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Abstract: Top-down feedback does not benefit speech recognition; on the contrary, it can hinder it. No experimental data imply that
feedback loops are required for speech recognition. Feedback is accordingly unnecessary and spoken word recognition is modular. To
defend this thesis, we analyse lexical involvement in phonemic decision making. TRACE (McClelland & Elman 1986), a model with
feedback from the lexicon to prelexical processes, is unable to account for all the available data on phonemic decision making. The mod-
ular Race model (Cutler & Norris 1979) is likewise challenged by some recent results, however. We therefore present a new modular
model of phonemic decision making, the Merge model. In Merge, information flows from prelexical processes to the lexicon without
feedback. Because phonemic decisions are based on the merging of prelexical and lexical information, Merge correctly predicts lexical
involvement in phonemic decisions in both words and nonwords. Computer simulations show how Merge is able to account for the data
through a process of competition between lexical hypotheses. We discuss the issue of feedback in other areas of language processing and
conclude that modular models are particularly well suited to the problems and constraints of speech recognition.
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The principle of Occam’s razor instructs theorists never
to multiply entities unnecessarily. Applied to the design of
processing models, this constraint excludes any feature that

1. Introduction

Psychological processing involves converting information
from one form to another. In speech recognition — the fo-
cus of this target article — sounds uttered by a speaker are

converted to a sequence of words recognized by a listener.
The logic of the process requires information to flow in one
direction: from sounds to words. This direction of informa-
tion flow is unavoidable and necessary for a speech recog-
nition model to function.

Our target article addresses the question of whether out-
put from word recognition is fed back to earlier stages of
processing, such as acoustic or phonemic analysis. Such
feedback entails information flow in the opposite direction
— from words to sounds. Information flow from word pro-
cessing to these earlier stages is not required by the logic of
speech recognition and cannot replace the necessary flow
of information from sounds to words. Thus it could only be
included in models of speech recognition as an additional
component.
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is not absolutely necessary in accounting for the observed
data. We argue that models without the feedback we have
just described can account for all the known data on speech
recognition. Models with feedback from words to earlier
processes therefore violate Occam’s razor.

Nevertheless, many theorists have proposed such mod-
els; whether there is feedback from word recognition to
earlier acoustic and phonemic processing has even become
one of the central debates in the psychology of speech
recognition. We consider the arguments that have been
proposed in support of this feedback and show that they
are ill-founded. We further examine the relevant empirical
data — studies of how listeners make judgments about
speech sounds — and show that the evidence from these
studies is inconsistent with feedback and strongly support-
ive of models without this feature.

We argue, however, that no existing model, with or with-
out feedback, adequately explains the available data. There-
fore we also propose a new model of how listeners make
judgments about speech sounds, demonstrating how infor-
mation from word processing and from earlier processes
can be merged in making such judgments without feedback
from the later level to the earlier.

In the psychological literature on speech recognition,
models without feedback are generally referred to as
“autonomous,” and models with feedback are termed “in-
teractive.” In autonomous models, each stage proceeds
independent of the results of subsequent processing. In in-
teractive models, feedback between any two stages makes
them interdependent. (Strictly speaking, it is not models in
their entirety, but stages of each model, to which the terms
should be applied; Norris 1993. A model may have a mix-
ture of autonomous and interactive stages.) Models with
only autonomous stages have only feedforward flow of in-
formation, and this is also referred to as “bottom-up” pro-
cessing, while feedback in interactive models is also re-
ferred to as “top-down” processing. Note that the only type
of feedback at issue in the speech recognition literature,
and in the present article, is feedback from later stages,
which actually alters the way in which an earlier stage pro-
cesses its input. The specific question is: Does information
resulting from word (lexical) processing feed back to alter
the immediate operation of prelexical processes (all the
processes that intervene between the reception of the in-
put and contact with lexical representations)?

2. Models of phonemic decision making

The debate about feedback in psychological models of
speech recognition has centred on evidence from experi-
mental tasks in which listeners are required to make
phonemic decisions (judgments about categories of speech
sounds). Such tasks include (1) phoneme monitoring, in
which listeners detect a specified target phoneme in spo-
ken input (e.g., respond as soon as they hear the sound /b/
in “brain”; see Connine & Titone 1996, for a review); (2)
phonetic categorization, in which listeners assign spoken
input to phoneme categories (see McQueen 1996, for a re-
view); and (3) phoneme restoration, in which listeners hear
speech input in which portions of the signal corresponding
to individual phonemes have been masked or replaced by
noise (see Samuel 1996a, for a review).

This section describes two example models in detail, to
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illustrate the structural differences we described above.
The two models we have chosen represent the extreme po-
sitions of the feedback debate in this area. They are the in-
teractive theory TRACE (McClelland & Elman 1986) and
the autonomous Race model (Cutler & Norris 1979).

2.1. TRACE

The evidence on the relationship between lexical and
prelexical processes seems at first glance to support the case
for feedback. Many studies show convincingly that there
are lexical influences on tasks involving phonemic decisions
or phoneme identification.

In a wide range of tasks, phoneme identification is influ-
enced by lexical context. For example, phoneme monitor-
ing is faster in words than in nonwords (Cutler et al. 1987;
Rubin et al. 1976). In sentences, phoneme monitoring is
faster in words that are more predictable (Foss & Blank
1980; Mehler & Segui 1987; Morton & Long 1976). Lexi-
cal biases are also observed in phonetic categorization tasks.
Ganong (1980) generated ambiguous phonemes on a con-
tinuum between a word and a nonword (e.g., type-dype),
and found that subjects are biased towards classifying pho-
nemes in the middle of this range so as to be consistent with
a word (type) rather than a nonword (dype). In phoneme
restoration, listeners™ ability to determine whether pho-
nemes are replaced by noise or simply have noise added is
worse in words than in nonwords (Samuel 1981a; 1987;
1996a).

An apparently simple and appealing explanation of these
results is that lexical influences come about as a direct re-
sult of lexical processes exerting top-down control over a
prior process of phonemic analysis. This is exactly what
happens in the TRACE model of McClelland and Elman
(1986). TRACE has three levels of processing. Activation
spreads from the feature level to the phoneme level, and
from there to the word level. In addition, activation of each
word node feeds back to its constituent phonemes in the
phoneme layer. (The relationship between lexical and pho-
nemic processing in TRACE is thus directly analogous to
the relationship between word and letter processing in
Rumelhart and McClelland’s [1982] Interactive Activation
Model [IAM] of reading.)

Because of the top-down connections in TRACE, pho-
nemes in words are part of a feedback loop that increases
their activation faster than that of phonemes in nonwords.
TRACE can thus readily account for the finding that pho-
neme monitoring responses to targets in words tend to be
faster than to targets in nonwords. Phonemes in nonwords
will also receive some feedback from words that they par-
tially activate. Therefore, even phonemes in word-like non-
words will tend to be activated more quickly than pho-
nemes in nonwords that are not similar to words. TRACE
explains lexical effects in phonetic categorization in the
same way. When listeners are presented with input con-
taining ambiguous phonemes, top-down activation from
the lexicon will act to bias the interpretation of the am-
biguous phoneme so that it is consistent with a word rather
than with a nonword, exactly as observed by Ganong (1980).
Likewise, the top-down connections in TRACE can explain
why phonemic restoration is more likely in words than in
nonwords (Samuel 1996a).

An important feature of TRACE is that it is what Cutler
et al. (1987) have described as a single-outlet model. The



only way TRACE can make a phoneme identification re-
sponse is by read-out from a phoneme node in the phoneme
layer. One immediate consequence of this single-outlet ar-
chitecture is that when presented with a mispronunciation,
TRACE is unable to identify the nature of this mispronun-
ciation. Although a mispronounced word would activate the
wrong set of input phonemes, there is no way that the error
can be detected. The mispronunciation will reduce the
overall activation of the word node, but the system will be
unable to tell at the lexical level which phoneme was mis-
pronounced because it has no independent representation
of the expected phonological form against which the input
can be compared. Because top-down feedback will act to
correct the errorful information at the phoneme level, the
only representation of the input phonology that is available
in the model will also be removed. Indeed, a similar reduc-
tion in activation of a word’s lexical node coupled with top-
down activation of the phonemes corresponding to the
word could arise from unclear articulation or noise in the
input. Somewhat ironically, the feature that thus allows
TRACE to fill in missing phoneme information is precisely
what prevents it from detecting mispronunciations. In con-
trast, the Race model, to which we now turn, does have
independent lexical representations of the phonological
forms of words. These representations make it possible to
detect mispronunciations, freeing the model from the need

for feedback.

2.2. The Race model

The findings described above are consistent with the idea
of interaction between lexical and prelexical processes. But
although the assumption of interaction fits with many peo-
ple’s intuitions about the nature and complexity of the
speech recognition process, it is certainly not forced by
the data. In itself, the fact that lexical information can affect
the speed of, say, phoneme detection is neutral with respect
to the issue of whether lexical and prelexical processes in-
teract; it is simply evidence that both lexical and phonemic
information can influence a response. Information from
two separate sources can influence a response without the
processes delivering that information necessarily influenc-
ing each other.

This is exactly what happens in the Race model of Cut-
ler and Norris (1979), and, as will be discussed later, in
other models without top-down feedback. According to the
Race model, there are two sources of information which
can be used to identify phonemes: Identification can occur
via a prelexical analysis of the input or, in the case of words,
phonemic information can be read from the lexical entry.
Thus, in contrast to the single-outlet assumption of TRACE,
the Race model is a multiple-outlet model.

Responses in phoneme monitoring are the result of a
race between these two processes. As in all first-past-the-
post race models, the response is determined solely by the
result of the first route to produce an output. The mean
winning time of a race between two processes with over-
lapping distributions of completion times will always be
faster than the mean of either process alone. So phoneme
monitoring will be faster for targets in words than for tar-
gets in nonwords because responses made to targets in
words benefit from the possibility that they will sometimes
be made on the basis of the outcome of the lexical process,
whereas for targets in nonwords, responses must always de-

Norris et al.: Speech recognition has no feedback

pend on the prelexical process. The Race model offers a
similar explanation for the lexical bias observed in phonetic
categorization. An ambiguous phoneme in a type-dype con-
tinuum, for example, will sometimes be identified by the
lexical route and sometimes by the phonemic route. The
contribution of the lexical route will lead to an overall bias
to produce a lexically consistent response. Hence the re-
peated simple demonstration of lexical involvement in a
range of phonemic judgment tasks does not distinguish be-
tween interactive and autonomous models; both TRACE
and the Race model can account for all of the basic effects.

3. Is feedback beneficial?

Discussions of bottom-up versus interactive models fre-
quently seem to draw on an implicit assumption that top-
down interaction will help performance, but does it? In this
section we examine this assumption, and conclude that the
feedback in models we discuss is not beneficial.

3.1. Can feedback improve word recognition?

In models like TRACE (or Morton’s 1969 logogen model),
the main effect of feedback is simply to alter the tendency
of the model to emit particular responses. The top-down
flow of information does not help these models perform lex-
ical processing more accurately.

Consider first how feedback from lexical to prelexical
processes might facilitate word recognition. The best per-
formance that could possibly be expected from a word
recognition system is to reliably identify the word whose
lexical representation best matches the input representa-
tion. This may sound trivially obvious, but it highlights the
fact that a recognition system that simply matched the per-
ceptual input against each lexical entry, and then selected
the entry with the best fit, would provide an optimal means
of performing isolated word recognition (independent of
any higher-level contextual constraints), limited only by the
accuracy of the representations. Adding activation feed-
back from lexical nodes to the input nodes (whether phone-
mic or featural) could not possibly improve recognition ac-
curacy at the lexical level.

To benefit word recognition, feedback would have to en-
able the system to improve on the initial perceptual repre-
sentation of the input. A better representation would in
turn improve the accuracy of the matching process. For ex-
ample, having isolated a set of candidate words, the lexical
level might instruct the prelexical level to utilise a spe-
cialised, more accurate set of phoneme detectors rather
than general-purpose detectors used in the first pass. But
note that the plausibility of such a theory depends on the
questionable assumption that the system performs a sub-
optimal prelexical analysis on the first pass. If it does the
best it can the first time around, there is no need for feed-
back.

An interactive model that improved input representa-
tions would be analogous to the verification models that
have been proposed for visual word recognition (e.g.,
Becker 1980; Paap et al. 1982). However, to our knowledge,
no such model exists for spoken-word recognition. All mod-
els with feedback involve flow of activation from lexical to
phoneme nodes, as in TRACE. In this kind of model, which
we will call interactive bias models, interaction does not
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have a general beneficial effect on word recognition, al-
though it can influence phoneme recognition. This is con-
firmed by Frauenfelder and Peeters’s (1998) TRACE sim-
ulations which showed that the performance of TRACE
does not get worse when the top-down connections are re-
moved (i.e., approximately as many words were recognized
better after the connections were removed as were recog-
nized less well).

3.2. Can feedback improve phoneme recognition?

In general, although interactive bias cannot assist word
recognition, it can help phoneme recognition, especially
when the input consists entirely of words. If the /n/ in the
middle of phoneme cannot be distinguished clearly by the
phoneme level alone, interactive bias from the lexical level
can boost the activation for the /n/ and make it more likely
that the phoneme will be identified. Of course, if the input
were the nonword phomeme instead, the biasing effect
would impair performance rather than help it, in that the
mispronunciation would be overlooked. That is, interactive
bias models run the risk of hallucinating. Particularly when
the input is degraded, the information in the speech input
will tend to be discarded and phonemic decisions may then
be based mainly on lexical knowledge. This is because top-
down activation can act to distort the prelexical representa-
tion of the speech input (Massaro 1989a). If there is strong
top-down feedback, the evidence that there was a medial
/m/ in phomeme may be lost as the lexicon causes the pho-
neme level to settle on a medial /n/ instead. In fact, re-
peated empirical tests have shown that mispronunciations
are not overlooked, but have a measurable adverse effect
on phoneme detection performance (Gaskell & Marslen-
Wilson 1998; Koster 1987; Otake et al. 1996).

It is important to note that the biasing activation makes
the lexically consistent phoneme more likely as a response.
One might argue that this is a useful property of the model
designed to deal with normal speech where the input does,
of course, consist almost exclusively of words in the lis-
tener’s lexicon. However, given that the interaction does not
help word recognition, it is not clear what advantage is to
be gained by making the prelexical representations concur
with decisions already made at the lexical level. Once a de-
cision has been reached at the word level, there is no obvi-
ous reason why the representations that served as input to
the word level should then be modified. The only reason for
feedback would be to improve explicit phoneme identi-
fication. But even this reason has little force because au-
tonomous models offer an alternative way for lexical infor-
mation to influence phonemic decisions, one that does not
suffer from the disadvantages caused by introducing a feed-
back loop into the recognition process.

In interactive bias models, therefore, lexical information
can sometimes improve phoneme identification and some-
times impair it. In verification models, on the other hand,
lexical information should always improve phoneme iden-
tification in words. As Samuel (1996a) has demonstrated in
the phoneme restoration task, subjects’ ability to detect
whether or not phonemes in noise are present is poorer in
words than in nonwords. Moreover, this lexical disadvan-
tage increases throughout the word. That s, in this task, lex-
ical information introduces a bias that reduces the perfor-
mance of the phoneme level. Samuel (1996a) points out
that this finding is exactly what TRACE would predict.
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However, it is also exactly what the Race model would pre-
dict. According to the Race model, if the lexical route wins
when the phoneme has been replaced by noise, this will
produce an error, but the lexical route should never win for
nonwords.

Despite the fact that this result is exactly what would be
expected on the basis of the Race model, Samuel (1996a)
interprets it as evidence against the Race model, arguing
that lexical effects in the Race model can only be facilita-
tory. He reasons that because the lexical effect in the pho-
neme restoration study is the reduction of the discrim-
inability of phonemes and noise, the lexical effect is not
facilitatory, and hence contradicts the Race model. This is
incorrect, however. Because lexical information races with
phonemic information, lexical effects must certainly always
have a facilitatory effect on phoneme monitoring latencies
to targets in words, but the race will not facilitate all aspects
of phoneme perception. If the lexical route produces a re-
sult even when the phoneme has been replaced by noise,
the listener will have difficulty determining whether there
really was a phoneme in the input, or just noise. The lexical
route facilitates identification of the underlying phoneme,
but this in turn impairs the listener’s ability to discriminate
the phoneme from the noise.

Hence Samuel’s (1996a) study does not discriminate be-
tween TRACE and the Race model, or between interactive
and autonomous models in general. The real significance of
these restoration results is that they appear inconsistent
with more active forms of interaction, such as the one dis-
cussed above, where feedback would act to improve input
representations (as in the verification model of Becker,
1980). Such models incorrectly predict that lexical influ-
ences will always increase perceptibility. This in turn sug-
gests that if the recognition system were interactive, it
would be more likely to have the characteristics of an in-
teractive bias model than of a verification model. As we
have argued, however, interaction in bias models cannot
improve word recognition and can cause misidentifications
at the phonemic level.

3.3. Can feedback improve the sensitivity
of phoneme identification?

We have argued that, in general, feedback of lexical activa-
tion can only bias phoneme identification, without actually
improving sensitivity.! Indeed, Samuel’s (1996b) phoneme
restoration results were consistent with both TRACE and
the Race model in showing that lexical information biased
subjects towards lexically consistent responses instead of
improving their sensitivity in discriminating between pho-
nemes and noise. Nevertheless, if one could devise an ex-
periment in which lexical information were shown to im-
prove listeners’ sensitivity in phoneme identification, this
would prove particularly problematic for autonomous mod-
els. The standard way to investigate sensitivity and bias in
perceptual experiments is to use Signal Detection Theory
(SDT).

To many authors, SDT seems to offer a simple technique
for distinguishing between interactive and autonomous
theories. The decision to use SDT has generally been based
on the idea that changes in sensitivity, as measured by d’,
reflect changes in perceptual processes (cf. Farah 1989).
For example, if context provided by lexical information in-
fluences sensitivity of phoneme identification, this is taken



as evidence that the contextual factor is interacting with the
perceptual processes of phoneme identification. Although
this is an appealing notion, applying SDT here is far from
straightforward. In general, SDT studies of interaction have
either used inappropriate analyses or drawn invalid conclu-
sions from them.

One of the central pitfalls of applying SDT analyses is
evident in work on the influence of context on visual word
recognition. Rhodes et al. (1993) used SDT to study con-
text effects in lexical identification. They applied standard
unidimensional signal detection theory to data from visual
word recognition and reported that semantic priming did
indeed alter d’. From this they concluded that context was
influencing the perceptual analysis of the words, in viola-
tion of modularity (Fodor 1983; 1985). Norris (1995), how-
ever, pointed out that the standard unidimensional SDT
model was inappropriate under these circumstances be-
cause its assumptions do not map onto those of any current
or even any plausible model of visual word recognition.
Norris also showed that the unidimensional measure of
sensitivity (d") cannot even account for the basic effect of
semantic priming and that a multidimensional version
of SDT, embodying more plausible assumptions about vi-
sual word recognition (similar to Morton’s 1969 logogen
model or Norris’s 1986 checking model), could account for
the same data purely in terms of response bias, with no
need for context to influence earlier perceptual processes.
The lesson here is that the choice of SDT model must be
guided by plausible psychological task models. If the un-
derlying assumptions of SDT are not satisfied in the psy-
chological model, the results of the SDT analysis will be
meaningless.

Confusion over the interpretation of the results of SDT
analysis can lead authors to make claims that are not justi-
fied by the data even when the technical application of SDT
seems appropriate. In a study of assimilation effects in
speech perception (e.g., freight bearer may be produced as
frayp bearer but heard as freight bearer), Gaskell and
Marslen-Wilson (1998) found that subjects were less able
to perceive the assimilation in words than nonwords. From
this they concluded that the effect was “perceptual”; their
line of reasoning seems to be similar to Farah’s argument
that sensitivity effects must be due to perceptual processes.
However, Gaskell and Marslen-Wilson (1998) also assume
that the sensitivity effects tell them about the locus of the
perceptual effect, namely, that it was not based on the out-
put of lexical processing. Conclusions about the locus of the
effect cannot be supported by this kind of data. The SDT
analysis simply informs us that the discrimination perfor-
mance of the system under observation is worse in words
than in nonwords. Such data are perfectly consistent with
the idea that the change in sensitivity arises after lexical pro-
cessing. For example, if lexically derived phonemic infor-
mation always determined responses when it was available,
then detection of assimilation would always be much worse
in words than nonwords even though the locus of the effect
was at a late stage, when lexical and prelexical information
were combined. That is, a late bias to respond lexically will
be manifest as a decrease in sensitivity when the overall per-
formance of the system is subject to SDT analysis.

A similar problem arises in a phonetic categorization
study. Pitt (1995) used SDT to analyze the influence of lex-
ical information on categorization. He concluded that lexi-
cal information influenced the perceptual analysis of pho-
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nemes and that his data supported interactive theories over
autonomous ones. Pitt showed a lexical effect on the cate-
gorization of the phonemes /g/ and /k/ in the continua gifi-
kift and giss-kiss . He then transformed his data into d’ val-
ues by converting each subject’s proportion of /g/ responses
for each step of both continua into z scores and then calcu-
lating d’ by subtracting adjacent z scores. When plotted in
this fashion the two continua differed in the location of their
peak d” score. Pitt concluded that because lexical informa-
tion shifted the d” measure it must have been having an ef-
fect on phoneme perception, and that this was evidence of
interaction.

This shift in the peak of the d’ function, however, is sim-
ply a direct reflection of the shift in the conventional iden-
tification function. Lexical information has not increased
the observer’s overall ability to discriminate between the
two phonemes; it has just shifted the category boundary. As
is usual in categorical perception studies, the category
boundary corresponds to the peak in the discrimination
function and the maximum slope of the identification func-
tion. Lexical information has not enabled the listener to ex-
tract more information from the signal; it has just shifted
the point of maximum sensitivity. Lexical information has
indeed altered the pattern of sensitivity, but it is the posi-
tion — not the amount of sensitivity — that has been
changed. Exactly this kind of lexically induced boundary
shift can emerge from an autonomous bias model (as Pitt in
fact admits). Indeed, Massaro and Oden (1995) showed
that the autonomous Fuzzy Logical Model of Perception
(FLMP; Massaro 1987; 1989b; 1998; Oden & Massaro
1978) could fit Pitt’s data very accurately.

Pitt (1995) makes much of the fact that the change in
identification functions induced by lexical information is
different from that induced by a monetary payoff designed
to bias subjects towards one response over the other. Fol-
lowing Connine and Clifton (1987), he argues that these
differences could be evidence that the lexical effects are
due to feedback from the lexicon. However, there are two
quite distinct ways in which bias can influence phoneme
identification. Monetary payoff and lexical information ap-
pear to operate in these different ways, but neither requires
top-down feedback.

Monetary payoff tends to shift the functions vertically,
whereas lexical bias produces a horizontal shift. The simple
interpretation of the vertical shift is that subjects have a
general bias to respond with the financially favored pho-
neme on some proportion of trials. Massaro and Cowan
(1993) call this “decision bias” and distinguish it from “be-
lief bias”; an example of the pattern can be clearly seen in
the fast RTs in Pitt’s Figure 6 (1995, p. 1046). The lexical
shift, on the other hand, reflects a bias towards lexically fa-
vored responses on the basis of less bottom-up support than
lexically unfavored responses. This leads to the horizontal
shift of the boundary illustrated in Pitt’s Figures 1 and 2
(1995, pp. 1040, 1041). These are two different patterns of
data, but both are the result of biases.

To begin to make a case against autonomous models on
the issue of sensitivity, one would need to demonstrate that
lexical information could actually improve phoneme dis-
criminability. That is, lexical information in a word-non-
word continuum should result in improved discriminability
(greater accuracy in paired-alternative discrimination or
an increase in the number of Just Noticeable Differences
[JNDs] between the two ends of the continuum) relative
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to a nonword-nonword continuum. But no study has yet
shown evidence that lexical information can produce any
increase in the sensitivity of phoneme discrimination. So,
although SDT may seem to offer a simple method of dis-
tinguishing between autonomous and interactive models,
its use is far from straightforward and there are no SDT
studies to date that allow us to distinguish between the
models.

3.4. Can feedback improve the speed of recognition?

Even if lexical feedback cannot improve the accuracy of
recognition, it might help speed the recognition process.
But consider what would happen in a model like TRACE if
we optimized all connections to perform both phoneme
and word recognition as quickly and accurately as possible
in the absence of top-down feedback. Feedback could def-
initely speed recognition of both words and phonemes (in
exactly the same way as context or frequency could speed
word recognition in the logogen model), but the effect of
this speed-up would be for the system to respond on the
basis of less perceptual information than before. Because
feedback cannot improve the accuracy of word recognition,
however, faster responses made on the basis of less per-
ceptual information must also be less accurate. Also, fol-
lowing the arguments in the previous sections, it is only
when the top-down information is completely reliable that
there can be an increase in phoneme recognition speed
without a decrease in accuracy. Furthermore, autonomous
models such as FLMP (Massaro 1987) and Merge (which
will be presented in sect. 5 below) can engage in a similar
speed-accuracy trade-off by reducing the recognition cri-
terion for word identification or choosing to place more
emphasis on lexical than phonemic information when per-
forming phoneme identification. Thus lexical information
can speed recognition in interactive models, but no more
than the same lexical information can speed recognition in
bottom-up models.

3.5. How general is the case against feedback?

3.5.1. Visual word recognition. The case we have made
against feedback in spoken word recognition has a direct
parallel in visual word recognition. If we replace “pho-
neme” with “letter,” then essentially the same arguments
apply to reading as to speech. A review of empirical work in
reading reveals a state of affairs closely analogous to that in
speech: There is very solid evidence that lexical factors can
influence letter recognition, but little evidence that this
must be achieved via feedback. In visual word recognition
research, the interaction debate has concentrated on the
proper explanation of the Word Superiority Effect (WSE).
With brief presentations and backward masking, letters can
be more readily identified in words than in nonwords, and
more readily identified in words than when presented alone
(Reicher 1969). According to McClelland and Rumelhart’s
(1981) Interactive Activation Model (IAM), this lexical ad-
vantage can be explained by top-down feedback from lexi-
cal nodes to letter nodes. In this respect the explanation of
the WSE given by the IAM is exactly the same as the ex-
planation of lexical effects given by TRACE: Feedback
from the lexical level activates letter nodes and makes let-
ters that are consistent with words more readily identifi-
able. McClelland and Rumelhart’s interactive account is
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also consistent with the results of many studies showing that
letters in pronounceable nonwords are easier to identify
than letters in unpronounceable nonwords (e.g., Aderman
& Smith 1971) and that letters in pseudowords are easier to
identify than letters alone (McClelland & Johnston 1977).
Rumelhart and McClelland (1982) also found an advantage
for letters in wordlike all-consonant strings like “SPCT”
over nonwordlike strings such as “SLQJ.” These data are
consistent with interactive theories, but the WSE can also
be explained without interaction. This has been clear for
more than two decades (see, e.g., Massaro 1978).

Two more recent models have succeeded in capturing
the crucial empirical findings on the WSE without recourse
to feedback. First, the Activation-Verification Model
(AVM) of Paap et al. (1982) has provision for a top-down
verification process; however, its explanation of the WSE
involves no feedback at all. In the AVM, visual input first
activates a set of letters, which in turn activate a set of can-
didate words. With verification in operation, words in the
candidate set are verified against the input. However, the
verification process is assumed to be unable to operate in
the case of the brief pattern-masked displays used to study
the WSE. The AVM account of the WSE is therefore bot-
tom-up. Under these circumstances, letter identification
decisions can be made by pooling the letter identity infor-
mation with information from any lexical candidates acti-
vated above a given threshold. If the total lexical informa-
tion exceeds a second threshold, then letter identification
decisions are made on the basis of the lexical information
alone. As in the Race model, therefore, lexical effects on
letter identification come about because letter information
is available from the lexicon. However, in contrast to the
Race model, the lexical information can be derived from
more than one word candidate, and letter and word infor-
mation can be pooled together. As in the Race model, the
letter identity information read out from the lexicon is not
fed back to the initial stage of letter identification. Because
the decision process can pool lexical information from a
number of candidates, the model can account for the fact
that letters in pseudowords are better identified than in un-
pronounceable letter strings. A pseudoword is likely to ac-
tivate words containing some of the same letters in the
same positions. An unpronounceable letter string is un-
likely to activate many words and those words are unlikely
to contain the same letters in the same positions as the
pseudoword.

Second, the Dual Read Out Model (DROM) of Grainger
and Jacobs (1994) can also give a feedback-free account of
the WSE. Architecturally, this model is similar to the IAM
of Rumelhart and McClelland. Both models are IAMs with
levels corresponding to features, letters, and words. The
main difference is that, in the DROM, subjects can base
their decisions either on letter-level activation (the only
possibility in the IAM) or by reading out orthographic in-
formation from the most activated word (as opposed to a set
of words in the AVM). Grainger and Jacobs examined the
behaviour of their model both with and without top-down
feedback. Without top-down feedback, the DROM is es-
sentially the visual equivalent of the Race model, and there
is none of the pooling of letter and lexical information that
takes place in the AVM. Although Grainger and Jacobs sug-
gest that the DROM slightly underestimates the size of the
pseudoword advantage in the absence of feedback, they
point out that this problem could be overcome if there were



an extra level of orthographic representation between the
letter and word.

In contrast to the IAM, both the AVM and DROM are
what Cutler et al. (1987) term “multiple-outlet models.”
Both lexical effects and pseudoword effects can be ex-
plained by permitting decisions to be made on the basis of
either letter or lexical information, without any need for the
processes delivering this evidence to interact. In the case of
visual word recognition, there appears to be no sign of an
imminent resolution of the interaction/autonomy debate.
Although the WSE and related findings give the appear-
ance of being evidence for feedback, as we have shown, a
number of bottom-up explanations are also available. By
Occam’s principle, then, the bottom-up theories should be
preferred to the interactive theories.

3.5.2. Syntactic-semantic interaction. We have argued
that there is no need for the results of word recognition to
be made known to earlier stages. Stages of phoneme or let-
ter recognition simply do their best and pass that informa-
tion on. Nothing they do later depends on whether their
outputs agree with decisions reached at the lexical level.
However, this relationship between levels does not neces-
sarily hold throughout language processing; there may be
cases in which feedback could indeed confer advantages. In
research on syntactic processing, for example, there has
been a lively debate as to whether syntactic analysis is in-
dependent of higher-level processes such as semantics, and
this debate is by no means resolved. Note, however, that
terminology in this area can differ from that used in word
recognition. In parsing, there are theories referred to as
“autonomous” that allow some feedback from semantics to
syntax, and theories called “interactive” that maintain au-
tonomous bottom-up generation of syntactic parses! As we
shall show, however, examining the characteristics of the
models makes it possible to compare them in the frame-
work that we have been using throughout this discussion.
An important early model in this field was the “garden-
path” theory of Frazier (1979; 1987). In Frazier’s model, the
parser generates a single syntactically determined parse.
Initial choice of the parse is entirely unaffected by higher-
level processes, and Frazier placed great emphasis on this
aspect of her model: Syntax maintained autonomy from se-
mantics. However, the model also needs to explain what will
happen if this unique initial choice of parse turns out to be
wrong. In a classical garden-path sentence like Tom said
that Bill will take the cleaning out yesterday, for example,
the initial parse leads to the semantically implausible inter-
pretation that Bill is going to perform a future action in the
past. Worse still, sentences like The horse raced past the
barn fell can lead to the situation where no successful analy-
sis at all is produced, although they are grammatical sen-
tences of English. In this case, the syntactic processor sim-
ply fails to produce a complete output, in that The horse
raced past the barn is assigned a full analysis, leaving no
possible attachment for the subsequent word “fell.”
Frazier’s model assumes that in such cases the system will
need to reanalyse the input and generate an alternative
parse. But the fact that this must be a different parse from
the one that was first generated compromises the autonomy
of the model. That is, the parser needs to be told that the
earlier interpretation was unsatisfactory and that another
parse should be attempted, since otherwise it will simply
produce the same output once again. To this end, informa-
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tion must be conveyed from the interpretive mechanism to
the parser. This feedback simply takes the form of an error
message: Produce another parse, but not the same one as
last time. Higher-level processes still have no direct control
over the internal operation of the parser. Nevertheless, in
order to account for successful eventual resolution of gar-
den paths, Frazier’s “autonomous” model must incorporate
some degree of informational feedback.

Alternative models of syntactic processing include fully
interactive theories in which semantic or other higher-level
information can directly constrain the operation of the syn-
tactic parser (McClelland et al. 1989; Taraban & McClel-
land 1988). However, there is also the approach of Altmann,
Steedman, and colleagues (Altmann & Steedman 1988;
Crain & Steedman 1985; Steedman & Altmann 1989),
which the authors term “weakly interactive.” In this ap-
proach, the syntactic processor is held to generate potential
parses in a fully autonomous manner, but in parallel: The
alternative candidate parses are then evaluated, again in
parallel, against the semantic or discourse context. The in-
terpretations are constructed incrementally and continually
revised and updated, so that most alternatives can be
quickly discarded. Indeed, it was assumed that strict time
limits applied on the maintenance of parallel candidates,
and that these time limits explained why the wrong parse
could triumph in a garden-path sentence. In Altmann and
colleagues’ approach, reanalysis of garden paths requires no
constraining feedback from higher-level to syntactic pro-
cessing, since it can be achieved by repeating the same syn-
tactic generation of alternative parses but relaxing the time
limits at the selection stage. Although this model is termed
“interactive” by its authors, it does not allow feedback from
higher-level processing to influence which parse is gener-
ated. This renders it effectively more autonomous than Fra-
zier’s model.

Probably the leading current models of syntactic pro-
cessing are found among the class of constraint satisfaction
models (e.g., Boland 1997; MacDonald et al. 1994; Trueswell
& Tanenhaus 1994); these models differ in their details, but
in general share with the “weak interaction” approach the
feature that syntactic analyses are computed in parallel and
that higher-level information, though it is used early in pro-
cessing, constrains selection of syntactic structure but not
initial generation.

Boland and Cutler (1996) compared the way the labels
“autonomous” and “interactive” were used in the word
recognition and parsing literature, and concluded that
these terms were not adequate to capture the true dimen-
sions of difference between the models. The two research
areas differed, they pointed out, in whether debate about
the influence of higher-level processing concerned princi-
pally the generation of outputs by the lower-level process,
or selection between generated outputs. In word recogni-
tion, there is debate about the autonomy of the initial gen-
eration process, but relative unanimity about the availabil-
ity of higher-level information to inform the final selection
between generated candidates. In parsing, in contrast,
there is comparative agreement among models that the ini-
tial generation of syntactic structure is autonomous, but
lively debate about whether or not selection of the correct
parse takes higher-level information into account. What is
notable, however, is that to argue for the strictest autonomy
of initial syntactic processing, with the processor producing
only a single output, necessarily implies allowing for at least
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a minimal form of feedback to account for the known facts
about the processing of garden-path sentences.

Of course, a system that avoided all feedback between se-
mantics and syntax could be achieved if the parser had no
capacity limitations, so that it could pursue all parses in par-
allel. In this case, syntactic garden paths would never arise
(for further discussion of this point, see Norris 1987); but
they do arise, so this system cannot be the correct one. Here
we begin to get a crucial insight into the factors that deter-
mine the value of feedback. Our model, like all models of
word recognition, embodies the assumption that prelexical
processing can consider the full set of prelexical units —
phonemes or letters — in parallel. But consider what might
happen if phoneme recognition were a serial process in
which each of the 40-plus phonemes of English had to be
tested against the input in sequence. In such circum-
stances, an advantage might accrue if lexical information
were allowed to determine the order in which phonemes
were tested, so that lexically more probable phonemes were
tested first. Testing the most probable phoneme first could
confer a considerable advantage on the speed with which
that phoneme could be identified, at only a marginal cost to
the recognition of other phonemes if the lexical information
proved inaccurate. So, our argument against feedback in
word recognition can now be seen to rest on the important
assumption that phoneme recognition is a parallel process.
Note that this assumption also covers our earlier comments
about verification models. If the system is parallel, and not
resource-limited, then all phonemes should be fully analysed
to the best of the system’s capability. That is, there is no ad-
vantage in producing an initial low-quality analysis that is
then improved on instruction from higher levels.

From this point of view, it is clear that our argument
against feedback in word recognition cannot necessarily
be applied across the board to every relationship between
different levels of language processing. The question of
syntactic-semantic interaction has led to a different debate
than the case of prelexical versus lexical processing; models
both with and without feedback have again been proposed,
but the role of feedback is not the same in all models. The
precise function and the necessity of feedback can only be
evaluated in the light of constraints specific to the type of
processing involved.

3.6. Summary

We have argued that there are no good a priori reasons for
favouring interactive models over autonomous models of
spoken word recognition. Feedback in bias models like
TRACE is not able to improve word recognition. Interac-
tion of this type could improve phoneme recognition, but it
does so at the cost of making phonemic decisions harder
when the input is inconsistent with lexical knowledge, and
at the cost of potential misperceptions (the perception of
lexically consistent phonemes even when they did not oc-
cur in the speech input). Although feedback could poten-
tially act to improve perceptual sensitivity, recent studies
suggest that lexical context has a purely biasing effect on
phoneme identification (Massaro & Oden 1995; Pitt 1995).

We have further argued that feedback is also not re-
quired in visual word recognition. Autonomous models of
reading are to be preferred because there are no data that
require top-down interaction. It is clear that modular mod-
els are particularly well-suited to the constraints of word
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recognition. Because the full set of prelexical units (pho-
nemes or letters) can be considered in parallel, feedback
cannot improve performance at either the lexical or prelex-
ical level. In sentential processing, however, resource limi-
tations that prevent the parallel examination of all possible
parses could at least in principle make the use of feedback
beneficial. However, even here the extent of the interaction
remains an empirical issue. Adopting Occam’s razor, we
should still assume only the minimum degree of feedback
required by the data. It is also noteworthy that although the
constraints on the production of language might suggest a
role for feedback loops in that process (e.g., as a control
mechanism), it again appears that feedback is not required,
and it is not incorporated into the latest model of the
process (Levelt et al. 1999).

On these grounds alone, therefore, one should be
tempted to conclude in favour of autonomous models. But
such a conclusion cannot be adopted without examination
of the available data, since it remains possible that there are
data that can be accounted for by interactive but not by
autonomous models. We therefore turn to an examination
of this evidence, again focusing on lexical involvement in
phonemic decision making. Although it has proved difficult
to resolve the debate between interactive and autonomous
models in the visual case, new data on spoken-word recog-
nition, some of which take advantage of phenomena specific
to speech, have provided evidence that strongly favours au-
tonomous theories over interactive ones. We begin by look-
ing specifically at data that have challenged either TRACE
or the Race model, or both.

4. Challenges to TRACE and the Race model

4.1. variability of lexical effects

Because the Race model and TRACE are both designed to
account for the same general set of phenomena, few of the
findings in the literature present an insurmountable prob-
lem for either model. However, there are results showing
variability in lexical effects that appear to be more consis-
tent with the underlying principles of the Race model than
with TRACE. Cutler et al. (1987) characterized the Race
model as a multiple-outlet model. Responses can be made
via either a lexical or prelexical outlet. TRACE, on the other
hand, has only a single outlet. All phoneme identification
responses must be made by reading phonemic information
from the phoneme nodes in TRACE. One consequence of
this difference is that, according to the Race model, it
should be possible to shift attention between the two out-
lets. That is, lexical effects should not be mandatory. To the
extent that attention can be focused on the prelexical out-
let, lexical effects should be minimized. Conversely, lexical
effects should be at their greatest when attention is focused
on the lexical outlet.

This is exactly the pattern of results that has been ob-
served in a number of studies. Cutler et al. (1987) showed
that the lexical effects found in monitoring for initial pho-
nemes in monosyllabic targets were dependent on the com-
position of filler items in the experiment. Lexical effects
were only present when filler items varied in syllabic length.
There were no lexical effects with monosyllabic fillers. Cut-
ler et al. argued that the monotonous nature of the mono-
syllabic filler condition led subjects to focus their attention
at the prelexical outlet, with the effect that any potential in-



fluence of lexical information would be attenuated. This
shift in attention between outlets is a natural consequence
of the Race model architecture. However, to account for
the same effect in TRACE would require the model to be
able to modulate the overall weighting of the word-
phoneme feedback connections. (A similar suggestion has
been made for varying the weight of letter-to-word inhibi-
tion in response to experimental conditions in visual word
recognition; Rumelhart & McClelland 1982.) But if word-
phoneme feedback connections were important for the
proper functioning of the speech recognition system, it is
not clear why it should be either possible or desirable to re-
duce their effectiveness.

Further evidence that lexical effects in phoneme moni-
toring are volatile and depend on having listeners focus
their attention at the lexical level comes from a set of
experiments by Eimas et al. (1990) and Eimas and Nygaard
(1992; see also Foss & Blank 1980; Foss & Gernsbacher
1983; Frauenfelder & Segui 1989; Segui & Frauenfelder
1986). Eimas et al. (1990) found that lexical effects on
phoneme-monitoring targets in syllable-initial position in
items in lists emerged only with the inclusion of a secondary
task that oriented attention towards the lexical level. So, lex-
ical effects emerged with a secondary task of either noun
versus verb classification, or lexical decision, but not with a
secondary length-judgment task. Eimas and Nygaard
(1992) extended this work by showing that there were no
lexical effects on target detection in sentences, even with
secondary tasks. They suggested that when listening to
sentences subjects could perform the secondary task by
attending to a sentential (syntactic) level of representation.
Attention would then be allocated to this level of process-
ing, and phoneme monitoring would be based on prelexical
codes. Their data are particularly puzzling from the inter-
active standpoint. If interaction is important in the normal
process of sentence understanding, it is strange that this is
exactly the situation where it is hardest to obtain evidence
of lexical effects.

The idea that lexical effects have to be specially engi-
neered also emerges from studies of phonetic categoriza-
tion. Burton et al. (1989) found that lexical effects were
present only in the absence of complete phonetic cues.
McQueen (1991) studied lexical influences on categoriza-
tion of word final fricatives. At the end of words, top-down
effects in a model like TRACE should be at their maxi-
mum. Furthermore, the stimuli included fricatives that
were ambiguous between /s/ and /f/. With the input in
this finely balanced state, these should have been the ideal
conditions to observe the lexical influences that are pre-
dicted by a model like TRACE. However, McQueen
found that lexical effects emerged only when the stimuli
were low-pass filtered at 3 kHz. That is, stimuli had to be
not only phonetically ambiguous, but perceptually de-
graded too.

A rather weaker conclusion about the importance of
degradation in obtaining lexical effects was reached by Pitt
and Samuel (1993) in their review of lexical effects in pho-
netic categorization. Although they concluded that degra-
dation was not actually a necessary precondition for ob-
taining lexical effects, there seems to be little doubt that
lexical effects in categorization are enhanced by degrada-
tion. In both phonetic categorization and phoneme moni-
toring, therefore, lexical effects are not as ubiquitous as
might be expected from interactive models if such effects
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were due to a mechanism that could improve recognition
performance.

4.2. Facilitation versus inhibition
in phoneme monitoring

Other data that appear problematic for TRACE come from
a phoneme monitoring experiment by Frauenfelder et al.
(1990). In a study conducted in French, they had subjects
perform generalized phoneme monitoring on three differ-
ent kinds of target. Target phonemes could appear in words
after the uniqueness point (e.g., /1/ in vocabulaire), in non-
words derived from the word by changing the target pho-
neme (/t/ in vocabutaire), or in control nonwords (socabu-
taire). They argued that TRACE should predict that targets
in the derived nonwords should be identified more slowly
than in control nonwords because the lexically expected
phoneme should compete with the target owing to top-
down facilitation. According to the Race model, however,
lexical effects on phoneme identification can only be facil-
itatory. As predicted by the Race model, there was indeed
no difference between the nonword conditions, though
both were slower than the word condition.

Wurm and Samuel (1997) replicated the Frauenfelder et
al. (1990) findings but raised the possibility that inhibitory
effects might be masked because the nonwords in which in-
hibition might be expected were easier to process than the
control nonwords. They presented results from a dual task
study which were consistent with their view that the exper-
imental and control nonwords were not equally difficult.
Nevertheless, there is still no direct evidence for inhibitory
lexical effects in phoneme monitoring. We should also bear
in mind that the claim that TRACE predicts inhibition from
the lexicon is specific to the particular implementation of
TRACE rather than true of interactive models in general
(Peeters et al. 1989). We will return to this issue later when
discussing simulations of these results. For the moment we
will simply note that TRACE could be modified to incor-
porate at the phoneme level a priority rule similar to Car-
penter and Grossberg’s (1987) “two-thirds rule.” In the con-
text of a simple interactive activation model, this would
mean that top-down activation would only have an effect
when at least some bottom-up activation was present. That
is, feedback from lexical to phonemic nodes would be con-
tingent on there being at least some perceptual support for
the phoneme. The input vocabutaire would then not acti-
vate /1/ at all, and /1/ would therefore not inhibit /t/.

4.3. Compensation for coarticulation

A strong apparent challenge to autonomous models comes
from an ingenious study by Elman and McClelland (1988).
As mentioned above, a common criticism of models with
feedback is that they run the risk of misperceiving speech.
That is, if top-down information can actually determine
which lower-level representations are activated, the system
may perceive events that, although consistent with top-
down expectation, are not actually present in the real world.
In the case of TRACE, top-down activation feeding back
from lexical nodes to phoneme nodes leads to activation of
the phoneme nodes which is indistinguishable from activa-
tion produced by bottom-up input from featural informa-
tion. Elman and McClelland took advantage of this prop-
erty of TRACE to devise a test that would distinguish
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between the predictions of interactive models like TRACE
and of autonomous models like the Race model.

We have seen that lexical effects like the Ganong (1980)
effect, in which an ambiguous stimulus on a type-dype con-
tinuum is more likely to be classified in accord with the
word (type) than the nonword (dype), can be explained by
both interactive and autonomous models. However, ac-
cording to TRACE, the lexical bias will actually alter the ac-
tivation of the component phonemes. An ambiguous pho-
neme /?/ midway between /7 and /s/ will thus activate the
/{/ phoneme node in fooli? and the /s/ node in christma?.
Elman and McClelland (1988) harnessed the Ganong ef-
fect to a lower-level effect of compensation for coarticula-
tion (Mann & Repp 1981), according to which the position
of the boundary between /t/ and /k/ is closer to /k/ follow-
ing /f/ (i.e., there are more /t/ responses) and closer to /t/
following /s/ (more /k/ responses).

If the lexical bias in phonetic categorization has its locus
only at the output of phonemic information from the lexi-
con, as suggested by the Race model, the ambiguous pho-
nemes in fooli? and christma? should behave in the same
way at the prelexical level. The ambiguous phonemes are
identical and should have identical effects on a following
phoneme midway between /t/ and /k/. However, if TRACE
is correct, the lexical contexts foolish and christmas will de-
termine whether /[/ or /s/ is activated, which should, in
turn, produce an effect of compensation for coarticulation,
just as if the listener had heard a real /{7 or /s/. In line with
the predictions of the interactive model, Elman and Mc-
Clelland found evidence of compensation for coarticulation
even with the ambiguous phoneme /?/.

One possible way in which proponents of autonomous
models could avoid accepting these data as evidence against
autonomy is to suggest that the results are owing entirely to
effects operating at the prelexical level. As an illustration of
how this might be possible, Norris (1993) simulated Elman
and McClelland’s results using a simple recurrent network.
In one of the simulations, the network had no word nodes
at all. The network learned to use several phonemes of con-
text in making decisions about phoneme identity. A similar
simulation has also been reported by Cairns et al. (1995).
One might assume, as in TRACE simulations, that if there
is a bias to interpret /?/ as /[/ in the context of fooli, this
must be because of top-down feedback from a node corre-
sponding to foolish at the lexical level. But in the Norris
(1993) and Cairns et al. (1995) simulations, the phoneme
nodes themselves learned something about the statistical
properties of the language, that is, which contexts they are
most likely to appear in. It is this within-level statistical in-
formation that leads to apparent interactive effects in these
simulations.

Cairns et al. (1995) showed on the basis of an analysis of
a large corpus of spoken English that after /a/, /s/ is more
likely than /7, and after /1/, /{/ is more likely than /s/. All
of Elman and McClelland’s (1988) /s/-final words ended in
/as/ and all of their /[/-final words ended /1f/. Their mate-
rials therefore contained sequential probability biases that
could in principle be learned at the prelexical level. Elman
and McClelland’s results thus do not distinguish between
interactive and autonomous models because they can be ex-
plained either by top-down processing or by a sequential
probability mechanism operating prelexically.

Pitt and McQueen (1998) have tested these two com-
peting explanations. They used nonword contexts ending
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with unambiguous or ambiguous fricatives. The contexts
contained transitional probability biases; in one nonword /s/
was more likely than /[/, whereas in the other /[/ was more
likely than /s/. These contexts were followed by a word-
initial /t/-/k/ continuum. Categorization of the ambiguous
fricative reflected the probability bias. There was also a shift
in the identification function for the following /t/-/k/ con-
tinuum, suggesting that compensation for coarticulation
was being triggered by the probability bias. These results
lend support to the view that Elman and McClelland’s
(1988) results were owing to transitional probability biases
rather than to the effects of specific words. The original re-
sults can therefore no longer be taken as support for inter-
active models.

The transitional probability effect is consistent with both
autonomous models (where the probability bias is learned
prelexically) and interactive models (where the bias could
be due either to top-down connections from the lexicon
or to a prelexical sensitivity to sequential probabilities).
The compensation for coarticulation data presented so far
therefore does not distinguish between TRACE and the
Race model. But other conditions tested by Pitt and Mc-
Queen (1998) produced data that challenge interactive but
not autonomous models. Two word contexts were used
(juice and bush) where the transitional probabilities of /s/
and /[/ were matched. There was no shift in the stop iden-
tification function following jui? and bu?, suggesting that
the compensation for coarticulation mechanism is immune
to effects of specific lexical knowledge. Crucially, however,
there were lexical effects in the identification of the am-
biguous fricative (more /s/ responses to jui? than to bu?).

These data are problematic for TRACE, since the model
predicts that if the lexicon is acting top-down to bias frica-
tive identification, the changes in activation levels of pho-
neme nodes produced by feedback should also trigger the
compensation for coarticulation process. TRACE is there-
fore unable to handle the dissociation in the word contexts
between the lexical effect observed in fricative labelling and
the absence of a lexical effect in stop labelling. Further-
more, if TRACE were to explain both lexical effects in
words and sequential probability effects in nonwords as the
consequences of top-down connections, the model would
be unable to handle the dissociation between the compen-
sation effect in the nonword contexts and the lack of one in
the word contexts. This latter dissociation therefore sug-
gests that sensitivity to sequential probabilities should be
modelled at the prelexical level in TRACE. Consistent with
this view is a recent finding of Vitevitch and Luce (1998).
They observed, in an auditory naming task, different se-
quential probability effects in words and nonwords. They
argued that the facilitatory effects of high-probability
sequences observed in nonwords were due to prelexical
processes, whereas the inhibitory effects of high-probabil-
ity sequences observed in words were due to the effects of
competition among lexical neighbors sharing those (high-
probability) sequences. But even if the compensation effect
in nonword contexts could thus be explained in TRACE by
postulating processes sensitive to sequential probabilities at
the prelexical level, TRACE would remain unable to ex-
plain the dissociation in the word contexts between the lex-
ical effect in fricative identification and the absence of lex-
ical involvement in stop identification.

Pitt and McQueen’s compensation data are, however, not
problematic for the Race model. If the compensation for



coarticulation process is prelexical, and there is sensitivity
at that level to sequential probabilities (as the results of
Vitevitch & Luce, 1998, also suggest), the Race model can
explain the nonword context results. Also in the Race
model, fricative decisions in the word contexts can be based
on output from the lexicon, but in line with the data, the
model predicts that lexical knowledge cannot influence
the prelexical compensation process. Clearly, however, the
Race model would require development in order to give a
full account of these data (specifically it requires the inclu-
sion of prelexical processes that are sensitive to phoneme
probabilities and a prelexical compensation mechanism as
in the Norris and the Cairns et al. simulations). Neverthe-
less, Pitt and McQueen’s nonword context results clearly
undermine what had seemed to be the strongest piece of
evidence for interaction. Furthermore, the word context
results undermine models with feedback. The study also
serves as a cautionary reminder that low-level statistical
properties of the language can give rise to effects that can
easily masquerade as top-down influences.

4.4. Phonemic restoration and selective adaptation

Samuel (1997) has recently reported data that he claims ar-
gue strongly for interaction. Using a phoneme restoration
paradigm, he presented listeners with words in which a
given phoneme (/b/ or /d/) had been replaced by noise, and
showed that these words produced an adaptation effect:
There was a shift in the identification of stimuli on a /b1/-/d1/
continuum relative to the pre-adaptation baseline. There
was no such effect when the phonemes were replaced by si-
lence. Samuel argued that the noise-replaced phonemes
were being perceptually restored, and that these restored
phonemes were producing selective adaptation, just as if
the actual phonemes had been presented. In support of his
claim that these adaptation effects have a perceptual locus,
Samuel showed that the adaptation effect observed with in-
tact adaptors was not influenced by lexical factors. How-
ever, the main problem in determining the implications of
this study for the question of interaction is that, in contrast
to the compensation for coarticulation effect studied by El-
man and McClelland (1988), we do not know the locus of
the adaptation effect in this situation. Although it is clear
that there are low-level components of selective adaptation
(e.g., Sawusch & Jusczyk 1981), recent results suggest that
adaptation operates at a number of different levels in the
recognition system (Samuel & Kat 1996), including more
abstract levels (labelled “categorical” by Samuel & Kat).

It remains to be established what level(s) of processing
are responsible for the adaptation observed in Samuels
(1997) restoration study. If this adaptation effect is not in-
fluencing prelexical processing, it would not inform us
about interaction. Indeed, the model we will present below
could account for these data by assuming that adaptation
with restored phonemes has its main influence on an out-
put process, where categorical decisions are made. Consis-
tent with Samuel’s experiments with intact adaptors, we
would not expect to see lexical effects where phoneme cat-
egorization had been determined by a clear acoustic signal.

A further problem is that the pattern of adaptation pro-
duced by the restored phonemes differs somewhat from
standard adaptation effects. Normal adaptation effects are
usually found almost exclusively in the form of a boundary
shift (e.g., Samuel 1986; Samuel 1997, Experiment 1).
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However, in the condition showing the greatest restored
adaptation effect, the shift is practically as large at the con-
tinuum endpoints as at the boundary. The small shift that
can be induced by a restored phoneme appears to take the
form of an overall bias not to respond with the adapted pho-
neme.

Samuel’s results contrast with those of Roberts and Sum-
merfield (1981) and Saldafia and Rosenblum (1994), who
used the McGurk effect (McGurk & McDonald 1976) to
investigate whether adaptation was driven by the acoustic
form of the input or by its phonemic percept. The Saldafia
and Rosenblum study took advantage of the fact that an au-
ditory /ba/ presented with a video of a spoken /va/ is per-
ceived as /va/. However, adaptation was determined by the
auditory stimulus and not by the phonemic percept. Even
though the combination of auditory /ba/ and visual /va/ was
perceived as /va/ all of the time by 9 out of 10 of their sub-
jects, the effect of adaptation in the Auditory + Visual case
was almost identical (in fact, marginally bigger in the A +
V case) to that with an auditory /ba/ alone. There was no
trace of any top-down effect of the percept on the adapta-
tion caused by the auditory stimulus. (Although these stud-
ies show that adaptation does not depend on the phonemic
percept, see Cheesman & Greenwood, 1995, for evidence
that the locus of the effect can indeed be phonemic or pho-
netic rather than acoustic.) This might suggest that output
or response processes cannot be adapted, however it is also
consistent with the view that the primary locus of adapta-
tion is acoustic/phonetic and adaptation at an output level
can only be observed in the absence of acoustic/phonetic
adaptation.

Thus to draw any firm conclusions about interaction from
Samuel’s restoration study we would need to establish both
that adaptation was a genuinely prelexical effect and that
the pattern of adaptation observed following restoration
was identical to that produced by phonemic adaptation.
Neither of these points has been properly established.

4.5. Lexical effects on phonemic decisions in nonwords

Overall, the Race model fares well in explaining why pho-
neme identification should be easier in words than non-
words. However, some recently reported studies also show
lexical effects in the processing of nonwords which present
severe problems for the Race model.

4.5.1. Phonetic categorization. Data from Newman et al.
(1997) from the phonetic categorization task may present a
challenge to the Race model. Their study employed a vari-
ant on the Ganong effect. Instead of comparing word-non-
word continua, they examined nonword-nonword continua,
where the nonwords at each continuum endpoint varied in
their similarity to real words. For example, the continuum
gice-kice, where gice has more lexical neighbors than kice,
was compared with the continuum gipe-kipe, where the op-
posite endpoint, kipe, had the higher neighborhood density.
Newman et al. (1997) found that there were more re-
sponses in the ambiguous region of the continuum consis-
tent with the endpoint nonword with a denser lexical neigh-
borhood (i.e., more /g/ responses to gice-kice and more /k/
responses to gipe-kipe). According to the Race model, there
should be no lexical involvement in these nonword deci-
sions.

However, as Vitevitch and Luce (1998) point out, there
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is a high positive correlation between lexical neighborhood
density and sequential probability: Common sequences of
phonemes will tend to occur in many words, so nonwords
with dense lexical neighborhoods will tend to contain high
probability sequences. The results of both Pitt and Mc-
Queen (1998) and Vitevitch and Luce (1998) suggest that
the prelexical level of processing is sensitive to sequential
probabilities (see sect. 4.3). It is therefore possible that
Newman et al.’s results may reflect this prelexical sensitiv-
ity. If so, they would not be inconsistent with the Race
model. It remains to be established whether the apparent
lexical involvement in nonword decisions observed by New-
man et al. (1997) is due to the effects of lexical neighbor-
hood density or to a prelexical sensitivity to sequential prob-
ability. Only in the former case would these results then
pose a problem for the Race model. The results would,
however, be compatible with TRACE no matter which level
of processing proves responsible for the effect.

4.5.2. Phoneme monitoring. Connine et al. (1997) have
shown that monitoring for phonemes occurring at the end
of nonword targets is faster the more similar the nonwords
are to real words. In their experiment, nonwords were de-
rived from real words by altering the initial phonemes of
those words by either one feature on average or by six fea-
tures on average (creating, for example, gabinet and mabi-
net from cabinet). Monitoring latencies were faster in
these derived nonwords than in control nonwords, and the
single-feature-change nonwords led to faster responses
than the multi-feature-change nonwords. Responses to
targets in all nonwords were slower than those to targets
in the real words from which they were derived. Accord-
ing to the Race model, the lexical route should not oper-
ate at all for targets in nonwords, so monitoring latencies
should be unaffected by the similarity of the nonwords to
real words. This means that the first-past-the-post Race
model, in which responses must be determined by either
the phonemic or the lexical route, can no longer be sus-
tained. Interactive models like TRACE, however, predict
increasing top-down involvement in nonwords and hence
faster monitoring responses the more similar nonwords
are to words.

Wurm and Samuel (1997) have also shown that phoneme
monitoring is faster in nonwords that are more like real
words than in nonwords that are less like real words. It is
important, however, to point out that this effect is not the
same as that found by Connine et al. (1997). In the latter
study, the words and nonwords all shared the same target
phoneme (e.g., the /t/ in cabinet, gabinet, and mabinet). In
Wurm and Samuel’s (1997) study, however, as in the study
by Frauenfelder et al. (1990) on which it was based, the
nonwords and the words on which they were based were
designed to differ on the crucial target phoneme, that s, the
target in the nonwords did not occur in the base word (e.g.,
the /t/ in both vocabutary and socabutary mismatches with
the /1/ in vocabulary). In these cases, therefore, the lexical
information specifying an /1/ could not possibly make de-
tection of the /t/ easier; it could only hinder detection of the
/t/ (but, as discussed in sect. 4.2, both Frauenfelder et al.
1990 and Wurm & Samuel 1997 failed to find this inhibi-
tion). The facilitation that Wurm and Samuel found (e.g.,
faster /t/ responses in vocabutary than in socabutary) is
thus different from Connine et al.’s (1997) finding and is
probably due, as argued by Wurm and Samuel, to an atten-
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tional effect that makes more wordlike strings easier to
process.

4.6. Subcategorical mismatch

A study by Marslen-Wilson and Warren (1994) is particu-
larly important because it provides evidence against both
TRACE and the Race model. This study, based on earlier
work by Streeter and Nigro (1979) and Whalen (1984;
1991), examined subcategorical phonetic mismatch (Whalen
1984) and the differential effects of that mismatch in words
and nonwords. Streeter and Nigro cross-spliced the initial
CV from a word like faded with the final syllable of a word
like fable. The cross-splice creates conflicting phonetic cues
to the identity of the medial consonant /b/; the transition
from the first vowel provides cues appropriate to /d/ rather
than /b/. A parallel set of stimuli was constructed from non-
words. Interestingly, the phonetic mismatch slowed audi-
tory lexical decisions to the word stimuli, but not to the non-
word stimuli. A similar, though nonsignificant, interaction
between phonetic mismatch and lexical status was found by
Whalen (1991). The design of Marslen-Wilson and War-
ren’s study is rather more complicated, but it will be de-
scribed in some detail since this will be essential for under-
standing the simulations presented later.

The critical stimuli used in Marslen-Wilson and Warren’s
experiments were based on matched pairs of words and
nonwords like job and smob. Three experimental versions
of these stimuli were constructed from each word and non-
word by cross-splicing different initial portions of words
and nonwords (up to and including the vowels) onto the fi-
nal consonants of each critical item. These initial portions
could either be from another token of the same word/non-
word, from another word (jog or smog), or from another
nonword (jod or smod). The design of the materials is
shown in Table 1, which is based on Table 1 from Marslen-
Wilson and Warren (1994). Marslen-Wilson and Warren
performed experiments on these materials using lexical de-
cision, gating, and phonetic categorization tasks. The im-
portant data come from the lexical decision and phonetic
categorization experiments using materials where the crit-
ical final phonemes were voiced stops. In both of these
tasks, the effect of the cross-splice on nonwords was much
greater when the spliced material came from a word
(W2N1) than from a nonword (N3N1), whereas the lexical
status of the source of the cross-spliced material (W2W1 vs.

Table 1. Experimental conditions in Marslen-Wilson and Warren
(1994) and McQueen et al. (1999a)

Item type Notation Example
Word job
1. Word 1 + Word 1 WIW1 job + job
2. Word 2 + Word 1 Wa2w1 jog + job
3. Nonword 3 + Word 1 N3W1 jod + job
Nonword smob
1. Nonword 1 + Nonword 1 NIN1 smob + smob
2. Word 2 + Nonword 1 W2N1 smog + smob
3. Nonword 3 + Nonword 1 N3N1 smod + smob

Note. Items were constructed by splicing together the underlined
portions.



N3W1) had very little effect for words. Within cross-spliced
nonwords, therefore, there was an inhibitory lexical effect:
Performance was poorer when the cross-spliced material in
the nonword came from a word than when it came from an-
other nonword.

The implication of this result for the Race model should
be clear. Phonemic decisions about nonword input can only
be driven by the prelexical route. They should therefore
be unaffected by the lexical status of the items from which
the cross-spliced material is derived. But these results are
also problematic for TRACE. Marslen-Wilson and Warren
(1994) simulated their experiments in TRACE. They showed
that the TRACE simulations deviated from the data in a
number of important respects. The primary problem they
found was that TRACE predicted a difference between the
cross-spliced words (poorer performance on W2W1 than
on N3W1) which was absent in the human data. TRACE
also overestimated the size of the inhibitory lexical effect in
the cross-spliced nonwords.

McQueen, Norris, and Cutler (1999a) reported four ex-
periments using the same design as Marslen-Wilson and
Warren (1994). Although these experiments were con-
ducted in Dutch, the materials were modelled closely on
those used by Marslen-Wilson and Warren.

McQueen et al. found that the interaction between lexi-
cal status and the inhibitory effect of competitors could be
altered by subtle variations in experimental procedure.
When they used a lexical decision task to emphasize lexical
processing, there was a clear and reliable mismatch effect
that interacted with the lexical status of the cross-spliced
portions in nonwords but not in words, just as in Marslen-
Wilson and Warren’s experiment. However, in experiments
using phoneme monitoring and phonetic categorization,
respectively, McQueen et al. failed to replicate the mis-
match effects. McQueen et al. noted that there were two
differences between their categorization experiment and
that of Marslen-Wilson and Warren. First, Marslen-Wilson
and Warren had varied the assignment of responses to left
and right hands from trial to trial, whereas McQueen et al.
had kept the assignment constant throughout the experi-
ment. A second difference was that McQueen et al. used
only unvoiced stops (/p,t,k/) as final segments, whereas
Marslen-Wilson and Warren had used both voiced and un-
voiced stops. Both of these differences would have made
the task harder in Marslen-Wilson and Warren’s study. Mc-
Queen et al. therefore ran a further experiment in which
they incorporated a wider range of targets and varied the
response hand assignment. Under these conditions, Mc-
Queen et al. were able to produce an inhibitory lexical ef-
fect in cross-spliced nonwords. As in the Marslen-Wilson
and Warren experiments, responses to targets in W2N1
nonwords were slower than responses to targets in N3N1
nonwords.

The inhibitory effect of lexical competitors on phonemic
decisions in nonwords therefore follows a similar pattern to
the facilitatory effects of lexical status seen in phoneme
monitoring. Cutler et al. (1987), for example, showed that
the size of the facilitatory lexical effect (faster responses to
targets in words than in nonwords) can be modulated by
task demands. McQueen et al. have shown that inhibitory
lexical effects in cross-spliced nonwords can be modulated
in a similar manner. As pointed out earlier, the variability of
lexical involvement in phonemic decision making is prob-
lematic for TRACE. All lexical effects in phoneme deci-
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sions to targets in nonwords, even if those effects are vari-
able, pose problems for the Race model.

4.7. Summary

This review demonstrates that neither TRACE nor the
Race model is now tenable. TRACE is challenged by the
findings showing variability in lexical effects, by the lack of
inhibitory effects in nonwords in Frauenfelder et al. (1990),
by the latest data on compensation for coarticulation, and
by the data on subcategorical mismatch (Marslen-Wilson &
Warren 1994; McQueen et al. 1999a). Marslen-Wilson and
Warren explicitly attempted to simulate their results in
TRACE, without success. The Race model, similarly, is
challenged by the demonstrations of lexical involvement in
phonemic decisions on nonwords. Three recent studies
(Connine et al. 1997; Marslen-Wilson & Warren 1994; Mc-
Queen et al. 1999a) all show lexical effects in decisions
made to segments in nonwords (as also may Newman et al.
1997). Such effects are incompatible with the Race model’s
architecture whereby the lexical route can only influence
decisions to segments in words.

There would thus appear to be no available theory that
can give a full account of the known empirical findings in
phonemic decision making. In the following section we will
show, however, that it is possible to account for the data in
a model that reflects the current state of knowledge about
prelexical processing in spoken-word recognition, and we
will further demonstrate that our proposed new model suc-
cessfully accounts for a wide range of results. Moreover, we
will argue that this new model — the Merge model — re-
mains faithful to the basic principles of autonomy.

5. The Merge model

5.1. The model’s architecture

The models we have contrasted above represent extreme
positions with regard to the relationship between lexical
and prelexical processing in phonemic processing. TRACE
has an architecture in which the lexical level is directly
linked via hardwired connections to the prelexical level, and
responses must be susceptible to whatever lexical informa-
tion is available. The Race model has an architecture in
which responses via the lexical or the prelexical level are
completely independent. Both architectures have now
been found wanting.

What is required is, instead, a model in which lexical and
prelexical information can jointly determine phonemic
identification responses. Such a model must be able to al-
low for variability in the availability of lexical information,
such that responses to a given phoneme in a given input
may be susceptible or not to lexical influence, as a function
of other factors. In other words, the model must not man-
date lexical influence by fixed connections from the lexical
to the prelexical level, but neither must it avoid all possibil-
ity of lexical and prelexical codetermination of responses by
making lexical information only available via successful
word recognition. The model must moreover capture this
variability in just such a way as to be able to predict how
strong lexical influences should be in different situations.

The required class of models consists of those in which
the outputs of processes that are themselves fully au-
tonomous can be integrated to determine a response. Such
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models have been proposed in several areas. A general
model of perception incorporating such an approach, for
instance, is the FLMP (Massaro 1987; 1998), in which mul-
tiple sources of information are simultaneously but inde-
pendently evaluated, and continuous truth values are as-
signed to each source of information as a result of the
evaluation process. Specifically with respect to lexical and
prelexical processing, an example of an integration model is
Norris’s (1994a) model of the transformation of spelling to
sound in the pronunciation of written words, or the Activa-
tion Verification Model of reading (Paap et al. 1982).

Applied to the issue of phonemic decision making, the in-
tegration approach allows prelexical processing to proceed
independently of lexical processing but allows the two pro-
cesses to provide information that can be merged at the de-
cision stage. In the Merge model, prelexical processing
provides continuous information (in a strictly bottom-up
fashion) to the lexical level, allowing activation of compati-
ble lexical candidates. At the same time, this information is
available for explicit phonemic decision making. The deci-
sion stage, however, also continuously accepts input from
the lexical level and can merge the two sources of informa-
tion. Specifically, activation from the nodes at both the pho-
neme level and the lexical level is fed into a set of phoneme-
decision units responsible for deciding which phonemes
are actually present in the input. These phoneme decision
units are thus directly susceptible to facilitatory influences
from the lexicon, and by virtue of competition between de-
cision units, to inhibitory effects also.

In Merge there are no inhibitory connections between
phoneme nodes at the prelexical level. The absence of in-
hibitory connections between phonemes at this level is es-
sential in a bottom-up system. Inhibition at this level would
have the effect of producing categorical decisions that
would be difficult for other levels to overturn; information
vital for the optimal selection of a lexical candidate could be
lost. If a phoneme is genuinely ambiguous, that ambiguity
should be preserved to ensure that the word that most
closely matches the input can be selected at the lexical level.
For example, if phoneme is pronounced as /Ponim/ where
/?/ is slightly nearer a /v/ than /{/, then inhibition between
phonemes would leave the representation /vonim/ to be
matched against the lexicon. This would be a much worse
match to phoneme than a representation that preserved the
input as giving partial support to both /v/ and /f/. There is,
however, between-unit inhibition at the lexical level and in
the decision units. The lexical-level inhibition is required to
model spoken-word recognition correctly, and the decision-
level inhibition is needed for the model to reach unam-
biguous phoneme decisions when the task demands them.

This need to have between-unit inhibition at the decision
level, but not at the level of perceptual processing itself, is
in itself an important motivation for the Merge architec-
ture. Perceptual processing and decision making have dif-
ferent requirements and therefore cannot be performed
effectively by the same units. So even if the question of in-
teraction were not an issue, any account of phonemic deci-
sion making should separate phonemic decision from
phonemic processing. The structure of Merge thus seems
essential for maximum efficiency.

The empirical demonstration of lexical effects on non-
words does not constitute a problem for the Merge model,
since on this account nonwords activate lexical representa-
tions to the extent that they are similar to existing words;
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this additional activation can facilitate phoneme detection.
In the Merge model it is not necessary to wait (as in the
Race model) until one of the two routes has produced a clear
answer, since the output of those routes is continuously
combined. However it is also not necessary to compromise
the integrity of prelexical processing (as in TRACE) by al-
lowing it to be influenced by lexical information. Further,
Merge is prevented from hallucinating by the incorporation
of a bottom-up priority rule. This rule, following the sug-
gestion of Carpenter and Grossberg (1987), prevents deci-
sion nodes from becoming active at all in the absence of
bottom-up support, thus ensuring that phonemic decisions
are never based on lexical information alone. The Merge
model therefore allows responses to be sensitive to both
prelexical and lexical information, but preserves the essen-
tial feature of autonomous models — independence of
prelexical processing from direct higher-level influence.

One might argue that the addition of phoneme decision
nodes opens the Merge model to attack from Occam’s ra-
zor. Why have separate representations of the same infor-
mation at both the prelexical and the decision levels — that
is, unnecessary multiplication of entities? The addition of
phoneme decision nodes certainly makes Merge more
complex than the Race model, but their addition is neces-
sary in order to account for the data that the Race model
cannot explain. As we have already argued, bottom-up flow
of information from prelexical to lexical levels is logically
required for the process of spoken word recognition; fur-
thermore, the decision units, which should have between-
unit inhibition, must be separate from the prelexical units,
which should have no inhibition. Merge’s decision nodes, and
the connections from both prelexical and lexical levels to
these nodes, are the simplest additions to the logically
demanded structures which allow one to describe the avail-
able data adequately. The Merge architecture is thus bot-
tom-up and also optimally efficient.

5.2. Merge simulations

In order to study the behaviour of the Merge model, we
constructed a simple network that could be readily manip-
ulated and understood.

The Merge network is a simple competition-activation
network with the same basic dynamics as Shortlist (Norris
1994b). The network has no intrinsic noise; we are inter-
ested in modelling RT in tasks that are performed with high
levels of accuracy. We acknowledge that a noise-free net-
work is unlikely to be suitable for modelling choice behav-
iour with lower levels of accuracy, but this is independent
of the main architectural issues being dealt with here (Mc-
Clelland 1991). As Figure 1 shows, both the word and pho-
neme nodes are connected by facilitatory links to the ap-
propriate decision nodes. But there is no feedback from the
word nodes to the prelexical phoneme nodes. In the simu-
lations of subcategorical mismatch, the network was hand-
crafted with only 14 nodes: six input phoneme nodes cor-
responding to /d3/, /p/, /g/, /b/, /v/, and /z/; four phoneme
decision nodes; and four possible word nodes: job, jog, jov,
andjoz. The latter two word nodes simply represent notional
words ending in phonemes unrelated to either /b/ or /g/.

The input in these simulations is job. The different ex-
perimental conditions are created by varying the set of word
nodes that are enabled. By enabling or disabling the word
node for job, the same input can be made to represent ei-
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Figure 1. The Merge model. The basic architecture is shown, to-
gether with the connectivity patterns for the node types used in
the simulations. Activation spreads from the input nodes to the lex-
ical nodes and to the phoneme decision nodes, and from the lexi-
cal nodes to the phoneme decision nodes; inhibitory competition
operates at the lexical and phoneme decision levels. Excitatory
connections, shown with bold lines and arrows, are unidirectional;
inhibitory connections, shown with fine lines and closed circles,
are bidirectional.

ther a word or anonword, and by altering whether jog is en-
abled the same stimulus can be given a lexical competitor
or not.

We will present only the activation levels of the units in
the network, rather than attempting to model explicitly the
mapping of these activations onto response latencies. A
problem that arises in simulating reaction-time data in
models like Shortlist or TRACE is that activation levels can
never be translated directly into latencies. The simplest so-
lution is to assume that responses are made whenever acti-
vations pass a given threshold. In presenting their simula-
tions, Marslen-Wilson and Warren (1994) plotted response
probabilities derived from the Luce choice rule (Luce
1959) rather than the underlying activations. Response
times can then be derived by thresholding these probabili-
ties.

There are a number of problems associated with the use
of the Luce choice probabilities in the decision mechanism
of a model of continuous speech recognition. One simple
problem is that the Luce rule introduces a second “compe-
tition” process into the recognition process in addition to
the inhibitory competition already present. In the Luce cal-
culations, other active candidates compete with the most
active candidate and reduce its response probability. The
extent of this competition is dependent on the exponent
used in the Luce choice rule. As the exponent increases
(this is equivalent to decreasing the amount of noise in the
system), so accuracy is increased and the influence of com-
petitors decreases. In Marslen-Wilson and Warren’s (1994)
TRACE simulations of lexical decision, the error rates for
WIW1 stimuli, for example (in Fig. 12, p. 669), are about
ten times greater than in the human data. A more appro-
priate choice of exponent would have greatly reduced the
competition effect introduced by the Luce rule.

The tasks we are simulating are performed with a high
level of accuracy that varies little between conditions. The
crucial effects are all reflected in differences in latency
rather than accuracy. A simple response threshold, there-
fore, provides the most straightforward means of deriving a
response from variations in activation level, without the ad-
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ditional complexity and assumptions of the Luce rule. Note
that although it is easy to make the long-term average be-
haviour of a connectionist network follow the Luce choice
rule by adding noise and then selecting the node with the
largest activation (Page 2000; McClelland 1991), there is no
such obvious way to derive response probabilities directly
from network activations on a single trial. Probabilities can
be calculated and used to determine latency (cf. Massaro &
Cohen 1991), but this would add a very complicated addi-
tional mechanism to any connectionist model. Further-
more, as Shortlist simulations presented in Norris (1994b)
show, activations for words in continuous speech often rise
transiently to quite high levels before being suppressed by
other candidates. In a complete account of the decision
process, activation should therefore be integrated over
time. However, for present purposes, the simple threshold
can serve as a measure of recognition point, or of YES re-
sponses in lexical decision. Negative responses in lexical de-
cision are slightly more problematic. Here we adopt the
procedure proposed by Grainger and Jacobs (1996) for vi-
sual lexical decision. Grainger and Jacobs suggest that NO
responses are made after some deadline has elapsed, but
that the deadline is extended in proportion to the overall
level of lexical activity. Ideally we would have a quantitative
implementation of the decision process so that we could fit
the complete model directly to the data. However, the de-
cision component of the model would, in itself, require
several extra parameters. We therefore present only the ac-
tivations from the network and show that, given the as-
sumption that decisions are made when activations pass a
threshold (or, in the case of NO responses, when a deadline
is reached), the patterns are qualitatively consistent with
the experimental data.

We present detailed simulation results from the theoret-
ically most critical sets of data described above: the subcat-
egorical mismatch findings of Marslen-Wilson and Warren
(1994) and McQueen et al. (1999a), and the phoneme mon-
itoring results of Connine et al. (1997) and Frauenfelder et
al. (1990). These studies provide very highly constraining
data against which to evaluate Merge. The subcategorical
mismatch data have already led us to reject the Race model
and, according to Marslen-Wilson and Warren’s simula-
tions, have eliminated TRACE too. It is thus crucial to es-
tablish whether Merge can simulate the effects of mis-
match, lexical status, and their interaction observed in those
studies, and also the dependency of the inhibitory lexical ef-
fect on task demands. Likewise, the data of Connine et al.
(1997) are important to simulate because they also led us to
reject the Race model. This simulation will allow us to es-
tablish whether Merge can provide a bottom-up account for
graded lexical effects in nonwords. The results of Frauen-
felder et al. (1990) are similarly theoretically important be-
cause they offer a crucial challenge to TRACE and allow
comparison of facilitatory and inhibitory effects in pho-
neme monitoring.

5.2.1. Subcategorical mismatch simulation. As stated, the
input was always job. In these simulations, only two of
the word nodes were ever enabled in a given condition. In
the WIW1 and the W2W1 conditions, the nodes jog and job
were enabled. In the N3W1 condition, the nodes jov and
job were enabled. For both NIN1 and N3N1, jov and joz
were enabled, and for W2N1, jog and joz were enabled. The
nodes jov and joz acted to balance the overall potential for
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lexical competition in the different simulations. They re-
flect the fact that, in addition to the matched experimental
words, the language will usually contain other words be-
ginning with the same two phonemes.

Input to the network consisted of four vectors repre-
senting the total for each phoneme node for each time slice.
Under normal, unspliced conditions, the input to each pho-
neme built up over three time slices: 0.25, 0.5, and 1.0. It
then remained at its peak value through the remaining time
slices. The first phoneme began at time slice 1, the second
at time slice 4, and the third at slice 7. This form of input is
analogous to that used in Shortlist, where each phoneme
produces the same bottom-up activation regardless of its
position in the input sequence. Simulations in which acti-
vation reached a peak and then decayed symmetrically
were also carried out. However, although this kind of input
required different parameters, it made little difference to
the qualitative nature of the simulations.

For the cross-splice conditions we assumed that the total
support from the competing /b/ and /g/ phonemes re-
mained 1.0. At slice 7 the input for /g/ was 0.15, where it
stayed for the remainder of the input. The input for /b/ had
0.15 subtracted from all slices from 7 onwards. So, accord-
ing to this scheme, a /b/ in a cross-spliced condition
reached a final activation value of only 0.85 instead of 1.0,
whereas there was an input of 0.15 to the competing /g/
phoneme from the cross-splice onwards. The main aspect
of the input representations that alters the outcome of the
simulations is the magnitude of the support for the com-
peting phoneme in the cross-splice condition. If the cross-
splice support for the /g/ is weighted more heavily relative
to the /b/ (e.g., 0.25 vs. 0.75), the simulations will be more
likely to show equivalent effects of the splice for words and
nonwords across the board. With too small a cross-splice
the effects will disappear altogether. However, there is a
large range of parameters in between where the general be-
haviour of the model remains similar.

As noted above, any effective decision mechanism oper-
ating on the lexical output of Shortlist would need to per-
form some integration over time. However, although we did
not introduce an integrating decision mechanism at the lex-
ical level in Merge, we did find it necessary to add some in-
tegration, or momentum, at the phoneme decision nodes.
The decision nodes were run in the Shortlist-style reset-
mode (Norris et al. 1995). That is, the activation levels for
these nodes were reset to zero at the start of each new time
slice. On its own, this generally leads to a rapid and almost
complete recovery from the effect of the cross-splice. In or-
der to make the decision process sensitive to the activation
history, some proportion of the final level of activation on
each slice was fed in along with the input to the next slice.
This “momentum” term controlled the extent to which the
decision nodes integrated their input over time. In the sim-
ulations both the word and decision levels cycled through
15 iterations of the network for each time-slice of input.
However, because the input phoneme units had no be-
tween-phoneme inhibition this level did not cycle. Phoneme
activations for each slice were calculated by multiplying the
previous activation by the phoneme level decay and then
adding in the new input.

The set of parameters that produced the simulations
shown in Figures 2 and 3 is listed in the Appendix. The most
difficult aspect of the simulations was to find parameters
that would give a good account of the phonetic categoriza-
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Figure 2. Simulation of lexical decisions in the subcategorical

mismatch experiments. In all cases, the labels refer to the condi-
tions used in those experiments, as shown in Table 1. Figure 2A
shows the activation levels for lexical nodes given unspliced job as
input. WIW1 shows the activation of the job-node when it was
switched on as a possible word, and WIW1 comp shows the acti-
vation of the node for the lexical competitor jog, which was also
switched on in this simulation. NIN1 shows the activation of the

jov-node when neither job nor jog was a word. Figure 2B shows

the activation levels for lexical nodes given cross-spliced job as in-
put (i.e., with information in the vowel consistent with a following
/9/). W2W1 and W2W1 comp show the activation levels of the job-
and jog-nodes, respectively, when both were switched on as words.
N3W1I shows the activation of the job-node when job was a word
and jog was a nonword. N3W1 comp thus shows the activation of
the other activated word in this condition, that of jov. W2N1 shows
the activation of the jog-node when jog was switched on as a word,
but job was not. Finally, N3N1 shows the activation of the jov-node
when neither job nor jog was a word.

tion data. The basic pattern for the lexical decision data was
robust and could be reproduced by a wide range of para-
meters. Correct adjustment of the momentum term in the
decision units proved to be critical for these simulations.
Note that the simulations never produced the opposite pat-
tern from that observed in the data, but often the phonetic
categorization responses to N3N1 and W2N1 did not differ
significantly (as in McQueen et al.’s experimental data).
Figure 2 provides simulations of the lexical decision data.
Figure 2A shows the activation functions for lexical nodes
given unspliced job as input; Figure 2B shows lexical acti-



vation given cross-spliced job as input (i.e., a token con-
taining information in the vowel specifying a /g/ instead of
a/b/). In unspliced WIW1, job is a word in the Merge lex-
icon, and its activation rises quickly to an asymptote near
0.25. If we assume a response threshold of 0.2, lexical deci-
sions should be faster in this condition than with the cross-
spliced words W2W1 and N3WI1. This reflects the basic
mismatch effect observed for words in the human data, as
shown in Table 2. With the same response threshold, as also
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Figure 3. Simulation of phonemic decisions in the subcategori-
cal mismatch experiments. In all cases, the labels refer to the con-
ditions used in those experiments, as shown in Table 1. Figure 3A
shows the activation levels for the /b/ and /g/ phoneme decision
nodes given unspliced job as input. WIW1 shows the activation
of the /b/-node when job was switched on as a possible word in the
lexicon, and WIWI1 comp shows the activation of the /g/-node,
corresponding to the lexical competitor jog, which was also
switched on in this simulation. NIN1 and NIN1 comp show the
activations of the /b/- and /g/-nodes, respectively, when neither
job nor jog was a word. Figure 3B shows the activation levels for
/b/ and /g/ phoneme decision nodes given cross-spliced job as in-
put (i.e., with information in the vowel consistent with a following
/9/). W2W1 and W2W1 comp show the activations of the /b/- and
/g/-nodes, respectively, when both job and jog were switched on
as words. N3W1 shows the activation of the /b/-node when job was
a word and jog was a nonword. N3W1 comp shows the activation
of the /g/-node in this condition. W2NT1 shows the activation of
the /b/-node when jog was switched on as a word, but job was not,
while W2N1 comp shows the activation of the /g/-node in this con-
dition. Finally, N3N1 and N3N1 comp show the activation levels
of the /b/- and /g/-nodes when neither job nor jog was a word.
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Table 2. Times at which lexical and phoneme node activations
reach threshold in the Merge model, compared with the
subcategorical mismatch data

Lexical Lexical node MWW MNC
Decision threshold reached at Expt.1 Expt. 3
Word

WI1wW1 7.7 487 340

W2wW1 9.7 609 478

N3W1 9.4 610 470
Phonetic Phoneme decision node MWW MNC
Decision threshold reached at Expt.1 Expt. 3
Word

WI1wW1l 8.4 497 668

W2W1 104 610 804

N3W1 10.4 588 802
Nonword

NIN1 8.8 521 706

W2N1 11.8 654 821

N3N1 10.7 590 794

Note. The first column shows the time (time-slice numbers esti-
mated by interpolation from Figs. 2 and 3) at which nodes attained
the criterial threshold of 0.2 (lexical node for YES lexical deci-
sions) or 0.4 (phonemic decision node for phonemic decisions) in
each condition in the Merge model simulations of the subcate-
gorical mismatch data. The RT data (mean RT in msec), from both
Marslen-Wilson and Warren (1994, Experiments 1 and 3, voiced
stops) and McQueen et al. (1999a, Experiments 3 and 4) are
shown in columns two (MWW) and three (MNC) respectively. No
data are given for the NO lexical decisions to nonwords, since
these decisions are based not on activation thresholds, but on a re-
sponse deadline being reached (see text for details).

shown in Table 2, there will be almost no difference in the
response times to words in the two cross-spliced conditions,
again as in the human data. In the nonword conditions,
where job is not enabled as a word in the lexicon, there is
effectively no activation of any lexical nodes for both un-
spliced NIN1 and cross-spliced N3N1; the model thus
captures the fact that there was little effect of mismatching
information in the nonword data when the cross-splice in-
volved another nonword. In the W2N1 condition, however,
the activation of W2 (jog) remains high throughout the tar-
get. According to the Grainger and Jacobs (1996) decision
rule, the increased activation in the W2N1 case will delay
the deadline and lead to slower responding, exactly as seen
in the data.

Figure 3 shows the activation functions for the phoneme
decision nodes, in the simulation of the phonetic catego-
rization data. Figure 3A shows that in the unspliced items
there is only a relatively weak lexical effect. Activation of /
b/ rises somewhat more rapidly and attains a higher as-
ymptote when job is a word in the Merge lexicon (W1W1)
than when it is not a word in the lexicon (N1IN1). As shown
in Table 2, this small facilitative lexical effect is in line with
the experimental data; the effect was significant in Marslen-
Wilson and Warren (1994) but not in McQueen et al.
(1999a). In the cross-spliced phonetic categorization simu-
lations (Figure 3B and Table 2), a threshold set at 0.4 would
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result in almost no differences between W2W1, N3W1, and
N3NI1 response times. The activation functions for these
conditions are almost identical at this point. But the activa-
tion of /b/ reaches 0.4 in all three of these conditions later
than in the unspliced conditions (Fig. 3A and Table 2); this
is the basic mismatch effect observed in phonetic catego-
rization in both words and nonwords. The model therefore
correctly predicts no difference between the two types of
cross-spliced word; it also correctly predicts an inhibitory
lexical effect in the cross-spliced nonwords. The activation
of /b/ in W2N1 grows more slowly than do the others; this
is because of the activation of the /g/ node (W2N1 comp),
which receives support from the lexical node for W2 (jog;
its activation is plotted in Fig. 2B). Thus, only the nonwords
show an effect of lexical competition. The model therefore
gives an accurate characterization of the competition ef-
fects in both the lexical decision and the phonetic catego-
rization tasks, and provides an account of why competition
effects are only observed in the case of nonwords.

Given the architecture of the network, any factor that ei-
ther reduces lexical activation or the strength of the con-
nections from the lexical to the decision nodes will clearly
reduce the size of the lexical effects. Merge thus copes nat-
urally with data showing that lexical effects vary with changes
in the task, both those on subcategorical mismatch (Mc-
Queen et al. 1999a) and the other effects of variability re-
viewed in section 4.1. When task demands discourage the
use of lexical knowledge, decisions will be made on the ba-
sis of the prelexical route and lexical activation will simply
not contribute to decision node activation.

Although the network might be thought of as perma-
nently connected (as in TRACE), we prefer to view Merge
as having the same architecture as Shortlist (Norris 1994b),
in which the lexical network is created dynamically as re-
quired. This means that the word nodes cannot be perma-
nently connected to the decision nodes. Instead, the con-
nections from the lexical nodes to the phoneme decision
nodes must be built on the fly, when the listener is required
to make phonemic decisions. In the Merge model, there-
fore, the demands of the experimental situation determine
how the listener chooses to perform the task. If task de-
mands encourage the use of lexical knowledge, connections
will be built from both prelexical and lexical levels to the de-
cision nodes. But if the use of lexical knowledge is discour-
aged, only connections from the prelexical level will be con-
structed. Task demands could similarly result in decision
nodes only being employed when they correspond to pos-
sible experimental responses. In a standard phoneme mon-
itoring experiment, with only a single target, there might
only be a single decision node. If so, there could never be
an inhibitory effect in phoneme monitoring because there
could never be competing responses.

5.2.2. Phoneme monitoring simulation. Connine et al.
(1997) showed that phoneme monitoring responses to final
targets in nonwords that were more like words (e.g., /t/ in
gabinet, which differs from cabinet only in the voicing fea-
ture of the initial stop) were faster than those to targets in
nonwords that were less like words (e.g., mabinet, with a
larger featural mismatch in initial position), which in turn
were faster than those to targets in control nonwords (not
close to any real word, e.g., shuffinet). This graded lexical
involvement in phoneme monitoring in nonwords cannot
be explained by the Race model. We have already seen that
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Merge can simulate a simple lexical advantage; can it also
simulate graded effects?

As most of Connine et al.’s stimuli were several pho-
nemes long we added two more phonemes to the network
so that we could simulate processing words and nonwords
that were five phonemes in length. To simulate Connine et
al.’s word condition (cabinet) the lexicon contained a single
five-phoneme word and that word was presented as input.
For the multi-feature-change nonword condition (mabi-
net), the input simply had a different initial phoneme that
did not activate the initial phoneme of the word at all. That
is, there was no perceptual similarity between the initial
phoneme of the word and the multi-feature-change non-
word. For the control nonword (shuffinet), the input was
actually identical to that used in the word condition, but
there were no words in the lexicon. Figure 4 shows the re-
sults of this simulation, which uses exactly the same para-
meters as the previous simulation.

It can be seen that activation of the final target phoneme
rises more slowly in the multi-feature-change nonword
than in the word, but most slowly of all in the control non-
word. Note that we simulated only the multi-feature-change
nonwords, as the positioning of the single-feature-change
nonwords (between words and multi-feature-change non-
words) depends almost entirely on how similar we make the
input representations of the initial phonemes and the initial
phonemes of the words. Note also that the exact amount of
lexical benefit in these experiments should further depend
on the pattern of lexical competitors. To the extent that
nonwords elicit more competitors not sharing the target
phoneme, facilitation should decrease.

Because lexical activation is a function of the goodness of
match between lexical representations and the input, and
because lexical activation is fed continuously to the pho-
neme decision nodes, Merge can thus explain Connine et
al’s (1997) data. Nonwords that are more like words tend
to activate lexical representations more than nonwords that
are less like words, and this increases word-node to decision-
node excitation, so that phoneme decisions to targets in
more wordlike nonwords will tend to be faster than those
to targets in less wordlike nonwords.
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Figure 4. Simulation of Connine et al. (1997). The activation of
the phoneme decision node for /b/ is shown in three conditions
corresponding to the original study: Word, Multi-feature-change
Nonword, and Control Nonword. In all three conditions, /b/ was
the final phoneme of the input (i.e., the target phoneme).



We also tested Merge’s ability to account for the pho-
neme monitoring data from Frauenfelder et al. (1990).
These findings allow us to examine Merge’s ability to simu-
late both facilitatory lexical effects in phoneme monitoring,
and the absence of inhibitory effects when materials con-
tain no subcategorical mismatches. Even though Merge
combines lexical and prelexical information, the use of the
bottom-up priority rule means that Merge correctly ac-
counts for the results of the Frauenfelder et al. study.
Frauenfelder et al. found no difference in phoneme moni-
toring latency between the /t/ targets in items like vocabu-
taire and socabutaire. They had argued that TRACE should
predict that vocabutaire should activate vocabulaire, which
should activate /1/, which in turn should inhibit /t/. In
Merge there are no inhibitory connections between lexical
and decision units so activation of vocabulaire by vocabu-
taire does not directly inhibit the decision node for /t/. The
/t/ decision node can only be inhibited by another decision
node, but the /1/ decision node is never activated because
it gets no bottom-up support. Consequently, activations for
/t/ in vocabutaire and /t/ in socabutaire are identical.
Merge simulations confirm that activations of targets in
items like these are both identical to the activations of the
control nonwords in the plot of the Connine et al. simula-
tions shown in Figure 4. Lexical facilitation, however, is still
observed in this situation where there is no lexical inhibi-
tion. Words like vocabulaire are equivalent to Connine et
al.’s word condition, and, as Figure 4 shows, activation rises
faster there than in nonwords.

One might wonder why Merge shows no inhibition in
simulating Frauenfelder et al.’s study but does show inhibi-
tion in the subcategorical mismatch simulations. The an-
swer is that in the subcategorical case inhibition arises be-
cause the cross-spliced coarticulatory information provides
bottom-up support for one phoneme (e.g., /g/), which then
competes at the decision level with the activation of the fi-
nal phoneme (e.g., /b/). That is, there is perceptual support
for two competing phonemes. With perceptual support the
bottom-up priority rule is satisfied and the activation of the
corresponding decision units can be modulated by lexical
activation. Note that removing the bottom-up priority rule
makes no difference to the subcategorical mismatch simu-
lations. Abandoning the bottom-up priority rule introduces
some inhibition into the Frauenfelder et al. simulations, but
the exact amount depends on such factors as the length of
the words and the setting of the response criterion.

This simulation makes an important point that also ap-
plies to a lesser extent to models not using the bottom-up
priority rule. The existence of inhibitory lexical influence
(whether on decision nodes or phoneme nodes themselves)
may often not be apparent when there is unambiguous
bottom-up support for a single phoneme. Lexical effects
will be most visible when there is some ambiguity in the in-
put, such as when a subcategorical mismatch creates sup-
port for two possible phonemes.

5.2.3. Merge and lexical competition. Merge is fully com-
patible with Shortlist; in fact, in the present simulations the
operation of the lexical level of Merge is a simplified ver-
sion of the lexical level of Shortlist. Indeed, the ability of
Merge to account for the phonetic categorization data
hinges on several key assumptions that are required for
Shortlist to be able to account for continuous speech recog-
nition. The central claim of Shortlist is that word recogni-
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tion is based on a process of competition between activated
lexical hypotheses. There is now a considerable body of em-
pirical evidence for competitive lexical processes from a va-
riety of tasks (Cluff & Luce 1990; Goldinger et al. 1992;
Marslen-Wilson et al. 1996; McQueen et al. 1994; Norris et
al. 1995; Slowiaczek & Hamburger 1992; Vroomen &
de Gelder 1995), and Shortlist is able to account for these
data (Norris et al. 1995; 1997). Merge therefore also incor-
porates lexical competition. In fact, the ability of Merge to
account for the subcategorical mismatch data depends cru-
cially on lexical competition. Detecting phoneme targets in
nonwords cross-spliced with words (W2N1), and making
lexical decisions to these items, is harder than with non-
words cross-spliced with other nonwords (N3N1) precisely
because of the inhibitory effects of the cross-spliced word
(W2 in W2N1).

The lack of an inhibitory effect in the cross-spliced words
(W2W1 versus N3W1) is also a consequence of lexical com-
petition. At first glance, this may appear counterintuitive.
Indeed, the lack of an inhibitory effect in the cross-spliced
words led Marslen-Wilson and Warren (1994) to reject lex-
ical competition. The explanation for this apparent contra-
diction is important because it relies on another aspect of
Shortlist’s account of continuous speech recognition. In
Shortlist, and therefore Merge, lexical competition involves
multiple interactive activation cycles (15 in the present sim-
ulations) on each phoneme (or time slice in Merge), fol-
lowed by a reset of lexical activation levels before the next
phoneme is processed. Both the reset and the cycles of mul-
tiple activation play important roles in helping Shortlist
achieve an optimal interpretation of the input (Norris et al.
1995).

Without a reset, interactive activation models become in-
sensitive to later-arriving information. Such models tend to
settle on a single interpretation of a given stretch of speech,
which they are unable to revise in the light of later input.
Word nodes consistent with that interpretation maintain a
high level of activation that tends to suppress the emer-
gence of any new and more appropriate interpretations.
This behaviour prevents such models from being able to ac-
count for data showing effects on word recognition due to
competition from later-arriving information (e.g., Norris et
al. 1995; Vroomen & de Gelder 1995). Like the reset, re-
peated cycles of activation on each time slice are required
for optimization. The network must be allowed to iterate
through a number of cycles in order to settle into an opti-
mal interpretation of the input.

The reason competition acts to prevent an inhibitory ef-
fect in the cross-spliced words is therefore that the multi-
ple cycles of activation at the lexical level in Merge allow the
network to settle on the optimal interpretation of the input,
which is of course the base word (W1), whether the word is
cross-spliced with another word (W2W1) or with a non-
word (N3W1). In the former case, competition certainly
operates between W2 and W1, but W1 wins the competi-
tion over repeated cycles and thus dominates the activation
pattern as much as it does in the absence of a strong lexical
competitor (the latter case; see Fig. 2B). The lexical level
thus operates in a winner-take-all fashion. As soon as evi-
dence for the final phoneme arrives, the word target job has
far more evidence in its favor than a competitor word like
jog (even in W2W1), especially if the system is sensitive to
the mismatch between the /b/ and the /g/ in jog, as in
Merge, Shortlist, and the Cohort model (Marslen-Wilson
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1993). Note also that in all of these models we would expect
a mismatch at the segmental level (i.e., of a complete pho-
neme) to count more than a subcategorical mismatch. In
Merge, the fact that /b/ mismatches the /g/ in jog will com-
pletely counteract the effects of the match on the first two
phonemes, and jog will actually have a negative amount of
perceptual evidence in its favor (mismatching phonemes
are weighted three times as heavily as matching phonemes).
By the final phoneme in job, there will therefore be no com-
petition from jog.

The exact behaviour of a network will depend on whether
it is set up like Merge, where a number of cycles are com-
puted and the network is allowed to settle to a near asymp-
totic state for each new input segment, or like TRACE,
where only a single network cycle is computed for each new
input slice. If, as in Merge, the network is allowed to run to
asymptote with each new segment, it will behave in a more
winner-take-all fashion. The word with the largest activa-
tion can eventually suppress the activation of its competi-
tors until they have a very small or even negative activation.
At this point the competitors will no longer have any in-
hibitory influence on the target, and the target’s activation
will be largely determined by the degree of bottom-up in-
put it receives. At asymptote, therefore, it is possible that
inhibitory effects will only be observed when competitors
actually have at least as much bottom-up support as the tar-
get. Inhibition of nonword responses still occurs, however,
because the competing word (in W2N1) is misleadingly ac-
tivated but there is no correct competitor word available to
cause the incorrect word to be inhibited.

If the network operates like TRACE, however, and runs
for only one or two cycles on each time slice, all competing
words will inhibit one another to some degree and the acti-
vation of the target will be influenced by the presence of
competitors in both words and nonwords. This seems to be
the view of competition that Marslen-Wilson and Warren
(1994) have in mind when they criticize lateral inhibition.
As we show below, it seems to be this feature that prevents
TRACE from simulating the subcategorical mismatch data.

Marslen-Wilson and Warren (1994) also argued against
lexical competition on the basis of data reported in
Marslen-Wilson (1993) and, in greater detail, in Marslen-
Wilson et al. (1996). In Experiment 1 in Marslen-Wilson
et al. (1996), however, there was a competition effect of
31 msec. “This effect, although significant on a post hoc
test. . ., is not backed up by any broader statistical support”
(pp. 1381-82). Furthermore, Experiment 2 of Marslen-
Wilson et al. (1996) also shows a 31 msec competition ef-
fect (see Fig. 2, p. 1388). The authors indeed admit “that
the presence of priming in the no-competitor condition is
indeed a competitor effect” (p. 1388) and suggest that a
competition model like Shortlist (Norris 1994b) could ac-
count for their results. These data therefore appear to sup-
port rather than challenge the claim that spoken word
recognition is based on lexical competition.

A common factor in many demonstrations of inhibitory
competition is that the input is fully compatible with both
the target word and its competitors. For example, in Mc-
Queen et al. (1994) subjects found it harder to detect mess
in /domes/ than in /names/. Right until the end of the stim-
ulus /domes/, the input is fully compatible with both mess
and competitors such as domestic. In general, inhibitory
effects on the target are going to be greatest when the
bottom-up support for the competitor is greater than that

318 BEHAVIORAL AND BRAIN SCIENCES (2000) 23:3

for the target. Whether competition effects will be observ-
able (as in McQueen et al. 1994, and in the cross-spliced
nonwords in the subcategorical mismatch experiments) or
not (as in the word materials in the mismatch experiments)
depends on the fine balance of informational support for
different candidate words. In both cases, however, the data
support the claim that spoken word recognition is based on
an active process of lexical competition, as instantiated in
both Shortlist and Merge.

5.3. Summary

The simulations show very clearly that an autonomous
model with a decision process that combines the lexical and
phonemic sources of information gives a very simple and
readily interpretable account of the data of Marslen-Wilson
and Warren (1994), McQueen et al. (1999a), Connine et al.
(1997), and Frauenfelder et al. (1990). It explains inhibitory
effects of competition in nonwords with subcategorical mis-
matches, facilitatory effects in nonwords that are more like
real words relative to those that are less like real words, and
lack of inhibitory effects in nonwords that diverge from real
words near their end. It also explains how both facilitatory
and inhibitory effects come and go according to task de-
mands.

It is interesting to note that these simulations undermine
one of the main conclusions Marslen-Wilson and Warren
(1994) drew from their data. They argued that their data
were evidence against phonemic representations at the
prelexical level. But the present simulations use phonemic
representations at this level. We could have replaced the
phonemic input layer with a featural layer and achieved ex-
actly the same ends. Either form of representation can be
arranged to deliver identical inputs to the lexical and deci-
sion layers. The subcategorical mismatch data are therefore
completely neutral with respect to the existence of a phone-
mic prelexical level of representation.

We have chosen to simulate these three studies both be-
cause they provide some of the evidence that most strongly
constrains models of phonemic decision making and be-
cause we felt that quantative analysis was required to es-
tablish whether Merge could explain the detailed and in-
terlocking pattern of results presented by these studies. It
should be clear without report of further simulations, how-
ever, that Merge can also explain the other basic lexical ef-
fects observed in the literature. The explanation for lexical
effects in phonetic categorization is the same as that pro-
vided for effects in phoneme monitoring: Lexical node ac-
tivation can bias phoneme decision-node activation such
that an ambiguous phoneme in a word-nonword continuum
like type-dype will tend to be labelled in a lexically consis-
tent manner (i.e., as /t/ here). Likewise, lexical activation
will act to boost phoneme decision-node activation so that
there tend to be more phonemic restorations in words than
in nonwords.

Merge can also account for the results of Newman et al.
(1997). As we discussed above, these results could be due
either to differences in lexical activation, depending on lex-
ical neighborhood, or to prelexical sensitivities to transi-
tional probabilities between phonemes. If these neighbor-
hood effects in categorization prove to be due to differences
in degree of lexical activation, then Merge could explain
those data in the same way that it can account for Connine
etal’s (1997) results. For Merge to be able to explain these



data — should they prove instead to be due to transitional
probabilities — then, as with the Race model, a mechanism
sensitive to sequential dependencies would be needed at
the prelexical level. But it is clear that there is nothing about
the architecture or the processing assumptions of Merge
that would prevent it from accounting for such data.

Similarly, there is no need for simulations to show that
Merge can account for the results of Pitt and McQueen
(1998). As just discussed, the influence of transitional prob-
abilities on compensation for coarticulation could be mod-
elled by adding a process sensitive to these probabilities at
the prelexical level — that is, at the level of processing where
compensation for coarticulation is also thought to operate.
Merge also has the correct architecture to explain the dis-
sociation in lexical involvement observed by Pitt and Mc-
Queen. The lexicon can influence decisions to ambiguous
fricatives at the ends of words (i.e., more /s/ responses to
juiP than to bu?) via flow of activation from the lexical level
to the phoneme decision nodes. But, because there is no
feedback from the lexicon to the prelexical level, this lexi-
cal involvement cannot influence the compensation for
coarticulation process, and thus, as observed, there is no
lexical influence on the stop identifications in spite of the
lexical effect in the fricative decisions. Merge can thus
account for all of this evidence on lexical involvement in
phonemic decision making. As we argued above, without
clear evidence about the locus of the adaptation effect, it is
currently not possible to determine whether the results of
Samuel (1997) are problematic for Merge.

6. Comparing Merge with other models

6.1. TRACE

Marslen-Wilson and Warren (1994) showed in simulations
that TRACE was unable to account for their data. First, in
the response probabilities at the lexical level (used to sim-
ulate lexical decision), TRACE shows a large effect of the
lexical status of the cross-splice (W2W1 vs. N3W1) for
words as well as nonwords (W2N1 vs. N3N1). Second, in
the nonword stimuli, the W2N1 items produce response
probabilities that are as large as the probabilities for any of
the word stimuli. The W2N1 nonwords should therefore
have been systematically misclassified as words. The pho-
netic categorization results were simulated by using re-
sponse probabilities calculated at the phoneme level. As in
the lexical decision simulations, TRACE incorrectly shows
alarge effect of the lexical status of the cross-splice (W2W1
vs. N3W1) for words as well as nonwords (W2N1 vs.
N3N1).

Marslen-Wilson and Warren suggest that the failure of
TRACE to simulate the data is attributable to its use of lat-
eral inhibition and top-down feedback, and to the fact that
it does not use mismatch information. Furthermore, they
argue that because TRACE is “the only viable candidate of
the classical representational type” (p. 673), by which they
mean a model using phonemes rather than features as
prelexical representations, these results argue against mod-
els in which phonemes play a role as prelexical representa-
tions. We have already shown that these data are completely
neutral with respect to the existence of prelexical phonemic
representations and that a model instantiating lexical com-
petition can account for the pattern of data. Why then can
TRACE not account for these data? We believe that the pri-
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mary reason why TRACE is unable to account for Marslen-
Wilson and Warren’s data is that, unlike in Merge, lexical
level processes are not allowed to cycle to asymptote on a
fast enough time scale. As discussed above, the model
therefore incorrectly predicts competition effects in the
W2WT1 items. It is probable that this behaviour also causes
the model to overestimate the inhibitory effect in the cross-
spliced nonwords.

To test this, we constructed an interactive model with no
decision nodes. The model had word-to-phoneme feed-
back, and, to enable unambiguous decisions at the pho-
neme layer, phoneme-to-phoneme inhibitory connections.
It proved impossible to set parameters for this model by
hand (of course, it is always extraordinarily difficult to set
parameters by hand in an interactive model because any ad-
justment at one level interacts with other levels). However,
via an optimization procedure (Powell’s conjugate gradient
descent method; Press et al. 1986), we did eventually find
parameters that could produce activation patterns similar
to those of Merge; these parameters are listed in Table 3.
The interactive model then produced an acceptable simu-
lation of the subcategorical mismatch data of Marslen-Wil-
son and Warren (1994), as long as it was allowed to use 15
cycles per time slice. But it was not possible to find any set
of parameters that would produce a plausible simulation us-
ing only a single cycle per slice (as in TRACE). Within a sin-
gle cycle the winning lexical candidate cannot completely
suppress its competitors, so that the competitor effect for
words is not eliminated.

This exercise clearly established that it was not the pres-
ence of word-to-phoneme feedback that caused the inter-
active model to fail at simulating the subcategorical mis-
match data; failure only occurred when the model was, like
TRACE, restricted to a single cycle. This then is presum-
ably the explanation for Marslen-Wilson and Warren’s fail-
ure to achieve simulation of their data in TRACE. With
Merge-like dynamics, an interactive model could approxi-
mate the correct data pattern.

However, we did note that even the best simulation that
we could achieve of the subcategorical mismatch data with

Table 3. Parameter values used in the simulations by the Merge
model and the Interactive Model (IM)

Merge M
phoneme excitation 0.311 0.173
phoneme to word excitation 0.024 0.097
phoneme to word inhibition 0.021 0.0
phoneme to phoneme inhibition 0.0 0.453
phoneme to decision excitation 0.826 0.0
phoneme decay 0.230 0.810
phoneme momentum 0.0 0.118
word to decision excitation 0.235 0.0
word to phoneme excitation 0.0 0.186
word to word inhibition 0.537 0.536
word decay 0.093 0.133
word momentum 0.0 0.002
decision to decision inhibition 0.870 0.0
decision unit decay 0.622 0.0
decision momentum 0.581 0.0
cycles per input slice 15 15
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this interactive model was less than optimal, and certainly
not equal to the fit given by the best set of parameters in
Merge. Although the interactive-model simulation with 15
cycles per time slice reproduced the observed interaction
between inhibition and lexical status in the cross-spliced
items, it showed very large word-nonword differences not
observed in the human data. With the same interactive
model, with 15 cycles, we then also attempted to simulate
the Frauenfelder et al. (1990) data, which appear to offer a
crucial challenge to TRACE. Interestingly, although the in-
teractive model did show a great deal of inhibition with five-
phoneme words, with three-phoneme words the network
produced facilitation with very little inhibition. The balance
of inhibition and facilitation depends on the amount of lex-
ical support for the target phoneme or its competitor.

The simulations using both Merge and the interactive
network described above have addressed sets of data that
present major problems for existing models of word recog-
nition. The subcategorical mismatch evidence of Marslen-
Wilson and Warren (1994) and McQueen et al. (1999a) is
incompatible with TRACE and the Race model. We have
shown that Merge can give a detailed account of the pat-
tern of results from both the lexical decision and phonetic
categorization tasks used in these studies. In simulations us-
ing an interactive model we have also shown that one of the
most important factors that enables models to account for
these data is the use of Shortlist/Merge-like dynamics in
which the optimal result of the competition process is
achieved as quickly as possible. Data from Connine et al.
(1997) and Frauenfelder et al. (1990) variously challenged
both the Race model and TRACE. Again, Merge accurately
simulated the observed results.

The fact that the interactive model could be induced to
simulate some of the results should, however, offer little
consolation to proponents of interactive models. Such mod-
els have already been shown to be inconsistent with the
compensation for coarticulation results of Pitt and Mc-
Queen (1998). The simulations have also emphasised the
point that interactive models that attempt to combine pho-
neme and decision nodes are suboptimal and unstable.
Small changes in parameter values lead to large changes in
model behaviour. Note that although a bottom-up priority
rule can in fact prevent TRACE from predicting inhibition
in phoneme monitoring, it cannot help to reconcile TRACE
with the data from Pitt and McQueen. The TRACE pre-
dictions in that case follow directly from TRACE’s account
of the Ganong (1980) effect. Top-down activation biases the
interpretation of an ambiguous phoneme. If the ambiguous
phoneme did not activate both alternative phonemes and
hence satisfy the rule, there could be no lexical bias at all.
In the Pitt and McQueen study, the interpretation of the
ambiguous final phoneme of the first word is indeed sub-
ject to alexical bias. According to TRACE, the bias must be
reflected in a change in activation at the phoneme level that
should induce compensation for coarticulation. But Pitt
and McQueen found no compensation for coarticulation
when transition probability was held constant. Therefore
TRACE cannot account for the result.

Interactive models like TRACE also suffer from the lim-
itation first raised by Cutler et al. (1987) in the context of
the facilitatory effects of lexical knowledge on phoneme
identification. McQueen et al. (1999a) showed that the sub-
categorical mismatch effect comes and goes according to
the nature of the task and the stimulus materials. Although
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one can stipulate that the top-down connections in TRACE
be modulated according to the experimental situation, it is
far from clear why any interactive model should sometimes
choose to forgo the supposed benefits of top-down feed-
back. The Merge model, on the other hand, remains fun-
damentally a dual-outlet model in which the decision mech-
anism can selectively emphasize either phonemic or lexical
knowledge without in any way altering the bottom-up na-
ture of the word recognition process itself. The major
achievement of the Merge simulations is thus to show that
the pattern of lexical effects in phoneme identification is
fully consistent with modular models — that is, that feed-
back is not required in speech recognition.

6.2. A post-lexical model

Marslen-Wilson and Warren’s (1994) explanation of their
data proposes that decisions about phoneme identity are
made on the basis of lexical representations. To account for
the ability to identify phonemes in nonwords, they propose
that nonwords “are perceived though the lexicon, in an ana-
logical fashion” (p. 673). Gaskell and Marslen-Wilson
(1995; 1997) present a connectionist implementation of
Marslen-Wilson and Warren’s theory. They tried to simu-
late the data in a simple recurrent network that produced
both a semantic and a phonemic output. This network is
identical in structure to the one described by Norris (1993)
to simulate the Elman and McClelland (1988) study, apart
from the fact that the output targets in that network in-
volved just a single node being activated, and that the out-
put that Norris labelled “lexical” is labelled “semantic” by
Gaskell and Marslen-Wilson (1997). However, Gaskell and
Marslen-Wilson’s simulation suffers from problems similar
to those of the TRACE simulation presented by Marslen-
Wilson and Warren.

In their simulations of phonetic categorization decisions,
Gaskell and Marslen-Wilson (1997) plot an index of the ev-
idence for the correct phoneme that ranges from 1.0 to
—1.0. The index is 1.0 when the correct phoneme is fully
activated and the nearest competitor is not active, and —1.0
when the competitor is fully active but the correct response
is not. The sign of this measure could not possibly be avail-
able to the decision mechanism because it is determined
entirely by the experimenter’s notion of what constitutes
the correct response. The decision mechanism could only
plausibly be expected to have available the unsigned mea-
sure of the difference in evidence between the most active
phoneme and its nearest competitor. It could not addition-
ally know which was supposed to be the correct response.
However, Gaskell and Marslen-Wilson suggest that a sim-
ple threshold on this signed index produces the correct pat-
tern of results. But the use of the signed index attributes the
model with the psychic ability to know which phoneme rep-
resents the correct response on a given trial. Armed with
that knowledge, the model should be able to respond be-
fore the trial even begins! If they had instead used a thresh-
old on the appropriate unsigned index, the model would
consistently have made the wrong response on W2NT1 tri-
als. In the W2N1 condition there was much more evidence
for a competitor phoneme (presumably the phoneme in
W2) than there ever was for the correct phoneme. No mat-
ter where an unsigned threshold were set, this model would
always respond with the competitor phoneme rather then
the correct one.



So, the specific simulation of the subcategorical mismatch
data offered by Gaskell and Marslen-Wilson (1997) is clearly
unsatisfactory. However, even the general principles of the
Marslen-Wilson and Warren model are challenged by data
on phonemic decision making, including those of McQueen
et al. (1999a). Marslen-Wilson and Warren’s suggestion that
phoneme identification is a postlexical process immediately
faces a problem in accounting for data showing that the mag-
nitude of lexical effects in phoneme monitoring can be made
to vary depending on the exact nature of the task (Eimas et
al. 1990; Eimas & Nygaard 1992) or even the nature of filler
items used in the experiment (Cutler et al. 1987). The re-
sults of McQueen et al. (1999a) show that the inhibitory ef-
fects that Marslen-Wilson and Warren themselves reported
also come and go with changes in experimental procedure.
Cutler et al. (1987) suggested that their results were prob-
lematic for TRACE because in TRACE the lexical effect can
only be modulated by varying the strength of all of the pho-
neme-to-word feedback connections. However, if phoneme
identification operates by the lexical analogy process sug-
gested by Marslen-Wilson and Warren, then lexical identifi-
cation and phoneme identification are inextricably locked
together. Phoneme identification depends on lexical activa-
tion. Reduction in the level of lexical activation might slow
phoneme monitoring overall, but it could not possibly elim-
inate the lexical advantage. Phonemes in words should al-
ways benefit from the presence of matching lexical repre-
sentations. Similarly, inhibitory effects could not be
eliminated without removing the lexicon, which would make
phoneme identification impossible.

Gaskell and Marslen-Wilson’s (1997) model also links the
phonemic and lexical levels in such a way that “lexical” and
competitive effects are not open to strategic control. Lexi-
cal effects in their model would remain even if the seman-
tic nodes were eliminated completely after training. As
there is no feedback from the semantic nodes to the pho-
neme nodes, the semantic nodes can be removed com-
pletely without affecting the performance of the phoneme
nodes in any way. The only common level of representation
is that of the hidden units. The hidden units and their con-
nections to the phoneme units could not be altered without
changing phoneme identification performance on both
words and nonwords. It is worth noting also that in Norris’s
(1993) simulations of “lexical” effects in a recurrent net-
work, these effects remained even when the network was
no longer trained to identify words. The effects were sim-
ply due to the network learning the statistical regularities in
the input. It is therefore not even clear that the behaviour
of the Gaskell and Marslen-Wilson model at the phonemic
level is in any way a reflection of a true lexical influence.

6.3. FLMP

In the FLMP (Massaro 1987; 1989b; 1998; Oden & Mas-
saro 1978), perceptual decisions are based on three pro-
cesses: (1) evaluation of the degree to which the input sup-
ports stored prototypes, where the evaluation of each
source of information is independent of all others; (2) inte-
gration of the outputs of these evaluations; and (3) decision
making based on the relative goodness of match of each re-
sponse alternative. FLMP is a generic model of perceptual
decision making, and has been applied in a wide variety of
different perceptual domains, most notably in the domain
of multimodal speech perception (e.g., the integration of
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auditory and visual speech information). FLMP is a math-
ematical model tested by measuring its ability to account
for experimental data through parameter estimation proce-
dures. The FLMP has been applied in this way to the ques-
tion of lexical involvement in phonemic decision making
(Massaro 1996; Massaro & Oden 1995).

FLMP has several parallels with Merge. In FLMP, as in
Merge, lexical and phonemic sources are integrated to pro-
duce a decision. Furthermore, both models assume that de-
cisions are based on continuous rather than categorical rep-
resentations (activation values in Merge’s decision nodes,
continuous truth values in FLMP), and that decisions are
based on goodness of match (via inhibition between deci-
sion nodes in Merge, via a Relative Goodness Rule [RGR]
in FLMP). Finally, both models are autonomous, since nei-
ther allows a feedback loop from the lexicon to the pre-
lexical level. (Although Massaro, 1996, characterizes the
FLMP as nonautonomous, it is certainly autonomous in the
sense of the term used here because the model excludes
t()p—down interactions; Massaro argues that FLMP is not
autonomous because it involves integration, but Merge is
autonomous and has integration).

In spite of these close similarities, Merge and FLMP
have two fundamental differences. Both of these differ-
ences relate to how the models are seen in the wider con-
text of spoken language understanding. The first is that
FLMP has independent evaluation of lexical and phonemic
sources of information. However, in one sense at least,
Merge is not independent.

Although the concept of independence is central to
FLMP, Massaro appears to use the term in two slightly dif-
ferent ways. In one sense, independence refers to the
property of a system whereby stimulus and contextual in-
formation are combined so that context has an effect only
on bias and not sensitivity (e.g., Massaro 1978; 1989a). In
an excellent review of these issues, McClelland (1991) de-
scribes models with this mathematical property as “classi-
cal” accounts of context effects. Such models have their
origins in Signal Detection Theory and Luce’s (1963) the-
ory of choice. However, Massaro also uses the term inde-
pendence to refer to architectural properties of the system.
According to Massaro (e.g., Massaro & Oden 1995), the
basic perceptual processes (e.g., phoneme and word recog-
nition) are also independent. Sometimes systems that are
independent in the classical sense are also independent in
the architectural sense, but this need not always be so. For
example, as Massaro argues, the combination of acoustic-
phonetic and phonotactic information is independent in
both of these senses. Massaro (1989a) and Massaro and
Cohen (1983) studied the influence of phonotactic context
on the perception of stimuli that were ambiguous between
/r/ and /1/. There were more /1/ responses in the context
/s*i/ than in the context /t*i/, where /*/ represents the
ambiguous phoneme. Here the context and the phoneme
are genuinely independent in both senses. Perception of
the ambiguous phoneme should have no effect on the rep-
resentation of the preceding phonological context. These
two architecturally independent sources of information
(context and ambiguous phoneme) are then combined in-
dependently as specified by classical models of perception.
Massaro showed that FLMP can fit these data very well,
whereas a nonindependent (in both senses) model like
TRACE cannot.

However, the architectural and signal-detection versions
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of independence do not always pattern together. McClel-
land (1991) showed how the interactive activation model
could be modified by the addition of noise (the Stochastic
Interactive Activation Model or STAC) so as to generate in-
dependence in the same manner as classical models, even
though processing of stimulus and context remained archi-
tecturally nonindependent (note that in TRACE the
phonotactic context delivering the bias is derived from the
lexicon rather than from a direct sensitivity to transition-
probability within the phoneme level).

A more serious problem for FLMP is that the assump-
tion of architectural independence becomes impossible to
sustain when we consider how to account for lexical in-
volvement in phonemic decision making. In any model of
word recognition, the degree of support for a lexical hy-
pothesis must be some function of the degree of support
for its component segments: If there is good perceptual ev-
idence for a /g/, for example, there is also good perceptual
evidence for words containing /g/. But this is not so in
FLMP. In FLMP, support for /g/ in a lexical context (e.g.,
the extent of support for /g/ due to the word gift given the
string /P1ft) does not depend on whether the string begins
with an unambiguous /g/, an ambiguous phoneme, or an
unambiguous /k/ (Massaro & Oden 1995). Since this eval-
uation of contextual support for /g/ is made through com-
parison of the input with the stored representation of gift,
this implies that information consistent (or inconsistent)
with the initial /g/ does not influence the goodness of
match of the input to the word. In other words, architec-
tural independence depends on the remarkable assump-
tion that the support for a word has nothing to do with the
perceptual evidence for that word. Note that if architec-
tural independence is abandoned in FLMP, it becomes dif-
ficult to test classical independence: We can no longer as-
sume that the level of contextual bias should remain
constant across a phonetic continuum, as it does in all
FLMP simulations, even though a given amount of lexical
and phonemic information may still be combined classi-
cally.

Thus, although FLMP can fit the data on lexical involve-
ment in phonetic categorization with materials such as /?P1ft/
(Massaro & Oden 1995), it does so while making an inde-
fensible assumption about word recognition. In contrast to
FLMP, the Merge account of word recognition necessarily
violates architectural independence: A lexical node’s activa-
tion depends on the activation of the prelexical nodes of its
constituent phonemes.

The second difference between the models concerns the
extent to which they make claims about processes. FLMP
is not a model of perception in the same way that Merge
and TRACE are. Whereas Merge and TRACE attempt to
model the mechanisms leading to activation of particular
words or phonemes, FLMP takes as its starting point the
probabilities of giving particular words or phonemes as re-
sponses in an experiment. FLMP makes no claims about
how the independent processes of phoneme and word
recognition actually operate. In FLMP, there is no specifi-
cation of how words are selected and recognized given a
speech input; in Merge, word recognition depends on
competition between lexical hypotheses. In fact, as we
have argued above, the dynamics of competition between
candidate words are an essential feature of Merge’s ac-
count of the subcategorical mismatch data. Without a com-
petition-based account of lexical access to determine the
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appropriate inputs to the decision process, FLMP has dif-
ficulty making detailed predictions about the outcome of
the subcategorical mismatch experiments. More generally,
FLMP as it currently stands offers no explanation for per-
formance in any lexical decision task. Note that Massaro
(1987, p. 281) has argued that there should be no inhibi-
tion within any processing level in FLMP. As we have
pointed out above, inhibition between phoneme decision
nodes in Merge has the same function as the RGR in the
FLMP. But Merge also uses inhibition at the lexical level.
Word segmentation and recognition cannot be achieved by
a simple mechanism like the RGR (McQueen et al. 1995).
Not only does FLMP not have an account of word recog-
nition, the nature of the computations required for this
task appear to be beyond the scope of the FLMP frame-
work.

These two differences between FLMP and Merge re-
flect two major problems with how lexical information is
processed in FLMP. A third problem with FLMP con-
cerns the way the model has sought to account for the
compensation for coarticulation data of Elman and Mc-
Clelland (1988). FLMP successfully fits the stop identifi-
cation data in both the unambiguous and ambiguous frica-
tive contexts (Massaro 1996). But it does so because the
compensation process (the modulation of interpretation
of a stop consonant contingent on the preceding {ricative)
operates at integration, not during evaluation. The pre-
ceding context (with an unambiguous or ambiguous frica-
tive) provides a bias that is integrated with the evidence
for the following stop only after evaluation of the acoustic-
phonetic evidence for the stop has been completed. This
account is highly implausible, since it suggests that the
compensation process operates only to modify phonemic
decisions. How can it then be of value in lexical access?
Special mechanisms that allow the perceptual system to
deal more effectively with coarticulation are unlikely to
have developed unless they were of value in word recog-
nition. But in the FLMP account, the contextual bias due
to word-final fricatives is unable to influence the recogni-
tion of the following stop-initial word, and can only influ-
ence decisions about the stop. It would appear that the
only way in which this bias could influence word recogni-
tion would be if the output of the phonemic decision
process were in turn used as input to the word recognition
process for the stop-initial word. But this would go against
a fundamental assumption of FLMP, by making it inter-
active: Word recognition would depend on a top-down
feedback loop involving the preceding word. In any case,
Pitt and McQueen’s (1998) results suggest that contextual
influence on fricative-stop compensation is due to sensi-
tivity to transitional probability and not to lexical involve-
ment, and that the process of compensation has a prelex-
ical locus; both of these findings run counter to the FLMP
account.

All three of these problems with FLMP have arisen be-
cause phonemic decision making has not been considered
in the light of the constraints of everyday language pro-
cessing. As we will describe below, Merge has been devel-
oped explicitly within such a framework; the account of
phonemic decision making that Merge offers is one that
supports the Shortlist model’s account of spoken word
recognition. These fundamental problems with FLMP lead
us to reject it as a plausible account of lexical involvement
in phonemic decision making.



7. Phonemic decisions and language processing

In the above sections we have demonstrated — in the spe-
cific context of performance in phonemic decision-making
tasks — how different sources of information can be merged
to influence a decision response, without any need to cre-
ate feedback loops in the process-model architecture. We
now return our attention to the more general theoretical
questions at issue in this paper, and to the relation of phone-
mic decision making to everyday language processing.

First, consider again whether, by assuming that phone-
mic decision making is accomplished by a mechanism
separate from the processing sequence in spoken-word
recognition, we might have violated Occam’s precept by
constructing a model with a more complicated architecture
than is strictly necessary. As we have argued above, how-
ever, such an accusation cannot be maintained. The avail-
able experimental evidence on phonemic decision making
is incompatible with models that incorporate feedback be-
tween lexical and prelexical processing, but also incompat-
ible with strictly feed-forward models that allow no lexical
influence on phonemic decisions other than in words. The
Merge architecture is thus precisely in conformity with Oc-
cam’s principle: It is the simplest architecture compatible
with the empirically derived data.

Furthermore, it is a natural architecture in that phonemic
decisions are of course not part of normal speech recog-
nition. As we argued in describing the Merge model, the
requirements of prelexical nodes and decision nodes are
very different. A decision process must select some inter-
pretation of the input, but prelexical processing itself must
preserve any ambiguity in the input. As the utility and pop-
ularity of phonemic decision-making tasks in this area of psy-
cholinguistics attest, phonemic decisions are something that
listeners can readily do. It is clear that the ability to make
phonemic decisions does not develop prior to the ability to
recognize words, however, and indeed does not necessarily
develop as a consequence of word-recognition abilities ei-
ther. Young listeners acquire spoken-word recognition abil-
ities from the first year of life and onwards (Jusczyk 1997),
but the ability to make phonemic decisions is learned much
later. Learning to read in an alphabetic orthography cer-
tainly facilitates the capacity to make decisions about phone-
mic structure, since there is evidence that illiterates find
such decision making much more difficult than literates do
(Morais et al. 1979; 1986). Speakers of languages that are
written without an alphabet also have difficulty with some
phonemic tasks (Mann 1986a; Read et al. 1986). However,
itis also the case that children’s demonstrated capacity to en-
gage in phonemic manipulation tasks is, in languages with a
phonological structure that encourages phonemic aware-
ness, a sign of readiness to learn to read (Bradley & Bryant
1983; Liberman 1973). Further, both illiterates and speak-
ers of languages with nonalphabetic orthographies can, with
appropriate training, easily perform phonemic decisions
(Cutler & Otake 1994; Morais 1985). Outside the laboratory,
phonemic decision making may be called upon in play-
ing language games, in writing unfamiliar names, in teach-
ing children to read, or in retrieving words that are “on the
tip of the tongue.” The phonemic decision making mecha-
nism is, in other words, a natural part of mature language
processing abilities, but it is clear that it is developed sepa-
rately from, and later than, spoken-word recognition. In the
terms of the modelling framework for language processing
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adopted in the present work, Merge is separate from and de-
veloped later than Shortlist.

Shortlist can be conceived of as explaining normal word
recognition, whereas Merge explains how listeners access
the prelexical information present in the normal bottom-up
speech recognition system. Between them, they explain
how a bottom-up system can account for the complex
pattern of data about spoken-language processing derived
from phonemic decision tasks. Thus, we see Merge as an in-
tegral part of the language processing model that incorpo-
rates Shortlist. We assume, moreover, that it embodies the
main structural features of Shortlist. Since phonemic deci-
sions are in general not part of spoken-word recognition, it
seems plausible to assume, as in Merge, that phoneme de-
cision nodes are built in response to the need to make such
decisions. That is, we view the Merge network as, like the
Shortlist network, being created dynamically as required.

This enables the decision nodes in Merge to be set up in
response to a particular experimental situation. For exam-
ple, we suggested that perhaps only one phoneme decision
node is set up when listeners are monitoring for one par-
ticular phoneme. In the subcategorical mismatch experi-
ments, and in other phonemic categorization tasks, only the
two response alternatives may need to be set up. They may
be set up when the subject in an experiment is given in-
structions, or perhaps they develop over the course of the
first part of an experimental session. In either case, they are
set up in response to the need to make an explicit phone-
mic decision. As with the lexical nodes in Shortlist, there-
fore, the decision nodes in Merge are built on the fly. For
all common phonemic decision tasks, irrespective of which
phonemes from the full inventory are targets in a given sit-
uation, the behaviour of the decision nodes should be
equivalent to that observed in the present simulations.

In other words, the performance of Merge is not depen-
dent on its size as instantiated in our present simulations. An
instantiation with a larger lexicon and a full phoneme inven-
tory would simulate the experimental data as well as the dem-
onstration version presented here. The nodes at the pre-
lexical input level are not connected to one another, so the
number of representations at this level should have little im-
pact on performance. It is possible that with a full phoneme
inventory, partial activation of similar-sounding phonemes
could occur if the prelexical input representations were suf-
ficiently finely tuned. Thus, for example, if /d/ were added to
the phoneme inventory for the present simulations, it could
be weakly activated whenever job or jog were presented as
input. But this activation would have little effect on process-
ing at the lexical and decision stages, because the activation
it passed on would be rapidly suppressed by competition
from the more highly activated word or phoneme nodes.

The lexical level of Merge can be viewed as a simplifica-
tion of Shortlist’s lexical level. In Shortlist, only the most
highly activated words (from a passive lexicon of over
25,000 words) make it into the shortlist to compete actively
for recognition. The shortlist is a small competitive network
that is built anew for every fresh input sequence. Thus
there is a strict limit on the number of words in this lexical
workspace in Shortlist, and therefore, by extension, in
Merge. Simulations reported in Norris (1994b) show that
Shortlist performs well even when only two words are al-
lowed to compete with each other for a given stretch of in-
put (as in the present Merge simulations). Varying the size
limit on the shortlist has little effect on recognition perfor-
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mance. Thus we assume that Merge would work in a very
similar way even with a very large passive lexicon, because
the number of words activated and taking part in a phone-
mic decision at any moment in time would remain very
small. Since, as we described above, the number of decision
nodes is also assumed to be determined by the phonemic
decision task at hand, we are therefore quite confident that
the Merge model would perform similarly even if it were
scaled up at all three of its levels of processing.

Finally, note that although the decision nodes in Merge
must represent phonemes in order to do, for example, pho-
neme monitoring, we can in fact remain agnostic as to the
exact form of the prelexical input representations feeding
both Merge and Shortlist. We have already discussed the
possibility that these representations could, for instance, be
featural and need not represent phonemes explicitly. In that
case, part of the task of Merge would be to translate the rep-
resentations used for lexical access into the representations
more suited to the performance of phonemic decision tasks.

We believe that the Merge account of phonemic decision
making is a natural account that accords with the known
role of such decision making in everyday language process-
ing, and at the same time the most theoretically economi-
cal account compatible with the existing evidence. The
phoneme decision nodes in Merge are not a part of every-
day speech comprehension, and in experimental situations
they are built on the fly to cope with the specific task de-
mands. The tasks that require the decision nodes, however,
are a valuable source of data about continuous speech
recognition. As we have argued above, for example, data
from these tasks suggest that speech recognition is based on
competition between candidate words and that it is an au-
tonomous, data-driven process. If we are to answer ques-
tions about the prelexical and lexical levels of speech pro-
cessing, then phonemic judgment tasks provide us with an
extremely powerful tool. But we require an explicit and
testable model of task performance, such as Merge, if we
want to use the data from such tasks to establish how nor-
mal speech comprehension is achieved.

8. Conclusions

The task of recognizing speech is surely so difficult that one
might expect the human speech recognition system to have
evolved to take full advantage of all possible evidence that
would be of assistance in recognizing spoken words. We
think it has done so, solving the problem in the most eco-
nomical way, by allowing no feedback loops to exist, by pass-
ing information in one direction only, and by delegating
decision making about phonemic representations to a sep-
arate mechanism.

In this target article we have marshalled arguments
against interactive models involving feedback loops in the
context of the hotly contested theoretical issue of modelling
phonemic decision making in spoken-language recognition.
Our attack has been waged on three main fronts. First we
have shown that the widely assumed benefits of interaction
are illusory. Modular theories can perform as well as, or
even better than, interactive theories, and thus there is sim-
ply no need for interaction. Second, the data are inconsis-
tent with the model that is the main standard bearer of in-
teraction. Finally, we have shown how we can account for
the data with a new modular model.
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We have shown that, given a prelexical processor that is
performing at its full efficiency, word recognition cannot
possibly benefit from lexical feedback. Although interactive
theories appear to be based on an assumption that interac-
tion will necessarily produce more effective processing, we
have shown that this assumption is mistaken: There is in
fact no benefit to be gained from allowing lexical knowledge
to interact with prelexical processing. As Frauenfelder and
Peeters” (1998) simulations show, lexical feedback in a
model like TRACE improves recognition for some words,
but impairs performance on just as many other words.

Lexical feedback might offer some advantages in pho-
neme identification by making phoneme decisions line up
with decisions made at the lexical level. This might be help-
ful if the input consists of real words, but exactly the same
ends can be achieved with noninteractive models too. It is
not interaction that offers the benefit, but the process of
combining two different kinds of information — the lexical
and the prelexical. A model like Merge therefore exploits
the advantages of interaction but avoids the disadvantages.
On grounds of parsimony, if models with and without feed-
back can both account for a finding, the model without
feedback should be chosen.

These theoretical arguments in favor of strictly bottom-
up models would carry little weight if there were reliable
empirical support for interaction. However, as we demon-
strated, results that had appeared to provide strong evi-
dence for interaction turn out to have been artifactual.
Much other evidence also weighs against models incorpo-
rating feedback. None of this completely eliminates the
possibility that some interactive model might be con-
structed that would be consistent with the data. For exam-
ple, the data from Pitt and McQueen (1998) argue against
the specific details of TRACE, but one could presumably
formulate a model in which lexical and phonemic informa-
tion interacted yet compensation for coarticulation was
driven from a earlier autonomous featural level. Such revi-
sions are always possible; and, more fundamentally, as
Forster (1979) pointed out many years ago, a general claim
that processes interact cannot be refuted. We cannot prove
the null hypothesis that no interaction takes place. In our
view, however, this remains one of the best arguments for
adopting autonomous theories as the default option in this
field: Occam’s razor dictates that we do so.

The Merge model is, we believe, the most economical ex-
planation compatible with the currently available data on
phonemic decision making, while also being a natural ac-
count in the framework of our knowledge about spoken-
language processing in general. But it, too, remains a model
whose purpose is to be put to empirical test. The empirical
challenge of testing theories can only be met in the context
of specific models. Newell (1973) warned us that we “can’t
play 20 questions with nature and win.” To test general
claims about interaction in the absence of particular theo-
ries is to join in that game of twenty questions. However,
the two models we used as the extreme examples in our
demonstration, TRACE and the Race model, have both
been specific enough to be tested empirically and have
been found wanting. Merge is also specific. Whether it
passes future empirical challenges remains to be seen. Its
role in the present paper has been to serve as an existence
proof of a noninteractive account of the empirical data, and
hence an argument in favor of our central claim about mod-
els of speech recognition: Feedback is never necessary.
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NOTE

1. In fact, in TRACE, this is not strictly true. Feedback in
TRACE can actually alter the pattern of sensitivity (Massaro
1989a), but this is a consequence of the simplifying assumptions
made in implementing it. All processing is performed without
noise, and response probabilities are derived by applying the Luce
choice rule to the resulting activations. The noise simulated by this
rule is independent of all other processing. Top-down feedback
can alter the signal (arbitrarily) during processing without altering
noise. That is, feedback can alter sensitivity. When noise is added
to these systems at input, or during processing, and the Luce rule
is replaced by the Best One Wins decision rule, feedback will al-
ter both signal and noise together, leaving sensitivity unchanged
(McClelland 1991). So, the tendency of TRACE to show effects
of feedback on sensitivity is really the result of the simplified, but
unrealistic, noise-free processing assumption. This problem can
be remedied by replacing the IAM with a Stochastic Interactive
Activation Model (McClelland 1991).
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Merging information versus speech
recognition

Irene Appelbaum?

Department of Philosophy, University of Montana, Missoula, MT 59812.
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Abstract: Norris, McQueen & Cutler claim that all known speech recog-
nition data can be accounted for with their autonomous model, “Merge.”
But this claim is doubly misleading. (1) Although speech recognition is au-
tonomous in their view, the Merge model is not. (2) The body of data which
the Merge model accounts for, is not, in their view, speech recognition
data.

Norris, McQueen & Cutler claim that all known speech recog-
nition data can be accounted for with an autonomous model
(“Merge”) that merges lexical and prelexical information. This
claim elicits an immediate objection. Autonomous models, by def-
inition, are non-interactive. Merging, on the face of it, is a form of
interaction. How can a model that features interaction be de-
fended as one that does not? In response, Norris et al. waver be-
tween denying that merging is interaction and denying that it is
problematic, if it is. In particular, they imply that the part of Merge
that does what they call “phonemic decision-making” need not be
autonomous, because phonemic decision-making is not part of or-
dinary speech recognition. But this response gives rise to a second
difficulty. If phonemic decision-making is distinct from speech

recognition, then the data Merge accounts for — phoneme deci-
sion data — is not speech recognition data, making their central
claim misleading.

Four features distinguish Merge from TRACE. (1) Merge con-
sists of two phonemic stages: a first “processing” stage and a sec-
ond “decision-making” stage. (2) Because the first (processing)
stage lacks intra-node inhibition, its output preserves phonemic
ambiguity. (3) Connections between lexical and phonemic infor-
mation are flexible — built “on the fly” in response to task demands
and attentional shifts. And crucially: (4) Lexical information does
not affect the first (processing) stage; instead, lexical information
and the output of the first phonemic (processing) stage are
merged in the second (decision) stage, which outputs a determi-
nate phonemic identification.

So: the first (processing) stage gets no feedback from either the
lexicon or the second (decision-making) stage; the lexicon gets in-
put only from the first (processing) stage; and the second (decision-
making) stage gets information from both the first (processing)
stage and the lexicon. Given this architecture, the first (process-
ing) stage does seem to meet normal standards of autonomy. The
question is what to say about the second (decision-making) stage.
Is it also autonomous? It would seem not to be since “phoneme
decision units are . . . directly susceptible to facilitatory influences
from the lexicon” (sect. 5.1, para. 4). Yet if the second stage is not
autonomous, then neither is the Merge model overall, and Norris
et al.’s claim to account for all speech recognition data with an au-
tonomous model fails.

Faced with this objection, one strategy is to argue that the
second, decision-making stage is autonomous after all. At times
Norris et al. seem tempted by this strategy. Though not stated ex-
plicitly, this view is implied by their contrasting “merging,” “com-
bining,” and “integrating” (sect. 5) lexical and prelexical informa-
tion with interactive processing. For example: “Itis not interaction
that offers the benefit, but the process of combining two different
kinds of information — the lexical and the prelexical” (sect. 8, para.
4).

How can merging or integration be considered a form of au-
tonomy, rather than interaction? Their idea seems to be that the
decisive criterion for distinguishing autonomous from interactive
processes is feedback. That is, Norris et al. seem to consider a sys-
tem directly influenced by higher-level information to still be au-
tonomous as long as the intra-modular information flow involves
no feedback loops. But this is a problematic move. Reinterpreting
the interactive/autonomous distinction in terms of a feedback/
non-feedback distinction artificially eclipses the theoretical space
for other (i.e., non-feedback) kinds of interactive processing.
Moreover, to automatically classify all non-feedback top-down
processes as autonomous is contrary to normal usage. However,
although Norris et al. gesture in this direction, I do not think it is
(or should be) their considered view.

Instead, Norris et al. seem to endorse a second strategy: ac-
knowledge that decision-making is not autonomous, but deny that
this threatens the autonomy of speech recognition. Norris et al.’s
crucial move in defense of this view is to deny that the second,
decision-making stage is part of ordinary speech recognition.

One might worry that Norris et al. are simply stipulating that
phonemic decision-making is outside speech recognition in order
to justify their autonomy claim. It would certainly appear this way
if phonemic decision-making were a necessary final stage of the
overall phonemic task. But an extremely interesting and conse-
quential claim of their target article is that it is not. In their view,
the ambiguity-preserving output of the first phonemic stage is as
complete as phonemic processing gets in ordinary speech recog-
nition. The explicit phoneme decision tasks that subjects perform
in the lab, they claim, are distinct from the kind of phonemic pro-
cessing that goes on in ordinary speech recognition. Real-world
speech recognition requires only the first stage; only explicit pho-
neme decision tasks (of the sort performed in laboratories) require
both.

And sure enough, if second-stage phonemic decision-making is
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not part of speech recognition, then it does not matter whether its
merging processes are classified as autonomous or interactive. Ei-
ther way, speech recognition remains autonomous, because first-
stage phonemic processing — the only stage it requires — unprob-
lematically is.

Nevertheless, this line of response creates its own complica-
tions. For one thing, even if speech recognition is autonomous, the
Merge model is not, because whether or not phonemic decision-
making is part of speech recognition, it is still part of Merge. The
system that accounts for the data (i.e., Merge) is not autonomous;
and the system which is autonomous (i.e., phonemic processing)
does not account for the data. This leads to an even more conse-
quential difficulty. It is no longer clear how the body of data that
Merge is advertised as accounting for bears on the processes of
speech recognition. For this body of data is derived from exactly
the sorts of experimental phoneme decision tasks that Norris et al.
claim are different from ordinary speech recognition.

Norris et al. are aware of this difficulty. They respond by claim-
ing that from the data on explicit phoneme decision tasks we can
infer what ordinary speech recognition is like, since the model that
accounts for the explicit data (theirs) contains an autonomous
speech recognition component. This is an interesting claim. Even
if it is their considered view, however, their overarching claim that
Merge is an autonomous model that accounts for all the data from
speech recognition would still need to be qualified. Merge is not
autonomous, even if one of its components is; and the data that
Merge accounts for is not (in Norris et al.’s view) speech recogni-
tion data, even if it may shed indirect light on the process of speech
recognition.
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Lexical biases are useful
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Abstract: I present two criticisms: (1) Merge is a model of performance
in speech perception experiments but not an ecologically valid model in-
tegrating both word recognition and speech perception, and (2) Merge’s
implementation of the variability of lexical effects must be made more pre-
cise or the model is indistinguishable from its alternatives.

Norris, McQueen & Cutler have increased the empirical coverage
of the Shortlist/Race models by adding a phoneme decision net-
work in which lexical and prelexical information are combined
while maintaining independence between lexical and phonemic
processing. I focus my critique here on the shortcomings of Merge
that arise from it being presented as a model of performance in
speech perception experiments rather than as an ecological valid
model integrating both word recognition and speech perception.

Following a convincing argument against feedback in speech
perception, Norris et al. propose a severely constrained role for
top-down information in word recognition and speech perception.
As aresult, Merge merely describes certain experimental data on
phoneme decision-making rather than provide a teleologically ex-
planatory basis for such data. In addition, while the design of the
phoneme decision network allows Merge to explain lexical effects
which the antecedent Shortlist/Race models cannot explain, the
plasticity of some of the connections in the model make Merge
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potentially indistinguishable from other either interactive or au-
tonomous models of speech perception such as TRACE and
Shortlist/Race.

The first criticism of the Merge model concerns the purpose of
the phoneme decision network as presented by Norris et al., which
seems to do little else than to explain some very subtle and spe-
cific effects of the lexicon on the processing of nonwords. This crit-
icism is inconsequential if these data are mere idiosyncrasies of
the way humans perform in speech perception experiments. How-
ever, if these lexical effects represent important qualities of the
system, then the Merge model is a description instead of an ex-
planation.

Norris et al. present a powerful and convincing attack on the
need for feedback in speech perception. However, feedback rep-
resents only one way that top-down information could affect
phonemic processing, and the impressive critique of feedback ob-
scures the very real and useful nature of other sorts of top-down
information for word recognition and speech perception. What
possible benefit to the speech perceiver could lexical effects on
the processing of nonwords represent? In general, top-down in-
formation in any pattern recognition system limits the possible in-
terpretations available to the perceiver, making the process more
robust and efficient in a potentially noisy environment. In this
light, lexical effects on the processing of nonwords can be seen as
manifestations of a general lexical bias which makes lexical access
more efficient and accurate given a priori knowledge of the rela-
tive likelihoods of different linguistic interpretations of utter-
ances.

That this bias is under active control by the listener is evidence
that top-down information is used by speech perceivers to opti-
mize their task. Classic findings by Miller et al. (1951) on speech
intelligibility show that more limited response alternatives, sen-
tential context, and repetition can increase the intelligibility of
speech in noise, in effect increasing particular lexical biases. Re-
cent computational modeling by Nearey (forthcoming) is consis-
tent with a lexical bias explanation for Boothroyd and Nittrouer’s
(1988) finding that words are more perceptible in noise than non-
words. The effects of lexical biases can also be actively shifted in
the other direction, as observed by Cutler et al. (1987), when lis-
tener expectations are shifted from words toward monosyllabic
nonwords.

Is the phoneme decision network in the Merge model the ap-
propriate mechanism for implementing what seem to be listener
strategies to make their task more efficient and accurate? As it
stands, the phoneme decision network models listener behavior in
a particular class of speech perception experiments. The network
could be made to represent the output of a module that computes
the phonological structure of the incoming signal, combining lex-
ical and prelexical information in the process. This module (or
equivalent function) is necessary in any theory that seeks to ex-
plain the perception of both words and nonwords. Such an im-
plementation seems consistent with Norris’s (1986) proposal that
criterion bias models can explain both context and frequency ef-
fects.

In the spirit of parsimony, a model with a single mechanism for
explaining lexical bias effects in nonwords would be superior to a
model with multiple mechanisms. The simulation data presented
by Norris et al. show that Merge is capable of explaining the other
basic lexical effects observed in the literature, as the authors note
(sect. 5.3, para. 5), but the plasticity of the mechanisms in Merge
makes the model too powerful. Given that the phenomena at hand
are variable, plasticity in the model is necessary. However, if the
model can account for any type of inhibitory or facilitatory effects,
then we are left with the situation that currently exists for inter-
active and autonomous models, that they largely predict the same
data and are therefore indistinguishable. The specific details of
how the Merge model can account for all of the data should be
worked out and evaluated. To their credit, Norris et al. suggest one
type of data which would falsify autonomous models in general
(and the Merge model in particular): increased sensitivity in pho-
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neme discrimination in words over nonwords as diagnosed by sig-
nal detection theory (sect. 3.3, para. 9).

At the same time, many questions remain about the extent and
details of the influence of the lexicon on the processing of non-
words. Task demands, stimulus uncertainty (Pitt 1995; Pitt &
Samuel 1993), and context have been cited as factors in modulat-
ing these effects — not to mention other phenomena, such as se-
quential probabilities, which can have similar effects (Cairns et al.
1995; Norris 1993; Vitevitch & Luce 1998). Some of these vari-
ables are under the control of the listener while other effects seem
to persist, and a comprehensive theory must explain this variabil-
ity adequately. The more precise the hypotheses that are under
consideration are, the more useful the experimental results are
likely to be toward increasing our understanding of speech per-
ception.

Merging auditory and visual phonetic
information: A critical test for feedback?

Lawrence Brancazio? and Carol A. Fowler®

aDepartment of Psychology, Northeastern University, Boston, MA 02115.
PHaskins Laboratories, New Haven, CT 06511; Department of Psychology,
University of Connecticut, Storrs, CT 06269, Yale University, New Haven, CT
06520. brancazio@neu.edu fowler@haskins.yale.edu

Abstract: The present description of the Merge model addresses only au-
ditory, not audiovisual, speech perception. However, recent findings in the
audiovisual domain are relevant to the model. We outline a test that we are
conducting of the adequacy of Merge, modified to accept visual informa-
tion about articulation.

Norris, McQueen & Cutler have made a provocative contribution
to the debate on the relationship between phoneme identification
and lexical access with their contention that an additional decision
stage is more economical and therefore preferable to feedback.
However, Merge, like most models of speech perception (includ-
ing TRACE, Race, Shortlist, and Marlsen-Wilson & Warren’s
[1994] model, but excepting FLMP) fails to accommodate the ef-
fects of visible phonetic information on phoneme and word identi-
fication. Perceivers do use this information, though, so the models
are incomplete. We will suggest that coupling questions about the
ways in which lexical knowledge and visual articulatory information
affect phone identification can be informative. Researchers have
recently been considering visual contributions to speech percep-
tion with reference to lexical access (Brancazio 1998; 1999; Iverson
etal. 1998), and we propose a useful extension of this research line.

It is now well known that visible phonetic information from a
speaker’s articulating mouth has a marked effect on perception.
This is most clearly demonstrated by the “McGurk effect” (Mc-
Gurk & MacDonald 1976): When an unambiguous auditory sig-
nal specifying one syllable (for example, /ba/) is dubbed with a
face producing a different syllable (such as /ga/), the resulting
percept is often changed (to /da/). We can ask, as we do of lexical
knowledge, where this visual contribution occurs; evidence sug-
gests that audiovisual integration occurs early in the perceptual
process (e.g., Green & Miller 1985).

For example, Fowler et al. (in press) demonstrated compensa-
tion for coarticulation (the phenomenon exploited by Pitt & Mc-
Queen [1998] in their phonotactics study; sect. 4.3) using stimuli
in which the coarticulating contexts were distinguished optically
but the compensations were applied to segments distinguished
acoustically. That is, visible phonetic information induced the
compensation effect. Fowler et al. used stimuli in which use of rel-
evant transitional probabilities between phonemes would not
have given rise to the compensations that were found and there-
fore cannot underlie the compensation effect. Accordingly, they
concluded that their compensation effect must arise in perceivers’
remarkable sensitivity to talkers’ coarticulatory behavior.

In the framework of Merge, visual contributions to phoneme
perception, by virtue of their interaction with the compensation
for coarticulation mechanism, must be prelexical and thus be un-
affected by lexical knowledge. Therefore, evidence of lexical in-
fluences on audiovisual integration would pose a strong challenge
to Merge.

In fact, Brancazio (1998; 1999) has demonstrated that phoneme
identification of audiovisually discrepant stimuli is affected by
lexical status. That is, visually-influenced responses are more
frequent when they form words than nonwords. Moreover, this
effect parallels the auditory Ganong (1980) effect in its basic prop-
erties. One parallel is the finding of a “neighborhood” effect on
phoneme identification in nonwords like that of Newman et al.
(1997). This effect cannot be due to sensitivity to transitional prob-
abilities, contrary to Norris et al.’s suggestion (sects. 4.5.1; 5.3).
Consider a set from Newman et al.’s stimuli, “bowth-powth” and
“bowsh-powsh.” “Bowth” has a larger neighborhood than
“powth,” but “powsh” has a larger neighborhood than “bowsh,”
and, accordingly, “p” responses are more frequent for a “powsh-
bowsh” than a “bowth-powth” continuum. However, the sequen-
tial probabilities of p(/b/ | /aU/) and p(/p/ | /aU/) cancel out across
the stimuli, and the higher-order sequential prOb‘lblhtleS p(/b/ |
/au[f/), p(/p/ | 7aU[/), p(/b/ | /aU8/) and p(/p/ | /aU@/) are all
zero.! Therefore in Merge these “neighborhood” effects can only
arise via the lexical, not the prelexical, pathway. (This may ulti-
mately prove relevant for evaluation of Merge as our understand-
ing of neighborhood effects improves.)

Brancazio’s finding of a lexical influence on the McGurk effect
might be due to lexical feedback on audiovisual integration. How-
ever, the outcome is also consistent with an autonomous model
such as Merge in which audiovisual integration occurs prelexically,
and lexical influence emerges at a later decision stage, affecting
the interpretation of ambiguous outputs from the prelexical level
of processing.

We are currently conducting experiments to pin down the proper
interpretation of Brancazio’s findings, and thereby provide an au-
diovisual test of Merge. To achieve this, we are exploiting the lexi-
cally-induced shift in the McGurk effect (more word-forming than
nonword-forming visually-influenced responses) and the McGurk
effect-induced compensation for coarticulation (visual determina-
tion of an acoustically ambiguous syllable-final consonant as /1/ or
/r/, which influences the identification of a following syllable as
/da/ or /ga/). We are testing whether a lexically-induced “strength-
ening” of the McGurk effect will increase visually-induced com-
pensation for coarticulation. If visual contributions to phoneme
identification are prelexical as Fowler et al. have shown (see also
Green & Miller 1985) and, if, as Norris et al. claim, the lexicon does
not affect prelexical processing, then there should be no second-or-
der lexical effect (via the McGurk effect and compensation for
coarticulation) on following stop identification. That is, a lexically
induced increase in identifications of the syllable-final consonant as
/1/ should not increase /ga/ over /da/ identifications. However, a
positive outcome would suggest that lexical feedback occurs.

Finally, attending to the audiovisual domain highlights a further
distinction between Merge and Massaro’s (1987) FLMP, which, as
Norris et al. point out, are computationally quite similar. In the
FLMP, all sources of information are integrated at a single stage.
Therefore, in the audiovisual Merge, but not in the FLMP, au-
diovisual integration precedes and is unaffected by lexical pro-
cessing. Thus, concern for audiovisual speech perception in the
lexical domnn offers new means of distinguishing contemporary
models. We hope that other researchers will exploit this potential.
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be ruled out: Newman et al. also used a “beyth-peyth-beysh-peysh” series,
whose stimuli have identical C1:C2 probabilities to the “bowth” set. Crit-
ically, “beyth” is a high-neighborhood nonword but “bowth” is low, and the
two stimulus sets produced neighborhood effects in opposite directions.

Inhibition

Cynthia M. Connine and Paul C. LoCasto

Department of Psychology, State University of New York at Binghamton,
Binghamton, NY 13902. connine@binghamton.edu
psychology.binghamton.edu/index.htm

Abstract: We consider the motivation for the principle of bottom-up pri-
ority and its consequence for information flow in Merge. The relationship
between the bottom-up priority rule and inhibitory effects is also dis-
cussed, along with data that demonstrate inhibitory influences in phoneme
monitoring.

At a basic level, the Merge model bifurcates perceptual and deci-
sion processes during spoken word recognition. In doing so,
Merge permits lexical knowledge to influence the phoneme deci-
sions while perceptual processes operate autonomously according
to a bottom-up priority principle. The explicitness of the model
and its development hand in hand with empirical findings render
it an important counterpoint to interactive models such as
TRACE.

We focus here on the bottom-up priority rule and its relation-
ship to the sequence of processing in the phoneme decision nodes.
The bottom-up priority rule at its essence directs lexical knowl-
edge as to when it can inform phoneme decisions. The time course
oflexical involvement is constrained so that it is invoked only when
there is bottom-up evidence for a given phoneme. As a conse-
quence, activation of a phoneme decision node cannot be driven
solely by lexical knowledge. A primary empirical motivation for
the bottom-up priority rule is the lack of evidence for inhibitory
effects for phoneme detections when the phoneme mismatches an
otherwise lexical carrier (Frauenfelder et al. 1990). Some results
from our laboratory investigating inhibitory effects suggest that
the conclusions of Frauenfelder et al. may be premature. In our
experiments, a nonword control that had little resemblance to a
real word was included to serve as a baseline comparison against
the mismatch condition (see also Connine 1994). A nonword con-
trol that is very similar sounding to a real word (as in Frauenfelder
et al.) may inadvertently produce inhibition similar in kind to a
word carrier, thus masking any inhibitory effects on the mis-
matching target phoneme. Our second innovation was to include
two kinds of mismatching phonemes: one condition where the
mismatching phoneme was very similar to the lexically consistent
phoneme (e.g., chorus — chorush) and a second condition where
the mismatching phoneme was very dissimilar (chorus — chorum).
The similar mismatch target is predicted to show inhibitory effects
while the dissimilar mismatching condition may benefit from ad-
ditional attentional resources (following Wurm & Samuel 1997)
that override inhibition. Note that either an inhibitory effect in the
similar mismatch compared with the nonword control (where
phoneme target and carrier stimulus is held constant) or against
the dissimilar mismatch (where phoneme target is held constant
but carrier stimulus is varied) would count as evidence for lexical
inhibition. Here we examine the former prediction and avoid a
comparison across different target types. Participants monitored
for the ‘sh’” or the ‘m’ (stimulus presentation was blocked). Timing
marks were placed at the onset of the target segment. The similar
mismatch condition showed a small (14 msec) but significant in-
hibitory effect relative to the nonword control (t(50) = 6.1, SD =
52, p < .01; chorush vs. golush, 488 msec vs. 474 msec). In con-
trast, the dissimilar mismatch condition showed a facilitatory ef-
fect relative to the nonword control (45 msec, t(50) = 3.5, SD =
93, p < .01; chorum vs. golum, 636 msec vs. 681 msec). Similar to
Wurm and Samuel (1997), we attribute the facilitatory effect to re-
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covery from inhibition as a result of focused attentional resources.
Neither TRACE nor Merge currently incorporates cognitive fac-
tors such as attention, and our results highlight the important role
attentional processes play in language processing.

Could Merge be modified to model correctly our observed in-
hibitory effects? As Norris et al. explicitly state (sect. 5.2.2, para.
6), removing the bottom-up priority rule does result in a small de-
gree of inhibition. However, this would effectively deny one ma-
jor motivation of the model. The principle of bottom-up priority
tips the balance of influence in favor of bottom-up input and
against lexical knowledge. In doing so, this permits phoneme
nodes (the speech signal) to drive initial activation of phoneme de-
cision nodes and any subsequent lexical effects. Norris et al. argue
that this characteristic prevents the occurrence of “hallucinations”
in processing speech and that this is a desirable property for spo-
ken language processing. The motivation for this claim is that the
system should be designed to be error-free and to optimize be-
havior. But is error-free, maximally optimal processing an accurate
characterization of processing continuous speech? We do not be-
lieve so. In continuous speech, the bottom-up input is not always
deterministic with respect to conscious experience or segmental
identity and in some instances is missing information entirely. Er-
rors in processing can occur along with re-computation and re-
covery. Another domain that makes the same point is the strong
evidence for syntactic preferences in parsing locally-ambiguous
sentences. The parser has a built-in error-producing mechanism
— garden path sentences are difficult to process precisely because
the strategy (or frequency-based bias) produces errors (or con-
flicts) in parsing. The resulting mechanism can produce efficient,
errorless representations as well as sub-optimal processing (re-
quiring a re-computation). In spoken word recognition, interac-
tive mechanisms may maximize processing for some classes of
words while making no difference or even having detrimental ef-
fects on others.

The implications for model development are clear. Lexical
information provides a powerful source of constraint with behav-
ioral consequences that are consistent with interactive architec-
tures such as TRACE. As argued over a decade ago, the repre-
sentational compatibility of lexical and segmental levels render
them ideal for interaction (Connine & Clifton 1987).
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Abstract: Our commentary outlines a number of arguments questioning
an autonomous model of word recognition without feedback. Arguments
are presented against the need for a phonemic decision stage and in sup-
port of a featural level in a model including feedback.

Norris, McQueen & Cutler make a strong claim against the inclu-
sion of feedback in models of word recognition, and describe an
autonomous model in which prelexical phonemic information is
merged with lexical information at a phonemic decision stage. The
target article clearly describes the defining characteristics of au-
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tonomous and interactive models of word recognition and pre-
sents a concrete model with testable hypotheses, challenging re-
searchers to empirically evaluate its predictions. Although the au-
thors have shown that the model can account for an impressive
number of experimental findings, we identify four aspects requir-
ing additional support. The following comments invite the authors
to fine-tune their arguments.

The first point concerns Norris et al.’s justification of the inde-
pendence of the prelexical level and the phonemic decision stage.
They claim that these levels are necessarily independent because
perceptual processing and decision making have different re-
quirements and therefore cannot be performed effectively by the
same units. If this were the case, then one might argue for an ad-
ditional lexical decision stage to be connected to the lexical pro-
cessing level. The argument for independence of processing and
decision making is expanded in the discussion of phonemic deci-
sions and language processing in section 7, where the authors
claim that phonemic decision making is not a part of normal
speech recognition. They support this claim with evidence of dif-
ficulties in the ability of subjects to make phonemic decisions due
to illiteracy or non-alphabetic orthographies. The authors con-
clude that the ability to make phonemic decisions is a learned
process, separate from word recognition abilities. But this conclu-
sion ignores a whole body of research on infant speech perception,
where the head-turn paradigm and high-amplitude sucking
procedure are widely accepted techniques used to demonstrate
phoneme discrimination in infants. If these infants do not possess
a phonemic decision making mechanism, what guides their be-
havioral responses?

The simplicity of Merge is further compromised by the fact that
the prelexical phonemic level is, in essence, duplicated at the
phonemic decision stage. Thus, the flow of information from the
lexical level to the phonemic decision stage is not clearly different
from what might be found in a model with feedback from the lex-
ical level to a prelexical phonemic level. Although it may be argued
that bottom-up theories are more parsimonious than interactive
theories, if bottom-up theories must posit an additional decision
level that mimics the phoneme level, then interactive theories in-
cluding feedback may be preferable. Moreover, Norris et al. seem
to ignore the architecture of the mechanism they are trying to
model. Within the well-studied visual or auditory systems of mon-
keys, for example, there are as many feedback as feedforward con-
nections between different areas.

The second point involves the nature of the prelexical level in
Merge. The authors most commonly refer to this level as phone-
mic, and use phoneme nodes in their simulations. The Merge
model is explicitly designed so that lexical information does not
influence prelexical phonemic information. However, research in
phonetics, phonology, and spoken word recognition suggests that
features may be the more critical units in speech perception and
word recognition. Recall that the inability to recover from mis-
pronunciations in models with interacting lexical and phonemic
levels is a major motivation for the autonomous architecture
adopted in the Merge model. If a featural level were added, lexi-
cal and phonemic information could interact while the featural
level would ensure recovery from mispronunciations. Lexical in-
formation can influence phonemic decisions without information
in the speech input being discarded or modified. If input is in-
consistent with lexical knowledge, there will not be a risk of mis-
perceiving speech while at the same time retaining all top-down
lexical effects. No phonemic decision unit would need to be pos-
tulated. A model which allows featural, phonemic, and lexical lev-
els, with feedback between the phonemic and lexical levels would
then seem more parsimonious.

Third, although Norris et al. leave open the question of whether
featural information may be represented, they explicitly state that
the prelexical level includes sequential probability information
(which could be argued to be a duplication of information that is
necessarily contained at the lexical level). Storing sequential prob-
ability information at the prelexical level is necessary in order for

Merge to account for data showing that phonotactic probabilities
affect nonwords as well as words. It also allows the authors to fur-
ther their argument that Merge differs significantly from models
with feedback, in part because Merge allows for a dissociation of
effects due to compensation for coarticulation and lexical bias.
The former is said to be a result of prelexical processes, while the
latter results from lexical involvement. Norris et al. argue that an
interactive model such as TRACE is not capable of such a disso-
ciation, since lexical bias in TRACE should produce a change in
activation at the phoneme level thus inducing compensation for
coarticulation. But since Pitt and McQueen (1998) showed that
coarticulatory compensation effects are most likely due to transi-
tional probabilities, the TRACE simulation of compensation for
coarticulation must have simulated the network’s learned knowl-
edge of sequential patterns at the lexical level rather than the com-
pensation process intended at the prelexical level. While it is true
that compensation for coarticulation (or transitional probability)
and lexical bias effects may both stem from information stored at
the lexical level in TRACE, this does not imply that the former ef-
fect will necessarily induce the latter nor that the network is inca-
pable of dissociating these effects.

Finally, the empirical data that are modeled in Merge derive
from phoneme monitoring, phonetic categorization, and pho-
neme restoration tasks. While these tasks have provided much in-
formation about speech processing, they impose an artificial situ-
ation on normal listening and require subjects to make decisions
they would normally not make, introducing issues of response bias
and ecological validity. Real-time data from ERPs and localization
data from fMRI, as well as eye movement data during reading,
may be able to elucidate the stages/loci of processing. Results
across a variety of methodologies should allow an optimal, biolog-
ically plausible model of word recognition to e-Merge.

Modeling lexical effects on phonetic
categorization and semantic effects
on word recognition

M. Gareth Gaskell

Department of Psychology, University of York, Heslington, York YO10 5DD
United Kingdom. g.gaskell@psych.york.ac.uk
www-users.york.ac.uk/~mgg5/

Abstract: I respond to Norris et al.’s criticism of Gaskell and Marslen-
Wilson (1997). When the latter’s network is tested in circumstances com-
parable to the Merge simulations in the target article, it produces the de-
sired pattern of results. In another area of potential feedback in spoken
word processing, aspects of lexical content influence word recognition and
our network provides a simple explanation of why such effects emerge. It
is unclear how such effects would be accommodated by Merge.

The Marslen-Wilson and Warren (1994) data on subphonemic
mismatch are central to the arguments in the target article. Nor-
ris et al. criticize the Gaskell and Marslen-Wilson simulations of
these data on a number of counts. Most importantly, they argue
that our simulation of the phonetic categorization data is insuffi-
cient, because it uses a signed measure of the target-competitor
activation difference to predict human performance. The reason
we preserved the sign of the measure was because we wished to
interpolate between our data points in order to derive predicted
response times. Transforming our data into an unsigned measure
too early would lead to incorrect predictions in cases where a time-
sequence of difference scores crossed the zero line. However,
Norris et al. are correct in noting that a suprathreshold deflection
either side of the zero line must be counted as triggering a re-
sponse, which means that our simulations would predict false pos-
itives or no responses for at least some of the nonword conditions
in this experiment, depending on where the threshold is set. This
is another example (one we originally missed) of the unsatisfactory
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phonological representation of nonwords in the network, dis-
cussed on pp. 634—36. In essence, the network was too strongly
influenced by the phonological patterns of existing words learnt
during training.

Note that the Merge lexical decision simulation comes danger-
ously close to having a similar problem. The activation threshold
0f 0.2 is carefully chosen (see target article Fig. 2). A threshold be-
low 0.18 would predict false positives in the W2N1 condition,
whereas a threshold above 0.24 would predict misses in the
spliced word conditions. It seems plausible that this narrow win-
dow would close entirely if any system noise or variability between
different lexical items was incorporated, or if competitor environ-
ments were larger than the maximum of two lexical items used.

The Gaskell and Marslen-Wilson simulations attempted to
recreate the details of the time-course and competitor environ-
ment involved in the perception of these stimuli. It is interesting
to note that employing some of the simplifications used in Merge
allows simulation of the original data without the problem isolated
by Norris et al. I retrained our original network using a competi-
tor environment similar to Norris et al. (each test item paired with
0-2 competitors of equal frequency, intermixed with a large num-
ber of lower frequency monosyllabic words). Subcategorical mis-
match was simulated by replacing the final segment of a word or
nonword with a mixture of phonemes on a 0.8:0.2 ratio (Norris et
al. used 0.85:0.15, but again a range of weightings was used, with
little qualitative difference between the results). The model then
simulated the experimental results without predicting false posi-
tives (see Fig. 1). Applying appropriate thresholds to the differ-
ence score graphs provides a reasonable fit to the relevant exper-
imental data for the phonetic decision and “yes” lexical decision
data. Likewise, the subthreshold activity for the lexical decision
“no” responses is consistent with the experimental results.

It would seem that both models can accommodate the data
from Marslen-Wilson and Warren (1994). This should not be too
surprising, since both models use a level of phonological repre-
sentation in which acoustic information can interact with lexical
knowledge without feedback. Norris et al. also question whether
the effects in the Gaskell and Marslen-Wilson model are truly lex-
ical, pointing out that connectionist networks can demonstrate
“lexical” effects in the absence of a lexical identification task in
training by taking advantage of the statistical regularities in the
training sequence. The boundary between these two explanations
is becoming increasingly blurred, since much research has shown
that a good way to identify word boundaries and hence isolate lex-
ical units is through the use of statistical regularities (Cairns et al.
1997). In any case, our model does use explicit training on word
identity, and so regardless of the lack of feedback from semantic
units during test, the network can be thought of as representing
words implicitly at the hidden unit level.

The Gaskell and Marslen-Wilson model does clearly fail to sim-
ulate any variability of lexical effects on phoneme categorization.
McQueen et al. (1999a) argue that the lexical effects observed by
Marslen-Wilson and Warren (1994) disappear when the experi-
mental task is simple enough to perform without engaging the lex-
icon. Presumably normal speech perception is not as simple as
this, and so it seems reasonable to retain a focus on processes in
speech perception that do engage lexical processing (as does, for
example, the Shortlist model of Norris [1994b]). Merge provides
an excellent model of phonemic decision making in cases where
the listener focuses on the low-level form of speech.

Another interesting case of potential feedback, not discussed in
the target article, is in the interaction between lexical semantic
information and word recognition. In auditory and visual word
recognition, aspects of a word’s meaning often influence its recog-
nition in isolation. The concreteness of a word’s meaning, the
number of meanings associated with a word form, and even the
relationship between those meanings can all affect recognition
performance (Azuma & Van Orden 1997; Rodd et al. 1999). For
a model that treats lexical decision as an operation feeding off a
distributed representation of lexical content, these influences are
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Figure 1 (Gaskell). Simulation of lexical decision (Fig. 1a) and
phonetic decision (Fig. 1b) experiments. In each case, the mea-
sure is the difference between the target activation and the near-
est competitor. The x-axis marks the time course of presentation
of cross-spliced stimuli, with zero being the final segment, con-
taining potentially mismatching information about two conso-
nants. In the lexical decision simulation the activation difference
is derived from distances in multidimensional space, whereas in
the phonetic decision simulation it is derived from the activations
of the relevant phoneme nodes in the Gaskell and Marslen-
Wilson network. In each simulation, reaching a threshold activa-
tion difference is assumed to trigger a response. The conditions in
the key are explained in the Norris et al. target article section 4.6
and their Figure 2.

to be expected in certain circumstances. Functionally, lexical con-
tent interacts with word recognition despite the preservation of
bottom-up processing. However, a model like Merge, where lexi-
cal identification depends on activation of abstract nodes, would
seem to require a set of feedback links from the level of lexical con-
tent to the word recognition level in order to incorporate these ef-
fects within a single recognition level. In some sense, then, our
model is an even stronger proponent of the no feedback principle.
It provides another demonstration of how multiple sources of in-
formation can be integrated in word recognition without recourse

to feedback.
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One phonemic representation should suffice
David W. Gow?

Neuropsychology Laboratory, Massachusetts General Hospital, Boston, MA
02114. gow@helix.mgh.harvard.edu

Abstract: The Merge model suggests that lexical effects in phonemic pro-
cessing reflect the activation of post-lexical phonemic representations that
are distinct from prelexical phonemic input representations. This distinc-
tion seems to be unmotivated; the phoneme fails to capture the richness
of prelexical representation. Increasing the information content of input
representations minimizes the potential necessity for top-down processes.

Norris et al. offer the Merge model as an existence proof that a
completely feedforward model can account for apparent top-
down effects in phoneme processing. The key to Merge’s perfor-
mance is a processing reorganization that multiplies the phoneme
into a prelexical input representation and a quasi-post-lexical rep-
resentation that receives some activation from the lexicon. The au-
thors thus skirt the necessity for top-down feedback by asserting
that the critical phonemic representation needed to explain lexi-
cal effects is post-lexical, not prelexical, as is frequently assumed.
To some, this may sound like the equivalent of blaming one’s mis-
deeds on a heretofore unknown evil twin. This is unfortunate, be-
cause Norris et al.’s suggestion that lexical effects in phoneme pro-
cessing reflect the phoneme’s postlexical status, while not entirely
novel (Gaskell & Marslen-Wilson 1997), is an interesting one. I
would like to explore a slightly different approach to the story that
perhaps avoids the distraction of unnecessarily multiplying phone-
mic representations, and addresses the ultimate utility of lexical
influences on speech perception.

There is no need for two phonemic representations. The claim
that two phonemic representations are needed is not well-
motivated. Norris et al. base the distinction on three arguments.
The first is that listeners hearing mispronounced words show a dis-
connect between word recognition and phoneme recognition.
The authors oversell the point. Evidence from a variety of para-
digms (cf. Marslen-Wilson & Welsh 1978) including shadowing,
mispronunciation monitoring, and monitoring for the surface
forms of phonologically modified segments, suggests that listen-
ers may fail to appreciate segmental alterations while occupied
with the business of recognizing words. Furthermore, even a sin-
gle phonemic representation can account for a disconnect be-
tween word recognition and phoneme recognition, because over
the course of processing, a fully interactive model allows for ini-
tial bottom-up activation of phonemes which may accurately re-
flect input. Only over time do lexical factors swamp this activation.
Thus, the same set of nodes can reflect different patterns of acti-
vation when sampled at different points in time.

The second motivation is the observation that earlier au-
tonomous models with only one phonemic level fail to accurately
model the full range of lexical effects in phoneme processing. This
is a misuse of Occam’s razor, because it restricts the possible range
of models to ones premised on the unproven doctrine of auton-
omy. This is a particularly circular argument given that their de-
fense of autonomy is based on the claim that autonomous models
are inherently simpler than interactive ones.

Finally, Norris et al. justify the division based on the notion that
the two types of representations must show different activation
dynamics. They suggest that phoneme decision nodes show lateral
inhibition because output must always be unambiguous. Con-
versely, they argue that prelexical representations cannot show lat-
eral inhibition because this could miscategorize some ambiguous
signals and derail lexical access. Neither post-lexical competition
nor the absence of competition in prelexical representations is ul-
timately indispensable at this stage in our understanding of word
recognition. First, it is unclear how ambiguous the real speech sig-
nal is. As I will argue in a moment, the speech signal does not of-
fer the kind of ambiguity that motivates interactive accounts. Fur-
thermore, there is no principled reason why phonemic decision
nodes have to produce unambiguous output. The use of confi-

dence ratings, goodness judgments, and reaction times in phone-
mic categorization tasks reveals listeners are not always confident
identifying the phonemes they hear (cf Miller 1994).

Input representations make a difference. Granting that the
postlexical representation of phonemes may be a notion worth pur-
suing, we are left in need of an appropriate prelexical representa-
tion to serve as input into the system. On this point Norris et al. are
quite flexible, suggesting that the exact prelexical representation
one chooses does not affect the dynamics of the model as a whole.
I would argue that the nature of input representations is crucial to
the performance of any model. Specifically, I would like to suggest
that the necessity for lexical influences on perceptual processes is
contingent on ambiguity in the input representation.

Consider two potential ambiguities that occur in normal
speech. English place assimilation may cause an apparent shift in
place of articulation that makes the phrase right berries sound like
the phrase ripe berries, or something halfway between the two as
judged by listeners in an offline perceptual task. However, in
phonological priming tasks, listeners show access of right, but not
ripe, even after hearing strongly modified tokens (Gow, submitted
a). Moreover, they appear to use this perceived modification to an-
ticipate the labial place of the onset of berries (Gow, submitted
b). Acoustic analysis of these tokens suggests that assimilation pro-
duces place cues intermediate between those associated with the
coronal /t/ and the labial /p/. In this case, listeners have access to
more information than traditional phonemic categories provide.

Similarly, Manuel (1992) examined natural tokens of the word
support in which the first vowel appears to have been completely
deleted, leaving no vocalic pitch periods between the voiceless /s/
and /p/. Listeners hearing such tokens might be expected to re-
port having heard the word sport, but instead report having heard
support. Analysis of these tokens reveals that the /p/ is strongly
aspirated, marking it as a syllable onset, rather than part of a
consonant cluster. In both cases, listeners make use of acoustic in-
formation that does not correspond to traditional phonemic cate-
gories to recover information that appears to be lost from the sig-
nal. In the case of complete vowel neutralization this information
even serves to correct a potential misalignment between lexical
and input representations that would block recognition of support
by existing phoneme-based models.

Word recognition largely consists of the computational problem
of forming the right mapping between input representations and
lexical representations. Top-down processes may facilitate this
process when input is perceptually ambiguous. However, if the in-
put representation is sufficiently rich and unambiguous, there
may be little need for such processes. I would suggest that a
deeper consideration of the nature of prelexical representation
may shed additional light on the issue of autonomy in spoken word
recognition.

NOTE
1. The author is also affiliated with the Department of Psychology,
Salem State College.

The trouble with Merge: Modeling
speeded target detection

Jonathan Grainger

Laboratoire de Psychologie Cognitive, Université de Provence, 13621 Aix-en-
Provence, France. grainger@up.univ-mrs.fr

Abstract: The model of phoneme monitoring proposed by Norris et al. is
implausible when implemented in a localist connectionist network. Lexi-
cal representations mysteriously inform phoneme decision nodes as to the
presence or absence of a target phoneme.

Norris, McQueen & Cutler provide a further example of how cas-
caded activation networks with localist representations can be
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used to describe the mechanics of human cognition (see Grainger
& Jacobs 1998; and Page 2000 for further discussion of localist
connectionism). However, their proposed extension of the Short-
list model of spoken word recognition (Norris 1994b) to the ques-
tion of modeling phoneme detection latencies is seriously flawed.
In this commentary I will explain why the particular solution
adopted by Norris et al. cannot be correct when applied within the
more general localist connectionist framework that they adopt.

The problems arise as soon as one attempts to provide a detailed,
computationally explicit, account of performance in response-
limited laboratory tasks, where RT (response time) is the main de-
pendent measure. Norris et al. are to be congratulated for even
wanting to take this step, so often avoided by cognitive modelers.
In response-limited laboratory tasks the participant must some-
how create an artificial stimulus category-response category map-
ping. One way to do this is to map the activation in some relevant
and identifiable! dimension of cognitive activity generated by the
stimulus onto the appropriate motor response. A criterion can
then be set on the activation level of that specific dimension (or
on activity in the appropriate motor response units) in order to tell
the system that there is sufficient evidence to justify response out-

ut.
P The goal then for the modeler of speeded target detection tasks
is to find some psychologically plausible dimension of activity that
could be the basis of this task-specific mapping process. For the
lexical decision task (speeded word/nonword classification), for
example, Grainger and Jacobs (1996) proposed that two dimen-
sions of activity could simultaneously map onto a positive response
in that task: unit activity in whole-word representations, and global
lexical activity (summed across all positively activated word rep-
resentations). Global lexical activity is also used to shift a negative
response deadline, so that the more a nonword resembles a real
word, the longer it takes to respond negatively to that stimulus.
Norris et al. apply the same general approach in their simulations
of lexical decision performance.

For the phoneme monitoring task, the only plausible dimension
is activity in phoneme representations (or some configuration of
activation of feature units that correspond to phonemes). Activity
in whole-word representations cannot be used since this activity
does not provide direct information about whether a given pho-
neme is present or not. This is the basic problem faced by Norris
et al.: how to model lexical influences on phoneme monitoring
without word-phoneme feedback in a localist connectionist net-
work? The solution offered by Norris et al. is both psychologically
and computationally implausible. On each trial of a phoneme de-
tection task the decision nodes must be connected on the fly to all
whole-word representations that contain that phoneme. Admit-
tedly, using Shortlist as the underlying framework implies that this
mapping will only be made for a small number of words on any
given trial. However, this solution does not avoid the central ques-
tion here: just how does the system that is building these connec-
tions on the fly know that a given word contains a given phoneme?
The only way to have access to that knowledge in a localist con-
nectionist model like Merge or Shortlist or TRACE, is to look at
the activity in phoneme representations. Whole-word representa-
tions only provide information about their constituent phonemes
to the extent that they are connected to phoneme representations
that are simultaneously active with the whole-word representa-
tion. The modeler of course knows which words contain the tar-
get phoneme, but Norris et al. are now giving Merge that “psychic
ability” for which they quite rightly accuse the model of Gaskell
and Marslen-Wilson (1997).

Finally, it should be noted that this problem is specific to re-
sponse-limited paradigms where a response is prepared on-line
during target processing. Data-limited paradigms with untimed
responses (e.g., the Reicher-Wheeler task) do not offer the same
challenge. In the latter, various sources of information derived
from the target can be combined at leisure to formulate a re-
sponse. For example, if a participant believes that she perceived
the word TABLE when tested in the Reicher-Wheeler paradigm,
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then she can use knowledge of word spellings to infer that the let-
ter T and not the letter C must have been present in the first po-
sition (Grainger & Jacobs 1994). It is for this reason, and only for
this reason, that Grainger and Jacobs found that they could dis-
pense with word-letter feedback in providing an account of word
superiority effects observed with this paradigm. Future research
should examine the same range of effects in speeded letter detec-
tion, the visual analog of phoneme monitoring.

NOTE

1. Identifiability of the relevant dimension is not a trivial problem for a
homunculus-free cognitive system. One solution is for the system to mon-
itor activity during presentation of the specified target in order to isolate
target-specific brain activity.

Brain feedback and adaptive resonance
in speech perception

Stephen Grossberg

Department of Cognitive and Neural Systems, Center for Adaptive Systems,
Boston University, Boston, MA 02215. steve@cns.bu.edu
www.cns.bu.edu/Profiles/Grossberg

Abstract: The brain contains ubiquitous reciprocal bottom-up and top-
down intercortical and thalamocortical pathways. These resonating feed-
back pathways may be essential for stable learning of speech and language
codes and for context-sensitive selection and completion of noisy speech
sounds and word groupings. Context-sensitive speech data, notably inter-
word backward effects in time, have been quantitatively modeled using
these concepts but not with purely feedforward models.

Norris et al. argue that “top-down feedback does not benefit
speech recognition” and that “no experimental data imply that
feedback loops are required for speech recognition. Feedback is
accordingly unnecessary” (Abstract). They carry this position per-
haps as far as it can go, and nicely describe how their feedforward
Merge model can explain some data at least as well as the feed-
back TRACE model and the feedforward Race model. They focus
on TRACE as a representative feedback model because it is “the
main standard bearer of interaction” (sect. 8). This is a debatable
assumption because TRACE has major conceptual and data-
predictive problems that are not shared by other feedback mod-
els (Grossberg et al. 1997a). On the conceptual side, TRACE is
not a real-time model, cannot self-organize, and experiences a ma-
jor combinatorial explosion. On the data side, TRACE cannot ex-
plain a host of data in which backward effects contextually alter
speech percepts. FLMP also has such problems. Norris et al. are
also selective in their choice of psychological and neural data with
which to support their thesis, and underplay serious conceptual
problems with their own model that feedback models have already
overcome.

Massive and selective feedback processes exist in every cortical
and thalamic region (Felleman & Van Essen 1991). Norris et al.
are claiming that these processes play no role in speech recogni-
tion. In fact, neural models have recently suggested how the lam-
inar circuits of neocortex merge feedforward, horizontal, and
feedback pathways to elegantly achieve three goals: (1) stable de-
velopment of cortical connections and adult learning; (2) seamless
fusion of bottom-up and top-down processing, whereby top-down
feedback modulates, matches, and attentively selects bottom-up
data that are consistent with learned top-down hypotheses; and (3)
a synthesis of analog representation and coherent binding of dis-
tributed information that is called analog coherence (Grossberg
1999a; Grossberg et al. 1997b).

Norris et al. do not explain how a feedforward model can ex-
plain classical phonemic restoration data: Let a listener hear a
broad-band noise followed rapidly by the words “eel is on the. . . .”
If this word string is followed by “orange,” then “noise-eel” sounds
like “peel”; if by “wagon,” it sound s like “wheel”; if by “shoe,” it
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sounds like “heel” (Warren 1984; Warren & Sherman 1974). If
some formants of the expected sound are missing from the noise,
then only a partial reconstruction is heard (Samuel 1981a; 1981b).
If silence replaces the noise, then only silence is heard, and the
sentence meaning changes, for example, consider “eel is on the
shoe.” These results strongly argue that the feedforward signal is
not what is consciously heard. Instead, contextual feedback from
the meaning of the entire sentence “feeds backwards in time”
across several words to select those noise formants that are con-
sistent with a contextually sensitive top-down expectation. This
top-down matching process cannot, however, “create something
out of nothing.” It can only select and focus attention on what is
already in the feedforward data stream. This attentive process can
take from 100 to 200 msec. to generate a conscious percept. It
demonstrates an intimate interaction between lexical and prelex-
ical processes.

Adaptive resonance theory (ART) models explain such data as
properties of brain resonances that focus attention upon impor-
tant bottom-up data while stabilizing brain development and
learning (e.g., Boardman et al. 1997; Cohen & Grossberg 1986;
Grossberg 1978; 1980; 1986; 1995; 1999b; Grossberg & Stone
1986). The time scale of conscious speech is identified with the
time needed for interacting bottom-up and top-down processes to
achieve resonance. The matching properties help to stabilize brain
development and learning.

There are many other examples of backward effects in time.
Repp (1980) studied categorical perception of VC-CV syllables.
He varied the silence interval between the VC and CV syllables in
[ib]-[ga] and [ib]-[ba]. If the silence is short enough, then [ib]-[ga]
sounds like [iga] and [ib]-[ba] sounds like [iba]. Remarkably, the
transition from [iba] to [ib]-[ba] occurs after 100—150 msec more
silence than the transition from [iga] to [ib]-[ga]. This is a very long
interval for a feedforward model to bridge. Moreover, whether fu-
sion or separation occurs at a given silence interval is context-
sensitive. These data have been quantitatively explained by reso-
nant fusion in the case of [iba] and resonant reset in the case of
[iga] (Grossberg et al. 1997a). They illustrate the ART hypotheses
that “conscious speech is a resonant wave” and that “silence is a
temporal discontinuity in the rate with which resonance evolves.”

Repp etal. (1978) varied the silence interval between the words
GRAY CHIP and the fricative noise duration in CH. They hereby
generated percepts of GREAT CHIP, GRAY SHIP, and GREAT
SHIP. Remarkably, increasing silence duration transforms GRAY
CHIP into a percept of GREAT CHIP, and increasing noise du-
ration can transform it into a percept of GREAT SHIP. Why
should more silence or more noise in a future word convert a past
word GRAY into GREAT? Why should more noise remove the
CH from CHIP and attach it to GRAY to form GREAT, leaping
over asilent interval to do so, and becoming detached from its con-
tiguous word? These effects have also been quantitatively simu-
lated by ART (Grossberg & Myers 1999).

The Merge model shares some key processes with ART, such as
competition between activated lexical hypotheses, multiple inter-
active activation cycles, and reset events (Grossberg 1980; Gross-
berg & Stone 1986). But Merge also has serious weaknesses due
to its feedforward structure. It keeps lexical and prelexical com-
putations independent until they are merged at the decision stage.
How this scheme can naturally explain the backwards-in-time data
above is unclear. Merge’s feedforward decision stage is, moreover,
not a real-time physical model: “the word nodes cannot be per-
manently connected to the decision nodes . . . the connections. . .
must be built on the fly, when the listener is required to make
phonemic decisions (sect. 5.2.1) . .. decision nodes . . . set up in
response to a particular experimental situation” (sect. 7). This can-
not be how the brain works. In addition, the Merge decision stage
represents both phonemic and lexical information in a way that
can “translate the representations used for lexical access into the
representations more suited to . . . phonemic decision tasks.” How
and why this should happen is left unclear.

ART naturally overcomes these problems using evolving spatial

patterns of activation across working memory items that resonate
with a level of list chunks. The list chunks that are learned in this
way can include phonemic, syllabic, and word representations.
The resonant context determines which chunks are competitively
selected and learned. A Masking Field architecture was intro-
duced to represent list chunks of variable length. It explains how
phonemic, syllabic, and lexical information can coexist at the list
chunk level, and how the speech context determines whether
phonemic or lexical information will dominate (Cohen & Gross-
berg, 1986; Grossberg 1978). Thus, there is no need to generate
connections on the fly. This property helps to explain the Magic
Number 7, word length and superiority effects, the GRAY CHIP
percepts, and why phonemic decisions may not develop prior to
word recognition, among other data.

In summary, the feedforward Merge model has not yet solved
core problems for which the feedback ART model has proposed
real-time, neurally-supported, self-organizing, and data-predictive
solutions.

What sort of model could account
for an early autonomy and a late
interaction revealed by ERPs?

Frédéric Isel

Max Planck Institute of Cognitive Neuroscience, D-04103 Leipzig, Germany.
isel@cns.mpg.de www.cns.mpg.de

Abstract: Norris, McQueen & Cutler demonstrated that feedback is
never necessary during lexical access and proposed a new autonomous
model, that is, the Merge model, taking into account the known behavioral
data on word recognition. For sentence processing, recent event-related
brain potentials (ERPs) data suggest that interactions can occur but only
after an initial autonomous stage of processing. Thus at this level too, there
is no evidence in favor of feedback.

This comment focuses on Norris et al.’s proposal that there may
be cases in which feedback from higher to lower level processes
could confer advantages. According to all the known data on
speech recognition, it appears that the more valid approach to ac-
count for the different processes engaged during lexical access is
an autonomous approach. In the target paper, the authors demon-
strate that no feedback is necessary from the lexical to the prelex-
ical level and they propose the Merge model in which no feedback
exists, thus following Occam’s razor’s instructions not to multiply
unnecessary entities.

However, as mentioned by Norris et al. in research on sentence
processing, it is more difficult to describe a system which could
take into account all the known data. Indeed, behavioral studies
report findings in favor of both autonomous models and interac-
tive models. Certain autonomous theories allow some feedback
from semantics to syntax, while certain interactive theories pro-
pose that the first stage of parsing is totally autonomous. But how
can autonomous models allow for the presence of interactions
which is normally one of the functional bases of interactive sys-
tems? And how can interactive models justify the presence of an
encapsulated module for parsing in their architecture? This ap-
parent contradiction may only reflect the difficulty inherent in RT
studies of tapping on-line into different phases of the compre-
hension processes, thus presenting only a partial view of the tem-
poral coordination of the different subcomponents responsible for
sentence processing. Indeed, using a higher online technique like
event-related electroencephalography (EEG), which allows a di-
agnosis of the behavior of the system millisecond-by-millisecond,
one can imagine describing a processing system that presents an
early autonomy and a late interaction.

In my commentary, I will argue on the basis of recent event-
related brain potentials (ERPs) data obtained by Gunter et al.
(1998), which support a model in which syntactic and semantic
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processes are encapsulated and run in parallel during a first au-
tonomous phase and interact together in a later phase.

Until now, three different ERP! components have been identi-
fied as correlating with different aspects of language comprehen-
sion [see Donchin & Coles: “Is the P300 Component a Manifes-
tation of Context Updating?” BBS 11(3) 1988]. The N400 which
appears to reflect lexical integration (Kutas & Hillyard 1983; Ku-
tas & Van Petten 1988; Van Petten & Kutas 1991), the left ante-
rior negativity (LAN) present between 300 and 500 msec for
morphosyntactic errors (Coulson et al. 1998; Gunter et al. 1997;
Miinte et al. 1993; Osterhout & Mobley 1995), and for violation
of verb’s argument structure (Résler et al. 1993), as being pres-
ent between 100 and 200 msec for phrase structure violations
(Friederici et al. 1993; Hahne & Friederici 1999; Neville et al.
1991), and a “late” centro-parietal positivity (P600) present be-
tween 350 to 800 msec after a critical element which violates ei-
ther a structural preference or a structural expectancy (Meck-
linger et al. 1995; Osterhout & Holcomb 1992; 1993). The late
positive component is assumed to be correlated with a revision
process while the left anterior negativity, in particular the early
one, has been taken to reflect initial structuring processes
(Friederici 1995).

Gunter et al. (1998) collected ERP data which shed a new light
on the debate on the time course of syntactic and semantic sources
of information. Indeed, they investigated semantic and syntactic
processes by manipulating semantic expectancy of a target noun
given a preceding sentential context (high cloze vs. low cloze) and
gender agreement between this target noun and its article (correct
vs. incorrect). They showed a significant semantic expectancy main
effect between 300 and 450 msec (i.e., high cloze target nouns gave
rise to a smaller N400 than low cloze target nouns) and a signifi-
cant gender main effect between 350 and 450 msec (i.e., the LAN
was significantly smaller for the syntactically correct sentences
than for the syntactically incorrect sentences). Moreover, the lack
of a significant interaction between gender and semantics ex-
pectancy for both N400 and LAN suggest that the N400 is inde-
pendent of syntax and that the LAN is independent of semantics.
Although these two components were elicited in the same time
window, their scalp distributions were different: The LAN was
mostly observed at the left anterior electrodes whereas the N400
was much more broadly distributed. A second significant main ef-
fect of gender between 550 and 950 msec was identified as the
P600. For this latter component, the interaction between gender
and semantic expectancy was significant (i.e., there was a large re-
duction of the P600 in the low cloze sentences). Taken together,
these data suggest that semantics and syntax work in parallel dur-
ing an early stage of processing (between 300 and 450 msec after
the presentation of the target word) whereas they interact during
a later stage of processing (between 550 and 950 msec).

The pattern of results obtained by Gunter et al. (1998) reveals
an early autonomy of syntactic and semantic processes and a late
interaction between these two processes. Thus, the high on-line
properties of the event-related potentials give a new picture of the
sentence processing system which appears to be constituted of
two sequential entities in which the implied processes work either
in parallel (early stage), or in interaction (late stage). However, the
open question is whether in a stage occurring after the stage in
which the processes of structural reanalysis and repair took place,
the semantic and syntactic information interact or work in paral-
lel. Like behavioral studies on word recognition, research on sen-
tence processing using event-related brain potentials (ERPs) do
not show evidence in favour of feedback.
ACKNOWLEDGMENTS
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NOTE
1. The event-related brain potential (ERP) represents the electrical ac-
tivity of the brain correlated with a particular stimulus event.
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Some implications from language
development for merge

Peter W. Jusczyk and Elizabeth K. Johnson

Department of Psychology, Johns Hopkins University, Baltimore, MD 21218-
2686.{jusczyk;zab}@jhu.edu www.psy.jhu.edu/~jusczyk

Abstract: Recent investigations indicate that, around 7-months-of-age,
infants begin to show some ability to recognize words in fluent speech. In
segmenting and recognizing words, infants rely on information available
in the speech signal. We consider what implications these findings have for
adult word recognition models in general, and for Merge, in particular.

One issue rarely mentioned in discussions of models of adult word
recognition processes is how these processes developed and what
implications this has for understanding the mechanisms that sup-
port them. In the past five years, we have begun to learn alot about
the early stages in the development of word recognition abilities.
In what follows, we consider some relevant findings and what they
imply about the plausibility of a model such as Merge.

Infants begin to display some ability to recognize the sound pat-
terns of certain words shortly after 7-months-of-age. Jusczyk and
Aslin (1995) demonstrated this in experiments in which they fa-
miliarized infants with a pair of words, such as “cup” and “dog,”
and then tested whether infants subsequently recognized these
items when they occurred in another context. Regardless of
whether they were familiarized with the words spoken in isolation,
or in fluent speech contexts, the infants displayed recognition of
these words. By comparison, 6-month-olds did not show evidence
of recognizing these words when tested under the same circum-
stances.

A number of questions follow from this first demonstration of
word recognition by infants. For example, how precise are infants’
representations of the sound patterns of these words? Evidence
from Jusczyk and Aslin’s investigation and a subsequent one by
Tincoff and Jusczyk (1996) suggest that infants” early word repre-
sentations contain considerable detail about the phonetic proper-
ties of these words. Thus, infants familiarized with highly similar
phonetic items, such as “tup” or “cut” did not subsequently treat
these items as instances of “cup.”

Another important question about these early abilities concerns
how infants are successful in recognizing these words in fluent
speech. Although several potential word segmentation cues exist
for English (e.g., prosodic stress, context-sensitive allophones,
phonotactic constraints, and statistical regularities), none of these
cues is completely foolproof. Recent data suggest that English-
learners may initially rely on stress-based cues to begin segment-
ing words from fluent speech (Jusczyk et al. 1999). At 7.5 months,
infants can segment words with the predominant, strong/weak,
stress pattern (e.g., “kingdom”). However, at the same age, infants
fail to segment words with the less frequent, weak/strong, stress
pattern (e.g., “surprise”). It is not until about 10.5-months that
English-learners correctly segment words with weak/strong stress
patterns. What allows these older infants to succeed in segment-
ing weak/strong words? The obvious answer is that they have also
learned to rely on other potential cues to word boundaries in flu-
ent speech. Indeed, 8-month-olds can draw on statistical regular-
ities, such as transitional probabilities about the likelihood that
one syllable follows another, to infer potential word boundaries in
fluent speech (Saffran et al. 1996). By 9 months, English-learners
seem to recognize which types of phonotactic sequences (co-
occurrences of phonetic segments) are more likely to occur be-
tween two words as opposed to within a particular word (Mattys
etal. 1999) and to use this information in segmenting words (Mat-
tys & Jusczyk, submitted). By 10.5 months, English-learners show
a similar sensitivity to how context-sensitive allophones typically
line up with word boundaries, for example, the variants of /t/ and
/r/ that occur in words such as “nitrates” and “night rates” ( Jusczyk
et al. 1999).

The point is that word recognition abilities begin in the second
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half of the first year, and at least during the early stages, infants
rely heavily on information in the speech signal itself to find words
in fluent speech. Note that in the studies reviewed above, most
words that infants were tested on were not ones that they are likely
to be previously familiar with. Thus, the words had no real mean-
ing for the infants, they were just familiar sound patterns that
infants could recognize in fluent speech. Hence, during these
early stages, word recognition processes in infants are necessarily
bottom-up. If word recognition processes in adults are interactive
(contra Norris et al.), then some kind of reorganization must take
place during the course of development. If the interactive view is
correct, it should be possible to identify when this reorganization
occurs in development. However, our own view is that if Merge is
correct, then one might also expect to see evidence of some reor-
ganization in development.

Merge assumes a phonetic decision layer. But is such a layer
necessary for language learners to recognize words in fluent
speech? We suspect not. There is no necessary reason why one
would need to have access to an explicit phonetic description in
order to recognize words. However, there are other tasks that lan-
guage learners typically face that may require accessing an explicit
phonetic representation, namely, learning to read. If this assump-
tion is correct, we would expect to see some changes in word
recognition processes occurring around the time that children are
learning to read. Some of the empirical phenomena that have driv-
en the formulation of Merge should not be evident in the re-
sponses of children tested before this point (or in illiterates, for
that matter).
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Most but not all bottom-up interactions
between signal properties improve
categorization

John Kingston
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Abstract: The massive acoustic redundancy of minimally contrasting
speech sounds, coupled with the auditory integration of psychoacoustically
similar acoustic properties produces a highly invariant percept, which can-
not be improved by top-down feedback from the lexicon. Contextual ef-
fects are also bottom-up but not all entirely auditory and may thus differ
in whether they affect sensitivity or only response bias.

The great redundancy in the speech signal and frequent degrada-
tion or even complete loss of parts of that signal encourage the
common assumption that listeners use top-down feedback con-
tinually in extracting the linguistic message from the signal. How-
ever, Norris et al. show that lexical feedback is in fact ordinarily
not used by listeners, even when the signal is so degraded that it
conveys ambiguous or even conflicting information about a pho-
neme’s identity, unless the task’s nature or difficulty demands lis-
teners turn to this resource. Most of the time, listeners need not
do so because the phonological content is extracted so well from
the signal prelexically that lexical feedback adds little or nothing.
How can the prelexical processing do so well? Part of the answer
lies in the phonetic redundancy of the signal itself, and the rest in
the effects of that redundancy on auditory processing.

All minimal contrasts between speech sounds are conveyed by
many covarying acoustic properties. Some covary because a single
articulation has more than one acoustic consequence, others be-
cause most minimal contrasts differ in more than one indepen-
dently controlled articulation (Kingston 1991; Kingston & Diehl
1994). So the signal itself is massively redundant acoustically. Of-

ten, the acoustic consequences of the various articulations that
differ between minimally contrasting sounds are also very similar,
so much so that they may integrate psychoacoustically in a way
that enhances the contrast (Kingston & Diehl 1995; Kingston &
Macmillan 1995; Kingston et al. 1997; Macmillan et al. 1999). So
not only do minimally contrasting sounds differ from one another
acoustically in many ways, but many of those differences produce
similar enhancing perceptual effects in the listener. The signal and
its auditory processing therefore make the listener very likely to
extract the same phonological value from signals in which the pho-
neme or feature was produced in various ways or was degraded
during transmission. The richness of these bottom-up sources of
redundancy leaves little room for any top-down sources to im-
prove the phonological yield.

However, phoneme or feature judgments are not always un-
perturbed by variation in the signal: in the context of different
neighboring sounds, listeners evaluate the same acoustic (or psy-
choacoustic) stuff quite differently in making these judgments
(Repp 1982). Context effects are uniformly contrastive in that the
listener shifts the criterion for evaluating the members of an
acoustic continuum property toward the context’s value for that
property, and thus judges more of the continuum to belong to the
category with the opposite value. These contrastive shifts occur
when that acoustic property can be heard in the context, that is,
when the context is a speech sound (Mann 1980; Mann & Repp
1981) or a nonspeech sound with the right acoustic property
(Lotto & Kluender 1998), and when it can be predicted, that is,
when the context is a speech sound that is auditorily but not visu-
ally ambiguous (Fowler et al. 1999) or that is auditorily ambigu-
ous but predictable from transitional probabilities (Pitt & Mc-
Queen 1998) or stimulus blocking (Bradlow & Kingston 1990;
Ohala & Feder 1994).

It is the simplest hypothesis that the first two contextual effects
arise from strictly auditory interactions between the acoustic
properties of the adjacent signal intervals, but the last two instead
arise from integration of visual, statistical, or inferred information
with the output of auditory processing. Therefore, the first two
contextual effects may alter the listener’s sensitivity as well as re-
sponse bias to differences in the property that determines the
judgment, whereas the last two should only shift the decision
boundary along the continuum of that property’s values, that is, al-
ter response bias alone. Macmillan et al. (1999) show how listen-
ers’ accuracy in classifying stimuli differing along multiple dimen-
sions can be used to derive a perceptual representation for those
stimuli. (The minimal stimulus set for such an experiment is a 2 X
2 array in which the stimuli vary orthogonally for Low and High
values of two dimensions. Classification consists of sorting all six
possible pairs of stimuli drawn from this array in separate blocks
of trials.) This perceptual representation can in turn be used to
predict quantitatively how much the perceptual interaction be-
tween those dimensions changes response bias and sensitivity
when listeners categorize those stimuli. (In the minimal experi-
ment just described, categorization would consist of sorting all
four stimuli as Low vs. High for one dimension, while ignoring
their differences along the other.) Classification performance can
thus be used to confirm the hypothesis that the first two context
effects are located in the auditory processing stage but the last two
in the stage in which auditory information is integrated with other
kinds of information. And classification performance can be used
to predict changes in sensitivity in categorizing the stimuli caused
by strictly auditory context effects. As sensitivity may be reduced
by the auditory interaction between the context and the target in-
terval, the intended phonological value may be extracted less re-
liably than otherwise. On the other hand, no change in sensitivity,
for better or worse, is expected from interactions with non-
auditory contexts, so that phonological value should be extracted
just as reliably as when the context was absent.

Two bottom-up interactions between signal properties, acoustic
redundancy and auditory integration, should thus make the ex-
traction of the intended phonological value from the signal nearly
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perfect, but auditory context effects may prevent that perfection
from being achieved. Other, non-auditory context effects will not,
because they affect only bias and not sensitivity.

It's good . ..butis it ART?

Paul A. Luce,? Stephen D. Goldinger,P

and Michael S. Vitevitch®

aDepartment of Psychology and Center for Cognitive Science, University at
Buffalo, Buffalo, NY 14260;®Department of Psychology, Arizona State
University, Tempe, AZ 85287, Speech Research Laboratory, Indiana
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Abstract: We applaud Norris et al. s critical review of the literature on lex-
ical effects in phoneme decision making, and we sympathize with their at-
tempt to reconcile autonomous models of word recognition with current
research. However, we suggest that adaptive resonance theory (ART) may
provide a coherent account of the data while preserving limited inhibitory
feedback among certain lexical and sublexical representations.

Norris, McQueen & Cutler deserve praise for a provocative pro-
posal. In a detailed analysis of previous interactive and modular
accounts of spoken word recognition, they correctly find the mod-
els wanting: Neither the standard-bearers for autonomy nor in-
teractionism fully explain lexical effects on phoneme decision
making. However, despite their laudable treatment of the avail-
able evidence, Norris et al. take a step that may be premature. Ab-
horring the vacuum left by the discredited models, and invoking
Occam’s razor, Norris et al. reject the notion of feedback between
lexical and sublexical levels of representation. Born is a presum-
ably simpler model that merges the outputs of two autonomous
stages at a new phoneme decision stage.

Although sympathetic to the authors’ endeavor, we question the
need for another contender in a crowded field of models. But
more than this, we wonder if Occam’s razor necessitates a model
that rejects the notion of feedback outright and proposes a new set
of task-specific decision nodes with connections configured on the
fly. We suggest that a potentially more elegant — and perhaps more
parsimonious — theoretical framework already exists in which the
problems of lexical and sublexical interaction may find solutions,
namely Grossberg’s adaptive resonance theory (ART; Grossberg
1986; Grossberg et al. 1997a; Grossberg & Stone 1986; see also
Van Orden & Goldinger 1994; Vitevitch & Luce 1999).

The problem of deciding between modular and interactive
word recognition systems, and the consequent debate over feed-
back, stems from the presumption of distinct tiered levels of rep-
resentation corresponding to words and pieces of words. ART pro-
vides an alternative architecture, allowing a different view of
feedback. In ART, speech input activates items composed of fea-
ture clusters. Items in turn activate list chunks in short-term mem-
ory that correspond to possible groupings of features, such as seg-
ments, syllables, and words. Chunks are not fixed representations
relegated to levels, as in models like TRACE or Race, but instead
represent attractors of varying size (Grossberg et al. 1997a).

Once items make contact with matching list chunks, they es-
tablish resonances — stable feedback loops that momentarily bind
the respective parts into a coherent entity. Attention is drawn to
such resonant states, making them the basis of conscious experi-
ence. In typical resonance, longer chunks (e.g., words) mask
smaller chunks (e.g., phonemes), so the largest coherent unit con-
stitutes the natural focus of attention (McNeill & Lindig 1973).
However, in procedures like phoneme identification, attention
can be directed to attractors that may not represent the normally
strongest resonance in the system (Grossberg & Stone 1986).
Nonetheless, in this framework, responses are based on reso-
nances between chunks and items, rather than on specific nodes
arranged in a hierarchy.
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ART captures the modular nature of Merge in that lexical
chunks themselves do not directly facilitate sublexical chunks
(hence avoiding the pitfalls of facilitative feedback discussed by
Norris et al.). But ART’s limited inhibitory feedback between
larger and smaller chunks enables it to account for, among other
things, the differential effects of subphonetic mismatch as a func-
tion of lexicality (Marslen-Wilson & Warren 1994; Whalen 1984).
Briefly, when lexical chunks are strongly activated (as in W2W1
and N3WI; see Norris et al.), they dominate responding while
simultaneously inhibiting their component sublexical chunks,
thus attenuating effects of mismatch among the smaller chunks.
However, when no lexical chunks achieve resonance (as in W2N1
and N3N1), responses will reflect the most predictive sublexical
chunks. In the case of W2N1, however, masking from the weakly
activated lexical chunk (W2) will slightly inhibit its component
sublexical chunks, resulting in differential processing of W2N1
and N3N1. The effects of task demands and attentional focus re-
ported by McQueen et al. (1999a) are also accommodated in the
ART framework, given its facility for selective allocation of atten-
tion to chunks of various grains.

ART provides similar accounts of the data reported by Frauen-
felder et al. (1990) and by Connine et al. (1997). In so doing, the
adaptive resonance framework constitutes a truly parsimonious
approach to the problem of lexical-sublexical interaction by elim-
inating hierarchical levels and by avoiding the construction of
task-specific architectures. In short, Grossberg’s ART is uniquely
suited to accommodate the data reviewed by Norris et al., and
many other data in speech-language processing. Moreover, it
makes fundamentally different assumptions compared to models
such as TRACE and Shortlist, which allows it to sidestep the
points of contention raised by the target article. But most appeal-
ing, ART is an almost unifying theory, with applications to learn-
ing, visual perception, memory, attention, and many other do-
mains. Unlike Merge, which casts speech perception as an insular
system, segregated from general cognition, ART provides a broad
framework, linking speech perception to other cognitive domains.

In the true spirit of Occam’s razor, we should tolerate local com-
plexity, such as lexical to sublexical feedback, in the interest of
global simplicity. In other words, broadly appropriate constructs
should be broadly applied, keeping theories consistent across the
span of cognition. Feedback may be a good candidate for such in-
clusion. It is well-known that the brain is designed for feedback;
cortical areas are reciprocally connected in complex maps, sup-
porting resonant dynamics (Freeman 1991; Luria 1973). More im-
portant, feedback processes are central to theories across cogni-
tion, including general perception, learning, and memory. In all
these domains, theorists have found feedback systems highly ben-
eficial, and often necessary. For example, global memory models
are typically cast as parallel systems, in which inputs establish res-
onance with prior knowledge (Goldinger 1998; Hintzman 1986;
Shepard 1984; Van Orden & Goldinger 1994).

Because the “feedback hypothesis” is a centerpiece of modern
cognitive psychology, perhaps Occam’s injunction should lead us
not to excise feedback altogether, but encourage us to explore ar-
chitectures in which it functions more elegantly. We suggest that
the adaptive resonance framework is such an architecture.
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What phonetic decision making does not tell
us about lexical architecture

William D. Marslen-Wilson

MRC Cognition and Brain Sciences Unit, Cambridge CB2 2EF, United
Kingdom. william.marslen-wilson@mrc-cbu.cam.ac.uk

Abstract: Norris et al. argue against using evidence from phonetic deci-
sion making to support top-down feedback in lexical access on the grounds
that phonetic decision relies on processes outside the normal access se-
quence. This leaves open the possibility that bottom-up connectionist
models, with some contextual constraints built into the access process, are
still preferred models of spoken-word recognition.

The Norris et al. target article is a stimulating but somewhat para-
doxical treatment of the architecture of the speech processing sys-
tem, arguing that information at the lexical level cannot modulate
in any way the processes of pre-lexical analysis that project the
speech input onto these lexical representations. What seems para-
doxical about this article is that it turns out not to be about these
processes at all. The experimental results it reflects, and the novel
content of the model, are about the quite different process of mak-
ing overt phonemic decisions. This can be tapped into in a variety
of ways, ranging from phoneme monitoring to forced choice
phonemic discrimination tasks. The crucial move that Merge
makes is to claim that all of these tasks operate on a form of rep-
resentation (phonemic decision nodes) that is not part of the nor-
mal process of spoken word-recognition, and where these nodes
only come into existence when required by the use of phonemic
decision tasks.

In earlier days, of course — and still very much so in speech re-
search — these tasks were used on the assumption that they tapped
directly into a pre-lexical stage of processing. This was an as-
sumption that I exploited in my earlier work with Warren
(Marslen-Wilson & Warren 1994, henceforth MWW,94), using
the phonemic judgment task with sub-categorical mismatch ma-
terial to ask whether phonemic judgments in nonwords were af-
fected by the lexical status of mismatching sub-categorical cues to
phonemic identity. The fact that we did find such effects — now
replicated under certain conditions by McQueen et al. (1999a) —
seemed to present severe problems for theories that claimed that
there was an autonomous level of pre-lexical speech processing,
and that tasks like phonetic decision tapped directly into events at
this level (MWW,94 p. 671).

There are a number of ways out of this. One of them, which
both Merge and MWW,94 join in rejecting, is to give up the au-
tonomy assumption and to allow, as in TRACE, for top-down ef-
fects from the lexical level onto acoustic-phonetic pre-lexical lev-
els. A second option, initially sketched in MWW,94 and given
considerably more substance in Gaskell & Marslen-Wilson (1995;
1997; 1999), maintains a form of the autonomy assumption, but
moves the generation of phonemic decisions out of the direct pro-
cessing path to the lexicon. It does so in the context of a distrib-
uted connectionist model, which I will refer to as the Distributed
Cohort Model (DCM). The third option, embodied in Merge,
maintains the classical autonomy assumption, and also moves the
phonemic decision task away from the pre-lexical processing path
into the lexicon, using instead the special purpose decision units
mentioned above. Merge adopts a very different processing
framework from the DCM, and Norris et al. make a number of
criticisms of the DCM approach. I will consider these points later
in this note.

The move to recognise that phonemic decision is not a direct
route into the heart of the speech processing system, but is instead
an essentially meta-linguistic process, heavily influenced by liter-
acy, and open to a variety of strategic influences, is one that I
would agree with. But it does have the paradoxical outcome, from
the perspective of a theory of spoken word-recognition, that per-
formance on phonemic decision becomes relatively uninformative
about the properties of primary pre-lexical speech analysis. In the

Merge account, not only are phonemic decision nodes architec-
turally separated from pre-lexical processes of acoustic-phonetic
analysis, with variable connections to lexical level phonological
representations, but also they operate on a significantly different
processing substrate. Lateral inhibition between nodes is an im-
portant component of the phonemic decision simulations, but this
is excluded at the pre-lexical level in order to prevent premature
categorical assignments.

The net effect of all this is to limit the scope of the claims that
are made in the target article. Norris et al. begin with a number of
persuasive general arguments against the use of feedback in per-
ceptual processing systems. But the actual case of feedback they
concern themselves with — lexical influences on phonemic deci-
sions — is argued not to be a perceptual process at all but an ad hoc
decision process. What Norris et al. have demonstrated, therefore,
is not the general point that pre-lexical processing is strictly au-
tonomous, but rather the more limited point that we cannot infer
that it is not autonomous from the results of experiments using
phonemic judgement tasks. This seems to leave open the possi-
bility that the perceptual processing of the speech input may not
be completely independent of the higher-order linguistic envi-
ronment in which it occurs. And this, in effect, is what we argue
for in our alternative account of spoken word recognition and
phonemic decision-making,

Bottom-up connectionist models of language processing.
The original research by MWW,94 was not primarily driven by is-
sues of autonomy and interaction in the language processing sys-
tem, but by the even older problem of what distinct levels of rep-
resentation need to be postulated and what are the properties of
these levels (Marslen-Wilson & Tyler 1980). We focused on pre-
lexical speech processing, and used subcategorical mismatch stim-
uli to probe whether featural cues to phoneme identity were in-
deed integrated at a pre-lexical level, as required by conventional
views of the speech processing system. The finding of lexical ef-
fects for subcategorical mismatches embedded in nonwords was
clearly a problem for this view. On this basis, and given the failure
of our TRACE simulations to capture the data adequately, we re-
jected the notion of a pre-lexical level of phonemic representation,
and looked to a quite different kind of account.

The properties of this account were conditioned by the need to
meet three basic challenges. The first requirement was to account
for the results of the MWW,94 experiments, with the particular
mixture of dependencies they revealed between the lexical,
phonemic, and featural properties of speech. The second was to
explain how phonemic judgements can be made in the absence of
a specifically phonemic level of sub-lexical representation. The
third was to provide a uniform account of the perceptual basis for
phonetic and lexical decisions, both for words and nonwords.

With respect to this last point, one of the attractions of the stan-
dard phonemic theory is that it seems to offer a consistent account
of the perception of both words and nonwords. In each case, the
listener’s perceptual experience is assumed to be built up out of
common sub-lexical elements, with words differing from non-
words only in the presence of an additional representation at the
lexical level. This is linked to the widespread methodological as-
sumption, mentioned above, that the listener has direct access to
the products of phonetic processing, so that speech perception
can indeed be studied as an autonomous sub-lexical level of the
language system. Given that we had rejected the notion of a sub-
lexical phonemic level, this required us to provide an alternative
account of how nonwords are perceived.

It was chiefly for this reason that we proposed a distributed
computational model, along familiar lines (e.g., Seidenberg & Mc-
Clelland 1989), where the input to the network is some prelimi-
nary analysis of the speech stream, and where the output is a
phonological representation. This output, we speculated, could
form the basis for the listener’s perceptual experience of speech,
as well as for meta-linguistic operations such as phoneme decision.
Because such a system would be trained in the context of the ex-
isting words of the language, the network would learn to encode
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the underlying regularities in the mappings between sequences of
speech sounds and lexical phonological representations. When
nonwords were presented, their representation at the output
would depend on this lexically conditioned system, and would
share the properties of the lexical items with which they overlap,
just as is claimed for nonwords processed in the pronunciation
nets of Seidenberg and McClelland (1989) and their successors.

The distributed cohort model. The subsequent implementa-
tion of this approach, in the form of the DCM (Gaskell & Marslen-
Wilson 1997; 1999) diverged significantly from this original
sketch, through the use of a recurrent network and of a dual out-
put layer, where the network is trained to link phonetic featural
inputs to a joint semantic and phonological output vector, which
combined a 50-unit distributed “semantic” representation with a
52-unit localist phonological representation. Although consider-
ably larger in scale, these DCM networks are structurally similar
to some earlier proposals by Norris (1993), where recurrent nets
projected simultaneously onto phoneme nodes and word nodes.

The DCM models, at least in principle, seem able to meet the
three requirements we originally specified — of being able to
model the MWW,94 data, of providing a basis for phonemic judge-
ments, and a uniform processing substrate for the perception of
words and nonwords. In addition, as Norris himself argues in his
important 1993 chapter, learning models with this kind of archi-
tecture allow us to model apparent top-down feedback effects un-
der conditions where “there can be no top-down flow of informa-
tion because the network architecture simply does not permit it”
(Norris 1993, p. 229). The network learns to encode the mapping
between input features and phonological representations in the
statistical context of the lexical sequences it is exposed to during
training, and this encoded contextual information affects subse-
quent processing of inputs, even when those inputs are novel se-
quences (nonwords) as far as the network is concerned.

Given these many strengths of distributed connectionist mod-
els of language processing, and the additional attraction that they
acquire many of their properties through the learning process
rather than having them directly specified by the modeller, it is
perhaps surprising that Norris et al. are so critical both of the orig-
inal sketch in MWW,94 and of the DCM implementation. There
are a number of reasons for this. One of these, though not dis-
cussed in Norris et al., is the argument that connectionist networks
of this type are fundamentally flawed because of their inability to
recognise onset-embedded words — although this may turn out to
have been unduly pessimistic (Davis et al. 1997a; 1997b).

In Norris et al., two main points are made. One of these con-
cerns a specific flaw in the DCM simulation of the MWW,94 re-
sults. This seems easy to fix, as the commentary by Gaskell demon-
strates. One subtext of the Merge paper, in fact, seems to be the
short shelf-life of arguments based on specific simulations of com-
plex data sets. Given the number of parameters involved, and the
range of assumptions that need to be made to fit model perfor-
mance to different types of experimental data, it is hard to know
how much explanatory weight to assign to a given model’s suc-
cesses or failures. The MWW,94 TRACE simulations are a case in
point.

The second point concerns the lability of the lexical effects in
the McQueen et al. (1999a) replications of the MWW,94 experi-
ments. If nonwords and words share the same processing pathway,
and if this pathway is a bottom-up connectionist network trained
in the manner specified, then the perceptual representation of
nonwords must always be affected by the statistical properties of
the lexical environment in the context of which the system learned
the mapping from input to output. Such a model, on its own, could
not account for an apparent absence of “lexical” effects under the
appropriate strategic conditions.

It is, however, quite premature to conclude that the variability
in the McQueen et al. results forces us to abandon DCM-type ar-
chitectures. First, the empirical basis for this — the absence of lex-
ical effects in two experiments — is still very limited. McQueen et
al. present a contrast between two testing environments; one
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where the phonemic decision task is made maximally predictable,
both in terms of stimulus variation and in terms of response
choice, and a second where both factors are much less restrictive.
Until this contrast has been explored in more detail, it is hard to
say what the critical features are, and how they generate variations
in the strength of the crucial effects (i.e., the reduction of mis-
match for pure nonwords). In particular, we need positive evi-
dence that the decisions in the non-lexical cases are genuinely
drawing on a different source of information analogous to the pre-
lexical route in Merge, rather than using the same information dif-
ferently. We also need evidence that the decisions reflecting lexi-
cal constraints are indeed lexical in the direct sense assumed by
Merge — that is, through feedback from an explicit lexical phono-
logical representation, as opposed to the more implicit lexical in-
fluences modelled in the DCM, where these are encoded into the
underlying network. In this connection, it should be clear that the
DCM is not strictly speaking a post-lexical model in the sense that
MWW,94 originally seemed to suggest.

Second, it is always open to the DCM to postulate additional
mechanisms to augment the basic word-recognition model, in the
same way that Merge was called into being to augment the oper-
ations of Shortlist. Both models need to postulate additional deci-
sion processes, operating on the phonological output of the sys-
tem, to carry out post-perceptual operations such as phonemic
decision. The question at issue, as I noted above, is whether this
decision process has two kinds of information available to it, one
of which is not affected by the higher-order properties of the
speech processing environment, and, if so, what is the nature of
this second information source.

In the Merge/Shortlist account, this second source is the out-
put of the pre-lexical processor. In the DCM architecture this is
not possible, since there is no distinct prelexical level in the con-
ventional sense. An alternative option is that the secondary source
is an auditory, nonspeech representation of the speech input.
When the phonemic decision task is made sufficiently predictable,
subjects may learn to attend to acoustic differences between types
of phonemes, so that attention is directed away from the phono-
logical properties of speech and towards some specific acoustic
cue. Of course, these are only speculations, and need further in-
vestigation. But until these investigations have been carried out,
there really is not the empirical evidence to mediate between the
Merge/Shortlist and DCM approaches.

In summary, there is a great deal to agree with in the target ar-
ticle, and in the phenomena it is trying to model. Nonetheless I
believe that it is premature to reject bottom-up connectionist ar-
chitectures of the type exemplified by the DCM. The path sug-
gested by Norris (1993) may yet prove to be more promising than
the direction he and his colleagues have taken here.

The horse race to language understanding:
FLMP was first out of the gate,
and has yet to be overtaken

Dominic W. Massaro

Department of Psychology, Social Sciences I, University of California - Santa
Cruz, Santa Cruz, CA 95064. massaro@fuzzy.ucsc.edu
mambo.ucsc.edu/psl/dwm/

Abstract: Our long-standing hypothesis has been that feedforward infor-
mation flow is sufficient for speech perception, reading, and sentence
(syntactic and semantic) processing more generally. We are encouraged by
the target article’s argument for the same hypothesis, but caution that
more precise quantitative predictions will be necessary to advance the

field.

Given the Zeitgeist of interactive activation models, Norris, Mc-
Queen & Cutler are to be applauded in articulating the bald hy-
pothesis that feedback is never necessary in speech recognition.
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An overwhelming amount of research during the last two decades
has accumulated evidence for this hypothesis in a variety of do-
mains of language processing. These results have been adequately
described by the fuzzy logical model of perception (FLMP). Be-
cause they share this basic hypothesis, it was necessary that Nor-
ris et al. contrast their Merge Model with the FLMP. Most im-
portantly, they adopt our long-term assumption (Massaro 1973;
1975; 1998) of the integration of multiple sources of continuous
information represented at different levels (e.g., phonemic and
lexical). Although there are many other parallels between the two
models, the differences they emphasize are of more interest than
the similarities. One putative similarity, however, might be a sig-
nificant difference. They view inhibition between decision nodes
in Merge as analogous to the Relative Goodness Rule (RGR) in
the FLMP. We believe that the optimal processing strategy for lan-
guage processing is to maintain continuous information at differ-
ent levels for as long as possible. This continuous information is
necessarily lost in Merge because of inhibition at the level of the
decision nodes in their model. This inhibition in their model ac-
complishes exactly the outcome that the authors criticize in their
paper: that two-way flow of information can only bias or distort
resolution of a sensory input.

Their first contrast claims that the FLMP has independent eval-
uation, which somehow is not representative of Merge. In normal
communication situations, perceivers evaluate and integrate mul-
tiple sources of information from multiple levels to impose un-
derstanding at the highest level possible. This general principle
must be operationalized for specific experimental tasks, such as
the task in which participants must identify the first segment of a
speech token. The first segment is sampled from a speech contin-
uum between /g/ and /k/ and the following context can be /1ft/ or
/1s/. As cleared detailed by Oden (this issue), our account of con-
text effects in this task in no way requires the assumption that “the
basic perceptual processes (e.g., phoneme and word recognition)
are also independent” (sect. 6.3, para.4). In our feed-forward
model, featural support for phonemes will also provide support for
the words that make them up. Thus, we do not disagree with the
statement that “a lexical node’s activation depends on the activa-
tion of the prelexical nodes of its constituent phonemes” (sect. 6.3,
para. 7). Our story has not changed since 1973 when we stated, “A
string of letters can be correctly identified given partial visual in-
formation, if the letters conform to definite spelling rules that are
well learned and utilized by the reader.” (Massaro 1973, p. 353).
Pursuing this thesis, quantitative model tests led to the conclusion
that “Any assumption of orthographic context overriding and
changing the nature of feature analysis is unwarranted” (Massaro
1979, p. 608).

Thus the implementation of the model does not violate the ob-
vious fact that “the degree of support for a lexical hypothesis must
be some function of the degree of support for its component seg-
ments” (sect. 6.3, para. 6). In typical situations, the support for a
lexical item would be (1) a function of all the segments making up
the phonetic string and (2) the degree to which the lexical item is
favored by linguistic or situation context. In the experimental sit-
uation, perceivers are asked to report the identity of the initial seg-
ment. Both the speech quality of the segment and its context are
independent contributions to its identification. Norris et al. want
the lexical context to change with changes along the phonetic con-
tinuum; however, we implement the FLMP in terms of two inde-
pendent sources coming from the initial segmental information
and the following context.

Norris et al. criticize our previous account of coarticulation data
(Elman & McClelland 1988), because Pitt and McQueen’s (1998)
results pinpointed the context effect as one of transition probabil-
ity rather than coarticulation. Their criticism is only valid in terms
of what we identified as the additional source of information, not
our formalization of the FLMP’s quantitative description of the re-
sults. We treated the preceding segment as an additional source
of information for identification of the following stop consonant.
This formalization is tantamount to treating transition probability

as an additional source of information. We have, in fact, predicted
many studies in which higher-order constraints such as transition
probability influence segment and word identification (Massaro &
Cohen 1983b). Thus, our published mathematical fit (Massaro
1996) still holds but the additional source of information is now
happily acknowledged as transition probability rather than coar-
ticulation.

I have argued over the years that quantitative models are nec-
essary to distinguish among theoretical alternatives in psycholog-
ical inquiry. There has been a resurgence of interest in model test-
ing and selection, with exciting new developments in evaluating
the falsifiability and flexibility of models (Massaro et al., submit-
ted; Myung & Pitt 1997). Merge is formulated in terms of a minia-
ture neural network that predicts activation levels that are quali-
tatively compared to empirical measures of RT. The network
requires something between 12 and 16 free parameters to predict
the desired outcomes, which basically involve the qualitative dif-
ferences among a few experimental conditions. In an unheeded
paper, I demonstrated that neural networks with hidden units
were probably not falsifiable (Massaro 1988), which was later sub-
stantiated in a more formal proof (Hornik et al. 1989). I'm wor-
ried that mini-models may have the same degree of flexibility, and
mislead investigators down a path of limited understanding.

Finally, for once and for all, we would appreciate it if the field
would stop claiming that somehow these mini-neural networks are
modeling the “mechanisms leading to activation” (sect. 6.3, para.
8), whereas the FLMP is doing something less. The authors claim
that “FLMP is not a model of perception in the same way that
Merge and TRACE are” (ibid.). One might similarly criticize Sir
Isaac Newton’s Law of Universal Gravitation, which simply states
that the gravitational force FG between any two bodies of mass m
and M, separated by a distance 7 is directly proportional to the
product of the masses and inversely with the square of their dis-
tance. As any “dynamic mechanistic” model should, we have for-
malized, within the FLMP, the time course of perceptual pro-
cessing and have made correct predictions about the nature and
accuracy of performance across the growth of the percept (Mas-
saro 1979; 1998, Ch. 9; Massaro & Cohen 1991).

Merging speech perception and production

Antje S. Meyer and Willem J. M. Levelt

Max Planck Institute for Psycholinguistics, NL 6500 AH Nijmegen, The
Netherlands. {asmeyer;pim}@mpi.nl

Abstract: A comparison of Merge, a model of comprehension, and
WEAVER, a model of production, raises five issues: (1) merging models
of comprehension and production necessarily creates feedback; (2) nei-
ther model is a comprehensive account of word processing; (3) the mod-
els are incomplete in different ways; (4) the models differ in their handling
of competition; (5) as opposed to WEAVER, Merge is a model of meta-
linguistic behavior.

In their commentary on our recent BBS target article on lexical
access in speech production (Levelt et al. 1999), Cutler and Nor-
ris (1999) praised our rigorous application of Ockham’s razor, that
is, our effort to design the simplest possible model of lexical ac-
cess that would be consistent with the available evidence. We pro-
posed a model minimizing inter-level feedback. Our commentary
on the target article by Norris, McQueen & Cutler is an obvious
place to return the compliment. We are pleased to see them pro-
pose a model of spoken word recognition in which there is no
feedback from higher to lower level processing units. As Norris et
al. point out, the functions of language production and compre-
hension are intimately related, and the corresponding models
should be compatible in their general architecture.

1. Our first comment is that it is precisely this intimate relation
between perception and production that forces us to assume some
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feedback in the system. In our target article we proposed that the
representational levels of lemmas (syntactic words) and lexical
concepts are shared between perception and production. Hence,
there should be bi-directional activation spreading from concepts
to lemmas (in production) and from lemmas to concepts (in per-
ception), that is, full feedback. Uni-directionality of processing
(i.e., non-feedback) can only be claimed for those parts of the sys-
tem that are not shared between perception and production.
These are the prelexical and word levels in Merge, and the mor-
phophonological and phonetic levels in WEAVER. (We leave
undiscussed here the issue of self-monitoring, which involves the
perceptual system in still another way.)

So far there seems to exist perfect complementarity between
WEAVER and Merge. Still the two models do not yet fit together
like pieces of a jigsaw puzzle, forming a comprehensive and con-
sistent picture of spoken word processing. Rather, each research
team has extensively studied certain areas of language processing,
leaving others largely uncharted. That is the topic of our next two
comments.

2. Some core areas of language processing have not been sys-
tematically incorporated in either model. For instance, both mod-
els were designed as computational accounts of single word pro-
cessing. But a comprehensive picture of word processing must
include a computational account of the processing of words in
their multiword syntactic and semantic contexts. It is not pre-
dictable how such a comprehensive account will ultimately affect
our partial models of single word processing.

3. There are some areas that have received ample attention in
modeling production, but not in modeling comprehension, or vice
versa. For instance, the model proposed by Levelt et al. and its
computational implementation (WEAVER) include specific as-
sumptions about the mapping from lexical concepts to lemmas
and from lemmas to phonological forms. The model proposed by
Norris et al. concerns the mapping of the speech input onto lexi-
cal forms; the activation of syntactic properties and meanings of
words are not part of the model. Precisely where the two systems
may be shared (see [1]), no modeling of comprehension is avail-
able. On the other hand, Shortlist, which is part of Merge, pro-
vides a more detailed treatment of word processing in context than
does WEAVER in its account of phonological word formation.
What is worse, there are clear mismatches between the Merge and
WEAVER:

4. WEAVER has opted for a Luce rule treatment of competi-
tion, but Norris et al. opt for a threshold treatment. One argument
for the latter approach is that adding a Luce treatment would in-
volve unnecessary reduplication, because Merge already has in-
hibitory connections among word nodes. There are no inhibitory
connections in WEAVER; it fares very well without. We cannot
judge whether Merge (or Shortlist for that matter) could be made
to run successfully without inhibitory connections, only using
Luce’s rule (which is somewhat like asking a diesel owner to drive
her automobile on gas). There is, however, a crucial point in the
background: WEAVER is a model of reaction times (speech onset
latencies), whereas Merge is a model of activation levels; it suffices
for Merge to display the correct monotonic relation between ac-
tivation levels and (lexical or phoneme decision) reaction times.
This brings us to our final comment:

5. Merge is a model of metalinguistic judgment, whereas
WEAVER models the primary word naming process. This reflects
marked differences in the production and comprehension re-
search traditions. The major empirical methods in comprehension
research have been metalinguistic: phoneme decision, lexical de-
cision, word spotting, and so on. There is nothing wrong with this
as long as modeling these tasks involves as a core component the
primary process of word recognition. That is the case for Merge,
which essentially incorporates Shortlist. One should only start
worrying when a different, ad hoc core component is designed for
every metalinguistic task to be modeled. In production research
the tradition has been to model the chronometry of the primary
process of word production, or alternatively the distribution of
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speech errors. Metalinguistic tasks, for instance lexical decision,
gender decision or production phoneme monitoring, are occa-
sionally used in studying word production, but they lead a mar-
ginal existence. Granting the significance of these research tradi-
tions, we would still see it as an advantage if more primary tasks
were used in word comprehension research. The eye scanning
paradigm (Tanenhaus et al. 1995) is one possibility, picture/word
verification may be another one.

Feedback: A general mechanism in the brain

Marie Montantt

Department of Psychology, Carnegie Mellon University, Pittsburgh PA 15213-
3890.2 montant@Inf.cnrs-mrs.fr

Abstract: Norris, McQueen & Cutler argue that there is no need for feed-
back in word recognition. Given the accumulating evidence in favor of
feedback as a general mechanism in the brain, I will question the utility of
a model that is at odds with such a general principle.

In the neuroscience literature, a large body of evidence suggests
that feedback is used by the brain for various aspects of percep-
tion, action, language, and attention. In the visual system, for in-
stance, feedback connections are not the exception but the rule.
Many anatomical studies have shown that most connections be-
tween cortical areas are reciprocal, and, in some cases, like the
ventral occipito-temporal pathway (the “what” pathway), feed-
back connections are predominant (for a review, see Salin & Bul-
lier 1995).

Feedback connections seem to have various roles. They can fil-
ter the visual input and improve its quality by changing the sensi-
tivity of the afferent pathways to some aspects of the stimulation.
This is done by modifying the balance of excitation and inhibition
in lower order cortical areas and in the subcortical nuclei of the
afferent pathways (Alonso et al. 1993; Deschenes & Hu 1990;
Marrocco et al. 1982; Sillito et al. 1993; Ullman 1995).

Feedback connections are suspected to play an important role
in figure-ground separation because they convey top-down ex-
pectations about the visual environment that make it possible to
segment the visual scene (Hupé et al. 1998). By conveying top-
down expectations, feedback connections are also involved in
attention-driven modulation of visual processing (e.g., Luck et al.
1997) and visual word recognition (e.g., Nobre et al. 1998).

Feedback is also crucial in the synchronization of adjacent pop-
ulations of neurons in the cortex, a phenomenon that is considered
as the neural mechanism of “feature binding.” That is, the bind-
ing of the different features of an object for the construction of a
unified percept (Bullier et al. 1993; Finkel & Edelman 1989;
Freeman 1991; Roelfsema et al. 1996; Singer 1995; Tononi et al.
1992; Ullman 1995). Synchronous neuronal activity would reflect
recurrent bottom-up and top-down activation of neural assem-
blies that code different aspects of a same object during the
process of recognition (Tallon-Baudry et al. 1997).

The above described feedback mechanisms are not specific to
visual perception. Similar mechanisms have been described in
vestibular perception (e.g., Mergner et al. 1997), in auditory per-
ception (e.g., Hines 1999; Slaney 1998; Turner & Doherty 1997),
and also in the domain of sensorimotor integration and action (see
MacKay 1997, for a review).

If feedback mechanisms are used in such crucial aspects of per-
ception, in most sensory modalities, why should it be that they are
not used in speech perception? The authors argue that this is the
case because (1) the system can perform an optimal bottom-up
analysis of the auditory input on the first pass, (2) feedback can-
not improve the quality of the input but, on the contrary, can make
the system hallucinate, and (3) feedback solutions are less parsi-
monious than pure bottom-up solutions. However, these three as-
sumptions are highly questionable.
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First, there is tremendous ambiguity in the speech signal, which
makes it very unlikely that a pure bottom-up analysis can be
efficient. Words have to be identified against a background of
noise, reverberation, and the voices of other talkers. The speech
signal is further distorted by coarticulatory effects and segmental
reductions and deletions. Such distortions “produce considerable
ambiguities in the speech signal, making a strictly content-ad-
dressable word recognition system based on phonetic encoding
unrealistic.” (Luce & Pisoni 1998, p. 2).

Second, feedback can improve the quality of the visual input
without running the danger of hallucinating. This has been for-
mally proven for many years in the context of adaptive resonance
theory (ART, Grossberg 1980). In ART, learned top-down expec-
tations are matched against bottom-up data. Perception occurs
when bottom-up and top-down processes reach an attentive con-
sensus (a resonant state) between what is expected and what is
there in the outside world. The matching process improves the
input by amplifying the expected features in the bottom-up sig-
nal and suppressing irrelevant features. ART successfully cap-
tured a number of auditory effects (e.g., variable speech rate per-
ception) that seem to be out of reach for models having no
concepts like feedback and resonance to count on (Grossberg et
al. 1997a). Contrary to Norris et al.’s claim, bottom-up/top-down
matching will not lead to hallucinations because feedback in the
absence of bottom-up stimulation is not able to activate cells or
cell assemblies above threshold (Salin & Bullier 1995). Feedback
cannot create something out of nothing (Grossberg 1999b). In
fact, studies on schizophrenia have shown that auditory halluci-
nations result from the absence of feedback rather than the op-
posite (e.g., Frith & Dolan 1997; Silverstein et al. 1996). How-
ever, feedback can be responsible for (existing) illusions when
top-down expectations are high and bottom-up input is partially
degraded. The auditory continuity illusion (Warren 1984) is a
good case in point.

Finally, it may be that feedback solutions are less parsimonious
than pure bottom-up solutions in certain word recognition mod-
els. However, this may not be true in biological systems like the
brain where the most parsimonious solution is the one that is most
commonly used. Nature uses similar solutions for similar prob-
lems. If feedback is the brain’s solution in a number of perceptual
and cognitive domains, then it is hard to see how speech percep-
tion could be the exception.

NOTE
1. Current address is Laboratoire de Neurosciences Intégratives et
Adaptatives, Université de Provence, 13397 Marseille, cedex 13, France.

Interaction versus autonomy: A close shave

Wayne S. Murray

Department of Psychology, University of Dundee, Dundee DD1 4HN,
Scotland. w.s.murray@dundee.ac.uk
www.dundee.ac.uk/psychology/wsmurray/

Abstract: Approaches to model evaluation in terms of Occam’s razor or
principles of parsimony cannot avoid judgements about the relative im-
portance of aspects of the models. Assumptions about “core processing”
are usually considered more important than those related to decision com-
ponents, but when the decision is related to a central feature of the pro-
cessing, it becomes extremely difficult to tease apart the influences of core
and decision components and to draw sensible conclusions about under-
lying architecture. It is preferable, where possible, to use experimental
procedures that avoid the necessity for subject decisions related to critical
aspects of the underlying process.

Norris, McQueen & Cutler make considerable use of Occam’s ra-
zor in their target article “Merging information in speech recog-
nition: Feedback is never necessary,” but by its final use (sect. 8,
para. 4 and 5), I suspect that it may have become a little blunt.

They say at this point that “if models with and without feedback
can both account for a finding, the model without feedback should
be chosen.” This claim would be unexceptionable if they had used
the phrase “equivalent models” (and this is, I presume, their in-
tention), but it is in the nature of this “equivalence” that problems
arise.

In section 3, Norris et al. argue that if an autonomous model —
Race — can account for the data as well as an interactive model,
such as TRACE, then the autonomous model is to be preferred
on grounds of parsimony. This would be true, if the models were
equivalent in all other respects. Where they are not, an evaluation
must be made concerning the relative “cost” of one assumption as
compared to another. TRACE indeed includes an extra parame-
ter in its central core, but compared to Race, it also makes one
simplifying assumption — it assumes a single output mechanism.
Which addition would offend Occam least? I certainly don’t know.

There seems to be an assumption here that parameters central
to the language processing functions of the model (see sect. 7) are
more important or more weighty than those related to a “decision
component.” At first blush this seems entirely defensible, but it is
as well to consider what the model is evaluated against — behav-
ioural data. In accounting for those data, it would be nonsense to
say that we do not care how many assumptions are made about the
decision component, otherwise an “optimal” model would have
little or no “central processing” but a decision component as large
or as complex as you like. Norris et al. are correct, however, in
pointing out that the “business” of the model is to optimally de-
scribe its core function — language processing — not the way in
which particular, perhaps fairly artificial, decisions are made.

The point is that, Occam notwithstanding, there is no simple an-
swer to this problem. Turning to the Merge model and its com-
parison to the enhanced Interactive Model, it can be seen that
Merge employs 12 active parameters, while the interactive model
does a fairly good job of accounting for most of the critical find-
ings with only 10. Could it equal or better Merge with the addi-
tion of one or two more? I hope by now it will be apparent that
this is probably a nonsensical question. What counts as more com-
plex depends upon purely subjective judgements about what is re-
ally important in the architecture of the process.

There are perhaps better arguments for preferring autonomous
over interactive models when both have approximately equivalent
complexity. Fodor (1983) does a good job of covering most of
these and Norris et al. focus on one particularly important argu-
ment here — the desire (perhaps indeed the need) to avoid hallu-
cination. There are very good reasons why we need to be able to
see or hear what is really out there, rather than what we anticipate.
I would prefer to remain within the category of individuals who
hallucinate only a minority of the time (usually when asleep).
Those who hallucinate more frequently tend not to function quite
so adequately. To this might be added the fact that we simply find
serial, autonomous, models easier to understand. We are better
able to derive (stable) predictions from them and to understand
the implications of their architecture. Small changes in interactive
models, on the other hand, can have profound, and often difficult
to comprehend, consequences. Depending upon one’s particular
view of the Philosophy of Science, this alone is an important con-
sideration.

It might be suggested, therefore, that the particular value of this
paper is in demonstrating that a plausible modular architecture
can do as well (or better) than interactive alternatives in account-
ing for the overall pattern of data across many experiments. Since
modular models are simply interactive models with very low feed-
back, it is clear that no modular model could ever do better than
all interactive models, and this is as good as it can possibly get.
What Norris et al. have done, however, is to move the “interac-
tion” out of the core of the model and into a decision component.
This may well be the correct thing to do, but there are also costs
to this type of approach. One of Forsters (1979) reasons for
proposing a modular language processing architecture was that
this was intrinsically more testable, because evidence for interac-
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tion would invalidate the model, whereas an interactive model
could accommodate data which either did or did not show inter-
action (see also Norris et al., sect. 8, para. 5). However, it rapidly
became apparent in the sentence processing literature that the ad-
dition of a General Processing System incorporating a decision
component made it very difficult to test the core predictions of the
model. To the extent that any apparently interactive effect could
be laid at the door of this component, the model was untestable.
This is not to say that in that case, or in the case of Merge, that
such a decision component is implausible or undesirable. It is sim-
ply, unfortunately, the case that the more “intelligent” the task spe-
cific component of the model, the less testable are its core as-
sumptions.

The problem lies not in the nature of the model, but in the
methodologies we use for testing its core processes. When we ask
subjects to make decisions that are related to the nature of the pro-
cessing we are interested in, we cannot avoid the potential dupli-
cation of effects of that parameter in both a core and a decision
process. It then becomes rather difficult to determine which of
these we are really testing. As I have argued elsewhere (Murray &
Rowan 1998, p. 5, based on an original quotation from J. D. Fodor
and colleagues), “appropriate paradigms for measuring the timing
of subprocesses during comprehension are ones which require no
judgement (conscious or unconscious) about the sentence.” The
same logic applies with “sentence” replaced by “word.”

In fact, in the current sentence processing literature, the tech-
nology of choice is probably eye movement recording. The reason
is that it provides a sensitive on-line index of underlying processes
without (apparently) requiring the subject to participate in deci-
sion making — certainly usually not decisions directly related to the
type of processing under consideration. Results from studies re-
quiring subjects to make decisions related to the nature of the
particular manipulation, although not absent, tend to be treated
rather more cautiously — at least until corroborated by evidence
from “taskless tasks” such as eye movement records.

It is certainly clear that tasks and their precise nature can make
a big difference to the results of auditory word processing studies.
The same is true of studies of auditory syntactic parsing (see, for
example, Watt & Murray 1996). No doubt it is the case that some
fundamental questions about auditory language processing cannot
be answered without recourse to tasks which require subjects to
make judgements about particular aspects of the signal, but I sus-
pect that questions of architecture are going to be particularly dif-
ficult to resolve in the absence of data derived from studies in
which subjects are not required to make these types of judge-
ments. Unfortunately, sensitive on-line measures of auditory lan-
guage processing appear to be particularly hard to find.

Some concerns about the phoneme-like
inputs to Merge

Terrance M. Nearey

Department of Linguistics, University of Alberta, Edmonton, AB, T6G 2E7,
Canada. t.nearey@ualberta.ca www.arts.ualberta.ca/~linguist/

Abstract: As a proponent of phoneme-like units in speech perception, I
am very sympathetic to Merge’s use of phoneme-oriented input. However,
in the absence of any known way to provide input in exactly the form as-
sumed, further consideration needs to be given to how the variation in the
details of the specification of this input might affect Merge’s (and Short-
list’s) overall behavior.

I am very impressed by what Norris et al. have accomplished with
Merge. Contrary to claims of other models, Merge demonstrates
that a wide range of results from lexical access experiments can be
simulated using phoneme-like input with no lexicon-to-phoneme
interaction. My own work on categorization (e.g., Nearey 1997;
forthcoming) has espoused bottom-up, phoneme-like units in
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speech perception. Not surprisingly, I am favorably disposed to-
ward the general shape of Merge.

Although I have no specific criticism of model-internal aspects
of Merge, I do have some reservations about the form of its input
and how it might interact with other aspects of the system. Cur-
rently, the input to Merge is made-up. This is a traditional and un-
derstandable simplification in modeling lexical access: Merge,
Shortlist, and TRACE II (McClelland & Elman 1986) all use con-
structed input that can roughly be described as a fuzzy transcrip-
tion matrix. Thus, as Norris et al. clearly acknowledge, some prior
signal-to-phonemic (or distinctive-feature) transduction is assumed
to have taken place. In Shortlist (Norris 1994b, pp. 208-209), it is
suggested that this could be accomplished by a phoneme recogni-
tion component implemented in a recurrent neural network. How-
ever, Norris may be radically oversimplifying when he states: “This
is clearly a very practical proposition because similar networks are
already in use in automatic speech recognition systems.”

Granted, recurrent neural networks have been fairly successful
in some artificial tasks involving dilation and translation of the
time axis (as Norris 1994b notes). However, no existing nets can
perform the phonetic transduction tasks even for simple CVC syl-
lables at anything approaching the level of human performance.t
Furthermore, Bourlard and Nelson (1994, p. 99) suggest that re-
current neural networks in themselves perform quite poorly (by
ASR [automatic speech recognition] standards) with all but very
short stretches of speech. However, Bourlard and Nelson do de-
scribe some fairly successful (by ASR, not human, standards) sys-
tems where artificial neural nets (ANN), both recurrent and pure
feed-forward, serve to estimate phoneme probabilities in hybrid
ANN/HMMs (hidden Markov models).

Norris (1994b, p. 199) notes that the lexical competition as im-
plemented in Shortlist (and thus in a full Merge) subsumes some
of the tasks of dynamic programming (a crucial part of HMMs) in
finding an optimal path through a lexical lattice, thus segmenting
an input stream into words. However, in HMMs (including hy-
brids), dynamic programming does not only apply to word seg-
mentation (as the lexical networks of Merge and Shortlist can). It
also simultaneously coordinates (by embedding within the word
segmentation) both temporal dilation of phoneme elements and
the alignment of those elements with the input signal. In the
process, the relative probabilities of multiple alignments of strings
of phonemes with the signal are estimated. It is by no means clear
how MERGE/Shortlist-style lexical competition, combined with
a free-running recurrent neural network as input, could be suc-
cessfully substituted for the dynamic programming mechanisms
and still achieve the modest level of success of current ANN/
HMM systems.

Some additional simulations might give some insight into the
extent of potential problems. There are in effect two clocks in
Merge. The slower clock ticks are at input frame updates, set
phoneme-synchronously at three frames per phoneme. The faster
clock drives within-frame competition and operates at 15 times
the frame clock. How would desynchronization by time dilation of
the input strings affect Merge (or Shortlist)? Suppose additional
time slices were interpolated between some or all of the input
frames. A Shortlist-like lexical decoder might well encounter such
temporal variability if it were hooked up to any currently feasible
front-end. Perhaps the current small fragment of a full MERGE
network, with its preselected lexicon and predefined between-
word inhibition weights, would prove to be fairly robust to such
changes. However, phoneme-synchronous input plays a crucial
role in Shortlist, because such input is central to both the lexical
competition and the “fast-match” process that determines the ad-
mission of word candidates. Clearly this issue deserves careful
consideration. Must temporal regularization take place in a prior
network? If so, we need an existence proof of networks that can
actually produce a well-behaved phoneme-synchronous sequence
from an asynchronously streaming input signal. Otherwise, some
accommodation of variations in the duration of input patterns
must be added to Merge.
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Finally, note that any possible weakness of Merge and Short-
list suggested above also applies to all psychological models (to
my knowledge) of lexical access and speech perception. We all
finesse the input in one way or another.? Unlike the rest of us,
Norris, McQueen & Cutler have at least offered a promissory
note on how their evolving inputs might be derived from real
speech signals. Furthermore, they have, in this and previous
work, shown an admirable willingness to test the robustness of
aspects of their models by “wiggling” those models” architectures
as well as their parameters. I think much would be learned by
additional experimentation incorporating a wider range of input
specifications.

NOTES

1. Human performance on this task is excellent. For example, Allen
(1994), citing work from several sources, showing English CVC nonsense
syllables can be identified at better than 98% correct by human listeners.
Even in conditions of high noise, phonemes in nonsense CVCs are identi-
fied at rates no worse than about 10 percentage points less than real words
(Boothroyd & Nittrouer 1988). Thus, “the human front-end” (i.e., human
phonetic processing with no lexical support) is capable of doing a remark-
ably good job, far better than any current ASR system (Allen 1994).

2. For example, in my models, instead of temporally evolving acoustic
waveforms, I start with neatly packaged, pre-parsed “cues” which feed just
the right nodes in my models in just the right way. Furthermore, my mod-
els are simple static-pattern recognizers where all evidence is presented
instantaneously, rather than emerging through time.

Not all neighborhood effects
are created equal

Rochelle S. Newman

Department of Psychology, University of lowa, lowa City, IA 52242.
rochelle-newman@uiowa.edu
www.psychology.uiowa.edu/Faculty/Newman/Newman.html

Abstract: Norris, McQueen & Cutler provide two possible explanations
for neighborhood effects. The first suggests that nonwords that are more
similar to words tend to activate those words more than do less similar non-
words, and the second is based on sequential probabilities between pho-
nemes. Unfortunately, neither explanation is sufficient to explain all re-
ported neighborhood effects.

Norris et al. have put together an impressive model of word recog-
nition, one that explains a large number of seemingly contradic-
tory results. My commentary focuses on their explanations of
neighborhood effects on phonemic perception, and the ways in
which these explanations point to areas for future research.

Neighborhood effects occur when the number and/or fre-
quency of lexical items similar to a particular sequence influences
perception of that sequence. For example, Newman et al. (1997)
presented listeners with pairs of nonword-nonword series, in
which one endpoint of each series was similar to more real words
in English than was the other endpoint. Listeners labeled am-
biguous items as being whichever endpoint made them similar to
more real words — the number of similar words influenced per-
ception of nonword items.

Norris et al. provide two possible explanations for such neigh-
borhood effects. They suggest that “nonwords which are more like
words tend to activate lexical representations more than nonwords
which are less like words” (sect. 5.2.2, para. 4). This can explain
situations in which the degree of similarity to a single neighbor in-
fluences perception. However, it does not explain true “ganging”
effects, in which the number of neighbors (or the density of lexi-
cal space in which an item resides) has an effect. In these cases,
the critical issue is not that one nonword activates a word more
than does another, but that one nonword activates more words
than another. There is a distinction between neighborhood effects
caused by the degree of similarity to a single word, and neighbor-
hood effects caused by the number of words to which a nonword

is (slightly) similar, as pointed out by Bard and Shillcock (1993).
The simulation of Connine et al.’s (1997) results demonstrates that
MERGE can account for the one type of neighborhood effect, but
further work is necessary to demonstrate whether it can also ex-
plain the other type. Indeed, Norris et al. state explicitly that the
number of words that receive activation in MERGE at any mo-
ment in time is quite small (see sect. 7, para. 7). This suggests that
such ganging effects, caused by the simultaneous activation of
large numbers of words, might not fall out of the model. This could
be a serious limitation, if effects of neighborhood density can be
clearly shown to influence nonword perception.

However, Norris et al. provide a second possible account for
these neighborhood effects, based on sequential probabilities be-
tween phonemes. In an approach similar to Vitevitch and Luce
(1998), they suggest that neighborhood effects, such as those re-
ported by Newman et al., may really be caused by transitional
phonotactics (the likelihood of adjacent phonemes co-occurring
in the language), rather than by true lexical knowledge. Indeed,
Newman et al.’s effect was facilitatory, rather than inhibitory, sup-
porting this idea (see Vitevitch & Luce 1998). However, it could
not have been caused by sequential phonotactics (the probabilities
of the CV and VC sequences), as Norris et al. suggest. As an ex-
ample, one pair of series ranged from “gice” to “kice,” and “gipe”
to “kipe.” Both series contain the same CV sequences (/ga1/ and
/kat/). If one of these were higher in probability than the other, it
could cause an overall bias towards that endpoint. But this bias
would occur across both of the two series, and thus could not cause
a differential bias between the series, as Newman et al. found.
Similarly, a higher probability for /atp/ (or /a1s/) could also exist —
but this would be present for both endpoints of the relevant se-
ries. Such a bias would influence overall performance on a series,
but not the location of a category boundary within the series. In
fact, there are no sequential probabilities that could explain a bias
for /g/ in “gice kice” and a simultaneous bias for /k/ in “gipe kipe.”

This is not to say that statistical probabilities could not play a
role. Indeed, the effects may be caused by such probabilistic
phonotactics, rather than being a top-down effect of neighbor-
hoods. But the effect would have to be based on higher-order
phonotactics, such as the co-occurrence relations between the two
nonadjacent consonants, rather than by the type of sequential
probabilities the authors describe here. Sensitivity to this type of
discontinuous probability could be added to the Merge model, as
there is nothing specific to the architecture of the model that
would forbid such an enhancement. However the implications of
such a change need further testing, and might lead to different
predictions for other studies. For example, in Pitt and McQueen
(1998), the word contexts “juice” and “bush” were selected to
match the transitional probabilities between the vowels and the fi-
nal /s/ or /[/. However, the probabilities between the initial and
final consonants were not matched, and the inclusion of discon-
tinuous probabilities in Merge might lead the model to make dif-
ferent predictions than were actually found.

Merge can clearly account for some types of neighborhood ef-
fects (those caused by the degree of perceptual similarity to a sin-
gle neighbor, and those caused by sequential phonotactics). How-
ever, whether it can truly explain all of the reported effects of
lexical knowledge on phonemic perception remains to be shown.
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Implausibility versus misinterpretation
of the FLMP

Gregg C. Oden

Departments of Psychology and Computer Science, University of lowa, lowa
City, IA 52242. gregg-oden@uiowa.edu www.cs.uiowa.edu/~oden

Abstract: The case for the independence of featural processing supports
Merge and FLMP alike. The target article’s criticisms of the latter model
are founded on misunderstanding its application to natural language pro-
cessing. In fact, the main difference in the functional properties of the
models is the FLMP’s ability to account for graded perceptual experience.

It is startling to be informed that beliefs you have held for a quar-
ter of a century are indefensible and implausible. So it comes as a
relief to discover that it was all just a big misunderstanding.

Norris, McQueen & Cutler make a compelling case for the im-
munity of featural processing from lexical influences in speech
perception. As the authors correctly observe, this principle is at
the heart of not only their new Merge model but also of the
twenty-some year old Fuzzy Logical Model of Perception (FLMP).
So itis natural that they should try to establish how these two mod-
els that are alike in this most fundamental way are different in
other respects. Unfortunately, in so doing, they mischaracterize
the FLMP and neglect the most important difference between it
and Merge.

Before addressing the main concerns of my commentary, let me
briefly make a couple of observations. First, it is wrong to say that
the FLMP is not a process model. Claims of independence and
data flow are all about process and naturally accommodate classi-
cal notions of information accrual and its time course as Massaro
and Cohen (1991) have shown. Second, the FLMP can readily in-
corporate several forms of conditionality. For example, Oden and
Massaro (1978) argue for the syllable as the unit of speech per-
ception, and that paper and its sequel (Massaro & Oden 1980a)
provide dramatic demonstrations of how the model can exhibit an-
other kind of configurality without compromising the indepen-
dence of evaluation processes.

Most important, it must be clearly stated that contrary to the
target article’s claims, the FLMP was, indeed, developed “in the
light of the constraints of everyday language processing.” One of
its immediate precursors was a model of the role of semantic con-
straints in syntactic ambiguity resolution (Oden 1978; 1983), and
it has been repeatedly applied to natural language processing tasks
involving information at and across different linguistic levels (see,
for example, Massaro & Oden 1980b; Oden et al. 1991; Rueckl &
Oden 1986). The misunderstanding of this fact seems to be due to
misinterpretations of components of the FLMP and that, in turn,
is the basis for other misstatements in the article.

As a feedforward model, the FLMP postulates perceptual units
that are composed of subunits that are composed of subsubunits
and so on back to sensory primitives. All candidate identities of a
unit at any level are presumed to be evaluated as to degree of fit
to the input independently and in parallel. The evaluation of a unit
at one level results from the integration of the relevant continu-
ous information from its subunits. Thus, the evaluation of a unit
depends on that of its subunits but is independent of everything
else going on. The FLMP gets its top-down power despite having
no top-down dataflow by deferring decisions as long as possible
(see Oden 1983 for a discussion of how long that is likely to be in
language processing). Thus, it is misleading to ponder whether
phoneme and word recognition are independent in the FLMP as
if there were separate decisions made.

A manifestation of this sort of misunderstanding in the target
article is the claim that the FLMP would have to allow feedback
in order to accommodate a biasing effect of the properties of one
word on the recognition of the next. On the contrary, such influ-
ences would be presumed to occur in the subsequent integration
stage where the information about the candidate identity of the
sequence of words up to that point in the utterance would be in-
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tegrated with the independent evaluation for the word in ques-
tion.

Another such misunderstanding leads to the most serious and
peculiar mischaracterization of the FLMP as assuming “that the
support for a word has nothing to do with the perceptual evidence
for that word” (sect. 6.3, para. 6). As we have just seen this state-
ment is absolutely counter to the essential nature of the model.
This error appears to have resulted from a confusion between the
support for a word and the support that part of a word provides
for the identification of its initial phoneme. In the experimental
situation discussed in Massaro and Oden (1995), the degree to
which a stimulus, Sij, is “gift” would, according to the FLMP, be
specifiable as

tgift | Sy) = & X fJ X w

where g is the degree to which the initial phoneme is /g/, f. is the
degree to which the rest of the stimulus matches /1ft/, and w is the
degree to which words are favored over nonwords. The likelihood
of identifying the stimulus as “gift” would be its degree of match
relative to that of the alternatives. The likelihood of identifying the
initial phoneme to be /g/ would correspond to the likelihood of
identifying the whole stimulus as either “gift” or “giss.” Then ¢
the contextual support for /g/ in this case, would be given by

cj=fj><w+<l—fj)><<l—w)

Clearly all of the terms in this expression, and thus c itself, would
be independent of g, but t(gift | S,;). the degree of support for the
word “gift,” would definitely not be independent of g,.

Finally, the target article ignores the most important difference
between the models, that the mutual inhibition in the decision
stages of Merge will tend to produce all-or-none values even for
ambiguous inputs, in contrast to the FLMP with its relative good-
ness rule. Thus, Merge makes the implausible claim that people
should never experience unclear or murky perceptions and, as a
result, would seem incapable of accounting for the systematically
intermediate perceptual experiences people report in rating the
degree to which a stimulus is one thing versus another (Massaro
& Cohen 1983a). More recent evidence involving the perception
of handwritten words (Oden & McDowell, in preparation) makes
a strong case for such ratings directly reflecting the perceptual
processes that underlie identification. It will be a challenge for
Merge to handle this.

Model evaluation and data interpretation

Mark Pitt

Department of Psychology, The Ohio State University, Columbus, OH 43210.
pitt.2@osu.edu Ipl.psy.ohio-state.edu

Abstract: Norris et al. present a sufficiency case for Merge, but not for
autonomy. The simulations make clear that there is little reason to favor
Merge over TRACE. The slanted presentation of the empirical evidence
gives the illusion that the autonomous position is stronger than it really is.

With the introduction of Merge, autonomous and interactive
models of phoneme decision making become more similar archi-
tecturally, because in both model classes information from multi-
ple sources (lexical and phonemic levels) is combined. “Autonomy”
no longer applies to strictly feed forward models and “interactiv-
ity” narrows to meaning only direct top-down feedback to lower
levels. While these distinctions are not necessarily new (e.g.,
FLMP), they are new in the context of a model of word recogni-
tion.

Model evaluation. A central issue in model development in any
field is model selection: How does one choose between compet-
ing models of a cognitive process, in this case phoneme decision
making? The criteria used to select a model are varied (e.g., de-
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scriptive adequacy, falsifiability, generality), and reflect the diffi-
culty of the problem. The problem can increase in complexity with
the introduction of computational instantiations of a model, for in
this case a model can have two forms, a verbal (i.e., box and arrow)
description of its basic architecture and information flow and a
computational implementation of that architecture. Merge’s su-
periority over TRACE depends on which of these two criteria is
used to evaluate its performance. If we restrict ourselves to their
verbal forms, then Merge can come out ahead if one buys into
three nontrivial claims: (1) the model is autonomous; (2) splitting
the phoneme levels in two is justified; (3) Norris et al.’s assessment
of the literature is accurate. In these circumstances, Merge is
the better model (sect. 7, para. 2): Integration is necessary (elim-
inating Race) but not to the extent of interactivity (eliminating
TRACE).

When the computational versions of Merge and Trace are com-
pared, however, Merge does not reign supreme. Descriptive ade-
quacy (i.e., can the model simulate the data?) is the criterion on
which the models are evaluated. The TRACE-like interactive
model simulates the mismatch data almost as well as Merge, and
does so with two fewer parameters than Merge (nine instead of
eleven). Because additional parameters increase the ability of a
model to fit data (see Myung & Pitt 1998; Myung, in press), one
could just as easily argue that the trade-off in fit quality for num-
ber of parameters is justified, and hence favor the simpler model,
TRACE. On the basis of simulated data alone, then, there is little
reason to favor one model over the other. We will have to await fu-
ture empirical data to decide between the two.

In their summary of the simulation results (sect. 5.3), Norris et
al. state that Merge should have no difficulty simulating lexical ef-
fects, such as listeners’ biases to categorize perceptually ambigu-
ous phonemes as forming the onset of a word rather than a non-
word (Ganong 1980). Although the model in its present form
could probably simulate this basic effect, it may have difficulty
simulating the time course of this effect, particularly its reversal
as a function of phoneme position in a word. When the ambigu-
ous phoneme occurs word-initially, lexical influences increase in
magnitude over time, being smallest at fast response rates and
largest at slow response rates. Just the opposite is found when the
ambiguous phoneme occurs word-finally: Lexical influences are
largest at the fastest reaction times and smallest at the slowest re-
action times (McQueen 1991). There appears to be no mecha-
nism in MERGE that can modulate the strength of lexical influ-
ences over time in a manner necessary to capture this pattern of
results.

Data interpretation. Because there is little reason to favor the
computational versions of Merge over TRACE, Norris et al. try to
strengthen their case for autonomy by playing up findings that are
problematic for interactivity. Throughout the paper, Norris et al.
tout the Pitt and McQueen (1998) compensation for coarticula-
tion data as strong evidence against interactivity and for an au-
tonomous model like Merge. This is necessary, as it is the only
strong evidence they have. To make the case for autonomy even
stronger, Norris et al. try to neutralize the data that are suggestive
of interactivity, dismissing all such evidence. Using questionable
criteria, they find fault with methodologies that have been used to
demonstrate interactivity. They raise the standard of evidence of
interactivity in order to discount data across many studies as be-
ing insufficiently persuasive.

Their skepticism of this literature contrasts with their confi-
dence in interpreting findings using other methodologies (e.g.,
phoneme monitoring and identification) and types of data (e.g.,
reaction time and labeling). For example, the loci of monitoring
effects are assumed to be clear-cut, and attention is freely invoked
to account for patterns of data across studies. Compensation for
coarticulation is assumed to be due only to a prelexical process
sensitive to statistical properties of the language; this strong as-
sertion is made without evidence that exhausts other alternatives.
The results offered to champion autonomy are no less fragile than
those presented in support of interactivity. If the field is to move

forward on the defining issue of information flow, a consensus
needs to emerge on what counts as evidence of interactivity.

In sum, neither the modeling data nor the empirical evidence
make a strong case for autonomy or Merge. Norris et al. say as
much when they conclude in the last paragraph of the paper that
Merge is no more than a demonstration that a model with its par-
ticular design, which could just as easily be considered mildly in-
teractive rather than truly autonomous, can account for a portion
of the experimental data.

Merge: Contorted architecture, distorted
facts, and purported autonomy

Arthur G. Samuel

Department of Psychology, SUNY Stony Brook, Stony Brook, NY 11794-
2500. asamuel@psychl.psy.sunysb.edu
www.psy.sunysb.edu/asamuel/

Abstract: Norris, McQueen & Cutler claim that Merge is an autonomous
model, superior to the interactive TRACE model and the autonomous
Race model. Merge is actually an interactive model, despite claims to the
contrary. The presentation of the literature seriously distorts many find-
ings, in order to advocate autonomy. It is Merge’s interactivity that allows
it to simulate findings in the literature.

Merge, the latest model devised by distinguished scientists Nor-
ris, McQueen & Cutler, is extraordinarily clever and misguided.
In order to portray Merge as autonomous, Norris et al. must con-
tort the model’s architecture and distort many findings in the lit-
erature. The effort ultimately fails because lexical feedback to
phonemic processing is sometimes necessary.

Pretending that Merge is autonomous requires two contortions
of the model’s architecture. First, Norris et al. label the two lower
levels of the model as “phonemic input” and “phoneme decision.”
They argue that dividing phonemic processing into two separate
levels is reasonable and necessary. However, if one examines what
these two levels are doing, it becomes clear that these levels really
correspond directly to the “feature” and “phoneme” levels in
TRACE and other models. Indeed, Norris et al. explicitly ac-
knowledge that “We could have replaced the phonemic input
layer with a featural layer and achieved exactly the same ends”
(sect. 5.3, para. 2).

What, then, makes Merge’s phoneme level different from the
phoneme level in other models? The second contortion. In
Merge, these units have no feedforward to the lexical level — they
are processing dead-ends. But it is absolutely essential to note that
there are facilitative links from the lexical nodes down to the
phonemic nodes. By any normal definition of top-down process-
ing, if lexical nodes influence the activation of phonemic codes, a
model is not autonomous. Norris et al. offer several reasons for in-
cluding such top-down connections, and they are exactly correct:
Top-down lexical influences are necessary.

If Merge unambiguously employs top-down processing, how
can Norris et al. maintain that “feedback is never necessary”? The
only option is to invent a new definition of autonomy in which
feedback cannot exist if feedforward does not. This accounts for
the second contortion of the model: In order to avoid a feedback
loop (which would violate Merge’s autonomy), Norris et al.
stranded the outputs of the phonemic level. It is ironic that
the method of achieving “autonomy” was to leave in the top-down
lexical-phonemic links, and to eliminate the bottom-up ones. Of
course, the “input phonemic” units feed the relevant information
forward anyway, so that even with a bizarre definition of autonomy
Merge is not autonomous.

In order to maintain their claim of autonomy, Norris et al. pre-
sent a view of the literature that is breathtakingly skewed. I will
only mention two examples that involve work from my own labo-
ratory, but the distortion is quite pervasive.
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Wurm and Samuel (1997) followed up Frauenfelder et als
(1990) important finding of a lack of lexical inhibition, a problem-
atic result for TRACE. Norris et al. report

Wurm and Samuel (1997) replicated the Frauenfelder et al. findings
but raised the possibility that inhibitory effects might be masked be-
cause the nonwords in which inhibition might be expected were easier
to process than the control nonwords. They presented results from a
dual task study which were consistent with their view. (sect. 4.2, para. 2)

This is a fair summary. However, Norris et al. then say “Never-
theless, there is still no direct evidence for inhibitory lexical effects
in phoneme monitoring,” and for the remainder of the paper they
present the lack of lexical inhibition as a fact. In this case, Norris
et al. reported the contradictory result, but then simply ignored it.

The second example is more egregious because it involves a
clear misconstrual. Samuel (1997) reported that lexically-defined
phonemes produced significant adaptation effects. This result,
like Elman and McClelland’s (1988) compensation for coarticula-
tion effect, is potentially fatal for Merge, because both results in-
volve top-down lexical influences that cannot be attributed to
dead-end phonemic decision units. Norris et al.’s solution is to crit-
icize the restoration study on two grounds. First, they assert that
“normal adaptation effects are usually found almost exclusively in
the form of a boundary shift,” whereas the effect here “is practi-
cally as large at the continuum endpoints as at the boundary” (sect.
4.4, para. 2). This criticism is simply factually false: Although adap-
tation effects are usually larger at the boundary, this depends on
many factors, and there are many adaptation studies in the litera-
ture showing shifts across the continuum.

Norris et al.’s second critique is to suggest that the adaptation
effect might be occurring at the lexical level itself, in which case
there would be no top-down effect. Norris et al. cite Samuel and
Kat’s (1996) description of multiple levels of adaptation to support
their speculation, focusing particularly on what they call the “cat-
egorical” level. This criticism drastically distorts the facts in two
ways. First, Samuel explicitly addressed the possibility of adapta-
tion occurring directly at the lexical level, and provided four sets
of data that refute that possibility (Fig. 11, p. 120). Second, the
“categorical” level of Samuel and Kat is unambiguously described
as sublexical in that paper. In fact, it is repeatedly equated with the
phonetic level in other studies. Suggesting that Samuel and Kat’s
results support a lexical interpretation of the restoration effect is
simply misleading.

These examples illustrate the distortion of the literature re-
quired to advocate a model that is truly autonomous. Fortunately,
Merge is not such a model, given its lexical influences on phone-
mic perception. It is precisely these connections that allow it to
successfully simulate Connine et al.’s (1997) phoneme monitoring
results. The other two simulations, while elegant, are similarly
nondiagnostic. The subcategorical mismatch results in the litera-
ture are so varied that any simulation must be extremely parameter-
dependent (Marslen-Wilson & Warren [1994] only got their effect
in about a fourth of their original stimuli, and McQueen et al.
[1999a] report additional variability). Wurm and Samuel’s results
must qualify any simulation of Frauenfelder et al.s data, and in
fact, Norris et al. report that Merge actually does produce lexical
inhibition with certain parameter choices. In short, the simula-
tions do not in any way speak to the issue of autonomy versus in-
teractivity.

I am actually quite encouraged by Merge, as its true nature is
very much in accord with the “partially interactive” (Samuel 1981)
approach that I believe the data require. This convergence gives
one hope that our field is closing in on the correct description of
the remarkable system that accomplishes speech perception.
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Interaction, function words, and the wider
goals of speech perception

Richard Shillcock

Institute for Adaptive and Neural Computation, Division of Informatics, and
Department of Psychology, University of Edinburgh, Edinburgh EH8 9LW
United Kingdom. rcs@cogsci.ed.ac.uk www.cogsci.ed.ac.uk/~rcs/

Abstract: We urge caution in generalising from content words to function
words, in which lexical-to-phonemic feedback might be more likely.
Speech perception involves more than word recognition; feedback might
be outside the narrow logic of word identification but still be present for
other purposes. Finally, we raise the issue of evidence from imaging stud-
ies of auditory hallucination.

First, most research on lexical-to-phonemic interaction in speech
processing is carried out on content words or contentive-like non-
words. New information is typically conveyed by content words;
in contrast, function words are often highly predictable. Phenom-
enally, the two word types are equally real to the listener, yet func-
tion words are disproportionately more poorly specified phoneti-
cally. We might expect the perception of function words to be the
best place to look for lexical-to-phonemic effects. Indeed, the per-
ception of function words has already been shown to be suscepti-
ble to context effects that are primarily syntactic (Shillcock & Bard
1993); in contrast, the initial access of content words seems to be
impervious to such syntactic contexts (see, e.g., Tanenhaus &
Donnenwerth-Nolan 1984). There may be similar processing dif-
ferences between the two word types, in which the listener aug-
ments the impoverished signal corresponding to functor mor-
phemes; note, in this respect, that function word processing and
phonological processing are both typically lateralised towards the
left hemisphere. Unfortunately, the function words do not neces-
sarily lend themselves to every experimental paradigm that has
been used with content words: multiword contexts are often re-
quired to establish a word’s functor nature, and the phonemic
content of (English) function words is less diverse than that of
content words. It may be that other languages will yield more op-
portunities than English for resolving the issue of lexical-to-
phonemic feedback and functors. Function word processing is not
a minor aspect of speech processing; in English conversation,
function word tokens typically outnumber content word tokens,
and the imbalance is even greater when bound functors are taken
into account. Until we know more about their processing, it might
be best to qualify conclusions reached about lexical-to-phonemic
interaction with a clause that such conclusions are only assumed
to generalise to function words.

Second, Norris et al. refer to Occam’s razor, in part because they
argue for the null hypothesis, the non-existence of lexical-to-
phonemic interaction. They assume that word recognition is nor-
mally the only goal of speech perception. However, speech pro-
cessing also has, at least, the goals of creating a unified conscious
perception of meaningful speech, and a phonological record of the
speech, such as might be useful in vocabulary learning. It is not
difficult to imagine a role for lexical-to-phonemic interaction in
both of these activities (although in reality we know little enough
about either). Logically, lexical-to-phonemic interaction might ex-
ist as a proper part of a psychologically realistic model of speech
perception even though it is not required by the narrow logic of
word identification.

Finally, Norris et al. refer only to hallucination as a risk inher-
ent in interactive models. It is tempting to think that pathological
auditory hallucination might constitute an interesting control in
which the complete absence of sensory input is accompanied by
apparently realistic speech perception. David et al. (1996) report
an imaging study of a schizophrenic subject, showing activation of
the relevant sensory and association cortex during hallucinated
speech. Even though we understand little about what such acti-
vation is actually representing, it is a nod in the direction of “per-
ception as controlled hallucination.”
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Hesitations and clarifications on a model
to abandon feedback

Louisa M. Slowiaczek

Department of Psychology, Bowdoin College, Brunswick, ME 04011.
Islowiac@bowdoin.edu www.bowdoin.edu

Abstract: Hesitations about accepting whole-heartedly Norris et al.’s sug-
gestion to abandon feedback in speech processing models concern (1)
whether accounting for all available data justifies additional layers of
complexity in the model and (2) whether characterizing Merge as non-
interactive is valid. Spoken word recognition studies support the nature of
Merge’s lexical level and suggest that phonemes should comprise the
prelexical level.

Norris, McQueen & Cutler have set out to accomplish two goals:
They argue that feedback is not necessary in speech processing
and they propose an autonomous model (Merge) that can account
for the available speech processing data. Their arguments are
well-organized and persuasive.

Regarding their first goal, I must admit to being one of those
for whom “the assumption of interaction fits with many people’s
intuitions about the nature and complexity of the speech recogni-
tion process” (sect. 2.2, para. 1). In light of Norris et al.’s presen-
tation I have been forced to re-evaluate my position. They have
managed to chip away at the support for a widely accepted theo-
retical position. They dismiss the prevailing assumption that feed-
back is beneficial and dismantle the evidence that supports that
assumption. In the process, serious doubt has been raised for the
case of feedback in speech processing and I cannot as readily call
myself an interactionist. Moreover, their no-feedback position will
have tremendous implications for the way in which researchers re-
gard language processing models.

Although I am swayed by their well-constructed arguments,
two nagging doubts block whole-hearted acceptance of their
Merge model. The first concerns the nature of our theorizing
about psychological processes. A good theory is one that achieves
the appropriate balance between comprehensiveness and parsi-
mony while stimulating theoretical exploration. Accounting for
the data, at the same time losing sight of the broader process or
parsimoniously modeling a process without accounting for the
data would be equivalent anathemas. It is true that Merge is bet-
ter able than TRACE or Race to account for the available data, but
it has done so at the cost of postulating an additional level of in-
formation, possibly compromising the modeling of the speech
process. Despite Norris et al.’s position that “The phonemic
decision-making mechanism is . . . a natural part of mature lan-
guage processing abilities” (sect. 7, para. 3), the added complexity
in Merge is in response to data that may be more related to our
experimental procedures than to normal speech processing. We
may be building models that can account for a variety of experi-
mental findings (some “artifactual” and some not) at the expense
of models that capture the psychological processes we hope to un-
derstand. One test of this concern will be whether the Merge
model, like TRACE and Race, is able to generate serious ques-
tions about spoken language processing, for example, will it stim-
ulate theoretical exploration?

A second concern focusses on what may be a semantic quibble.
Norris et al. suggest that Merge is not an interactive model. This
claim is based on a somewhat narrow definition of interaction. It
is true the Merge does not include feedback from the lexical level
to the prelexical level, but one might argue that the merging of lex-
ical and prelexical information at the phonemic decision level is a
type of interaction. In that way, the postulation of a phonemic de-
cision level and claims to have eliminated lexical feedback may be
a theoretical sleight of hand.

With these philosophical concerns aired, we can turn to a more
concrete assessment of the model itself. I am in agreement with
Norris et al.’s characterization of the lexical level. A growing body
of evidence has accumulated that suggests that the processing of

spoken words is influenced by phonological overlap between
those words and preceding words. Primes and targets that share
initial phonemes slow response times to the target word (Goldinger
1999; Hamburger & Slowiaczek 1996; 1999; Monsell & Hirsh
1998; Radeau & Colin 1996; Slowiaczek & Hamburger 1992.)
These effects have been obtained with the shadowing and the lex-
ical decision tasks suggesting that the effect is perceptual and not
solely the result of production processes (though results with lex-
ical decision are somewhat more variable; see Monsell & Hirsh
1998 for a discussion of confounding factors in lexical decision).
Such inhibition has been found for words, but not for nonwords
(Radeau et al. 1989; Slowiaczek & Hamburger 1992) suggesting
that the inhibition occurs between lexical items. Also, similar in-
hibitory effects have been reported in the visual word recognition
literature (e.g., Colombo 1986; Lupker & Colombo 1994) sug-
gesting that this effect is not specific to speech processing. As a re-
sult, the inhibitory connections between the lexical representa-
tions in Merge (and Shortlist) are consistent with the empirical
findings in the phonological priming and spoken word recognition
literature, as well as the speech processing data outlined by Nor-
ris et al.

Although Norris et al. provide arguments to support the ab-
sence of feedback from the lexical to the prelexical level, my re-
action to the prelexical level would be more enthusiastic if they
were more specific about the nature of the prelexical representa-
tions. In section 5.1 of their paper, they refer to the prelexical level
as the phoneme level, but in section 5.3 they suggest that they
“could have replaced the phonemic input layer with a featural
layer and achieved exactly the same ends” (para. 2). Marslen-
Wilson and Warren (1994) suggest that the nature of prelexical
representations is not phonemic and studies that require explicit
phonological judgments (e.g., phoneme monitoring, phonetic cat-
egorization) make it difficult to determine the nature of these rep-
resentations. There are data from tasks that do not rely on explicit
phonological judgements (i.e., shadowing and lexical decision in
phonological priming) however, that suggest the prelexical level
should be comprised of phonemic representations (Slowiaczek et
al. 2000).

A number of studies have found that primes and targets that
share word-final phonemes (e.g., SLACK-BLACK) decrease re-
sponse times to the target item (Burton 1992; Cutler & Chen
1995; Dumay & Radeau 1997; Emmorey 1989; Radeau 1995;
Radeau et al. 1995). This word-final phonological facilitation was
obtained using shadowing and lexical decision tasks (i.e., tasks that
do not involve explicit phonological judgement; Radeau & Colin
1996; Radeau et al. 1994; Slowiaczek et al. 1997; Slowiaczek et al.
1999.) Obtaining the effect with different tasks suggests that this
facilitation is perceptual (rather than solely due to production.)
The fact that it has been found for word as well as nonword stim-
uli suggest that it is prelexical (Dumay & Radeau 1997; Radeau et
al. 1995; Slowiaczek et al. 1997; Slowiaczek et al. 2000). The fact
that it is found for spoken stimuli but not necessarily for visual
stimuli suggests that it is specific to speech processing (Dumay &
Radeau 1997; Radeau et al. 1994). The most important finding
with regard to the nature of prelexical representations is that the
effects are based on whether or not the prime and target in the ex-
periments rhymed and/or shared final phonemes (Slowiaczek et
al. 2000). As Slowiaczek et al. (2000) argue, these data provide
support for a phonemic prelexical representation.
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Recognition of continuous speech requires
top-down processing

Kenneth N. Stevens
Department of Electrical Engineering and Computer Science and Research

Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge,
MA 02139. stevens@speech.mit.edu

Abstract: The proposition that feedback is never necessary in speech
recognition is examined for utterances consisting of sequences of words.
In running speech the features near word boundaries are often modified
according to language-dependent rules. Application of these rules during
word recognition requires top-down processing. Because isolated words
are not usually modified by rules, their recognition could be achieved by
bottom-up processing only.

In this commentary, I will address a question that is related to the
problem under discussion here, but is somewhat more general:
Does lexical access during running speech utilize top-down infor-
mation from hypothesized lexical units to influence the process-
ing of the speech signal at the sublexical level? The evidence in
the target article of Norris et al. is based on psycholinguistic ex-
periments with isolated words, and does not address the recogni-
tion of word sequences. The recognition of word sequences can
present problems different from those for isolated words because
when words are concatenated the segments can undergo modifi-
cations that are not evident in utterances of isolated words.

We begin by assuming that a listener has access to two kinds of
language-specific knowledge. The language has a lexicon in which
each item is represented in terms of a phoneme sequence, with
each phoneme consisting of an array of distinctive features. The
listener also has knowledge of a set of rules specifying certain op-
tional modifications of the lexically-specified features that can oc-
cur in running speech. These modifications frequently occur at
word boundaries, and are less evident in single-word utterances.
(There are, of course, also obligatory morphophonemic rules.)

As acousticians with a linguistic orientation, we take the follow-
ing view of the process of human speech recognition (Stevens
1995). There is an initial stage in which landmarks are located in
the signal. These landmarks include acoustic prominences that
identify the presence of syllabic nuclei, and acoustic discontinu-
ities that mark consonantal closures and releases. The acoustic
signal in the vicinity of these landmarks is processed by a set of
modules, each of which identifies a phonetic feature that was im-
plemented by the speaker. The input to a module is a set of
acoustic parameters tailored specifically to the type of landmark
and the feature to be identified. From these landmarks and fea-
tures, and taking into account possible rule-generated feature
modifications, the sequence of words generated by the speaker is
determined. This process cannot, however, be carried out in a
strictly bottom-up fashion, since application of the rules operates
in a top-down manner. A typical rule specifies a lexical feature that
potentially undergoes modification, it states the modified value of
the feature, and it specifies the environment of features in which
this modification can occur (c¢f Chomsky & Halle 1968). Thus it is
necessary to make an initial hypothesis of a word sequence before
rules can be applied. This initial hypothesis must be made based
on a partial description of the pattern of features derived from the
feature modules.

As an example, consider how the words can be extracted in the
sentence “He won those shoes,” as produced in a casual style. The
/0/ is probably produced as a nasal consonant, and the /z/ in
“those” is usually produced as a palato-alveolar consonant, and
may be devoiced. Acoustic processing in the vicinity of the conso-
nantal landmarks for the word “those” will yield a pattern of fea-
tures that does not match the lexically-specified features for this
word. The feature pattern may, however, be sufficient to propose
a cohort of word sequences, including the word “nose” as well as
“those.” Application of rules to the hypothesized sequence con-
taining “those” will lead to a pattern of landmarks and features that
matches the pattern derived from the acoustic signal. One such
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rule changes the nasal feature of the dental consonant from
[—nasal] to [+nasal] when it is preceded by a [+nasal] consonant
(Manuel 1995). (Close analysis will reject the word “nose,” since
the rule that creates a nasal consonant from /0/ retains the dental
place of articulation.) Another rule palatalizes the final /z/ when
it precedes the palatoalveolar /§/ (Zue & Shattuck-Hufnagel
1979).

We conclude, then, that a model for word recognition in run-
ning speech must be interactive. That is, the process must require
analysis by synthesis (Stevens & Halle 1967), in which a word se-
quence is hypothesized, a possible pattern of features from this se-
quence is internally synthesized, and this synthesized pattern is
tested for a match against an acoustically derived pattern. When
the utterance consists of isolated words, as in the experiments de-
scribed in Norris et al.’s target article, there is minimal application
of rules, and the acoustically based features match the lexically
specified features. Consequently isolated word recognition can be
largely based on bottom-up or autonomous analysis, as proposed
by the authors.

No compelling evidence against feedback
in spoken word recognition

Michael K. Tanenhaus, James S. Magnuson, Bob McMurray,
and Richard N. Aslin

Department of Brain and Cognitive Sciences, University of Rochester,
Rochester, NY 14627. {mtan; magnuson; mcmurray}@bcs.rochester.edu
aslin@cvs.rochester.edu www.bcs.rochester.edu

Abstract: Norris et al.s claim that feedback is unnecessary is compro-
mised by (1) a questionable application of Occam’s razor, given strong ev-
idence for feedback in perception; (2) an idealization of the speech recog-
nition problem that simplifies those aspects of the input that create
conditions where feedback is useful; (3) Norris et al.’s use of decision nodes
that incorporate feedback to model some important empirical results; and
(4) problematic linking hypotheses between crucial simulations and be-
havioral data.

Norris et al. have provided a valuable service to the field by orga-
nizing and evaluating the literature concerning lexical influences
on phonemic decisions in spoken word recognition. We believe
their analysis will sharpen the discussion of issues in spoken word
recognition and help shape the future research agenda in the field.
Nonetheless, we find their case against feedback unconvincing for
the following reasons.

1. Occam’s razor has a double-edged blade. Norris et al. in-
voke Occam’s razor to support their a priori claim that models
without feedback should be preferred to models with feedback.
Occam’s razor, however, applies only when there is no empirical
basis for preferring one model over another. In fact, there is con-
siderable evidence for feedback connections in various cortical ar-
eas and for feedback in perceptual and cognitive processes. In vi-
sual perception, where the links between brain mechanisms and
perception are best understood, there is evidence for feedback
connections and processing interactions at both high and low lev-
els (Churchland et al. 1994; Wandell 1995). There is also evidence
for feedback at auditory levels presumably preceding phonemic
processing (Yost & Nielsen 1977). Moreover, as Norris et al. ac-
knowledge in section 3.5, feedback is likely at higher levels in lan-
guage comprehension. Why, then, should sub-lexical processing
be uniquely devoid of feedback? Given the ubiquitous nature of
feedback in the brain, it is simpler to hypothesize feedback than
to make sublexical processing a special case.

2. Feedback is surely helpful. Norris et al. argue that feedback
cannot improve the efficiency of word recognition. This is only
true given the sort of idealized input representation they use, con-
sisting of noise-free discrete phonemes. Speech, however, is char-
acterized by noise and variability (due to coarticulation, talker dif-
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ferences, etc.). Given a more realistic characterization of the in-
put, feedback would be helpful, as it is in higher level language
processing.

3. Feedback is required by the data and is incorporated into
Merge. Norris et al. admit that lexical effects on phonemic deci-
sions in non-words provide evidence against autonomous models
of spoken word recognition. Merge allows for this feedback
and differs from other autonomous models by adding phonemic
decision nodes where phonemic and lexical information can be
integrated. Although lexical information influences phonemic de-
cisions in Merge, the autonomy of phonemic processing is pre-
served, because information at the lexical units is unaffected by
the phonemic decision units. Parsimony issues aside, distinguish-
ing interaction at the decision level from interaction at the “per-
ceptual” level is at worst impossible and at best requires clearer
linking assumptions between the model and the data.

4. Simulations against TRACE and in support of Merge are
problematic. Although we are not trying to defend TRACE as a
fully plausible model, it is important to note that the simulations
challenging TRACE and supporting Merge depend upon partic-
ular parameter settings and questionable linking assumptions be-
tween the data and the models. Consider the subcategorical mis-
match simulations that play a central role in Norris et als
arguments. The relevant Merge activations are shown in Figure 2
in section 5.2.1.

Compare the target activations for W1W1 from Figure 2A with
the activations for N3W1 and W2W1 (the correct target is W1 for
all three conditions). Clearly, the activations follow different time-
courses. WIW1 precedes N3W1, which precedes W2W1. The
puzzle, however, is that mean lexical decisions are fastest to
WIWI and slower (but equivalent) to N3W1 and W2W1.
Marslen-Wilson and Warren (1994) reported that TRACE does
not predict this pattern, but rather predicts the WIW1 < N3W1
< W2W1 ordering that is present in the activation functions.
Merge is able to capture the empirical lexical decision pattern, de-
spite showing similar activation patterns as TRACE, but only
when a particular decision threshold (.20) is assumed. Activations
for WIW1 cross this threshold at Cycle 8, and activations for
N3W1 and W2W1 cross together at Cycle 10. With a slightly lower
threshold, say .19, N3W1 would be faster than W2W1.

Norris et al. would like to conclude that this is compelling evi-
dence for Merge and against TRACE. Their argument is that
feedback in TRACE prevents the model from getting the activa-
tions just right; in their simulations with a mock-up of TRACE,
they could not find a set of parameters that would yield a thresh-
old where N3W1 and W2W1 will be treated the same without in-
troducing other deviations from the actual lexical decision data.
Their simulations of the sub-categorical mismatch findings might
be a powerful argument against TRACE, if we had strong inde-
pendent reasons to believe that (1) a particular all-or-none deci-
sion threshold of precisely .20 is correct, and (2) the feedback pa-
rameter in TRACE creates a fatal flaw which makes it impossible
to find a threshold that would correctly simulate the lexical deci-
sion data. We find both of these assertions implausible.

More crucially, we should ask why lexical decisions are not mir-
roring the highly similar activation patterns predicted by both
TRACE and Merge. Why do activations for W2W1, which lag
behind activations for N3W1, have similar mean lexical decision
times? The answer lies in the activation patterns and the linking hy-
potheses between the activations and lexical decision times. Early
on in W2W1, W2 becomes quite active, following the same trajec-
tory as WIW1 through Cycle 8. If one assumes that faster lexical
decisions tend to be affected by earlier states of the system than
slower lexical decisions or that the system is affected by noise, the
distribution of lexical decisions in the W2W1 condition will contain
a small proportion of fast “yes” times, based on activation of W2, as
well as some slow “yes” responses based on the activation of W1.
Whereas the means might be similar for the N3W1 and W2W1 con-
ditions, the distributions are likely to differ in ways that are clearly
testable but not revealed by mean lexical decision times alone.

More generally, we believe that arguments about model archi-
tecture on the basis of simulations of the type appealed to by Nor-
ris et al. are extremely important. However, the arguments are
only as strong as the linking hypotheses between the model and
the data. Norris et al. have simply not made a compelling case that
feedback is unnecessary in the architecture or in the simulations
used to support their Merge model.
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Why not model spoken word recognition
instead of phoneme monitoring?
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Abstract: Norris, McQueen & Cutler present a detailed account of the
decision stage of the phoneme monitoring task. However, we question
whether this contributes to our understanding of the speech recognition
process itself, and we fail to see why phonotactic knowledge is playing a
role in phoneme recognition.

Psycholinguistics is a strange research domain. Once, the noble
aim was to understand human language processing, or, more in
particular, to understand how humans recognize words when they
hear sounds. There was no obvious way to tackle that question be-
cause spoken language processes themselves were not particularly
designed for introspection or any other direct method. Psycholin-
guists therefore invented clever tasks like phoneme monitoring
and lexical decision. These tasks, so was the idea, would allow one
to tap the underlying processes and deliver the data on which
models of speech recognition could be built. TRACE (McClelland
& Elman 1986), and indeed Shortlist (Norris 1994b) are an ex-
ample of that. With the present work of Norris et al. though, it
seems that the focus has been shifted from trying to understand
spoken word recognition toward trying to understand the inge-
nious methods that psycholinguists come up with. We wonder
whether this move will lead towards a deeper understanding of the
speech recognition process.

A decade ago, the relation between data and theory was
straightforward. For example, in TRACE there was a bank of pho-
neme detectors that mediated between articulatory features and
words. The (too) strong assumption was that the activation level
of a particular phoneme was reflected in the time a subject needed
to detect that specific phoneme. One could have anticipated that
this assumption was a bit of an oversimplification. At that time, it
was already well known that the phoneme was, at least to some ex-
tent, an invention, and not so much a natural concept. Different
populations with little knowledge about the alphabet (young
children, dyslexics, illiterates, Chinese, and other non-alphabetic
readers) were unable to explicitly represent speech as a concate-
nation of phonemes, yet did not have any apparent difficulty rec-
ognizing spoken words (see, e.g., Bertelson 1986 for a review). A
task like phoneme monitoring requiring an explicit decision about
the presence of a phoneme could thus be expected to be related
with alphabetic reading instruction, but not so for spoken word
recognition.

Norris et al. now formalize this distinction in a model that seg-
regates recognition of phonemes from decisions about phonemes.
They make a strict distinction between phoneme recognition units
and phoneme decision units. Decision units are very different
from recognition units. Decision units are strategic, they are made
on the fly, they receive information from the word level, and they
have inhibitory connections. None of those properties is shared by
phoneme recognition units. Phoneme recognition units are what

BEHAVIORAL AND BRAIN SCIENCES (2000) 23:3 349



Commentary/Norris et al.: Speech recognition has no feedback

they always were: they are assumed to mediate between the
speech signal and words. In fact, almost nothing is said in Norris
et al. about recognition units that has not been said previously. In
our view, this is disturbing if the ultimate goal is to understand
speech recognition, and not phoneme monitoring, lexical deci-
sion, or whatever other task psycholinguists have invented or will
invent in the future.

One can of course argue that it pays to understand the tools one
is working with. In this particular case, it was the decision stage in
the phoneme monitoring task that troubled our view. Basically
Norris et al. argue that we have been misled and that many of the
feedback phenomena occurred at a task-specific decision stage.
This may well be correct, but it should be realized that this task-
specific decision stage is also the least interesting part of the word
recognition process. Indeed, the phoneme decision stage is in fact
superfluous. One can recognize words without phoneme decision
units: Decision units only exist because the experimenter told a
subject to perform a task with phonemes. In our view, there is a
distinction between being critical about a task and knowing its
weaknesses versus modelling its weaknesses. Why should one
model that aspect of a task which is ultimately the least informa-
tive? Would it not be better to try instead to model spoken word
recognition?

The ultimate question, in our view, is what has been learned
from Norris et al.’s model about speech recognition itself. The ar-
chitecture they propose is a straightforward one: Phonemes acti-
vate words, and words compete. The main argument for the ab-
sence of feedback from word recognition units to phoneme
recognition units is a logical one: Phonemes are already recog-
nized fast and accurately, and sending information back from
words to phonemes simply does not improve word recognition. So
far, this may well be correct, but Norris et al. make a surprising ex-
ception to this strictly bottom-up process. They allow “lower”-
order statistical knowledge about transitional phoneme probabil-
ities to play a role in phoneme recognition. To us, this seems a
strange move in a strictly bottom-up recognition process.

First, it seems to be a matter of arbitrary labels to call transi-
tional phoneme probabilities “low,” and lexical feedback “high.”
There is nothing inherently low or high in any of these kinds of in-
formation. Maybe one is precompiled, the other is computed on-
line, but the principle is that in both cases information from a dif-
ferent source than the speech signal itself enters the recognition
process. It is difficult, then, to understand on what principle the
distinction is based: why is lexical information excluded, but not
transitional probabilities?

Second, it seems at least debatable whether transitional pho-
neme probabilities will help phoneme recognition if, as argued be-
fore, phonemes are already recognized fast and accurately. Are
phonemes recognized fast and accurately because the speech sig-
nal itself is processed efficiently, or because of the help of transi-
tional probabilities? Third, how is the transitional knowledge about
phonemes learned if not by some form of feedback to the phoneme
recognition stage? Finally, instead of using phoneme-sized units,
why not have higher-order recognition units like syllables that al-
ready incorporate the transitional phoneme information?

Phonemic organization does not occur:
Hence no feedback

Richard M. Warren

Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee,
WI 53201. rmwarren@uwm.edu

Abstract: T agree with Norris et al. that feedback to a phonemic level is
never necessary, but disagree strongly with their reason why this is true. I
believe the available evidence indicates that there is no feedback because
there is no phonemic level employed in the perceptual processing of
speech.
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I will explain how I came to the belief that there is no phonemic
level of analysis, and how testing this concept led to: (1) confir-
matory experiments based upon delays in identifying target
speech sounds, (2) the discovery of the phonemic restoration illu-
sion, and (3) the discovery of the vowel sequence illusion.

While attending a rather dull colloquium during a sabbatical in
1969, I decided to play a game, and find out how quickly I could
detect the occurrence of a particular phoneme when produced by
the speaker. After trying one phonemic target after another, it be-
came apparent that several words would go by before I could iden-
tify a target speech sound. I surmised that identification of pho-
netic components in running speech could not be accomplished
directly, but was inferred following linguistic organization. This
led to a formal experiment carried out that year that demonstrated
that phonetic targets required more time for identification than
did the monosyllables containing them, whether the monosyllable
was a word in a sentence, a word in a list, or an item in a list of
nonsense syllables (Warren 1971). Further, I reported in this pa-
per that when sentences were used, context that accelerated or de-
layed the identification time for a word produced a corresponding
change in the time required for identification of its phonetic com-
ponents. Encouraged by these observations, I reasoned that since
phonemes appear to be inferred following syllabic or lexical orga-
nization, individual phonemes replaced by noise should be “re-
stored” after the word is recognized. In addition, the listener
should be unable to tell where in a word the noise had occurred.
It was found that this “phonemic restoration” did indeed occur:
When told that a speech sound in a sentence had been replaced
by noise, listeners could identify neither which speech sound was
absent nor where the noise had occurred even after listening to
the sentence several times (Warren 1970; Warren & Obusek 1971;
Warren & Warren 1970; see also Warren 1999).

Perhaps the most direct evidence we found indicating that
phonemic segmentation by listeners is a consequence, not a con-
tributing factor in linguistic organization, is furnished by the vowel
sequence illusion (Warren et al. 1990; 1996). (A compact disk ac-
companying Warren [1999] includes a demonstration of this illu-
sion.) When listeners heard repeated sequences consisting of from
three to ten isochronous steady-state vowels having durations be-
low the 100 msec threshold for identification of the vowels in their
appropriate order, there was aloss not only of order identification,
but the vowels themselves could not be identified (when heard in
isolation, the individual vowels at these durations were readily rec-
ognizable). Between 30 and 100 msec/vowel, native speakers of
English heard an obligatory organization into linguistic “temporal
compounds” consisting of syllables that were either monosyllabic
English words or syllables that occurred as part of polysyllabic En-
glish words. Listeners could segment these syllables into illusory
consonants and vowels that seemed as real as those occurring in
normal speech. Different arrangements of the same phonetic
elements formed different compounds. A similar combining of
acoustic elements into order-dependent temporal compounds
(along with the loss of ability to identify the constituent sounds)
had been reported earlier for sequences of nonlinguistic sounds
presented at item durations below the threshold for order identi-
fication (Warren & Ackroff 1976; Warren & Bashford 1993; War-
ren et al. 1991).

Based upon this earlier work, Warren and Gardner (1995) rea-
soned that because recognition of constituent phonemes and their
orders was not required for linguistic organization, then it might
be inappropriate to attribute receptive aphasias to an inability to
distinguish the order of brief components as had been suggested
by several investigators (e.g., Brookshire 1972; Carmon & Nach-
shon 1971; Tallal & Piercy 1973). Warren and Gardner (1995) de-
signed an experiment to determine whether aphasic listeners
could (or could not) distinguish between the order of brief sounds.
We tested adults with receptive aphasia who had suffered cerebral
accidents at least one year earlier, and were judged to be neuro-
logically stabilized. It was hypothesized that they would be able to
discriminate different arrangements of sounds as long as they
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were not required to use language skills to name the components
in their proper order. We found that the aphasic subjects were in-
deed able to distinguish between the two possible arrangements
of repeating sequences consisting of either three steady-state vow-
els or three tones with different frequencies when the items in the
sequences had isochronous durations ranging from 10 msec
through 1 sec. However, when the individual sounds (vowels or
tones) were 3 sec in duration, they could not distinguish between
different arrangements, presumably because an inability to lin-
guistically encode and recall the item names in appropriate order
(of course, normal controls could easily accomplish the task with
the longer as well as the shorter item durations).

Finally, I have my doubts about two statements made in the last
paragraph of the target article. (1) “The empirical challenge of
testing theories can be met only in the context of specific models.”
(last para.). I would go along with the statement if the word
“model” was changed to either “experiments” or “evidence.” The
ingenuity used in constructing, attacking, defending, and modify-
ing the ever shifting complex array of interactive and autonomous
models for speech perception could be put to better use by test-
ing theories (and assumptions) directly. (2) The authors state that
“Whether it [the Merge model] passes future empirical challenges
remains to be seen.” (last para.). I believe it is not necessary to wait
— the evidence available at this time indicates that there is no
phonemic level of analysis and hence no merging with the lexical
level as assumed by the Merge model.
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Occam'’s razor is a double-edged sword:
Reduced interaction is not necessarily
reduced power

D. H. Whalen
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Abstract: Although Norris, McQueen & Cutler have provided convincing
evidence that there is no need for contributions from the lexicon to pho-
netic processing, their simplification of the communication between lev-
els comes at a cost to the processes themselves. Although their arrange-
ment may ultimately prove correct, its validity is not due to a successful
application of Occam’s razor.

The evidence for modularity in phonetic processing is extensive
and not convincingly refuted, though the issue is far from settled.
Norris, McQueen & Cutler lay out several sound arguments
against the need for interaction, especially the fact that lexical
feedback cannot, in principle, improve phonetic processing. They
have accounted for an impressive array of facts, though of course
there are always more to be dealt with. In my view, the theory
makes its gains by complicating the total system rather than sim-
plifying it. Allowing decisions at the phonemic level is an addition,
though a clearly necessary one. The elimination of lexical feedback
is a simplification, but it comes at the cost of recreating much of
the information that feedback provides in the speech process it-
self. The results of Pitt and McQueen (1998) suggest that this is
necessary, but it is a complication nonetheless. While there are no
generally recognized criteria for determining which of two theo-
ries is more parsimonious, it is clear that the degree of complica-
tion in the speech process due to this recreation of information is
as great if not greater than simply allowing feedback from the lex-
icon, where that information will still need to be represented in
some fashion.

The target article touches on many areas, none of which can be

definitively covered in one article; I will limit my comments to the
section dealing with subcategorical mismatches (sect. 4.6). Al-
though my own subcategorical mismatch design (Whalen 1991)
did not address exactly the questions at hand, it suggests that the
results that are modelled are not, in fact, treating subcategorical
mismatches. The point of studying such mismatches is that
they do not impinge on consciousness (Whalen 1984; Whalen &
Samuel 1985) and thus should not allow for cognitive processing
strategies that are irrelevant to normal speech perception. The re-
sults of Marslen-Wilson and Warren (1994) are most likely not to
be such mismatches. Two-thirds of their data is ignored because
the fricatives and voiceless stops did not give significant results.
Only the voiced stops gave rise to a mismatch effect, but it was of
such a large magnitude (122 msec) that it could only reasonably
have been due to overt ambiguity. The replication of that result
(McQueen et al., 1999a) apparently has an equally large effect
(134 msec). My own results were on the order of 10-20 msec. If
there is uncertainty about the identity of the final stop, then surely
nonphonetic means of resolving the ambiguity will be brought in.
I suspect that the absence of an effect in the other two-thirds of
the cases was a lack of power. The modeling, then, is of an effect
much different from the one supposedly under study, and one that
would be expected to bring in other kinds of processes (which
would require a more powerful system to simulate, not a less pow-
erful one).

Norris et al. also adopt the computationally simple scheme of
allowing phonetic information to accumulate from time-slice to
time-slice, but there is solid evidence that this is not the way hu-
mans perceive speech. There are effects of consonant decisions on
vowels and vowel decisions on consonants that do not seem to pro-
ceed in purely early-to-late temporal order (Whalen 1989). Simi-
larly, later-occurring information affects the distinction between
/b/ and /w/ (Miller & Liberman 1979). Whether or not this en-
tails segment-sized entities, it suggests that phonetic processes are
still active after a time-slice has passed. Simply sending the raw
acoustic signal to the lexicon is unlikely to be the way that word
recognition occurs (though it has certainly been proposed before,
e.g., Klatt 1980). The model proposed in the target article seems,
in this regard, likely to need changing. A model that integrates in-
formation across spectral slices is more complex than one that
does not but, again to Occam’s chagrin, the more complicated
model is called for.

ACKNOWLEDGMENTS
The writing of this commentary was supported by grants DC-02717, HD-
01994 and DC-00403 to Haskins Laboratories.

Feedback consistency effects
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Abstract: Models are not adequately evaluated simply by whether they
capture the data, after the fact. Other criteria are needed. One criterion is
parsimony; but utility and generality are at least as important. Even with
respect to parsimony, however, the case against feedback is not as straight-
forward as Norris et al. present it. We use feedback consistency effects to
illustrate these points.

According to Norris et al., the case against feedback has a parallel
in visual word recognition (sect. 3.5.1). Strict feedforward models
mimic effects that previously motivated feedback, such as the
word superiority effect. According to Norris et al., Occam’s razor
dictates a preference for the exclusively feedforward explanations.
With regard to the word superiority effect, Grainger and Jacobs
(1994) described a feedforward version of their interactive-
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activation, dual-read-out model that produced a word superiority
effect. To do so, however, required a sophisticated, post-access,
recognition process that could infer a target letter from a word
representation.

It is not straightforward whether a post-access process of sym-
bolic inference is simpler or more plausible than feedback. Oc-
cam’s razor may cut in more than one direction. For example,
Bradley and Forster (1987) warned against couching explanations
in post-access, recognition processes, because post-access mech-
anisms will protect indefinitely any theory of lexical access. “Any
unwelcome facts about language performance can be attributed
to [post-access processes of | recognition” (p. 110). According to
them, this renders the pre- versus post-lexical distinction vacuous
and justifies our abandoning the distinction, altogether. Feedfor-
ward models could be constructed to mimic any data pattern, al-
lowing variegated intermediate levels, response criteria, weighted
representations, read-out strategies, and so on. But how are such
models simpler than a single, general, feedback principle?

It appears to us that feedforward models accumulate ad hoc ex-
planations each time they confront a new feedback phenomenon.
Also, counter-intuitive feedback effects exist that would never
have been predicted by exclusively feedforward models. Feed-
back consistency effects are a good case in point. Resonance mod-
els predict that symmetrical, consistent relations between spelling
and phonology imply faster and more accurate word recognition
(e.g., Van Orden & Goldinger 1994). Inconsistent relations, in-
cluding relations that feed back from phonology to spelling, add
time and variability to word recognition performance. The pre-
dicted feedback consistency effect is highly nonintuitive. Activa-
tion should always flow forward, from spelling to phonology. Why
should it matter in visual word recognition that a pronunciation
may have more than one spelling?

Feedback consistency effects were first corroborated in perfor-
mance of English lexical decision (Stone et al. 1997). Words such
as hurt, with phonological rimes (/_art/) that could be spelled in
multiple ways (_urt, _ert, _irt) yielded slower lexical decision
times and more errors than words with rimes spelled in only one
way. Subsequently, Ziegler et al. (1997a) replicated the basic find-
ing in French, and Ziegler and Ferrand (1998) extended it to per-
formance of auditory lexical decision (also in French). What is
feedforward for visual presentation is feedback for auditory pre-
sentation, and vice versa, a parsimonious qualitative symmetry.
Frost et al. (submitted) also observed feedback consistency effects
in both visual and auditory lexical decision tasks, in visual and au-
ditory identification accuracy, and in visual word-familiarity judg-
ments.

Feedback consistency effects were not discussed in the target
article, possibly because a recent study in French failed to repli-
cate the effect and attributed previous feedback consistency ef-
fects to a confound with familiarity (Peereman et al. 1998). We fol-
lowed up on this failure with new studies, however, which yielded
reliable feedback consistency effects using their materials. Feed-
back consistency also predicted rated familiarity, in new studies
that properly treated rated familiarity as a dependent variable
(Ziegler & Van Orden, submitted). Incidentally, Jacobs et al.
(1998) report that the feedforward version of their interactive-
activation, dual-read-out model could not simulate the original
feedback consistency effect, while one with feedback could.

Feedback consistency effects satisfy a strong test of the feed-
back hypothesis. Nevertheless, one could surely construct exclu-
sively feedforward models, after the fact, to mimic the effects —
one model for visual word recognition (cf. Taft 1982) and another
model for spoken word recognition. The point remains, however,
that feedback consistency effects were not anticipated by feed-
forward models. Data are often indeterminate with respect to
modeling frameworks; the same behavioral patterns can be mim-
icked in more than one framework. For example, key results in
physics, sometimes described as falsification of the Newtonian
(mechanical) view, were (or could have been) accommodated by
the traditional view, after the fact (Einstein & Infeld 1966/1938).
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According to Einstein and Infeld, the mechanical view was not
naively falsified, but collapsed finally under the weight of ad hoc
assumptions (given an alternative theory with demonstrated util-
ity and generality, cf. Lakatos 1970). It is possible that feedforward
models will suffer the same fate. They are conspicuous for their
expendable ad hoc mechanisms, which multiply to accommodate
existing feedback effects, and other classes of findings, such as
ubiquitous strategy effects. We may expect such models to be-
come increasingly arbitrary (Gibbs & Van Orden 1998; Stone &
Van Orden 1993; Van Orden et al. 1999).

As feedback consistency effects illustrate, resonance models
demonstrate their utility by predicting nonintuitive findings (see
also Gottlob et al. 1999; Kawamoto & Zemblidge 1992; Lukatela
& Turvey 1998; Van Orden et al. 1999; Ziegler & Jacobs 1995;
Ziegler et al. 1997, etc.). They also provide general links to other
areas of science. Resonance models instantiate nonlinear dynam-
ical systems theory (Carello et al. 1992; Farmer 1990). Resonance
models are attractor networks simulated as nonlinear iterative
maps. Nonlinear iterative maps approximate solutions to systems
of nonlinear differential equations (Peitgen et al. 1992). Thus res-
onance models, as dynamical systems, link cognitive performance
to contemporary mathematical frameworks that concern the be-
havior of complex systems. This link suggests additional rigorous
tests of feedback models (e.g., tests that focus on stability, cf. Kelso
1995) and reveals truly generic behavioral phenomena (e.g., Case
et al. 1995; Raczaszek et al. 1999; Tuller et al. 1994). Most impor-
tant, this link suggests general hypotheses that may eventually
bridge disciplines (cf Kugler & Turvey 1987).
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Abstract: The central thesis of our target article is that feedback
is never necessary in spoken word recognition. In this response we
begin by clarifying some terminological issues that have led to a
number of misunderstandings. We provide some new arguments
that the feedforward model Merge is indeed more parsimonious
than the interactive alternatives, and that it provides a more con-
vincing account of the data than alternative models. Finally, we
extend the arguments to deal with new issues raised by the com-
mentators such as infant speech perception and neural architec-
ture.

R1. Definitions

Many commentators’ points rest on particular interpreta-
tions of the terms “top-down” and “interaction.” In several
cases, commentators have used these terms quite differ-
ently from the way we used them in the target article and,
in some cases, quite differently from the way they have used



them in their own previous writings. When we introduced
these concepts we made it clear that we were using them in
the senses which most closely correspond to the notion of
feedback. Remember, feedback is the central issue, not
only because it is the focus of the target article, but because
it is the focus of the debate in the literature.

R1.1. Interaction. In the target article, we used the term in-
teraction as synonymous with feedback. Two stages which
interact are linked by feedback as well as feedforward con-
nections, that is, each can influence the other.

Although “interaction” is most commonly used to char-
acterise the information flow between processes, interac-
tion is sometimes used instead to make statements about
how different kinds of information are used or combined.
So, if lexical and phonemic knowledge are combined in
making phonemic decisions, one might want to say that lex-
ical and phonemic knowledge interact. We can call these
two senses of interaction “process interaction” and “infor-
mation interaction” (Norris 1980). Information interaction
does not imply process interaction. For example, one might
(like Luce et al.) make no distinction between lexical
and phonemic processes, but still characterise lexical and
phonemic information as different kinds of knowledge. In
Merge, lexical and phonemic knowledge are combined in
the decision nodes, but no processes in the model interact
with one another. Merge has no process interaction and no
feedback. We have therefore not adopted a narrow defini-
tion of interaction as Pitt and Slowiaczek suggest, but we
have tried not to conflate the two quite distinct senses of in-
teraction.

R1.2. Top-down. The sense of top-down which predomi-
nates in the psychological literature refers to the direction
of information flow within the system. In this architectural
sense, flow of information from one process back to previ-
ous processes in the chain is referred to as top-down. Merge
is not top-down. Lexical units give output only to decision
units which are themselves output units and are not part of
the processing chain delivering input to lexical units. Note
that top-down does not refer to the direction of lines on the
page. If it did, classification of models would depend how
one drew the lines, and possibly on how one held the page!
We leave it as an exercise for the reader to redraw Figure 1
so that all lines from the input phoneme and lexical levels
point upwards.

Note that although this sense of top-down gets close to
the concept of feedback, and is generally used synony-
mously with feedback in the literature, it is not identical.
Nonspecific top-down flow of information, such as might
be involved in generalised attentional activation, would not
in any way be the same as specific feedback from particu-
lar lexical items which altered the processing of specific
phonemes. The target article concerns itself with specific
feedback, and not with nonspecific top-down effects, such
as attention, which are not part of a lexicon-phoneme feed-
back loop.

Top-down is also sometimes used in a less well-defined
sense that appears to be a close synonym of information in-
teraction. In this second sense, top-down is used to mean
that information at one level of analysis is brought to bear
in processing information specifiable at a more fine-grained
level of description. So if lexical knowledge is used in any
way to influence decisions about phonemes, this is evidence
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that lexical and phonemic information are combined in a
top-down fashion. As the target article demonstrates, this is
quite independent of the issue of feedback, or even direc-
tion of information flow. Strictly feedforward models like
the Race model, Merge, and FLMP are, in this sense, top-
down. (Thus although both Shortlist and Merge are feed-
forward and bottom-up in terms of information flow, they
do use the lexical constraints that Benki wants them to
use.)

In concluding this section we emphasise that our choice
of terminology and definitions is not arbitrary. It reflects the
core issues in the “interaction” debate that has been pur-
sued in the literature for over 20 years. This has been part
of a more general debate about the architecture of the lan-
guage processing system, perhaps most clearly set out by
Forster (1979). During this time there has been no dis-
agreement about whether lexical information can influence
phoneme identification. The debate has been about process
interaction and feedback (Cutler et al. 1987; Elman & Mc-
Clelland 1988; Frauenfelder et al. 1990; Massaro & Cohen
1991; McClelland 1991; Pitt 1995; Pitt & McQueen 1998;
Samuel 1997).

R2. Theory

None of the commentaries has explained why feedback
might be necessary. Tanenhaus et al., Montant, Shill-
cock, and Stevens all express their conviction that it really
should (under certain circumstances) be helpful. But with-
out specific reasons why our arguments might not hold un-
der such circumstances, pleas like “feedback is surely help-
ful” (Tanenhaus et al.) remain wishful thinking. In the
following sections we discuss the general points of theory
that were raised. The majority of the commentaries have
concentrated on issues concerning the Merge model itself,
raising three main concerns: that Merge might not be
“ecologically valid”; that, contrary to our characterisation,
Merge might really be a top-down or interactive model af-
ter all; and that Merge might not really be simpler than in-
teractive models.

R2.1. Ecological validity. In order to make the case for a
feedforward model of speech perception we must be able
to explain data from laboratory tasks that have been pre-
sented as evidence for feedback. Merge was designed to ex-
plain these data in a manner consistent with the principles
of Shortlist, which is concerned with modelling word recog-
nition in continuous speech. Some commentators question
the ecological validity of Merge (Appelbaum, Benki, Vroo-
men & de Gelder). After all, Merge has been used to ex-
plain behaviour in laboratory tasks involving metalinguistic
judgements. In part this is true. None of us is primarily con-
cerned with explaining laboratory data rather than natural-
istic processing. Psycholinguists have to live with the fact
that the experimental tasks they use do not directly reveal
the inner workings of the speech perception system. These
tasks do, however, give us some very good clues, whereas
naturalistic observation of speech perception tells us noth-
ing at all about processing architecture. To make the best
use of these clues, models like Merge must attempt to ex-
plain both normal processing and performance in labora-
tory tasks. The data that Merge explains have on occasion
been taken as evidence for feedback, so we cannot ignore
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these data. The commentators who criticise the ecological
validity of Merge present no alternative.

R2.2. Terminological confusion. Some commentators seem
to be in a state of terminological confusion. This worries us
because it indicates that there is confusion over the use of
some fundamental terms in the literature. More worrying
still is the fact that some commentators (Pitt, Samuel) who
have published papers using terms like “top-down” in the
standard sense of direction of information flow used in the
target article, use the terms in a quite different sense in
their commentaries.

Appelbaum and Samuel suggest that the interaction
debate has not been about processing interaction and in-
formation flow (see sect. R1, Definitions) and that we
should now call feedforward models like Merge and FLMP
interactive. Pitt believes that we have narrowed the mean-
ing of “interactivity” by restricting it to cover only top-down
feedback. Interestingly enough, if we look at recent papers
on interaction written by Pitt and Samuel, we see that the
opening paragraph of each of these papers defines both the
terms and the issues very clearly (Pitt 1995; Pitt & Mc-
Queen 1998; Pitt & Samuel 1993; Samuel 1997). We quote
here from Samuel (1997, p. 97) (although the clearest def-
inition is to be found in Pitt & McQueen), “Some models
hypothesize strictly bottom-up connections between the
lower level (phonemic) and higher (lexical), while others
posit bidirectional information flow.” The fact that bidirec-
tional information flow really is the issue is confirmed in an
earlier paper by McClelland (1991, p. 3), which makes it
clear that the debate is whether “perception involves a bidi-
rectional flow of information,” a point endorsed by Massaro
and Cohen (1991) who cite the same quotation from Mc-
Clelland. It is not surprising that our own papers contain
many similar quotations (e.g., Cutler et al. 1987; McQueen
1991; McQueen et al. 1999a; Norris 1992).

Why does Samuel now think that Merge is interactive
and nonautonomous? Given that he has adopted the stan-
dard conventions in the past, it is hard to know why he
adopts different interpretations here. Part of Samuel’s
problem may be attributable to the fact that he wrongly
equates phoneme and decision nodes in Merge with the
feature and phoneme nodes of TRACE. In TRACE, fea-
tures feed into phonemes, which in turn feed into words. In
Merge only the input phonemes feed into words. Decision
units cannot be equated with phoneme nodes in TRACE as
they do not feed into lexical units. But Samuel has chosen
to call the connections from lexical to decision nodes “top-
down.” He then states that “Norris et al. offer several rea-
sons for including such top-down connections, and they are
exactly correct: Top-down lexical influences are necessary.”
Itis important that decision nodes are influenced by the lex-
icon, but this influence does not involve top-down flow of
information. Information in these connections passes from
input to output.

Possibly Samuel believes that any information flow from
lexical to phonemic representations is “top-down™: “if lexi-
cal nodes influence the activation of phonemic codes, a
model is not autonomous.” Note that the effect of this
would be to redefine “top-down” so that any demonstration
of lexical effects on phoneme identification (which must
surely be based on phonemic codes) is “top-down.” All re-
searchers in the field have been in agreement about the
existence of lexical effects on phoneme identification for
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more than 20 years (see Cutler & Norris 1979 for review).
Furthermore, lexical nodes have always influenced phone-
mic codes in bottom-up models. In the Race mode, lexical
access makes the lexically based phonological code of the
word available. In Samuel’s terms, lexical nodes activate
phonemic codes. If we were to adopt the terminology of
Samuel’s commentary everybody would accept that the
data argue for “top-down” processing and all of the models
would be “top-down” too. Have all of us who have worked
on this question (including Samuel) been wasting our time?
No. We have all been addressing the much more interest-
ing question of whether there is top-down feedback. Fur-
thermore, Samuel himself has made some rather ingenious
contributions to this debate (e.g., Samuel 1997). We only
hope that his terminological volte face is just a temporary
aberration and not an attempt to rewrite history and pre-
tend that he believed in what we are now proposing all
along. It is not that we do not want him to agree with us.
But we think he should agree on our terms.

Appelbaum suggests that we have reinterpreted the in-
teractive/autonomy distinction. But in fact it is Appelbaum
who seems to have interpreted the distinction incorrectly.
In an earlier paper, Appelbaum (1998) assumed that lexical
effects on phonemic processing (e.g., Ganong 1980) were
evidence of “top-down information flow” (Appelbaum
1998, p. 321) and hence evidence against a modular stage
of phonetic perception. The Race model (Cutler & Norris
1979) had long ago shown that lexical effects are entirely
consistent with a modular stage of phonetic perception, and
Merge maintains modular prelexical processes. Remember,
decision nodes are not prelexical. Appelbaum’s attempts
to use lexical effects on phoneme decisions as evidence
against modularity are therefore flawed; and her criticisms
of our terminology may stem from a misreading of the lit-
erature.

Appelbaum, Pitt, and Samuel also seem confused by
our application of the term “autonomous” to Merge. As we
pointed out, autonomy is properly applied to stages rather
than models, and Merge “preserves the essential feature of
autonomous models — independence of prelexical process-
ing from direct higher-level influence” (sect. 5.1, para. 7).
Prelexical processing, and that is what the debate is about,
is autonomous in Merge. The appropriate classification of
the decision units is less straightforward. The decision units
are flexible and configurable according to task demands, so
they certainly do not constitute a Fodorian (Fodor 1983)
module. Once configured for the task, however, they take
input from two sources (lexical and prelexical) and then
produce an output without interference or feedback from
subsequent processes. This justifies the label “autonomous.”

Finally in this section we should respond to the claim of
Tanenhaus et al. that there is feedback from lexical to de-
cision nodes. Where there is no feedforward (decision to
lexical) there can be no feedback. The lexical-to-decision
connections are feedforward.

R2.3. Parsimony. The question of parsimony rests largely
on the issue of whether the decision nodes in Merge are an
added extra that interactive models can do without (see
Doeleman et al., Gow, Murray, Pitt, Slowiaczek, and
Whalen). For example, there are no explicit decision nodes
in TRACE so, although TRACE has interaction, it has no
counterpart of Merge’s decision nodes. How then can we
claim that Merge is simpler than TRACE? There are two



parts to our answer. As we explained in the target article,
one is that even if TRACE is as simple as Merge, it cannot
account for the data (e.g., Pitt & McQueen 1998). We will
remind readers of the details of this argument when dis-
cussing comparisons between Merge and TRACE in a later
section. The second is that all models need some form of
decision mechanism. Merge only appears more complex
because it makes that mechanism explicit.

R2.3.1. Decision processes in Merge. Most psychological
theories give a less than complete account of how a model
might be configured to perform various experimental tasks.
For example, TRACE and Merge must be able to perform
either lexical decision or phoneme identification depend-
ing on the requirements of the task. In early phoneme-
monitoring studies, listeners were typically required to
monitor only for word-initial phonemes (Foss 1969). By def-
inition, this demands that positional information from the
lexicon is combined with information about phoneme iden-
tity. Neither Race nor TRACE ever specified a mechanism
for performing this part of the task. This is unsurprising be-
cause there is practically no limit to the complexity of the
experimental tasks we might ask our subjects to perform.
Listeners could no doubt be trained to monitor for word-
initial phonemes in animal words when a signal light turned
green. Correct responding would require combining pho-
nemic, lexical, semantic, and cross-modal information. But
this does not mean that we have hard-wired {initial /p/, an-
imal, green} nodes just sitting there in case someone
dreams up precisely such an experiment. It certainly does
not mean that we should conclude that the processes of
colour perception, semantic processing, and phoneme per-
ception all interact in normal speech recognition. A far
more likely explanation is that a number of simple non-
interacting processes deliver output to a system that can
monitor and merge those outputs to produce a response.
This system has to have enough flexibility to cope with all
manner of bizarre tasks that experimenters, and the world
in general, can throw at it. In Merge we have finessed the
issue of how this system configures itself, and assumed
that we can represent the process of combining different
sources of information by a set of decision nodes. Merge
does one extra thing. Although we can devise phoneme
identification tasks that necessarily take account of lexical
information, in the simplest phoneme identification tasks
listeners could, in principle, ignore the output of the lexi-
con (and in fact often appear to do so; Cutler et al. 1987).
In Merge we assume that listeners sometimes monitor the
phonemic and lexical levels even when this is not explicitly
required by the task, and that this is the source of lexical ef-
fects in phoneme identification.

Additional evidence that we need something more than
just the phoneme nodes of TRACE to perform phoneme
identification was reviewed in section 7 of the target article.
The ability to perform phoneme identification is not an au-
tomatic consequence of being able to recognise spoken
words. For instance, it is greatly facilitated by having
learned to read an alphabetic script (Read et al. 1986). Fur-
thermore, neuroimaging work reveal different patterns of
brain activity in tasks involving explicit phonological deci-
sions from those involving passive listening to speech (De-
monet et al. 1994; Zatorre et al. 1992; see Norris & Wise,
1999, for review).

In conclusion then, the decision nodes in Merge do not
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undermine its parsimony compared to other models. All
models must make allowance for the facts that there is a
flexible and configurable decision mechanism, that listen-
ers have to learn to interpret the workings of prelexical pro-
cesses, and that explicit phonological decisions appear to
activate parts of the brain not activated during normal
speech recognition. The important point is that the decision
process is not an optional extra. Without some such process
listeners could not perform the experimental tasks we give
them. The decision process is not something Merge has but
other models can do without. All models need a decision
process. Our claim is that when that decision process is
taken into account we see that it is probably responsible for
lexical effects in phoneme identification, leaving normal
speech perception as a feedforward process.

R2.3.2. Rewiring decision nodes. The decision process
has to be very flexible. Our suggestion that the connections
in Merge might be rewired on the fly is the subject of crit-
icism by both Grainger and Grossberg. Grossberg’s
worry about the plausibility of “rewiring” seems to apply to
the very literal rewiring that might be done by a neural elec-
trician. Our intention is to capture the process of reconfig-
uring network connectivity as in the Programmable Black-
board model of McClelland (1986). As we have argued
above, all models must be able to configure themselves ac-
cording to task demands. Grossberg’s ART model must find
a way of doing this too.

Grainger suggests that rewiring is implausible and
unimplementable. The original suggestion for wiring on the
fly, as proposed for Merge and Shortlist, rests on the as-
sumption that it is worth adding an extra mechanism in or-
der to save the need to have vast (possibly astronomical)
numbers of permanent connections. The issue of rewiring
is quite orthogonal to the question of feedback. However,
it should be clear that if two different representations (say
lexical and decision) are to be wired dynamically, then there
must be some way to identify pairs of representations that
are to be wired together. Lexical representations should
therefore not be considered to be single unstructured
nodes. They must contain the form-based lexical represen-
tation which can be dynamically associated with an appro-
priate decision node. It has always been part of Shortlist
and the Race model that the lexicon explicitly represents
phonological form. Grainger’s assumption that a dynami-
cally rewirable version of Merge would have no lexical rep-
resentation of phonological form is bizarre.

Note that if we set aside the issue of rewiring on the {ly,
Merge simply does not have the problems Grainger sup-
poses. In the simulations we presented, the decision nodes
are effectively the output representations. Activating a
word activates its phonological form on the decision nodes.

For some reason, Grainger believes that the problem of
merging lexical and phonemic information presents a prob-
lem for Merge which is not faced by his own DROM model
(Grainger & Jacobs 1994) simply because the DROM can
combine letter and spelling information “at leisure.” The
speed of the process does not alter the logic of the connec-
tivity. It is fortunate that Merge does not have this problem
as DROM would have exactly the same problem.

R2.3.3. Feedback consistency. A further issue of parsi-

mony is raised by Ziegler & Van Orden who believe that
models with feedback have been able to generate important
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theoretical predictions such as the feedback consistency ef-
fect in reading which “would never have been predicted by
exclusively feedforward models.” Interesting to note, Nor-
ris (submitted) demonstrates that the reported data on
feedback consistency effects in reading can be well ex-
plained by the feedforward multiple-levels model (Norris
1994a) without any modification whatsoever. The reason
that a feedforward model can simulate a “feedback consis-
tency” effect is that the effect is not actually due to feedback
at all, but to the type frequency of body-rime correspon-
dences. Other things being equal we might expect most
rimes to appear in a roughly equal number of words. If those
rimes are always spelled in the same way, then the type fre-
quency of each body-rime correspondence will be roughly
equal. But, for rimes that are feedback inconsistent (i.e.,
spelled in more than one way), the major body-rime corre-
spondence will tend to have a lower type frequency than in
feedforward consistent words. Feedback consistency has an
effect on naming because it tends to alter the type fre-
quency of the correspondence. Feedforward models like
the multiple-levels model are sensitive to type frequency.
Feedforward models predict the data and correctly explain
it as an effect of type frequency which has nothing to do with
feedback from phonological to orthographic processing.

R3. Comparison of Merge with other models

R3.1. Merge versus TRACE. Throughout the target article,
we claim that Merge is more parsimonious than interactive
models. It is quite possible that Merge could be theoreti-
cally sound, but actually less parsimonious than interactive
models. If models with and without feedback were other-
wise equal, and the trade-off were simply between having
the phoneme decision units units required by Merge and
having feedback, it is hard to see which would be more par-
simonious. This is essentially the point raised by Murray,
Pitt, and Tanenhaus et al. How do we set about choosing
between similar models? As we pointed out in section
R2.3.1 above, all models need some form of decision
process. Merge incorporates that explicitly, other models
do not. So, comparing Merge and TRACE for parsimony is
not actually comparing like with like. TRACE has extra hid-
den complexity, even though it may have fewer free para-
meters (Pitt). But most importantly, Merge still satisfies
Occam’s precept better than TRACE does. Occam’s razor
favours the most parsimonious theory consistent with the
data; TRACE (the original or our modified version) is in-
consistent with the data from Pitt and McQueen (1998).
TRACE is also inconsistent with the development of pho-
nological awareness with literacy without adding something
akin to decision units; and finally TRACE is unable to ac-
count for detection of mispronunciations. We did our best
to show that TRACE could be modified to account for the
subcategorical mismatch data, but that is not enough.

In discussing the Merge simulations, Tanenhaus et al.
state that we would like to conclude that the superior per-
formance of Merge over the interactive model simulation is
“compelling evidence for Merge and against TRACE.” This
is incorrect. As we point out (sect. 6.1), “With Merge-like
dynamics, an interactive model could approximate the cor-
rect data pattern.” The importance of the simulations is to
demonstrate that a feedforward model can account for the
subcategorical mismatch data and to show how a model like
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TRACE might be modified to simulate that data too. The
compelling evidence against TRACE comes from the data
from Pitt and McQueen and the fact that TRACE fails to
account for the bigger picture.

Tanenhaus et al. believe that we have made “question-
able linking assumptions between the data and the models”
(without saying why they believe this), and they seem to
take exception to our assumption that positive lexical deci-
sion responses should be made when any lexical node ex-
ceeds a threshold. Note that we make exactly the same as-
sumptions about response thresholds for both Merge and
the interactive model. There is convincing neurophysiolog-
ical evidence that reaction times are determined by neural
activation thresholds in eye movement control (Hanes &
Schall 1996). Both Tanenhaus et al. and Gaskell remark
that the threshold in Merge needs to be precisely set to sim-
ulate the correct pattern of data. This is true, but follows
from the need to match the model’s performance to that of
subjects. Subjects in these experiments make few errors. To
respond correctly, they must place their decision criterion
high enough not to be exceeded by nonword activation and
low enough to always be exceeded by word activation. In
Merge this requirement ties the criterion down to a range
of 0.06 activation units and in the interactive model about
0.1 units. In both models a high criterion within this
range leads to equally fast responses to N3W1 and W2W1,
whereas the lowest possible criterion would lead to slightly
faster N3W1 responses. With the lowest criterion, the
N3W1 advantage is twice as large for the interactive model
as for Merge. Contrary to what Tanenhaus et al. claim, we
would not expect to see evidence of fast lexical decision re-
sponses based on early activation of W2 if subjects are re-
sponding accurately. Also, contrary to their claims, the RT
distributions of our data are clearly unimodal and not bi-
modal. Because W2W1 and W2NT1 follow the same trajec-
tory until cycle 8 there is no way that subjects could possi-
bly make fast “Yes” responses to W2W1 based on early W2
activation without also making erroneous “Yes” responses to
W2N1. This is not surprising because the final phoneme is
not fully presented until cycle 9. Note that the error rate to
W2N1 items is only 3%.

R3.2. Merge versus FLMP: FLMP is running a different
race. In terms of the central argument about feedforward
processing there is no fundamental conflict between Merge
and FLMP. But Massaro’s and Oden’s commentaries now
make us think that, in processing terms, FLMP must be
much more different from Merge than we had originally
thought.

Both Oden and Massaro criticise us for having misrep-
resented FLMP when discussing their account of the
Ganong effect, where we say that “the support for a word
has nothing to do with the perceptual evidence for that
word” (sect. 6.3, para. 6). Oden points out that when they
say “support for the voiced alternative given by the follow-
ing context” (Massaro & Oden 1995, p. 1054) they are not
saying that gift supports /g/, but that ift supports /g/. The
evidence for ift is independent of the evidence for /g/
whereas the evidence for gift would not be. But why is the
probability of responding /g/ dependent on the evidence
for ift? The sequence ift does not support /g/ any more than
it supports any other phoneme. The word gift might sup-
port /g/, but there is simply no reason why the sequence ift
should support any onset phoneme in the absence of infor-



mation about lexical forms. Oden’s claim that ift supports
/g/ only makes sense if the relevant information is derived
from the lexicon. So, when making a phonetic decision, the
listener must decompose the input into the phoneme of in-
terest and the residue. Then the residue -iff can be fed into
the lexicon to determine that /g/ is a possible word onset in
this context and /k/ is not. This way the context is indepen-
dent of the support that /g/ provides for the word gift. Of
course, at the same time gift is also being fed into the lexi-
con so that the word can be recognised. All of this is to avoid
violating independence by feeding only gift into the lexicon
and allowing lexical information to bias interpretation of
/g/. Perhaps Massaro and Oden will think that our attempt
to discover the processes behind the FLMP equations has
led us to misrepresent them again. But in fact this is the
heart of our criticism of FLMP. Although the FLMP equa-
tions are simple, they do not specify a process model, and
it is far from clear what the underlying process model
should be (for similar criticisms see Grossberg et al. 1997).
Also, within the broad scope of the FLMP equations, there
seems to be just too much room for manoeuver in how they
are used to explain any particular piece of data.

This flexibility is apparent in Oden’s commentary. In re-
sponse to our criticism of the FLMP account of compensa-
tion for coarticulation, Oden offers a new explanation of
sequential effects in FLMP terms of decisions about the
“candidate identity of the sequence of words.” The impli-
cation of this statement is that compensation for coarticu-
lation takes place not at a prelexical, or even a lexical level,
but at a new level representing sequences of words. The
one straightforward thing we can say about this explanation
is that it is wrong. As we will show later in section R4.3,
there is abundant evidence that compensation for coartic-
ulation is prelexical. Compensation applies even to non-
word stimuli. Therefore, as we originally argued, FLMP
still has no plausible account of the Pitt and McQueen data.

Oden suggests that the inhibition in Merge might pro-
duce all-or-none decisions. This tends not to be true given
the levels of inhibition employed at the decision stage. As
we pointed out, adding noise would also stop the model be-
ing deterministic. However, there is no doubt that there is
work to be done in developing the model to account for
both response probability with ambiguous input and speed
of responding with unambiguous input (see Carpenter
1999; Ratcliff et al. 1999; Usher & McClelland 1995).

Both Massaro and Meyer & Levelt criticise us for con-
centrating too much on modeling activation levels. Massaro
assumes we believe that activations are somehow better
than response probabilities; Meyer & Levelt suggest that it
is preferable to use the Luce choice rule than to allow in-
hibitory effects on activation. However, the Luce rule is not
simply an alternative to inhibition, because models still
need a mechanism whereby the rule can be implemented.
Any complete model needs an account of how response
probabilities are computed. Network models have the abil-
ity to suggest mechanisms which show how differences in
activation can be translated into differences in response
probabilities and latencies (Carpenter 1999; Page 2000).

Massaro criticises models with hidden units as being
untestable. Contrary to his claim, however, there is no con-
nection between the fact that networks with hidden units
can approximate any measurable function (Hornik et al.
1989) and their testability. Nothing in this work implies that
anetwork trained on a given data set (such as speech input)
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will then behave as people do (in some experimental task
on which it was not explicitly trained). A clear example of
this comes from Seidenberg and McClelland’s (1989)
model of reading aloud. The model is trained to translate
orthography to phonology. The model succeeds or fails (it
actually does a bit of both) depending on its ability to sim-
ulate human reading behaviour, something it was never ex-
plicitly trained to do. A model trained directly to reproduce
the correct RTs and error rates might not be testable, but
then it would just be a redescription of the data. Massaro’s
criticism of models with hidden units is fallacious, and so,
in consequence, is his attempt to extend such criticism to
network models in general.

R3.3. Merge versus the distributed cohort model. The
commentary by Gaskell shows that the Distributed Cohort
Model (DCM, referred to in the target article as the post-
lexical model) can be modified to overcome the technical
criticisms we made in the target article and to simulate the
subcategorical mismatch data. This suggests that the sub-
categorical mismatch data might not be as diagnostic as we
originally thought, and that at least one other bottom-up
model can account for the data. Although the model still
cannot explain the variability in the effect, for exactly the
reasons we originally suggested, Marslen-Wilson suggests
that the DCM probably needs a decision mechanism that
can shift attention from the normal phonological output to
a lower-level auditory output less influenced by lexical fac-
tors. This is essentially the same explanation as in Merge
where attention can be shifted between levels. However,
the recurrent net architecture still fails as a model of con-
tinuous speech recognition for the reasons pointed out by
Norris (1994b). Other shortcomings of recurrent networks
in speech recognition are highlighted by Nearey. Page
(2000) presents a more general critique of models relying
on distributed representations. One problem that DCM
faces is that it is not clear how lexical decisions could be
made. Presentation of an input word leads to a pattern of
activation across semantic units. Without some indepen—
dent lexical representation that specifies exactly what pat-
tern of semantic unit activation is to be expected for each
word, there is no way to determine whether a given activa-
tion pattern actually corresponds to a word or not.

R3.4. Merge and ART. The following line of reasoning is
pursued by Montant: ART uses feedback, ART is good,
therefore this is evidence in favour of feedback. Remember
that our central claim is that “Feedback is never necessary.”
We also pointed out that the best a recognition system can
do is to select the stored representation that best matches
its input. This holds for ART as much as anything else. In
ART, the feedback is part of the mechanism for assessing
the degree of match between bottom-up input and stored
representations. The same result could be achieved with-
out feedback. Indeed, although most versions of ART use
feedback, the feedback is not necessary and is not needed
in ART2-A (Carpenter et al. 1991). Grossberg et al. (1997a)
demonstrate the similarity between ART and the FLMP
equations which do not require feedback to be imple-
mented. Feedback is also absent from the related learning
mechanisms proposed by Page (2000). So the fact that ART
has such an impressive track record, and normally uses
feedback, in no way counters our thesis about feedback not
being necessary.

BEHAVIORAL AND BRAIN SCIENCES (2000) 23:3 357



Response/Norris et al.: The Merge Model

A potentially more interesting criticism based on ART
comes from Luce et al. They also think that feedback is
needed for ART and is therefore a good idea. But they ar-
gue that in ART phonemes and words are just lists of dif-
ferent lengths, so the whole issue of feedback between
words and phonemes simply does not arise. Although it is
true that phonemes are represented at the list level in ART,
they are also represented at a lower level as the elements
from which lists are composed. We can see this clear dis-
tinction between levels in action in Grossberg’s (e.g., Cohen
& Grossberg 1986) account of the word superiority effect
in reading, which relies on feedback from the list (i.e., let-
ter and word) level to the previous letter level. We presume
that the account of lexical effects on phoneme identification
would have a similar explanation in ART, in that phonemes
could be identified directly from a phoneme level. The al-
ternative that Luce et al. suggest is that attention can be
shifted between words and phonemes by attending to dif-
ferent sizes of list. Normally longer list units like words
would mask (inhibit) shorter units like phonemes. Such
masking would be stronger for phonemes in words than in
nonwords. So, while attention to lists of length 1 might
overcome the problems faced by phonemes in words, there
is no reason why it should lead to facilitation of responses
to words. If the crucial representations for phonemes and
words are both at the list level, then the model cannot ex-
plain the effects of lexical context on phoneme identifica-
tion.

Overall, our view of ART is that it may well be able to
provide the basic building blocks for implementing a model
of speech perception. It has addressed many issues which
have been ignored by other models. However, the basic
principles of ART place few constraints on how the com-
ponents might be put together to form a complete model,
and it is not clear that feedback would necessarily be cen-
tral to such a model. ART is now being used to simulate real
data on speech perception, and we look forward to an ART-
based testable psychological model of speech perception.

Grossberg himself argues that feedforward models fail
to explain phenomena such as phoneme restoration and
backward effects in time (Repp 1980; Repp et al. 1978).
First, the argument concerning phoneme restoration is
flawed because it depends on the assumption that the
source of the restored phonemic perceptis in the input rep-
resentation rather than being derived from the lexical rep-
resentation. Second, the existence of backward effects in
time has nothing to do with the feedforward/feedback dis-
tinction. Shortlist, a strictly feedforward model, simulates a
range of backward-in-time phenomena (e.g., Norris et al.
1995; 1997).

R4. Data

Thirty years ago Foss (1969) introduced the phoneme-
monitoring task to psycholinguistics (presumably precipi-
tating Warren’s musings over phoneme detection during a
colloquium that year). We, like many users of the task,
would not want to claim that it taps directly into necessary
stages of speech processing. Indeed, this is one of the mo-
tivating factors for our development of Merge. However,
we do believe that in the past three decades spoken-word
perception has been an enormously active research field in
which real theoretical progress has been made, and that this
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is in part due to Foss and the other pioneers who equipped
psycholinguistics with the necessary empirical tasks. That
these tasks often involved metalinguistic decisions is a con-
sequence of our inability to measure perception directly;
Doeleman et al., Marslen-Wilson, Meyer & Levelt,
and Murray all remark on the undesirability of this situa-
tion. Meyer & Levelt further claim that the study of speech
production is less bedevilled by the indirect measurement
problem than the study of perception, because in their work
on production they are able to measure (and model) onset
of articulation. We suspect that this claim should be taken
with a pinch of salt; articulation can be seen as the bottle-
neck of an otherwise far more rapid speech production
process (Levinson 2000), and this allows for the possibility
that production processes such as lexical access are not di-
rectly reflected in articulation speed at all. For perception,
however, both Murray and Meyer & Levelt point to the use-
fulness of recently developed eye movement paradigms
(Tanenhaus et al. 1995). So far these tasks can only be used
with a restricted set of specified response options (a display
of which the subject knows all the members in advance),
which means that many issues are as yet outside their range
of usefulness; we certainly hope that this type of approach
will be incorporated in further tasks of greater refinement
in the near future. Even better, of course, would be appro-
priate refinement of brain imaging techniques; these are
still laughably far from being able to provide insight into the
sort of questions dealt with in the experiments we have dis-
cussed (such as the processing difference involved in hear-
ing two versions of job in which the jo- portion comes re-
spectively from jod or from jog).

At the moment, however, the data on phonemic decision
making provide the only insight into such questions, and
none of the commentaries lead us to revise our conclusion
that the Merge model currently provides the best available
account of these data. In this section, we discuss the com-
ments addressed to specific questions about the decision
data. The presentation follows the order we adopted for our
review of the data in the target article (sect. 4), but ends
with a new subsection on acoustic-phonetic processing.

R4.1. Variability of lexical effects. The variability of lexical
effects on phonetic categorization and phoneme monitor-
ing tasks is a challenge to models with feedback. No com-
mentator contests this claim. Pitt, however, draws attention
to a specific kind of variability of lexical involvement in pho-
netic categorization which we did not discuss in the target
article. This is that lexical effects in categorization change
over time (Fox 1984; McQueen 1991; Pitt & Samuel 1993).
Pitt questions whether Merge could deal with this variabil-
ity. It can. Lexical involvement in the model tends to build
up, and then decay over time (although the situation that is
being modelled is somewhat different, the lexical effects in
Merge’s subcategorical mismatch simulations [see Fig. 3b]
increase as lexical activation builds up, and then decrease
as phoneme node activation reaches asymptote). It is pos-
sible that experiments on word-initial categorization have
tended to tap into the incrementing phase of lexical in-
volvement (the standard finding is that there are larger lex-
ical effects in slower responses), while those on word-final
categorization (here there are smaller lexical effects in
slower responses) have tended to tap into the decrement-
ing phase. We have already begun to address this issue ex-
perimentally (McQueen et al. 1999b).



It is important to note that the pattern of lexical involve-
ment in word-final categorization, though not problematic
for Merge, is in fact problematic for models with feedback,
like TRACE (as McQueen 1991 argued). TRACE simula-
tions in McClelland (1987, Fig. 1.2, p. 12) show that, as pro-
cessing continues, lexical feedback acts to increase the dif-
ference in activation between the phoneme nodes for the
lexically-consistent and lexically-inconsistent phonemes
(/t/ and /d/ given dar? in McClelland’s example). TRACE
therefore wrongly predicts that lexical involvement in
word-final categorization should build up over time. We
thank Pitt for reminding us about another of TRACEs frail-
ties.

R4.2. Facilitation versus inhibition in phoneme monitor-
ing. The results presented by Connine & LoCasto show
that listeners were faster to detect the target /m/ in the non-
word chorum (which is close to the word chorus) than in the
control nonword golum (which is not close to any real
word). This finding replicates Wurm and Samuel (1997)
and supports Wurm and Samuel’s argument that more
word-like nonwords are easier to process than less word-
like nonwords. This is one reason why Frauenfelder et
al. (1990) may have failed to find inhibitory lexical effects
in nonwords like vocabutaire. Despite Samuel’s protesta-
tions, however, it remains the case that there was no direct
evidence for this kind of inhibitory effect when the target
article was written. Why Connine and LoCasto’s commen-
tary is important is that it now provides us with direct evi-
dence of lexical inhibition. Listeners were slower to detect
the /[/, for example, in the nonword chorush than in the
control nonword golush. It would appear that when the tar-
get phoneme is close enough to the sound it replaces in
the base word (/[/ is only one feature different from the /s/
in chorus) there is sufficient support for the lexically-
consistent sound (/s/) to overcome the benefit due to cho-
rush being more word-like than golush, resulting in a small
net inhibitory effect.

Connine & LoCasto claim that their results are incon-
sistent with the Merge model. Specifically, they suggest that
the bottom-up priority rule in Merge might have to be
abandoned. They are right to suspect that we would be
loath to remove this rule; it serves the important function
of preventing hallucinations. These new results are, how-
ever, consistent with Merge and in fact provide support
for the rule. The inhibitory effect appears to occur only
when the target phoneme is phonetically close to the pho-
neme it replaces, that is, when the target itself provides
some bottom-up support for the replaced sound. Since /f/
activates the /s/ decision node, the word node for chorus,
following the bottom-up priority rule, can also activate the
/s/ decision node. Due to the resulting competition be-
tween the /s/ and /[/ nodes, /{/ decisions will be delayed.
When the target provides no support for the sound it re-
places (/m/ in chorum differs in place, manner and voicing
from /s/) the bottom-up priority rule will prevent lexical ac-
tivation from supporting the lexically-consistent phoneme,
and no inhibition will be observed.

We agree with Connine & LoCasto that attentional
processes have an important role to play in language pro-
cessing. No model of phonemic decision making has a
satisfactory attentional component. Merge, like any other
model, would be strengthened if it included a fuller account
of attentional factors.
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R4.3. Compensation for coarticulation. The results of Pitt
and McQueen (1998) are particularly important in the
feedback debate. They found a dissociation between a lex-
ical effect on the labeling of word-final fricatives and no lex-
ical effect on the labeling of following word-initial stops
(e.g., categorization of the ambiguous fricative in “jui?
Papes” as /s/, but no increased tendency to label the fol-
lowing stop as /k/, consistent with compensation for coar-
ticulation following /s/). This dissociation is very problem-
atic for models with feedback, like TRACE. If feedback
modified the activation of the /s/ node at the phoneme level
in TRACE, the compensation for coarticulation mecha-
nism at that level of processing ought to have been trig-
gered. The results are however consistent with the Merge
model, in which the lexicon can influence fricative decision
nodes, but cannot influence the prelexical compensation
mechanism.

Some commentators question this argument. Pitt points
out that the compensation process may not be purely
prelexical, while, as we have already discussed, Massaro
and Oden wish to maintain their view that the process op-
erates at a high-level integration stage in FLMP. The evi-
dence, however, suggests strongly that compensation for
coarticulation has a prelexical locus. Pitt and McQueen’s
(1998) data in fact suggest this: It would be hard to explain
the dissociation in lexical involvement between the fricative
and stop decisions if compensation did take place at the de-
cision stage. Mann and Repp’s (1981) original demonstra-
tion of fricative-stop compensation was based on nonsense
strings (like /ska/ and /ufta/), suggesting that the process
does not depend on lexical access (contrary to Oden’s sug-
gestion). Most authors therefore agree that fricative-stop
compensation is prelexical (Elman & McClelland 1988; Pitt
& McQueen 1998). Brancazio & Fowler argue that liquid-
stop compensation is also owing to a prelexical process.

A particularly striking demonstration that liquid-stop
compensation does not operate at the phoneme decision
stage is provided by Mann (1986b). Japanese listeners who
could not identify English /1/ and /r/ correctly showed ap-
propriate compensation in their labeling of stops following
/1/ and /r/ (i.e., more /ga/ responses after /al/ than after
/ar/). These subjects showed the same amount of compen-
sation as both native English speakers and Japanese listen-
ers who were able to identify /1/ and /r/. The process re-
sponsible for compensation for coarticulation between
liquids and stops (and, by extension, probably the mecha-
nism for fricative-stop coarticulation) therefore appears to
operate at the prelexical stage, that is, at a level of process-
ing below that at which explicit phoneme decisions are
made.

Pitt and McQueen (1998) also showed that compensa-
tion for coarticulation following ambiguous fricatives could
be triggered by Transitional Probability (TP) biases in the
nonword contexts in which the ambiguous fricatives were
placed. Previous demonstrations of lexical involvement in
compensation for coarticulation in which the word contexts
had TP biases (Elman & McClelland 1988) could thus be
due to a prelexical process sensitive to TPs (and not to lex-
ical feedback). The remarks of Brancazio & Fowler,
Doeleman et al., and Massaro suggest that they may have
misunderstood Pitt and McQueen’s results. It is therefore
important to emphasize that Pitt and McQueen did not
show that the compensatory effect was owing to a TP bias
rather than to a bias based on sensitivity to coarticulation.

BEHAVIORAL AND BRAIN SCIENCES (2000) 23:3 359



Response/Norris et al.: The Merge Model

That is, they did not show that there was a TP mechanism
instead of a compensation for coarticulation mechanism.
Rather, they showed that the process which compensates
for coarticulation could be triggered by a TP bias in the con-
text. In other words, the compensation process can be acti-
vated either by unambiguous fricatives or by an ambiguous
fricative in a context where, for example, TPs favor /s/ over
/.

Vroomen & de Gelder question the distinction be-
tween TPs and lexical information. They ask why, in the
Merge account, statistical regularities can play a role in
prelexical processing while lexical knowledge cannot. Our
answer is that the data, in particular the dissociation be-
tween the effects of lexical biases and TP biases in Pitt and
McQueen (1998), but also other similar dissociations (Vite-
vitch & Luce 1998; 1999), suggest that the effects result
from two distinct sources of information, and that TP in-
formation is stored prelexically. Vroomen and de Gelder
also question whether TP information can assist prelexical
processing which is already very robust. As we discuss in
section R4.7, we agree that prelexical processing is very ef-
ficient. Pitt and McQueen (1998) therefore suggest that
TPs will be of most value when the speech signal is am-
biguous (even if that is a relatively rare phenomenon
outside the psycholinguistic laboratory). Vroomen & de
Gelder’s suggestion that TPs could only be learned using
some form of feedback is incorrect. TPs are statistical reg-
ularities in the speech signal, and thus can be learned from
the signal by a feedforward system.

R4.4. Phonemic restoration and selective adaptation. In
his commentary, Samuel expresses concern that we are un-
willing to accept the data in Samuel (1997) as evidence of
feedback. He attributes two misconstruals to us. First, he
tries to undermine our point that the adaptation produced
by restored phoneme looks different from that obtained
with real phonemes. There is no need to tally up just how
many adaptation effects reported in the literature are lim-
ited to the category boundary and how many are spread
over the entire continuum; the point remains that the ef-
fects with real and restored phonemes in Samuel (1997; see
Figs. 1 and 2, pp. 102 and 104) do not look the same. This
worried us, and still does.

Second, Samuel suggests that we have distorted the re-
sults of Samuel (1997) and of Samuel and Kat (1996), claim-
ing that we suggested that the adaptation occurs at the lex-
ical level. We did not. We agree with Samuel and Kat (and
others) that adaptation may well operate at several differ-
ent levels of processing, but we did not propose that the lex-
ical level is one of them. The crucial issue is the locus of the
adaptation effect with restored (noise-replaced) phonemes.
We suggested that Merge could account for Samuels
(1997) data if the locus of the adaptation effect with re-
stored phonemes is found to be at the decision stage (which
can indeed be equated with Samuel and Kat’s “categorical”
level; in both accounts, these levels are responsible for cat-
egorical decisions). We also argued for a type of bottom-up
priority in selective adaptation, that is, that adaptation ef-
fects are driven primarily by the information in the speech
signal, rather than by phonemic precepts. The failure to
find lexical effects with intact adaptors (Samuel 1997, Ex-
periment 3) is thus consistent with the proposed account in
the Merge model. Lexical context may bias processing at
the decision level with noise-replaced adaptors but not with
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intact adaptors for two reasons: because there is no ambi-
guity at the decision level which lexical context can act upon
when the adaptors are intact; and because intact adaptors
will produce adaptation primarily at lower levels, which (at
least in the Merge model) can not be modulated by the lex-
icon.

In short, there is nothing in Samuel’s commentary to
change our view of the Samuel (1997) data. We agree that
these are potentially crucial data in the feedback debate.
However, the locus of the adaptation effect with noise-
replaced adaptors remains to be established. Given the im-
portance of these findings, we have attempted to replicate
them, but have been unable to do so (McQueen et al.
1999c).

R4.5. Lexical effects on phonemic decisions in non-
words. Itis argued by Newman and Brancazio & Fowler
that a prelexical mechanism sensitive to simple TPs cannot
be responsible for the effects on phonetic categorization in
nonwords reported by Newman et al. (1997). We agree that
since simple (diphone) probabilities were controlled by
Newman et al. they cannot be the source of the effect.
Higher-order (longer range) probabilities may have played
a role, however. Newman in fact suggests that the proba-
bilities between the initial and final consonants in her ma-
terials may have had an effect (though Brancazio & Fowler
argue that these probabilities were also controlled). But
what about the probabilities of the complete strings? Bran-
cazio and Fowler assume that these were all zero. The
CVCs only have zero probability on a strictly syllabic ac-
count, however. Though all of Newman et al.’s items were
nonwords, and none appear as syllables in English words,
some of the sequences do nevertheless occur in English
words (e.g., beysh appears in probation, kice in skyscraper).
In a count of the CELEX database (Baayen et al. 1993), we
found that in one of Newman et al.’s sets (beysh-peysh/
beyth-peyth) the triphone probability biases made the same
(correct) predictions as the lexical neighborhood biases,
while in another set (gice-kice/gipe-kipe) the triphone prob-
abilities made the opposite (i.e., incorrect) predictions to
the lexical neighborhoods. In the other four sets in New-
man et al. (two which showed neighborhood effects, and
two which showed no effects), we found no matching tri-
phones (except for toish in toyshop).

Note that a dictionary-based count is a blunt instrument
that can only approximate the frequencies of triphones (or
diphones, or whatever) in continuous speech. The CELEX
count misses strings across word boundaries in running
speech, like gice in “big icecream,” which at least theo-
retically might modulate prelexical TP sensitivities. The
CELEX analyses nevertheless suggest that although some
of the effects reported in Newman et al. are almost certainly
due to the effects of lexical neighborhoods, some may be
due to a prelexical mechanism sensitive to higher-order se-
quential probabilities. As we suggested in the target article,
more work needs to be done to tie down the locus or loci of
these effects. We also need to know more about the nature
of the TP mechanism. As Pitt and McQueen (1998) pointed
out, we do not yet know what the limits of listeners” TP sen-
sitivity are (whether diphone, triphone, or even longer se-
quences are involved; whether syllable structure constrains
sensitivity or not; and so on).

Whether these effects prove to be entirely prelexical, en-
tirely lexical, or a mixture of the two, they do not challenge



the Merge model. Though Newman agrees that Merge
could explain effects driven by a prelexical mechanism, she
questions whether the model could explain effects at the
lexical level, arising from the joint influence of gangs of
words. She is right that there are strict limits on the num-
ber of words activated at the lexical level in Merge (as in the
Shortlist model, whose name in fact reflects this property).
In Shortlist, the default maximum number of candidate
words considered to begin at any particular segmental po-
sition is 30. As we pointed out in the target article, the num-
ber of words can be reduced considerably without impair-
ing Shortlist’s performance; that is, correct recognition is
still achieved even when only two words are allowed in the
shortlist (Norris 1994b). We did not mean to imply however
that the maximum (in Merge or Shortlist) should be as small
as two. Indeed, other effects of competitor neighborhood
size on word recognition (Norris et al. 1995; Vroomen & de
Gelder 1995) have suggested that the shortlist maximum
should be larger than two. Shortlist is able to simulate such
data successfully with the maximum remaining at the de-
fault of 30 (Norris et al. 1995; 1997). Although Newman et
al.’s data have not yet been simulated, we think that it is rea-
sonable to assume that Merge, operating with a similar
shortlist size, would capture effects due to gangs of lexical
neighbours (the largest gang in Newman et al. 1997 had 14

members).

R4.6. Subcategorical mismatch. The possibility is raised
by Whalen that the mismatches in the cross-spliced items
in McQueen et al. (1999a) and in Marslen-Wilson and War-
ren (1994) had overt ambiguities, and thus that listeners
used nonphonetic means to resolve these ambiguities. The
data speak against this possibility. Although it is true that
trained phoneticians could, with careful listening, possibly
detect the mismatches in the materials, we do not believe
that the naive subjects used in McQueen et al.’s experi-
ments were able to detect the mismatches, at least when
they were presented with the full items. Once the listeners
had heard each final stop, they were able to identify it
rapidly and accurately. If the materials had been overtly am-
biguous, one would not expect mean phonetic decision la-
tencies and error rates on the order of 650 msec and 5% and
mean lexical decision latencies and error rates of about 470
msec and 8% (McQueen et al. 1999a, Experiments 1 and 3,
cross-spliced conditions). The gating experiment in Mc-
Queen et al. shows that listeners were sensitive to the in-
formation in the pre-splice portions of the words (as does
the forced-choice vowel identification task). But only in the
earlier gates did listeners tend to respond with words con-
sistent with the pre-splice portions of the cross-spliced
items (e.g., sloot responses to the W2W1 word sloop, made
from the [slo] from sloot and the [p] from sloop). Once lis-
teners had heard the final stop, over 85% of their responses
reflected the identity of the release burst (e.g., sloop re-
sponses). We therefore believe that the effects in these
experiments reflect the operation of bottom-up speech
processing, as modeled in Merge, rather than conscious
ambiguity-resolution processes.

R4.7. Speech processing. Speech recognition is a difficult
and complex process. Several of the commentators seem to
have based assumptions of top-down feedback solely on in-
tuitions that a complex process must necessarily be error-
prone, and hence incapable of succeeding on its own with-
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out reference to other processing levels. Thus we read that
speech “is characterized by noise and variability” (Tanen-
haus et al.) and that ambiguity in speech signals “makes it
very unlikely that a pure bottom-up analysis can be effi-
cient” (Montant) so that “feedback would be helpful”
(Tanenhaus et al.); the system should not be designed to
be error-free and optimal because it is not actually error-
free and optimal (Connine & LoCasto). These commen-
tators are psychologists, and their intuitions do not appear
to be shared by those commentators who are phonetic sci-
entists. The assumption of error-prone front-end process-
ing can be contrasted with the explicit detail of speech pro-
cessing laid out in the commentary by Kingston, in which
we see a picture of massive redundancy producing a
bottom-up information flow of such richness that there
is room for portions of it to be lost without damage to the
end result. Other commentators who are phonetic scien-
tists (Benki, Nearey, Stevens, Whalen) likewise display
no such intuition-based assumptions about defective front-
end processing warranting feedback: for Whalen, the claim
that lexical feedback cannot in principle improve speech
processing is “sound”; for Benki our arguments against
feedback are “convincing” and lexical effects should better
be viewed in terms of bias; Nearey points out that the hu-
man system even in high noise with arbitrary and unpre-
dictable input does a remarkably good job, far better than
any existing ASR system; Stevens accepts bottom—up pro-
cessing alone for the same situation of words in isolation.

A comparable contrast between views can be seen in the
remarks of Warren, Nearey, and Slowiaczek on the issue
of phonemic representations in speech processing. As we
pointed out in the target article (sect. 7), the framework we
have proposed is compatible with a range of possible front-
end implementations. Certainly the experimental evidence
(including of course that of our own work on subcategori-
cal mismatch) indicates that listeners process speech input
continuously and not as a sequence of independent pho-
nemes. The evidence from his own laboratory which War-
ren so amply cites is fully consistent with the consensus po-
sition. Warren interprets such evidence as indicating that
phonemes have no role to play in human speech process-
ing. Nearey, however, on the basis of his own work, argues
for “phoneme-like units,” and Slowiaczek makes a strong
case for phonemic representations on the basis of evidence
from phonological priming. Our own position is closer to
that of the latter two commentators, but the crucial point
here is that nothing in the Merge/Shortlist framework de-
pends on whether or not phonemic representations inter-
vene in speech recognition. Phonemic decisions are based
on output from the decision nodes, which are separate from
the direct input-to-lexicon processing path.

Stevens, taking up the issue of the input-to-lexicon path,
describes a casual-speech multi-word utterance the recog-
nition of which, he maintains, involves the kind of top-down
processes which the target article argues against. However,
the processes he describes do not involve feedback. He pro-
poses acoustic processing that produces a pattern of fea-
tures; these features in turn generate a cohort of potential
word sequences. This is exactly the process of multiple ac-
tivation of candidate word sequences embodied in Shortlist
and indeed most current spoken-word recognition models.
Stevens then proposes application of rule-based transfor-
mations of the activated word forms. Rules are, of course,
by definition not lexically stored information. Application

BEHAVIORAL AND BRAIN SCIENCES (2000) 23:3 361



Response/Norris et al.: The Merge Model

of the rules will then “lead to a pattern that matches the
pattern derived from the acoustic signal.” This is exactly
the bottom-up priority embodied in Merge and Shortlist.
Feedback, in contrast, would allow the reverse — transfor-
mation of the pattern derived from the acoustic signal to
match the lexical form. That is, where Stevens’s rules allow
the system to accept, for instance, a nasal as a possible in-
stantiation of a voiced fricative, top-down feedback would
result in the system altering its analysis of the input, and de-
ciding that what had been heard was a voiced fricative and
not a nasal at all. Stevens does not think that this happens,
and nor do we: there is no feedback in speech recognition.

Finally, the speech scientist commentators point to some
levels of complexity which we had not considered explicitly
in the target article: Whalen describes non-sequential con-
text effects requiring integration of acoustic information
across time, Nearey discusses the need for temporal sensi-
tivity in the front-end processor, and Stevens (as also the
commentary by Gow) highlights the fact that phonological
processes can transform featural representations of pho-
netic information. There are many further aspects still to
the complexity of speech processing. But complexity is not
ipso facto a warrant for feedback.

R5. The wider context of language processing

Several commentators relate our arguments to aspects of
human language processing beyond the circumscribed do-
main of the evidence we reviewed. We used research on
phonemic decision-making in speech recognition as a clear
case study in which to examine the need for feedback in
modeling the research evidence. But speech recognition is
just one function of the human language processing system.
This system not only recognises speech but also produces
it; the relationship between our model and models of
speech production has been raised by Meyer & Levelt.
The system processes auditory information for speech
recognition; but it is also capable of drawing on visual in-
formation to the same end, as noted by Brancazio &
Fowler. The system recognises words; but it also recog-
nises sentence structure, raised in the commentaries by
Isel and Shillcock. Furthermore, the adult listener’s
recognition system has developed from an initial state via a
process of language acquisition in the child, as Jusezyk &
Johnson discuss; and it is implemented, as a number of
commentators stress, in the neural architecture of the hu-
man brain. All these comments provide welcome views of
the place of Merge in the wider context of language pro-
cessing.

R5.1. Production and perception. Itis proposed by Meyer
& Levelt that certain representational levels in the lan-
guage processing system are shared between production
and perception, and that feedback must therefore neces-
sarily occur between those levels. This speculation prompts
two obvious remarks. One is that sharing of resources at
these levels is as yet unsupported by empirical evidence.
Experiments summarised by Levelt et al. (1999) support
tripartite lexical processing in production (lexical concepts,
syntactic words, phonological forms), but to our knowledge
such a division is not indicated by empirical evidence for
perception (although note that Gaskell proposes a division
between lexical content and form, implemented without
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feedback in the DCM). The second remark is that bidirec-
tional connectivity is the prerequisite for feedback, but is
not itself feedback; feedback occurs when the connections
are used in both directions during the same processing op-
eration. If connections between two levels are used in only
one direction during language production, and only in the
other direction during language recognition, there is no
feedback. Certainly there is room for further investigation
of such issues.

R5.2. Syntactic processing. As Shillcock points out, the
recognition of function words is dependent upon syntactic
context and hence might be more likely to involve feedback.
Studies in Dutch (Haveman 1997) have in fact shown com-
parable priming effects for function and content words, and
no evidence for the prediction of function words from syn-
tactic context. Isel, responding to our remarks in section
3.5.2 about the relationship between syntactic and seman-
tic processing during comprehension, describes ERP stud-
ies which indicate early independence of the processing of
lexical gender and of sentence semantics. Modulation of
the effects of gender by semantic factors occurs only at a
later processing stage. Gender is a property of words which
does not alter its type (masculine, feminine, and neuter, in
the case of the study cited by Isel) as a function of syntac-
tic structure, but can alter its expression; for example, to
mark case relations. Gender type can thus hardly serve as
the prototypical measure of syntactic processing; indeed,
disambiguation via gender type has been shown not to
block concurrent availability of alternate parses of an
ambiguous syntactic structure (Brown et al., in press; Van
Berkum et al. 1999). There is however separate electro-
physiological evidence that syntactic analysis of verb agree-
ment is independent of semantic processing (Hagoort &
Brown, in press). Similar studies have shown separate pro-
cessing effects of content and function words, at least in vi-
sual processing (Brown et al. 1999; Ter Keurs et al. 1999).
As we pointed out in section 3.5.2, current models of syn-
tactic/semantic processing differ significantly with respect
to feedback; we welcome the growing attention paid to sort-
ing out these differences via neurophysiological investiga-
tions.

R5.3. Audio-visual processing. We note that Brancazio
& Fowler observe that Merge, like other models of speech
processing, fails to incorporate any obvious mechanism for
exploiting visual information. Visual information is, of
course, not necessary for speech perception. Indeed the
McGurk effect is evidence that speech perception can be
adversely affected by visual information — it is only when
looking at the face producing /ga/ that we decide we are
hearing /da/; close the eyes and the speaker’s production of
/ba/ is veridically available to the listener’s consciousness.
Although it is tempting to relegate this effect to domains ex-
ternal to the speech perception model, the phenomenon is
nonetheless robust and poses an intriguing set of questions
(which, it should be remarked, Massaro and his colleagues
have not shied from addressing in FLMP simulations).
Moreover, as Brancazio & Fowler point out, the range of
data currently available suggest a prelexical locus for the
McGurk effect, which could make it a useful experimental
tool. We are therefore very interested to hear of Brancazio
& Fowler’s planned exploitation of audio-visual effects to
test predictions from autonomous models such as Merge



versus feedback models, and we look forward to the results
of their study. (Although space constraints prevented them
from describing their planned materials in detail, we hope
that as well as controlling transition probability of the con-
sonant-consonant sequences they also, for the reasons dis-
cussed above in sect. R4.3, will be able to control the prob-
ability of the vowel-to-consonant transitions.)

R5.4. The development of phonemic processing. As
Jusczyk & Johnson point out, any speech recognition sys-
tem in place in an adult listener has its beginnings in a sys-
tem developed by an infant. And an infant begins by know-
ing no words, so the system must be capable of developing
without the use of information flowing from word repre-
sentations to prelexical representations. This is of course
not in itself an argument that the adult system must also
make no use of top-down information flow. As Jusczyk &
Johnson observe, a reorganisation of the system to allow
feedback in the stable state is conceivable. They also ob-
serve that the decision nodes of Merge may imply reorgan-
isation or elaboration of the system beyond what is available
in the initial state, for phonemic decision is not, as we
argued in section 7, a necessary operation in infant devel-
opment. Neuro-imaging evidence certainly exists, which
suggests that such a reorganisation distinguishes phonolog-
ical processing by literate versus illiterate language users
(Castro-Caldas et al. 1998), and evidence from aphasic lis-
teners also suggests a dissociation of phonemic decision-
making and speech comprehension (Basso et al. 1977;
Riedel & Studdert-Kennedy 1985).

Note that Jusczyk & Johnson’s assumption that phone-
mic decision plays no role in language development stands
in marked contrast to Doeleman et al.’s claim that phone-
mic decision-making is part of infant perception. Here
Doeleman et al. confuse infants” ability to discriminate with
adults” ability to identify. Years of speech perception re-
search have been based on the difference between identi-
fication tasks and discrimination tasks; discriminating a dif-
ference between two inputs is not at all the same thing as
identifying the nature of the difference. In fact the studies
with very young infants to which Doeleman et al. refer have
inter alia shown infants to be capable of discriminations that
adults cannot make; thus infants in an English-language en-
vironment discriminate a change from dental to retroflex
stops, both of which English-speaking adults unhesitatingly
categorise as a /t/ (neither dental nor retroflex, but alveolar
place of articulation in their dialect; Werker & Tees 1984).
That the discrimination performance is actually not based
on phonemic identification was shown by Moon et al.
(1992): in their study, infants could tell the difference be-
tween pat and tap but not between pst and ¢sp. The phone-
mic changes in Moon et al.’s two pairs were identical; in the
first pair, however, the medial vowel resulted in a possible
syllable, while in the second pair the medial fricative re-
sulted in non-syllabic input which the infants clearly could
not decompose as adult listeners would have done.

Not all infant perception research involves simple dis-
crimination; researchers can now also establish whether in-
fants prefer one of two types of input which they can dis-
criminate. Jusczyk & Johnson list an impressive array of
evidence gleaned from such preference tasks concerning the
speech perception capacities of very young infants, and the
list could be much longer. But Jusczyk & Johnson hold that
these discrimination and preference capacities do not consti-
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tute phonemic decision, and we agree. Phonemic decision is
knowing, for instance, that cup and cat begin in the same way,
and it is not observed, even in societies which encourage such
awareness, till age three or four (Bradley & Bryant 1983;
Liberman 1973). Phonemic decision-making is, as we argue
in section 7 of the target article, separate from the normal
route from input to lexicon, which by that age is fully in place.

R5.5. Neural implementation. A number of commentators
(Doeleman et al., Grossberg, Luce et al., Montant,
Tanenhaus et al.) raise the question of whether the exis-
tence of widespread neural backprojections in the brain
might undermine our case against feedback. The answer
here is that it depends on what those backprojections actu-
ally do. For example, backprojections might be involved in
non-specific attentional control over the entire prelexical
system. The presence of such backprojections would be en-
tirely consistent with our case against feedback (see defi-
nitions). More generally, we have very little understanding
of how information processing algorithms are implemented
in neural hardware. Backprojections might well be part of
the neural mechanisms, such as gain control, required to
implement an informationally feedforward system with
neural hardware. That is, the existence of backprojections
may not be manifest at all at the psychological or informa-
tion processing level. Alternatively, backprojections might
be involved in learning but play no role in processing
learned material (see Norris 1993).

The relation between processing models and their neural
implementation is surely one of the most exciting areas for
future research. But we should remember that the gulf be-
tween psychological models and their possible neural im-
plementation is currently enormous.

R6. Conclusion

The feedback from the commentaries leaves us convinced
that feedback in spoken word recognition is never neces-
sary. There is still no good theoretical case for assuming that
there should be feedback from lexical to prelexical pro-
cessing in speech recognition. The data are consistent with
a feedforward model like Merge, but inconsistent with a
feedback model like TRACE. A model based on ART might
possibly be able to explain some of the data, but it is far from
clear that the feedback in ART is necessary. Advances in
neurobiology might well illuminate this debate but, as we
have cautioned, the mapping between neurobiological data
and psychological theory is not straightforward. In the
meantime progress will come from the development of
Merge and other models to give a better computational ac-
count of human speech recognition, one that can be sub-
jected to rigorous empirical test.
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