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ABSTRACT 

The performance of automatic speech recognition 
systems is usually assessed in terms of error rate. 
Human speech recognition produces few errors, but 
relative difficulty of processing can be assessed via 
response time techniques. We report the construction 
of a measure analogous to response time in a machine 
recognition system. This measure may be compared 
directly with human response times. We conducted a 
trial comparison of this type at the phoneme level, 
including both tense and lax vowels and a variety of 
consonant classes. The results suggested similarities 
between human and machine processing in the case of 
consonants, but differences in the case of vowels. 

1. INTRODUCTION 

How can the success of a speech recogniser be 
evaluated? The obvious way is simply to score a 
recogniser's output in terms of the number of units -
sentences, words, phonemes - which correspond to what 
was "really" there in the input. This amounts to 
comparing the recogniser's performance with that of an 
ideal human listener, who is expected to perform at 
ceiling and recognise everything correctly. In reality, 
however, human listeners do not always recognise 
everything correctly; and even when they do, they find 
some utterances more difficult to process than others. 

An alternative approach to system evaluation, 
therefore, might be to compare relative difficulty 
experienced by the machine with relative difficulty 
experienced by the human listener. Note that this does 
not address the question of how the machine and the 
human are processing speech, which is chiefly of 
interest where a machine has been specifically designed 
to mimic human processing; relative difficulty is still a 
measure of output success, independent of the internal 
structure of the recogniser. Relative difficulty ought in 
principle to depend entirely on recogniser-extemal 
factors such as confusability of an input unit with other 
units in the input repertoire, the intrinsic amount of 
information in the relevant unit (e.g. its duration), etc. 
Therefore if a human-machine comparison of relative 
difficulty were to reveal points at which the machine 
encountered difficulty but humans did not (or vice 
versa), it might point to ways in which recogniser 
design could be improved. 
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To assess relative difficulty for human listeners, it 
is of course necessary to move human performance off 
the ceiling. This can easily be done by degrading the 
input, but in the present case to do so would in effect 
vitiate the comparison with machine performance since 
machine and human would no longer be processing the 
same input. A standard psychological approach to the 
assessment of processing difficulty is, instead, to 
measure latency to produce a response of some kind 
[1]. Response time (RT) is widely used in the study of 
human speech recognition as a measure of relative 
processing difficulty at all levels [2] - including the 
sentence, word and phoneme levels, i.e. the units over 
which recogniser performance is usually assessed. 

We here present a first approach to a comparison 
of relative processing difficulty via response times of 
human and machine recognisers. The processing level 
which we chose to assess is the phoneme. Human RT 
to detect phonemes is measured by asking listeners to 
press a response key as soon as they can after being 
presented with an occurrence of a pre-specified target 
phoneme; typically the input within which the target is 
to be detected will be words or sentences. The 
phoneme detection task has been extensively used as a 
tool for studying a range of psycholinguistic variables, 
such as word recognition [3], prosodic processing [4], 
or the units of prelexical processing [5]; however, it has 
also produced a considerable amount of data on 
detection of particular phonemes. It is not the case that 
for humans any phoneme in any context is equally easy 
to detect; instead, there is quite a range of human 
performance, making an informative comparison with a 
machine analogue of RT a feasible undertaking. In the 
present study we constructed such a measure for a 
recognition system, and compared the results it 
produced for a range of phonemes to human RTs for 
the same phonemes. 

The results are not, however, presented here as an 
evaluation of the recognition system we used. The 
purpose of the present study was merely to test the 
feasibility of comparing human and machine response 
times; it was, for instance, not possible to conduct the 
comparison across a single standard input. The 
contribution of the present report consists in the 
description of the technique we used and the methods 
by which we compared the results it produced to the 
results available from studies of human recognition. 
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2. THE MACHINE "RTs" 

The comparison was conducted using a recogniser 
with a standard structure: a preprocessor to parameterise 
frames of speech, an estimator of the probabilities of 
the class labels for each parameterised frame, and a 
segmenter and labeller to produce the symbolic 
sequence of phonemes. Typically a recogniser uses 
short-term power spectra (or close derivative) as 
parametric representation, vector quantisation or 
Gaussian mixtures as probability estimator, and hidden 
Markov models to produce the most probable phoneme 
sequence [6]. The approach used here is unusual in the 
use of recurrent connectionist models for the phoneme 
probability estimation [7]. This structure is 
computationally more powerful than the conventional 
one, and yields a slightly lower error rate [8]. 

The preprocessor calculates estimates of power, 
power spectral density, pitch and degree of voicing. 
Apart from smoothing associated with the pitch 
frequency, the preprocessor contains no history. The 
class labels are the 61 phonetic symbols of the TIMIT 
database. For each frame the a-posteriori probability of 
class occupancy is calculated using the recurrent 
network. The use of feedback within the net allows 
past context to be used, and the decision is delayed by 
four frames (64ms) to allow a limited future context. 
The a-posteriori probability estimator implicitly 
incorporates the a-priori class occurrence probabilities. 

Phonemes are modeled as a single state per 
phoneme Markov model. The maximum likelihood 
symbol sequence is computed with the Viterbi 
algoridim [9]. Transition probabilities are obtained by 
counting from the hand labels and the emission 
probabilities are provided from the recurrent network. 

The process of segmentation and labeling using the 
Markov model provides the most likely sequence of 
phonemes for a sentence. Normally this is achieved by 
making a forward pass over the sentence, and 
computing for each phoneme the probability of all 
possible previous phonemes. Identity and likelihood of 
the most probable previous phoneme are recorded, so 
that at the end of the sentence it is possible to back 
track and compute the most likely phoneme sequence. 
However, in practice there is a time after which any 
most likely phoneme is independent of future acoustic 
information. This point is found by tracing the back 
pointers until they all go through the same phoneme. 
The minimum time required for a phoneme to become 
such a point of convergence was the designated RT. 

The recogniser processed the TIMIT database, and 
RTs were calculated as above for all occurrences of the 
15 selected phonemes. Error rates were also calculated 
for each phoneme, as well as the correlation between 
RT and measured phoneme duration across tokens. 

3. THE HUMAN DATA 

A substantial body of human RT data from a 
single subject population was available for 15 
phonemes - seven vowels and eight consonants. Of the 
vowels, six were full vowels: three tense (/a/, /i/, /u/) 
and three lax (/e/, /i/, and /A/). The seventh vowel was 

the reduced vowel /a/. Among the consonants, there 
were two stops (/p/, /t/), two fricatives (/s/, /v/), two 
nasals (/m/, /n/) and two semi-vowels (/w/, /j/). 
Inclusion of a variety of phoneme classes ensured a 
wide range in die RT distribution. Error (missed 
detection) data was also available. 

The data came from six experiments, four of which 
have been reported elsewhere [10, 11, 12], while a 
further two are reported to this meeting [13]. In these 
experiments human listeners were presented with 
isolated words (or, in one study, non-words), and were 
instructed to press a response button as soon as they 
detected an occurrence of a particular target phoneme. 
The stimulus materials were blocked such mat subjects 
were listening for only one target at a time; each 
subject listened for at least four phoneme targets. A 
total of 171 listeners, all from the Cambridge University 
community, took part in the experiments, at least 24 in 
each, /a/ was heard by 147 listeners, /i/ by 96, the four 
short vowels by 75, and the consonants and /u/ by 24. 

The following measures were computed: average 
RT for each phoneme across listeners; mean error rate 
(missed responses), ditto; and the correlation between 
RT and measured phoneme duration for each token in 
the experiments (token number varied since some 
phonemes were used in more man one experiment). 

4. THE COMPARISON 

Our first comparison, of human and machine error 
rates, showed (unsurprisingly) that error rates were 
significantly higher for machine man for human 
performance (t [14] = 8.39, p < .001). However, mere 
was a significant positive correlation between die two 
rates across die 15 phonemes (r [14] = .75 p < .001). 

These correlations are encouraging since they 
suggest that the human and the machine results may be 
tapping similar dimensions of difficulty. However, the 
correlations may be spuriously produced by differences 
between (but not within) independent subsets of the 
data. Therefore we considered the vowel and consonant 
subsets separately. Separate correlations between the 
human and machine error rates for vowels versus 
consonants are shown in Fig. 1; both are at least 
marginally significant (t [6] = .76, p < .05 for vowels, t 
[7] = .64, p < .09 for consonants). It seems that 
machine errors across the phoneme set are indeed more 
or less in proportion to human errors. 

Table 1 shows the phonemes in order of 
percentage error by humans and by die machine. The 
human errors show an interpretable pattern. Among the 
vowels, lax vowels produce more errors than tense 
(with the reduced vowel /a/ producing most errors of 
all). Exacdy mis result - fewer errors for tense vowels 
man for lax - occurs in perceptual confusion studies 
widi human listeners [14]. In the consonants, the 
greatest proportion of errors occurs on semivowels and 
the smallest on nasals, with stops and fricatives in 
between. Again this is similar to the pattern found in 
confusion data from human listeners [15]. The machine 
patterns arc not as clearly grouped by vowel type or by 
consonant manner of articulation, but die order is not 
markedly different from mat in the human results. 
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Table J. Phonemes in order of mean percentage of 
errors, from lowest (left) to highest (right), separately 
for vowels and consonants and for humans vs. machine. 

Table 2. Phonemes in order of mean RT, from fastest 
(left) to slowest (right), separately for vowels and 
consonants and for human vs. machine RTs. 

For RT, a direct comparison of human versus 
machine RTs is meaningless. However, there was 
again a significant positive correlation across the 
phonemes between human and machine performance (r 
[14] = .53, p < .05). Differences between human and 
machine performance appear, though, when the RT 
results are broken down into subsets. As Fig. 2 shows, 
there is a significant correlation between human and 
machine RTs to consonants (t [7] = .95, p < .001), but 
no relation between human and machine RTs to vowels. 

Table 2 spells out the difference. The order of 
consonant RTs by the machine, is, as the high positive 
correlation would suggest, very similar indeed to the 
order produced by the human listeners. The machine 
orders the vowels quite differently, however (note, for 
instance, that the machine responds fast to /a/, which 
produces the slowest RTs by far from the humans). 

We undertook one further analysis to examine the 
difference between human and machine RTs. The 
studies of human RTs had consistently found that RT to 
vowels showed a significant negative correlation with 
measured phoneme duration: the longer the vowel, the 
faster the RT [10, 11, 12, 13]. No such systematic 
relationship appeared however between RT and duration 
of consonants. Since measured duration was available 
for all the phoneme tokens used in the human 

experiments, and was also available in the TIMIT 
labels, we repeated this analysis for each phoneme for 
both human and machine RTs. The relevant correlation 
coefficients appear in Table 3. For the human RTs, 
vowels and consonants produce clearly different results: 
all vowels show a negative correlation between RT and 
duration (and all but two of these are statistically 
significant), while for the consonants, the pattern is 
unsystematic (and no correlation is significant). The 
machine RTs also pattern differently for vowels and for 
consonants. The consonant pattern resembles that 
found with the human results in that all correlations are 
close to zero. The vowel pattern produces, on the other 
hand, a significant correlation for every vowel - but in 
contrast to the human results, the correlation is positive: 
the longer the vowel, the slower the RT. 

For both human and machine results there was 
little evidence of a speed-accuracy tradeoff in the 
vowel-consonant difference: vowels produced longer 
RTs and more errors than consonants. However the 
relation between mean error rate and mean RT across 
the phoneme set was closer for the human results 
(where the two measures were significantly correlated 
both overall and in vowel and consonant subsets) than 
for the machine. For humans, added vowel information 
over time speeds RT and reduces errors; for the 
machine it slows RT and leaves accuracy unchanged. 
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Table 3. Correlation coefficients (r) between measured 
phoneme duration and mean human vs. machine RTs. 

5. CONCLUSION 

We reiterate that this has been merely a feasibility 
study for a comparison of machine and human RTs. 
This undertaking arose from a project involving both 
psychologists studying human speech recognition and 
engineers constructing a machine recogniser; the 
processing of phonemes was of interest to both groups, 
and we sought a measure which would directly compare 
relative difficulty of phoneme processing for human and 
machine presented with identical input. The present 
study is not an objective test of our recogniser's 
performance, because the input processed by the 
recogniser and by the human listeners was in fact not 
identical. Our recogniser was trained on the TIMIT 
database of American English, while our subject 
population was trained on (i.e. native in) British 
English; it was not appropriate to present the TIMIT 
sentences to our subjects, or British English input to the 
machine. In the first instance we wanted just to 
evaluate the feasibility of the technique, and it is the 
results of this feasibility study which are presented here. 

Even with these caveats, the comparison has 
produced results of interest. A dissociation appeared: 
although the error rates produced by humans and the 
machine were correlated across the phoneme set, and 
RTs were highly correlated for consonants, this pattern 
broke down with RTs to vowels. This suggests that in 
vowel processing the machine is operating according to 
different principles than those used by humans. The 
effects of duration on RT differ: humans find added 
duration helpful in vowel recognition, the machine does 
not. Other researchers have reported that training a 
recogniser on durationally distinct vowel allophones 
reduces errors [16]. In the present case we conclude 
that our method of comparing machine and human RTs 
has highlighted a difference in processing characteristics 
for a subset of phonemes, and that such a result in a 
real test of machine performance could point to aspects 
in which recogniser performance could be improved. 
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