex Fourier coefficient by a phase of π�2, and performing the reverse Fourier

transform [165, 168]). This was repeatedly done for all pixel points x in an 100 �100 ar-

ray covering the respective pattern. Using I�x� t� and its Hilbert transform Ĩ�x�t�, a complex

variable

ζ�x� t� � I�x� t�� i Ĩ�x� t� (8.2)

known as analytic signal [164] was defined.

Afterwards, the time-dependent spatial distributions of the phase φ�x�t� and amplitude

R�x� t� were determined from the analytic signal in the following way. The phase was di-

rectly computed as φ � argζ, thus representing the polar angle in the plane spanned by the

variables I and Ĩ. The amplitude was defined as R � ρ�ρref�φ�, where ρ � �ζ� is the standard

definition of the amplitude modulus within the analytic signal approach. The normalization to
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Figure 8.17: Illustration of the
transformation to the amplitude
R � ρ�ρref�φ� and phase φ � argζ
of local oscillations; the reference
orbit ρ � ρref�φ� is indicated by
the closed line.
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ρref�φ� was introduced to approximately compensate for deviations from harmonicity in the

observed oscillations. To obtain ρref�φ�, the statistical distribution of ζ�x�t� for all 100�100

pixels and at all 250 time moments was plotted into the complex plane, as illustrated in

Fig. 8.17 for a set of spatiotemporal data representing a pattern of spiral-wave turbulence.

The reference amplitude ρref�φ� was then determined as the statistical average of ρ � �ζ�
inside each of 200 equidistant narrow intervals of the polar angle φ. Note that the closed

curve ρ � ρref�φ� in the complex plane can be viewed as representing a reference orbit of

the system deduced from the experimental data. In this way, a different reference orbit has

been generated for each set of spatiotemporal data to which the variable transformation was

applied.

8.3.2 Amplitude and phase patterns

By applying this technique to each type of the PEEM patterns presented in Section 8.2,

spatial distributions of the phase φ and the amplitude R in each pattern have been constructed.

Snapshots of the resulting (time-dependent) distributions are displayed in Fig. 8.18. The

original PEEM images are shown in the top row of Fig. 8.18. Below, the corresponding

spatial distributions of phase (second row) and amplitude (third row) are displayed, using

the same color map as was used in Chapter 6. Additionally, the bottom row of Fig. 8.18

shows a phase portrait of each pattern, obtained by displaying the amplitudes and phases for

all resolving pixels in polar coordinates. The phase φ of a point is represented by the polar

angle and the amplitude R is the distance to the coordinate origin.

In spiral-wave turbulence [Fig. 8.18(a)], the fluctuations of amplitude and phase are

strong, as indicated by the broad-band structure in the phase portrait, and the amplitude

drops down in the spiral cores. For intermittent turbulence [Figs. 8.18(b) and 8.18(c)], the

amplitude and the phase are almost constant in the main part of the medium where uniform

oscillations take place. The amplitude is significantly decreased in the bubble-shaped ob-

jects [Fig.8.18(b)] and small localized spirals [Fig. 8.18(c)], so that they indeed represent

amplitude defects. The phase portraits of intermittent turbulence show a spot corresponding

to the uniform state of the medium and a tail corresponding to the amplitude defects. In a

cluster pattern [Fig. 8.18(d)], the medium breaks into the two phase states seen as spots in

the phase portrait. The amplitudes in the two clusters differ because the local oscillations

exhibit period-doubling. The ‘bridge’ in the phase portrait connecting the two spots corre-

sponds to the interfaces between the cluster domains; note that the phase varies smoothly and

the amplitude is not significantly reduced at the interface for such cluster patterns. In cellular
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Figure 8.18: PEEM images (top), distributions of phase (second row), amplitude (third row),
and phase portraits (bottom) for several typical patterns observed in CO oxidation experi-
ments. The values of temperature (K), oxygen partial pressure (10�5 mbar), base CO pres-
sure p0 (10�5 mbar), feedback intensity µ (10�5 mbar) and delay time τ (s) are, respectively:
(a) 548. 40.0, 12.3, 0, 0; (b) 540, 40.0, 13.1, 1.7, 0.7; (c) 537, 40.0, 11.4, 3.0, 0.7; (d) 500,
10.0, 3.1, 0.6, 0.8; (e) 535, 40.0, 12.2, 4.0, 0.6; and (f) 505, 10.0, 3.3, 1.6, 0.8. The side length
of images is (a,b) 360µm, (c,d) 330µm, (e) 210µm, and (f) 270µm.

structures [Fig. 8.18(e)], small phase modulations are observed, while the amplitude remains

approximately constant. In standing waves [Fig. 8.18(f)], both the phase and the amplitude

are periodically modulated.

The amplitude and phase patterns shown in Fig. 8.18 can be directly compared to the

simulated patterns displayed in Fig. 6.36. The simulations successfully reproduce the princi-

pal amplitude and phase properties of the corresponding structures seen in the experiments,

except that simulated cellular structures are also visible as weak variations in the amplitude

distributions.

As pointed out in Section 3.2.2, similar phenomena were also reported in the general

studies performed in the framework of the complex Ginzburg-Landau equation [36,37,112–

114], where clusters, oscillatory cellular arrays, and intermittent turbulence characterized by

cascades of bubble-shaped objects were also seen. The similarity between the behavior found

in experiments, simulations of a realistic model, and the amplitude equation indicates that the
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observed effects of pattern formation may be typical for a broad class of reaction-diffusion

systems.
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Chapter 9

Pattern formation under periodic forcing

The effects of periodic external forcing in CO oxidation on Pt(110) were first investigated

shortly after self-sustained oscillations had been discovered in this reaction [75,140]. At that

time, the reaction state of the surface was monitored with a Kelvin probe, measuring the work

function averaged over the entire surface. In these early experiments, small periodic varia-

tions of the oxygen partial pressure in the reaction chamber up to 1.5% were applied. The

unforced system showed stable limit cycle oscillations. The observed phenomena included

harmonic, subharmonic, and superharmonic entrainment, and quasiperiodic oscillations out-

side the frequency locked bands. Spatial patterns, which possibly formed on the catalytic

surface during these experiments, could however not yet be resolved. A later study which

employed PEEM to monitor pattern formation has investigated the role played by periodic

forcing only with respect to the formation of standing waves [153]. The experiments pre-

sented in this chapter show that several other structures can be also induced by this method.

9.1 Controlling chemical turbulence

In the experiments presented below, pattern formation in CO oxidation on Pt(110) has been

investigated in the case where the unforced reaction displayed chemical turbulence. The ini-

tial reaction state was similar as in the experiments with global delayed feedback presented in

Section 8.2 (refer to Fig. 8.6 for an example). After spiral-wave turbulence had spontaneously

developed, the CO partial pressure in the reaction chamber was periodically modulated with

a nearly harmonic signal of amplitude γ and frequency ω f , while its temporal average p0

was kept constant. The effects of periodic forcing were investigated in the frequency range

0�2Hz� ω f � 0�5Hz.
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9.1.1 Uniform oscillations

In such experiments, a rather large relative variation of CO partial pressure (about 10-20%,

depending on temperature and base partial pressures) was necessary in order to suppress tur-

bulence and to observe frequency locked patterns. In this range of the forcing amplitude, the

resonance structure of the system was clearly dominated by harmonic entrainment. Within

the 1:1 resonance, local oscillations at all resolving pixels in a pattern synchronized and

locked to the forcing frequency.

In the previous experiments which employed the Kelvin probe [75], it was reported that,

starting from simple periodic oscillations of frequency ω � ω f , period doubling occurred

under an increase of ω f . Such behavior, resulting in uniform oscillations with alternating

maxima at consecutive cycles of the forcing, has also been observed in the present study.

Harmonic resonance of period-two oscillations is more accurately denoted as 2:2 entrain-

ment, indicating that two different response cycles of the system lie within two periods of

the forcing.

9.1.2 Irregular oscillatory stripes

In addition to uniform oscillations, different resonant spatiotemporal patterns have been also

observed. First the attention is focused on the type of structure displayed in Fig. 9.1. This

pattern consists of an array of stripes which are mainly oriented into the surface direction

with fast CO diffusion (the [11̄0] orientation of the Pt(110) single crystal surface). Note that

multiple dislocations, represented by the regions where individual stripes merge to form a

fork-like structure, are present in this pattern.

The spatial structure is seen only during a certain time interval of each oscillation cycle.

After one forcing period, when the pattern appears again, the locations of the stripes are

shifted, and new stripes are present in the middle between those seen at the previous cycle

(compare the first and the third image in the top row of Fig. 9.1). The initial pattern is

repeated after two forcing periods. The curves below the space-time diagram in Fig. 9.1

show the temporal evolution of the pattern at two different points, which are located in the

centers of two alternating stripes. The locations are indicated by arrows in the space-time

diagram. It is seen that the oscillations have the same shape and frequency (ω � ω f �2), but

are phase-shifted by half a period.

To further analyze resonant patterns, the frequency demodulation technique [40] de-

scribed in Section 3.1 is employed. In a first step, the temporal power spectrum for each
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Figure 9.1: Irregular oscillatory stripes in experiments with periodic forcing. Displayed are
three subsequent PEEM images of size 240� 240µm2 at a time interval of half a forcing
period (top), the evolution along the line ab indicated in the first image (middle), and the
temporal variation of the local PEEM intensity at two different points in the space-time
diagram indicated by arrows (bottom). The employed color map is the same as the one used
in Chapter 8. The reaction parameters are T � 531K, pO2

� 40�0� 10�5 mbar, and p0 �
10�4�10�5 mbar. The forcing amplitude is γ � 20�2% and the forcing frequency is ω f �2π �
0�50Hz.

resolving pixel in a pattern is determined. This is done by calculating the fast Fourier trans-

form of the local time series at each pixel. The average over all pixel provides the power

spectrum of the entire pattern.

The result for the pattern of irregular stripes is displayed in Fig. 9.2. The average spec-

trum shows distinct peaks at the frequencies ω f �2 and ω f . Higher order harmonics are also

present.

To determine the spatial information contained in the different excited temporal modes

separately, the complex Fourier coefficients a�x�y� associated with the ω f –mode and the

ω f �2–mode are extracted from the Fourier spectrum at each pixel �x�y� in the pattern. By

plotting the spatial distributions of the quantities arg�a� and �a�, phase and amplitude images

are obtained for each associated frequency.
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���� Figure 9.2: Temporal power spec-
trum of a pattern of irregular
stripes, determined by fast Fourier
transformation of the time series
of 1000 PEEM images (100�100
pixels) sampled at a rate of 25 im-
ages per second. The same param-
eters as in Fig. 9.1.
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Figure 9.3: (a) Phase patterns, (b) amplitude patterns, (c) phase portraits, and (d) phase his-
tograms of a pattern of irregular stripes demodulated at the frequencies ω f (top row) and
ω f �2 (bottom row). In the phase portraits, each of the coefficients a is plotted into the com-
plex plane. The phase histograms show the distributions of phases arg�a�; the abscissa range
is [0,2π] and the ordinate range is arbitrary. The amplitude and phase images are plotted with
the same color map as in Section 8.3.2.

Such phase and amplitude patterns are displayed in Figs. 9.3(a) and 9.3(b), respectively.

The plots in the top row of Fig. 9.3 show the response of the system at the frequency ω f ,

and the bottom row shows the results of a frequency demodulation at ω f �2. Phase portraits

and phase angle histograms for the different frequencies are further displayed in Figs. 9.3(c)

and 9.3(d), respectively.

Examining Fig. 9.3, one finds that the spatial pattern associated with the mode ω f is

almost uniform. Spatial variations are observed only as depletions of the amplitude field

at some locations where structural defects exist (the regions in the pattern where different
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stripes merge). In contrast, the array of stripes is nicely seen in the patterns associated with

the mode ω f �2. The corresponding phase image shows an array of yellow and blue stripes

which are of opposite phase. In the amplitude pattern, it is seen that the oscillation magnitude

in the mode ω f �2 is greatly reduced along the boundaries between the π-shifted stripes.

Structural defects are visible in this amplitude image as well. In the corresponding phase

portrait, the pixels are spread along a straight line that crosses the origin of the complex

plane, indicating that the oscillation magnitude actually vanishes along the lines that separate

neighbored π–shifted stripes. The two phase states are evenly weighted within the pattern,

see the phase histogram. Thus, by means of frequency demodulation it is found that, though

significant power is present in the harmonic mode, the observed irregular arrays of stripes

are solely due to 2:1 entrainment and consist of two phase-locked, π–shifted phase states.

The sequence of PEEM images displayed in Fig. 9.4 illustrates the growth mechanism

of irregular oscillatory stripes. The pattern originates from small-amplitude uniform oscil-

lations around a mainly CO covered state. The predominantly oxygen covered state is only

reached at certain locations on the surface where fragments of stripes first appear. During the

further evolution, at such locations the structure grows stripe by stripe, until it occupies the

entire imaged surface area. As time goes on, the number of dislocations in the pattern slowly

decreases and a more regular, quasi-stationary configuration is established (see Fig. 9.1 for

the final state of the shown example).

Figure 9.4: Development of irregular stripe patterns. The time interval between subsequent
PEEM images (from left to right) is ∆t � 2�0s and corresponds to one period of the driving
force. The same parameters as in Fig. 9.1.
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Note that the growth mechanism of irregular stripes is different from that of standing

waves in the same system. The development of standing waves was previously studied in

detail in experiments with intrinsic global gas-phase coupling [153]. In contrast to irregular

stripes, standing waves develop as small modulations of large-amplitude uniform oscillations

and are closely related to traveling waves, to which they transform upon a small change of

experimental conditions.

9.1.3 Clusters with coexistent resonances

A further type of frequency locked pattern can be attributed to the simultaneous excitation

of different resonances. In a region of parameter space where the harmonic 1:1 and the sub-

harmonic 2:1 resonances possibly overlapped, clusters with coexistent resonances have been

observed, see Fig. 9.5 for an example.

��� � ��� � ���� �

���� ���

� �

� �

�

�

�
��
��
��

�

�

Figure 9.5: Amplitude clusters. Displayed are three subsequent PEEM images of size 330�
330µm2 (top), the evolution along the line ab indicated in the first image (middle), and
the temporal variation of the local PEEM intensity at two different points in the space-time
diagram indicated by arrows (bottom). The reaction parameters are T � 537K, pO2

� 40�0�
10�5 mbar, and p0 � 10�9�10�5 mbar. The forcing amplitude is γ � 11�0% and the forcing
frequency is ω f �2π � 0�50Hz.
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The three PEEM images in the top row of Fig. 9.5 show that several localized spatial

domains exist in such a pattern. Though such domains have a complex, irregular shape,

their boundaries are almost stationary during several periods of oscillations. As it was also

observed in previous patterns, the spatial structure is only seen during a relatively short

fraction of each oscillation cycle. The initial pattern (first frame) repeats after two forcing

periods (third frame). Within this time interval, a reversed state appears for a short time

(second frame in Fig. 9.5), where bright and dark regions in the pattern have interchanged.

The space-time diagram shown in the middle of Fig. 9.5 reveals that the underlying tem-

poral behavior within the domains significantly differs from that of their background. For

comparison, below the space-time diagram the temporal variation of the PEEM intensity at

two sample points is shown, one located within the domains and one outside. In both regions,

period-doubled oscillations characterized by an alternating magnitude of subsequent maxima

are found; however, inside the domains, the difference between consecutive maxima is much

more pronounced. By applying the frequency demodulation technique to this pattern, one

finds that inside the small domains, the ω f �2–mode in the power spectrum of the local time

series is more strongly excited than the mode with frequency ω f (not shown in Fig. 9.5). The

opposite is true for pixels located outside the domains, where more power is concentrated in

the harmonic mode.

9.1.4 Intermittent turbulence

By fixing the forcing amplitude below the transition to frequency locked behavior, also dif-

ferent types of non-resonant spatiotemporal patterns could be observed. In a wide range

of forcing parameters near the harmonic resonance, period forcing transformed spiral-wave

turbulence into intermittent turbulence, characterized by the presence of localized turbulent

bubbles on a uniformly oscillating background. Such a state has been also observed under

global delayed feedback (cf. Section 8.2.3); note that in the latter case, however, an aperiodic

control signal was then generated.

A series of PEEM images showing intermittent turbulence under periodic forcing is dis-

played in Fig. 9.6. The repeated emergence of localized bubbles is strictly correlated with the

period of the driving force. In the shown example, the pattern further undergoes long-term

evolution cycles of five forcing periods. The density of bubbles is roughly repeated after such

a cycle. To see this, compare the images in the different rows of Fig. 9.6. However, the exact

positions of bubbles are not repeated, and some of them disappear or are newly created from

one cycle to another, such that the long-term evolution of the pattern is chaotic.
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Figure 9.6: Intermittent turbulence under periodic forcing. The time interval between sub-
sequent PEEM images of size 330� 330µm2 is ∆t � 2�1s and corresponds to the period
of the driving force. The reaction parameters are T � 513K, pO2

� 40�0� 10�5 mbar, and
p0 � 8�7� 10�5 mbar. The forcing amplitude is γ � 10�3% and the forcing frequency is
ω f �2π � 0�48Hz.
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Figure 9.7: Space-time diagram
displaying the temporal evolution
of the pattern shown in Fig. 9.6
along the line ab indicated in the
first image. For comparison, the
curve in the bottom shows the pe-
riodically varying signal of CO
partial pressure in the reaction
chamber.
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Figure 9.8: Space-time diagram
along a cross section through a
pattern of intermittent turbulence
with period-doubled oscillations.
The parameters are T � 533K,
pO2

� 40�0 � 10�5 mbar, p0 �
10�8�10�5 mbar, γ � 14�8%, and
ω f �2π � 0�37Hz.
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It was mentioned before that in the case of harmonic entrainment, either simple periodic

or period-doubled uniform oscillations could be observed. This behavior is also reflected by

the states of intermittent turbulence found below the harmonic resonance. The space-time

diagrams displayed in Figs. 9.7 and 9.8 provide examples of a period-one and a period-two

oscillating background, respectively. In the cross section, the localized bubbles are seen as

triangular shaped objects.

9.1.5 Cellular structures

Oscillating cell arrays, which were also seen under global delayed feedback (cf. Sec-

tion 8.2.6), represent a further type of pattern that was frequently observed in experiments

with periodic forcing. Upon a decrease of the forcing amplitude, such cellular structures arise

from locked uniform oscillations as small-amplitude modulations, see Fig. 9.9(a) for a typi-

cal PEEM image. Initially, such cells are visible only at a certain point of time during each

oscillation cycle and are hardly detectable in a space-time diagram. Upon a further decrease

of γ, the size of individual cells significantly grows, see Figs. 9.9(b)– 9.9(d), and they be-

come more strongly developed, such that they are visible for larger fractions of each forcing

cycle. Starting from resonant uniform oscillations, the formation of cellular structures has

also been observed upon an increase of the forcing frequency.

A typical example of a developed, disordered array of cells is displayed in Fig. 9.10.

The four PEEM images in the top row are sampled within a single forcing period. In the

first frame, the cells emerge as small CO covered islands while the main part of the surface

is mainly covered by oxygen. The bright regions then extend (second frame), until they fill

��� ��� ��� ���

Figure 9.9: Cellular structures at different values of the forcing amplitude. Each PEEM image
is 330�330µm2 in size. The reaction parameters are T � 533K, pO2

� 40�0�10�5 mbar, and
p0 � 9�0�10�5 mbar. The forcing frequency is ω f �2π � 0�30Hz and the forcing amplitude
is (a) γ �25.2%, (b) 23.0%, (c) 21.9%, and (d) 19.7%.
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Figure 9.10: Cellular structures under periodic forcing. Displayed are four subsequent PEEM
images of size 330� 330µm2 (top), the evolution along the line ab indicated in the first
image (middle), and the temporal variation of the CO partial pressure in the reaction chamber
(bottom). The reaction parameters are the same as in Fig. 9.9. The forcing amplitude is
γ �19.7% and the forcing frequency is ω f �2π �0.30Hz.

almost the entire imaged surface area (third frame). The cell array is again temporarily seen

during the transition back to the mainly oxygen covered state (fourth frame). Such evolution

cycles are locked to the forcing period. However, the cell positions change significantly from

one cycle to another, such that the cells form a complex, irregular pattern in the space-time

diagram.

9.2 Discussion

In this chapter, the results of CO oxidation experiments with periodic external forcing have

been described. The effects of such forcing have been studied in the case where the unforced

reaction exhibited developed chemical turbulence. Such turbulence could be suppressed us-

ing relatively large forcing amplitudes. The frequently locked patterns observed in the con-

sidered range of forcing parameters exhibited 1:1 or 2:1 entrainment. Below, the observed

structures are discussed with respect to results of previous studies performed in the frame-

work of the light-sensitive Belousov-Zhabotinsky (BZ) reaction and the forced complex
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Ginzburg-Landau equation (CGLE) (cf. Section 3.1).

Irregular oscillatory stripes with multiple dislocations represent a novel type of struc-

ture in catalytic CO oxidation. Such patterns consist of two phase-locked, π-shifted states

and are due to 2:1 subharmonic entrainment of local oscillations. They grow via nucle-

ation of stripes at various locations on the surface. A similar growth mechanism was re-

cently described in the framework of the forced complex-Ginzburg-Landau equation, where

it led to the development of irregular stripes forming a labyrinthine structure [87]. Standing-

wave labyrinthine patterns due to this mechanism were also reported in the light-sensitive

Belousov-Zhabotinsky reaction [87]. The labyrinthine organization of these patterns resulted

from disinclinations of individual stripes. In contrast, a labyrinthine structure was not seen

in the above described experiments. This might be explained by the diffusion anisotropy of

the Pt(110) single crystal surface, which favors the orientation of stripes in [11̄0] direction.

A stretched large-scale labyrinth-like structure was probably also present in the above de-

scribed experiments, but could not be identified within the relatively small imaged surface

area (about 500µm in diameter).

Two-phase clusters represent another 2:1 locked pattern predicted by the forced CGLE,

but have not been observed in the experiments with periodic forcing. Note that, however, in

the considered temperature range (T � 535K) the time scale of the reaction is relatively fast,

and no systematic exploration of the full 2:1 resonance could be undertaken. Phase clusters

may still exist at forcing frequencies larger than ω f �2π � 0�5Hz, which were not accessible

due to the limitations of the automated gas inlet system.

A further type of pattern that has been observed under periodic forcing is represented

by clusters with coexistent resonances. Similar clusters have also been observed in the CO

oxidation model (cf. Section 6.2.4) and in the BZ reaction under global feedback [41]. The

simultaneous presence of two or more resonances in a pattern is not possible in the forced

CGLE [equation (3.1)] because in this model, the considered resonance is predetermined by

the chosen value of n. Therefore, such clusters cannot be analyzed in its framework.

In addition to frequency locked patterns, non-resonant patterns have been investigated

near harmonic resonance. Intermittent turbulence under periodic forcing is characterized by

the presence of localized turbulent bubbles on the background of either period-one or period-

doubled uniform oscillations. In the forced CGLE, intermittent turbulence has been quite

extensively studied in one space dimension [34], but detailed studies in two dimensions are

still lacking. Disordered cellular structures represent another type of structure forming due
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to competition of a synchronizing effect of forcing and a destabilizing effect of diffusion.

Numerical simulations of the amplitude equation have shown a transition from uniform os-

cillations to small-amplitude hexagonal cells, whose symmetry is then destroyed by further

instabilities [62].

In conclusion, by means of periodic external forcing a variety of spatiotemporal patterns

could be induced in experiments with CO oxidation on Pt(110). Although the system was

not operated close to a Hopf bifurcation and oscillations were far from harmonic, a large part

of the observed behavior is qualitatively well described by the forced complex Ginzburg-

Landau equation. Other phenomena, such as localized bubble structures on a background of

period-doubled uniform oscillations and clusters with coexistent resonances, should be mod-

eled in the framework of the realistic model of CO oxidation. The observations provide a de-

scription of the self-organized behavior of a periodically forced oscillatory reaction-diffusion

system in a parameter range where the unforced system shows chemical turbulence. Some of

the observed structures also appeared under global delayed feedback and similar properties

were then found, indicating the possibility of their existence in different environments.
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Chapter 10

Summary

The catalytic oxidation reaction of carbon monoxide on a platinum (110) single crystal sur-

face is an example of a reaction-diffusion system known to exhibit rich behavior, including

oscillations, chemical waves, and turbulence. In order to control and manipulate turbulence

and pattern formation in this system, two different control methods, global delayed feedback

and periodic forcing, have been employed. The effects of global delayed feedback on the

self-organized behavior of the system have been studied both in a theoretical model of the

reaction and in laboratory experiments. The influence of periodic forcing was studied exper-

imentally only. It was found that the chosen control methods allow to suppress turbulence in

the considered system, and that they can be successfully used as a tool to produce various

complex patterns.

For the theoretical investigations, a realistic three–variable model of CO oxidation on

Pt(110) was supplied by an extra term accounting for global delayed feedback. This model

was then systematically studied by means of numerical simulations. Two cases have been

considered, differing in the behavior of the system in absence of feedback. In both cases,

several spatiotemporal patterns could be induced into the system by variation of the two

feedback parameters, namely the feedback intensity and the time delay in the feedback loop.

The resulting structures have been analyzed using a newly developed transformation to phase

and amplitude variables designed for non-harmonic oscillations.

In the first studied case, the model parameters were chosen in such a way that uniform

oscillations were stable in absence of feedback. Typical feedback-induced patterns in this

case were represented by phase flips, asynchronous oscillations, and dynamical clustering.

The existence regions of these patterns in the plane of the feedback parameters have been

determined. Phase flips were small traveling objects that shifted the oscillation phase by

2π, thereby connecting different uniform regions in a pattern. They disappeared through the
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formation of an amplitude defect when the feedback intensity was increased beyond a critical

value. Asynchronous oscillations were characterized by smooth spatial phase gradients along

a pattern and resulted from a desynchronizing effect of global feedback. Their formation was

accompanied by the breakdown of global oscillations.

Three different types of cluster patterns have been identified: amplitude clusters, phase

clusters, and cluster turbulence. Amplitude clusters were due to coexistent limit cycles of

equal period and consisted of different domains which differed both in their oscillation phase

and amplitude. The domain walls were usually stationary. In phase clusters, the phase dif-

ference between the two cluster domains was π and the oscillation amplitude was the same.

In contrast to amplitude clusters, stationary phase clusters showed the property of phase bal-

ance, i.e., the total fractions of the medium occupied by the domains of the different clusters

were equal. Two different front instabilities have been observed for stationary phase clusters:

a pitchfork bifurcation led to propagation of cluster fronts, and an instability of the state of

phase balance resulted in spatial front oscillations. Cluster turbulence was characterized by

irregular behavior of phase fronts, which repeatedly split or died out.

In the second studied case, uniform oscillations in the model of CO oxidation were unsta-

ble with respect to small perturbations and amplitude turbulence spontaneously developed in

absence of feedback. Such turbulence could be suppressed by means of global delayed feed-

back, and uniform oscillations could be induced in a wide range of feedback parameters.

The minimal feedback intensity needed to control turbulence was strongly dependent on the

choice of the time delay. Strong hysteresis was found in the transition between the turbulent

and the uniform state.

Moreover, near the edge of chaos, where global delayed feedback was too weak to in-

duce uniform oscillations but strong enough to significantly affect pattern formation, a broad

variety of complex patterns was found. Synchronization diagrams have been constructed for

different initial conditions, revealing the existence regions of such patterns.

Cluster patterns resulted from an incomplete synchronization process. Stationary two-

phase clusters showed similar spatial properties as in the case where uniform oscillations

were stable in absence of feedback, with the difference that local oscillations were period-

doubled. This opened up the possibility for stationary phase fronts in absence of oscillation

nodes. In addition to phase clusters, amplitude clusters were found in one of the cluster

regions at higher feedback intensities.
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A complex spatiotemporal regime of intermittent turbulence was observed under increas-

ing feedback intensity close to the synchronization border. This regime was characterized by

cascades of reproducing and annihilating localized structures on the background of uniform

oscillations. In two space dimensions, such structures represented bubbles developing into

ring-shaped objects. The objects mediating intermittent turbulence were identified as ampli-

tude defects.

Oscillatory standing waves developed from uniform oscillations in one space dimension

due to a finite wavelength instability. In two dimensions, nonlinear interactions between

three modes with the same wave number resulted in the formation of hexagonal cell arrays.

Secondary instabilities of these structures led to breathing waves and cells, and to phase

turbulence. Such patterns were stable with respect to small perturbations, but transformed

into amplitude turbulence when stronger perturbations were applied.

The simulated phenomena of pattern formation have been tested in laboratory experi-

ments with CO oxidation on Pt(110). Global delayed feedback was artificially introduced

into the experimental system via a controlled state-dependent variation of the CO partial

pressure in the reaction chamber. The spatiotemporal patterns developing on the catalytic

surface have been imaged by means of photoemission electron microscopy.

In these experiments, many of the simulated patterns could be indeed observed. In a non-

chaotic parameter regime, characterized by the existence of stable spiral waves in absence

of feedback, three different types of dynamical behavior occurred upon application of global

delayed feedback: synchronization and desynchronization of local oscillations, and forma-

tion of phase clusters. While synchronous oscillations were accompanied by a periodically

varying control signal, the process of desynchronization led to the breakdown of global os-

cillations. Phase clusters showed the property of phase balance and were characterized by a

period doubling of local oscillations.

Even richer behavior was found in experiments performed in a parameter regime where

the unforced reaction exhibited chemical turbulence. At first, spiral-wave turbulence could

be suppressed by applying global delayed feedback. After successful synchronization of lo-

cal oscillations, the uniform state was maintained by a periodically varying control signal

which compensated the destabilizing effect of diffusion. Moreover, a remarkable variety

of complex spatiotemporal patterns was found when global delayed feedback was used to

bring the system to the border between regular and chaotic dynamics. Intermittent turbulence

was characterized by cascades of reproducing and annihilating turbulent bubble structures or
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small localized spirals on the background of uniform oscillations. Alternating standing waves

and disordered cellular structures represented further results of the action of global delayed

feedback. In addition, phase clusters, which showed similar properties as in the non-chaotic

parameter regime, were found.

The experimentally observed patterns were transformed into phase and amplitude pat-

terns using a technique based on the Hilbert transform. Good agreement was found between

the structures seen in the model and in the experiments. The types of simulated and experi-

mentally observed patterns also to a wide extent resembled the structures found in previous

studies [36, 37, 112–114] of the complex Ginzburg-Landau equation with global feedback,

even though experiments and simulations were not performed close to a supercritical Hopf

bifurcation.

In a further set of experimental investigations, the effects of periodic external forcing

on chemical turbulence in CO oxidation on Pt(110) have been studied. At relatively strong

forcing, turbulence could be suppressed and frequency locked patterns could be induced. The

resonant patterns observed in the considered range of forcing parameters exhibited 1:1 or 2:1

entrainment. They were analyzed using a frequency demodulation technique [40].

Within the 1:1 resonance, local oscillations at all resolving pixels in a pattern synchro-

nized and locked to the forcing frequency. Irregular stripe patterns were observed at under-

lying 2:1 resonance. Such patterns consisted of phase-locked, π-shifted states and contained

multiple dislocations. Upon a suitable change of forcing parameters, they grew from uni-

form oscillations via nucleation of stripes. Moreover, clusters consisting of complex-shaped

domains on a uniform background formed due to coexistent resonances in a pattern.

In addition to frequency locked patterns, two different types of non-resonant patterns

arose due to competition of a synchronizing effect of forcing and a destabilizing effect of

diffusion. Intermittent turbulence under periodic forcing was characterized by the presence

of localized turbulent bubbles on the background of either period-one or period-doubled

uniform oscillations. Disordered cellular structures smoothly originated from locked uni-

form oscillations. The properties of these patterns were similar as when they formed under

global delayed feedback. Previous studies [34, 35,62,87] of the periodically forced complex

Ginzburg-Landau equation provided an interpretation basis for the experimental observa-

tions.
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[158] H. Chaté, Nonlinearity 7, 185 (1994).

[159] M. Pollmann, Dissertation, Free University of Berlin (2002).

[160] A. von Oertzen, Diploma Thesis, Free University of Berlin (1990).

[161] A. von Oertzen, Dissertation, Free University of Berlin (1992).

[162] M. Pollmann, M. Bertram, and H. H. Rotermund, Chem. Phys. Lett. 346, 123 (2001).

[163] M. Kim, M. Bertram, M. Pollmann, A. von Oertzen, A. S. Mikhailov, H. H.
Rotermund, and G. Ertl, Science 292, 1357 (2001).

[164] P. Panter, Modulation, Noise, and Spectral Analysis (McGraw-Hill, New York, 1965).

[165] M. Rosenblum and J. Kurths, in Nonlinear Analysis of Physiological Data, edited by
H. Kantz, J. Kurths, and G. Mayer-Kress (Springer, Berlin, 1998), p. 91.

[166] N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw, Phys. Rev. Lett. 45, 712
(1980).

[167] A. M. Fraser and H. L. Swinney, Phys. Rev. A 33, 1134 (1986).

[168] M. G. Rosenblum, A. Pikovsky, and J. Kurths, Phys. Rev. Lett. 76, 1804 (1996).



BIBLIOGRAPHY 151

I would like to thank
���

��� the Deutsche Forschungsgemeinschaft for financial support under SFB 555 “Complex
Nonlinear Processes”.

��� Gerhard Ertl for giving me the opportunity to prepare this work in an excellent scien-
tific environment.

��� Alexander S. Mikhailov for suggesting a very interesting project and for his profes-
sional advice and support that made this dissertation possible.

��� Harm H. Rotermund for giving me the opportunity to perform experiments in his lab
and for his trust in my abilities.

��� Michael Pollmann for introducing me into the experimental setup and, together with
Minseok Kim, for the successful experimental collaboration.

��� Mads Ipsen, Michael Stich, and Alexander von Oertzen for many helpful discussions.

��� Dieter Bauer for technical assistance.

��� Michael Stich, Carsten Beta, and Vanessa Casagrande for reading and correcting the
manuscript.

��� all members of the Complex Systems Group and the Surface Reactions Imaging Group
for the pleasant interaction.

��� and, last but not least, my parents Beate and Horst-Günther for all their support, and
Ulrike for making the past years to a very special, wonderful time for me.





BIBLIOGRAPHY 153

Curriculum Vitae

Name Matthias Bertram

Born July 6, 1975 in Wermelskirchen, Germany

Parents Beate and Horst-Günther Bertram

1981 - 1985 Katholische Grundschule Remscheid-Lüttringhausen
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