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First-Principles Evaluation of Dynamical Response and Plasmon Dispersion in Metals
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We report an ab initio evaluation of the dynamical density-response function for real Al and Na. The
method we employ is a generalization of the Dalgarno-Lewis scheme of perturbation theory to systems
with a continuous spectrum and to dynamical problems. The crystal lattice is found to lower the
plasmon frequency of Al for large wave vectors by as much as 4 eV. For this metal, agreement with ex-
periment is excellent in the time-dependent local-density approximation for exchange correlation. The
‘“anomalous” dispersion observed for Na for large wave vectors is assigned to subtler exchange-
correlation effects.

PACS numbers: 71.45.Gm, 71.10.+x, 72.30.+q

The dynamical density-response function y(x,x'|@)  Schrodinger perturbation theory [12] for the evaluation
plays a fundamental role in the theoretical study of the of sums over the energy spectrum of an atom. Our ap-
metallic state of matter [1]. This response function is  proach eliminates the need to carry out sums over the
directly related to observables—such as inelastic electron  unoccupied bands [5-11], is formulated for dynamical
scattering cross sections and plasmon dispersion relations  response, and is designed to produce the full response
[1,2]1—is a key building block in studies of quasiparticle  function, not just the induced density. The last two
excitations [2]; from its knowledge one can calculate the  features, which go beyond recently developed static-

correlation contribution to the ground-state energy [2],  response methods [13-15], are a must for the study of

etc. many-body effects [2,16] and for making contact with
However, progress in the actual computation of y(x, various spectroscopies [2].

x'|w) for a real metal has been slow. Most available From the response function— which we evaluate in a

studies are based on the electron-gas model, in which one  plane-wave basis, with the use of ab initio, norm-

concentrates on the effects of the electron-electron in-  conserving pseudopotentials [17]—we extract plasmon

teraction and ignores the effects of the crystal structure  dispersion curves. We find the effect of the lattice to be
[1,2]. Perturbative schemes for the inclusion of the  particularly significant for the case of Al. The plasmon
effects of the lattice have been developed in recent years  dispersion curve obtained for this metal in the time-
[3,4]. Plasmon-pole approximations, whose physics is ba-  dependent extension of local-density functional theory
sically rooted in the electron-gas model, have also been = (TDLDA) [18] is in quantitative agreement with experi-
proposed [5-7]. Only one ab initio calculation of the ment [19]. In the case of Na, the residual disagreement
dynamical response of a real metal has been performed to  between our crystal TDLDA results and experiment for
date (for Ni) [8]—a few such calculations have been re-  small wave vectors is understood on physical grounds
ported for bulk semiconductors [9-11]. (core polarization). We attribute the “anomalous” dis-
In this Letter we report a first-principles evaluation of  persion observed experimentally for this alkali metal for
the dynamical density-response function of bulk Al and large wave vectors [20] to exchange-correlation (XC)
Na, performed— for the first time— with full inclusion of  effects which are beyond the TDLDA.
the effects of the crystal structure. The method we use is The density-response function y is related to the irre-
inspired by the Dalgarno-Lewis scheme of Rayleigh- | ducible polarizability 7 through the (formally exact)
Bethe-Salpeter integral equation [1,2]

x(x,x’lw)=)Z(x,x'|w)+fd3x"fd3x"’)2(x,x"|w)v(x",x”’)x(x"’,x’lw), 1)

where v is the bare Coulomb interaction. In the ran-
dom-phase approximation (RPA) we set 7 =x° where x° ' tained simply by replacing v by V everywhere.

is the polarizability for noninteracting electrons. A sim- The polarizability x° is defined in terms of the eigen-
ple way to go beyond the RPA, i.e., to include short- values and eigenfunctions of an appropriate one-electron
range correlations (“vertex corrections”) in Eq. (1), is  Hamiltonian H [21] by the equation

the TDLDA ansatz [18], in which 7=x° and v is re- fo—fur

placed by the effective interaction V(x—x')=0v(x—x') & Er—Ev+h(o+in)
+dVxc(x)/dn(x)8(x —x'), where Vxc(x) is the XC po-

2, x' @) =

tential for the electron density n(x). In what follows our x 9% () (x) ¥ (I (x') . (2)
notation refers explicitly to the RPA; the TDLDA is ob- This standard representation for x° [22] has tradition-
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ally represented a numerical bottleneck in response calcu-
lations for crystals [5S-11]. The sums over the unoccu-
pied bands have been shown to converge slowly [23], and
the additional sums over the Brillouin zone (BZ) are also
slowly convergent. Furthermore, if the evaluation of x is
to be based on a minimal-basis-set band structure, it
would seem preferable to avoid explicit use of the unoccu-
pied bands, since these may be poorly known.

We proceed in terms of the kernel K (x,x'|w) = fd3x"
x y(x,x"|w)v(x"—x'), typically encountered in linear-
response and many-body studies [1,2,16]. We introduce
an auxiliary function of the electron-position operator,
O (xop,x'| @), by the equation [12]

|0 (Xop, x") 1)
Ex"E;"‘*'h(ﬂ)"‘iT]) ’
designed to allow us to use in Eq. (2) the closure relation
for the eigenkets of H [24]. We are thus led to the fol-
lowing representation for the noninteracting kernel K°
=4 %:
K%°x,x'|w) =§:fx{¢i* )y (x,x'|w)

+o )y (x,x'| —0)}, 4)

where ¥, (x,x'|0) =(x|0(xop,x'| @) |1}, and the sum runs
over the occupied states only.

The operator © is not obtained directly—rather the
“polarizability wave functions” ¥;(x,x'|w) are. From
Eq. (3) these can be shown to satisfy an inhomogeneous
partial differential equation,

(3)

(A6 (xop,x'| @) [1) =

2
- im—V2+ Vee(x) —Er—z |ya(x,x'|2)
=v(x—xDo(x), (5)
where the potential V.(x) is known, i.e., it is determined
self-consistently with the wave functions {p} in the
ground-state calculation. Thus the only unknown in Eq.
(5) are the {w,} for the states which contribute to Eq.
(4)—the occupied states. Equations (4) and (5), and the
integral equation (1), or its counterpart K=K°+K"K,
are the essence of our method.

Several linear-response methods [13-15,18,25] are en-
compassed by the above scheme [12], which is similar to
Green’s-function methods [18] which, however, have only
been implemented for effective one-dimensional motion,
such as atoms in the central-field approximation [13,18]
and clusters treated within the jellium model [25]. Equa-
tion (5) is a finite-frequency, ‘“nondiagonal” (.e., it ap-
plies for all x,x' pairs), generalization [26] of the central
equation in the “modified” Sternheimer method [13],
developed originally for atoms, and applied to semicon-
ductors by Baroni and co-workers [14] and Gonze and
Vigneron [15].

Our algorithm provides the full complex response in
one step, i.e., Eq. (5) is solved directly for a complex fre-
quency z=w+in [27]. In the collisionless regime [1]
n=0%; in practice we give 1 a nonzero value. (In the
present calculations 7=0.075 Ry.) We emphasize that
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the structure of the operator © [24] ensures that
Imxo(w)—> 0 for w— 0, unlike response schemes which
define Imy° separately as a sum over broadened & func-
tions [8].

We have implemented the above formalism in a plane-
wave basis, and applied it to bulk Al and Na. The
ground-state properties were determined by solving the
Kohn-Sham equation [21] in the local-density approxi-
mation, with use of ab initio, norm-conserving pseudopo-
tentials [17]. In the case of Na there is appreciable over-
lap between the core and valence electron densities, which
must be accounted for in the generation of the pseudopo-
tential. This is achieved by carrying the atomic core elec-
tron density into the self-consistent calculation for the
crystal [28]. The energy cutoff used was 12 Ry for Al
and 8 Ry for Na. The sum over the BZ was performed
on 20%20x20 Monkhorst and Pack meshes [29], which
correspond to 110 and 70 points in the irreducible ele-
ment of the BZ for Al and Na, respectively [30]. The
same numerical parameters were used in each case in Eq.
(4) for the response calculations.

Every response quantity is expanded in a Fourier
series, such as

nx,x'2) =X X bbc(q,q'|z)e! @6 % —i@+G) X
969 6)

where q is a wave vector in the first BZ and G denotes a
reciprocal lattice vector. Equation (5) is thus turned into
a matrix equation of the form

§ [Hge(q,q|z) —6ge"(Er—2)1b%6(q,q'|2)
=a%¢(q,q), (1)

where a%g is the matrix of the Fourier coefficients of the
right-hand side of Eq. (5). Equation (7) must be solved
many times; after the first solution, which scales as N3,
subsequent solutions require O(N?) operations. For the
present set of calculations the computer requirements
amount to about 20 CPU sec on a Cray Y-MP supercom-
puter for each (q,w) pair, a remarkably modest require-
ment compared with machine times quoted [6,31] for
comparable-size problems attacked by other methods
—several CPU hours.

The differential cross section for a process in which a
(fast) electron is scattered by a crystal with energy
transfer Aw and momentum transfer Aq is proportional
to ImygG(q —G|w) [1], where G is such that q—G lies
inside the first BZ. [A factor of v2(g) in the cross section
strongly favors small momentum transfers.] In Fig. 1 we
show this “loss function” for Al, for the range of wave
vectors for which the plasmon has been observed via elec-
tron energy-loss spectroscopy (EELS) [19]. The dom-
inant feature is the plasmon peak, whose qualitative be-
havior as a function of (q,w) is easily visualized in terms
of the f-sum rule (mathematically, the first moment of
Imy grows as g2 [1]; physically, charge conservation in
the response process): the peak disperses upward in ener-
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Bulk Al: Dynamical Response
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FIG. 1. Dynamical density response function for Al, calcu-
lated in the TDLDA. The family of curves shown is labeled by
the magnitude of the wave vector transfer q=(gq,0,0), given in
units of 2m/ao, where ao is the lattice constant. (The largest g
equals 1.55 A ~!; we note that kp=1.75 A1)

O

gy while damping out for large ¢’s due to decay into
electron-hole pairs. Indeed our response function fulfills
this sum rule to very good accuracy, i.e., within a few
percent for small g¢’s, for which the width of Imy is al-
most entirely numerical, and to better than 1% for larger
q’s. We view this result as a measure of the overall accu-
racy for our numerical calculations.

From the energy position of the peak in Imygg as a
function of q we obtain the plasmon dispersion curves
shown in Figs. 2 and 3 (for which the relevant G =0).
We consider the case of Al first. Figure 2(a) shows the
results of three sets of RPA calculations, performed, re-
spectively, for the electron gas (jellium model) and for
two different plasmon propagation directions for the actu-
al crystal. Figure 2(b) shows the RPA and TDLDA
dispersion curves for the crystal. The position of the
EELS loss [19] versus g is shown in both panels.

The key conclusions to be drawn from Fig. 2 are two:
(i) the effect of the lattice on the plasmon dispersion
curve for this ‘“nearly-free-electron metal” is in fact
large, amounting to ~0.5 eV for g— 0, and ~4 eV for
large ¢’s, and (ii) the TDLDA dispersion curve agrees
extremely well with experiment for all wave vectors.
[Additionally, as illustrated by Fig. 2(a), we have that
the plasmon energy does not depend on the direction of
q.] Both physical features, namely, the effect of the crys-
tal structure and the many-body effect of the short-range
correlations included in TDLDA are responsible for this
agreement— for Al, the crystal effect is the larger of the
two.

Note that a direct consequence of this result is that
previous theoretical efforts [32] to explain the experimen-
tal plasmon dispersion curve for Al—a canonical example
of electron-gas behavior— based on models which center

Bulk Al: Plasmon Dispersion Relation
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FIG. 2. Plasmon dispersion relations for Al—see text.

on the treatment of Coulomb correlations for electrons in
jellium need to be reexamined.

A similar set of calculations was performed for Na.
From Fig. 3(a) we have that the effect of the lattice is not
as pronounced as it is for Al. For ¢’s up to about 0.4 (in
the units of the figure) the theoretical dispersion follows
the EELS data [20] quite well. The relatively small
quantitative discrepancy with experiment can be under-
stood in terms of core-polarization effects which are not
included in our pseudopotential calculations. On the oth-
er hand, while the inclusion of XC effects in TDLDA
[Fig. 3(b)] again improves the agreement with experi-
ment [20], the clear anomaly seen in the experimental
data for large ¢’s is not reproduced by the theory.

Since we have treated the effects of the lattice without
approximation (except for the neglect of core polariza-
tion), we conclude that the behavior of the plasmon
dispersion curve observed for Na for large g’s must be
due to XC effects which are outside the TDLDA. It is of
interest to note that for the heavier alkalis the plasmon
dispersion relation becomes increasingly anomalous [20],
culminating with the so-called “RPA catastrophe” [33]
for Cs. The study of such many-body effects remains a
theoretical challenge.

In summary, on the basis of the evaluation of the
dynamical density-response function and plasmon disper-
sion curves for real Al and Na we have shown that first-
principles computations of dynamical properties of real
metals are now feasible. The application of our method

Bulk Na: Plasmon Dispersion Relation
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FIG. 3. Plasmon dispersion relations for Na—see text.
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to d-electron metals is currently in progress.
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Note added.— A new set of measurements of the
dynamical structure factor of Al has been published after
completion of our work [34]. The theoretical interpreta-
tion of these measurements given in Ref. [34] is entirely
within the jellium model. Interestingly, we have subse-
quently found that for the large wave vectors considered
in Ref. [34] (they are much larger than the ones con-
sidered in the present paper) band-structure effects
—which we have for the first time fully included in the
evaluation of the dynamical density-response function
—account very well for the double-peak loss structure
observed experimentally. (See Fig. 2 of Ref. [34]; for
the wave vector in question the plasmon mode discussed
in the present paper has completely damped out.) Such
effects will be discussed in detail in another publication.
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