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ABSTRACT

Neutrinoless double beta decay is a very sensitive experimental probe for physics
beyond the Standard Model. In fact, this process is the only known possibility to
ascertain in the foreseeable future whether the neutrino is a Dirac or a Majorana
particle. Most theoretical results on this subject, however, have been known for many
years. In the advent of the next generation of experiments, it is worthwhile to re-
examine old results and provide some new theoretical contributions. This thesis deals
with various topics related to neutrinoless double beta decay. In particular, we focus
on a discussion of the famous Schechter—Valle (or Black Box) theorem, as well as on a
realization of neutrinoless double beta decay in universal extra dimensions, which has
not been considered in the literature so far. We find that the Schechter—Valle theorem,
although valid, is of merely academic interest, as it generates a neutrino mass which is
many orders of magnitude smaller than the one expected. Concerning universal extra
dimensions, we are able to give a new bound on their size, which is slightly weaker
but complementary to the existing constraints from electroweak precision data. Next
generation experiments are expected to improve upon the bounds we obtain.

ZUSAMMENFASSUNG

Der neutrinolose Doppel-Betazerfall ist ein empfindlicher experimenteller Test fiir
Physik jenseits des Standardmodells. Er ist im Moment die einzige denkbare Mo-
glichkeit, in naher Zukunft herauszufinden, ob das Neutrino ein Dirac- oder ein
Majorana-Teilchen ist. Die meisten theoretischen Ergebnisse auf diesem Forschungs-
gebiet sind allerdings schon seit langerer Zeit bekannt. Kurz vor dem Start der néach-
sten Generation von Experimenten ist es daher sinnvoll, die alten Ergebnisse zu {tiber-
priifen und neue Beitrdge zu leisten. Diese Arbeit diskutiert verschiedene Themen,
die mit dem neutrinolosen Doppel-Betazerfall zusammenhangen. Hauptsédchlich geht
es um das bekannte Schechter-Valle-Theorem (auch Black-Box-Theorem genannt) und
um eine bisher nicht diskutierte Realisierung des Zerfalls in Universal Extra Di-
mensions. Wir zeigen, dass das Schechter-Valle-Theorem zwar richtig ist, aber eine
Neutrinomasse liefert, die um viele Grofienordnungen kleiner ist als die erwartete.
Die Extradimensionen betreffend berechnen wir eine neue obere Schranke fiir deren
Grofle. Diese ist zwar schwicher als diejenige, die man aus Prazisionsmessungen
zur elektroschwachen Wechselwirkung erhdlt, kommt aber aus einer komplemen-
taren Klasse von Experimenten. Wir erwarten, dass die Experimente der nachsten
Generation diese Schranke noch verbessern.
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If we knew what it was we were doing,
it would not be called research, would it?
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CHAPTER 1

INTRODUCTION

The last decade was an exciting one for neutrino physics. Predicted by Pontecorvo
a long time ago for neutrino—antineutrino systems [1, 2], neutrino oscillations were
eventually found in oscillation experiments with atmospheric, solar, reactor, and ac-
celerator neutrinos. These experiments have shown without a doubt that neutrinos
have a small but non-zero mass [3-5].

This experimental result definitely exposes a shortcoming of the Standard Model
(SM) of particle physics, which was put together in the early 1970’s by Glashow,
Salam, Weinberg, and many others [6-8]. Until today, it is a remarkably successful
theory and describes Nature to a previously unknown precision. In this model, how-
ever, neutrinos are assumed to be massless. Although there are more shortcomings of
the SM to resolve (the nature of dark matter, the hierarchy problem, unification with
gravity, many unexplained parameters, etc.), this experimental result alone forces us
to find models for New Physics (NP).

Knowing, however, that neutrinos are massive directly raises the question if neu-
trinos are Dirac or Majorana particles. It is closely connected to the one if lepton
number is or is not a symmetry of Nature, because a Majorana mass term violates
lepton number by two units. This issue cannot be solved by neutrino oscillation
experiments. Therefore, other experiments have to be performed to determine the
nature of neutrinos.

Unfortunately, lepton number violating processes generically have small ampli-
tudes, as they are usually suppressed by the tiny neutrino masses. Therefore, it is
very difficult to observe these processes experimentally. At the moment, the most
promising attempts to find lepton number violation are the experiments on neu-
trinoless double beta decay (OvBp). Various experiments searching for Ovpp were
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performed (IGEX [9], Heidelberg-Moscow [10], CUORICINO [11], NEMO [12], and
others), so far without an unambiguous detection. Currently, the GERDA experi-
ment [13] is under construction and will be running soon, whereas the MAJORANA
experiment [14] is in its R&D phase. Both will use enriched Germanium as target
nucleus and will hopefully find evidence for the existence of Ovff, but at least they
will improve the present bounds on the half-life of the isotope under consideration.
There has been a lot of previous theoretical work on neutrinoless double beta decay
and the Majorana nature of neutrinos. Much of the material, however, only has been
reviewed for decades and no new theoretical input has been provided. In the advent
of the next generation of experiments, we feel that it is necessary to re-examine some
of the old results. We will have a closer look at the well-known Schechter—Valle theo-
rem [15], whose assertion and diagram have been repeated in the literature for almost
30 years.

Concerning possible extensions of the Standard Model, a lot of candidates for New
Physics are in the game. All of them are motivated by a solution to at least one
of the problems remaining in the SM. It was recognized that the hierarchy problem
may be solved in the presence of extra spatial dimensions (EDs) [16, 17], so there has
been some theoretical effort concerning their physics in recent times. Mainly, three
forms of EDs are under consideration at the moment: The large extra dimensions
model by Antoniadis, Arkani-Hamed, Dimopoulos, and Dvali (ADD) [16, 17], the
warped extra dimensions model by Randall and Sundrum (RS) [18], and the model
by Appelquist, Cheng, and Dobrescu (ACD) [19]. In the ADD and the RS models, at
least in their minimal form, the particles of the Standard Model are confined to a four-
dimensional brane living in a higher dimensional space (the “bulk”), and only gravity
teels the extra dimension(s). In the ACD model, all fields universally propagate in the
extra dimension(s), therefore it is called model of universal extra dimensions (UEDs).
However, due to this feature, UEDs cannot solve the hierarchy problem.

Nevertheless, UEDs have a very right of existence. Various theories (for example
string theory) require the presence of extra spatial dimensions. Already assuming
the existence of EDs, we think that it is more natural for all fields to propagate in
them. There is another interesting feature of UEDs, a property called KK parity. It
leads to a stable dark matter candidate, the lightest KK particle, in complete analogy
to the lightest supersymmetric particle in R-parity conserving SUSY. We will see that
non-negligible contributions to OvBf arise through KK tower particles in UEDs.

This thesis is organized as follows: We give a short introduction to neutrino theory
in chapter 2. Then, the basic facts about neutrinoless double beta decay are reviewed
in chapter 3. Our first new contribution is the discussion of the famous Schechter—
Valle theorem in chapter 4. After giving an overview of realizations of neutrinoless
double beta decay in New Physics models in chapter 5, in chapter 6 the contributions
to OvBp in universal extra dimensions are considered. Finally, we summarize and
give an outlook in chapter 7.



CHAPTER 2

NEUTRINO THEORY

This chapter gives a short introduction to neutrino theory. As neutrinos are weakly
interacting particles, we start with a concise review of the electroweak theory and
then discuss neutrino masses which are of fundamental importance for this thesis.

2.1 ELECTROWEAK THEORY

The gauge group of the Standard Model (SM) is
GM = SU(3)c x SU(2)r x U(1)y, (2.1)

where C stands for “color”, L for “left”, and Y is the hypercharge. The Lagrangian
density of the SM has to be invariant under all gauge transformations, which strongly
restricts its form and the possible interactions. For example, this principle called
gauge invariance forces the gauge bosons to be massless before spontaneous symme-
try breaking (S5SB). The particles of the SM, which transform as different representa-
tions of the gauge group, and their transformation properties are listed in table 2.1.
Table 2.2 gives some useful parameters.

The SM contains fermions (particles with half-integer spin), the so-called quarks
and leptons. They come in three families with identical quantum numbers (an ex-
perimental fact which is unexplained from the theoretical point of view), and have a
definite chirality structure. Moreover, the SM contains gauge bosons which mediate
the strong (the gluons G, a =1, ..., 8) and electroweak (the W-bosons W¢, c = 1,2, 3,
and the B-boson B) interactions. Finally, there is the famous Higgs boson, the last
particle of the model which has not been detected experimentally yet. It is a scalar
boson, that is, it has spin zero.
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Type Spin Particle SUB)c | SU(2)L | U(1)y
ur, Cr, tr
d b
Quarks % L oL L
UR,CR, R 3 1 +%
dR, SR, bR 3 1 —%
v, v v
: ZL _ eL ) uL ) TL 1 ) _%
Leptons 7 er ur T
IR = er, R, TR 1 1 -1
Higgs 0 ¢ 1 2 —1—%
G a=1,...,8 8 1 0
Gauge
1 We¢ ¢=1,2,3 1 3 0
Bosons
B° 1 1 0

Table 2.1: Particle content of the SM and transformation properties under the different
gauge symmetries. Here, we have adopted the Gell-Mann-Nishijima relation Q =
I3 + Y for the electric charge. I3 is the third component of the isospin.

We can see in table 2.1 that neutrinos (the electrically neutral leptons) do not have

a strong charge, and therefore do not underly strong interactions described by the

gauge group SU(3)c, the so-called quantum chromodynamics (QCD). Thus we may

explain all phenomena concerning neutrinos by the so-called electroweak (EW) theory

(or Glashow-Salam—Weinberg model of electroweak interaction), which is based on
the gauge group

GEW = su(2); x U(1)y. (2.2)

2.1.1 INTERACTIONS

The weak interaction is given by

S 1/ g
Li= =5 (R + WS+ He] = Kzt (23)

which perfectly describes the interactions of neutrinos. Here, the charged leptonic
current is defined as

i = Very e + Vv pr + vy 11, (2.4)
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m, = 15to3.3MeV mg = 3.5to6.0MeV

me = 127709 Gev ms = 10473 MeV

mp = (171.2+£2.1)GeV my, = 420707 GeV

me = (0.510998910 = 0.000000013) MeV m, = (1776.84+0.17) MeV

my = (105.658367 + 0.000004) MeV my = (93827203 + 0.00008) MeV
my = (80.39840.025) GeV mz = (91.1876 +0.0021) GeV
Gr = 1.16637(1) x 1075GeV 2 g = 0652

Table 2.2: Masses and constants in the SM (taken from [20]). The value of g is calcu-

2
lated via G = &,
V2 Sm%N

and the charged hadronic current as

zxernlx 4 ,)/zxsanlx + E,)/szanix.

Jn =Ly (2.5)

The mixed quark fields are given by

di'™ =} VugqL s =} Veqr, and b=} Vg, (2.6)
g=d,s,b q=d,s,b q=d,s,b

where V is the 3 x 3 Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix [21, 22].
The neutral current may be written as

Ko =) leL(9)Trvaqr + €r(9)TRYaqr] + vam + - le — 1584l (2.7)
q

The parameters €1.(q), €r(q), g\, and g’ can be calculated in terms of the Weinberg
angle 0. We do not want to go into more detail concerning neutral current interac-
tions as double beta decay is driven by the charged currents.

2.1.2 FERMION MASSES

In table 2.1 we can see that left- and right-handed fermion fields have different quan-
tum numbers. Left-handed fields are doublets under SU(2);, whereas right-handed
fields are singlets. Hence, a bare mass term for fermions is forbidden, as it would not
be a singlet of the SM gauge group.”

"Note that gauge invariance forces all the gauge bosons to be massless, too. This situation is different
from what we observe, as we know that the gluons and the photon (a linear combination of W
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Experiments, however, tell us that quarks and charged leptons (we will talk about
the origin of neutrino masses later) are massive. Therefore, a mechanism has to be
introduced to generate these masses. In the SM, SSB via the famous Higgs mechanism
leads to the observed masses [23—25]. Introducing a scalar boson ¢, which is a doublet
under SU(2)y, (cf. table 2.1), we may form so-called Yukawa terms, for example,

Ly = —Yébgg‘be% + H.c,, (2.8)

where sums over repeated indices are implied. Y’ is the leptonic Yukawa matrix and
a,b = e,u, T are family indices. When now the neutral component of ¢ acquires
a non-zero vacuum expectation value* (VEV) (¢°) = v/v/2 and SU(2); x U(1)y
spontaneously breaks down to U(1)em, we obtain a Dirac mass term for the charged
leptons:

l

0 N
Lp = —ﬁYabe‘ie% + H.c. (2.9)

Note that neutrino masses cannot be generated in this way in the SM because right-
handed neutrinos are absent. The next section will be dedicated to the question of
neutrino masses.

2.2 NEUTRINO MASSES

As was already mentioned in the last section, neutrinos are absolutely massless in
the Standard Model because right-handed neutrinos are absent and any mass term
has to connect left- and right-handed components. Thus neutrino masses require
the introduction of some kind of New Physics. We discuss possible mass terms for
neutrinos in this section. This discussion is of a general type, and we only describe
possible mass terms without referring to particular New Physics models or scalar
sectors generating these mass terms.

and B") are massless, but there exist two electrically charged vector bosons (W*) and an electrically
neutral boson (Z") which are massive. They obtain their masses by eating the Goldstone bosons
which appear when the gauge symmetry is spontaneously broken. We will not discuss their masses
here, as we are mainly interested in neutrino masses.

2This happens if the ground state of the Higgs potential is not invariant unter the symmetry group
of the theory.
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2.2.1 DIrRaAC MAss TERM

Although absent in the SM, we may introduce three right-handed singlet neutrinos3
njg, in addition to the three left-handed neutrinos v;;, and form a mass term in
analogy to the ones for quarks and charged leptons:

Lp = —WM’gan +H.c, (2.10)

where k,| = e, u, T are flavor indices and Mp is the 3 x 3 Dirac neutrino mass matrix.

2.2.2 MAJORANA Mass TERM

When we use the charge conjugate field (v; ), which is right-handed, we may build a
mass term without introducing additional right-handed singlet fields. We can write

1_
ch = —EvkLM’fl (vi1)" + H.c. (2.11)

Although we did not have to introduce new particles in addition to the particle con-
tent of the SM to form this mass term, note that it is not possible to form Majorana
mass terms in the SM. 7 and (v )‘ have the same quantum numbers, as they are in
the same representation of the gauge group. Table 2.1 shows that the SM does not
contain fermions with zero hypercharge Y. Therefore, a bare Majorana mass term
is forbidden by gauge invariance. Moreover, there is no scalar boson with the right
quantum numbers to form a gauge singlet with the bilinear 77 (v1), so the Majorana
mass term cannot be generated via SSB. In addition, a Majorana mass term violates
lepton number by two units. Lepton number, however, is only an accidental symme-
try of the SM.

Of course, we may also introduce the right-handed singlet fields 7, as before,* and
write a Majorana mass term for them, too:

1
LR = —E(nkR)CM’f{lan +H.c. (2.12)

Here, M; and My are the 3 x 3 Majorana mass matrices for left- and right-handed
neutrinos, respectively.

3We use a different symbol for the right-handed neutrinos to make clear that they are additional
particles. This becomes more important in the case of a Majorana neutrino mass term, where the
Majorana condition leads to the relation (v1)° = vg. Note that vy is part of the lepton doublet,
whereas np is a total singlet under the SM gauge group. We think that a different notation avoids
possible confusion.

4The right-handed neutrinos have zero hypercharge.
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2.2.3 MosT GENERAL NEUTRINO Mass TERM
Combining Dirac and Majorana mass terms, the most general neutrino mass term

may be written as

1 - 1——
Lpim = —EVkLMIil (viL)" — TeMBng — E(nkR)Clealan +H.c. (2.13)

If we now define

VL
N = ok (2.14)
nRr
we can rewrite equation (2.13) in the form
1
Lpipm = _E(NL)CMVNL + H.c,, (2.15)
with
M; M
M, = . b , (2.16)
ML Mg

where Mp is a complex 3 x 3 matrix, and My and Mg are symmetric complex matri-
ces.

2.3 SEESAW MECHANISM

The seesaw mechanism provides an interesting possibility to generate small but non-
zero neutrino masses. We want to give a short motivation for this section by showing
that in the case of Dirac masses generated via the Higgs mechanism, extreme fine
tuning would be necessary to obtain neutrino masses of the expected size. This
problem is somehow obvious, as experiment tells us that neutrino masses are by
many orders of magnitude smaller than the masses of quarks and charged leptons
(cf. sections 2.5 and 2.6).

Let us introduce, as before, right-handed neutrinos nr in addition to the fields of
the SM. Then the neutrino mass term could have the following form:

Lmass = _WYV(PWR/ (2.17)

with Y, being the Yukawa coupling, v; being the SM left-handed neutrino, and ¢
being the SM Higgs doublet. When ¢ acquires a VEV, we obtain a Dirac neutrino
mass of the size mp = Y,v/+/2, where v ~ 246 GeV is the usual value of the SM Higgs
VEV. To obtain a neutrino mass of the desired order of 1eV (or even less) [26, 27], the
Yukawa coupling Y, must be at most of the order 10~ 1. It is obvious that this value is
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an unnatural one and would require extreme fine tuning. Thus it is not very probable
that the tiny neutrino masses are generated by the Higgs mechanism. Let us discuss
situations in this section that do not suffer from these problems and provide a natural
explanation for small neutrino masses.

2.3.1 TyrE I SEEsSAwW

Type I seesaw assumes a particular form of the neutrino mass matrix given in equa-
tion (2.16). We will do the calculations for the case of one generation of neutrinos
first. Let the neutrino mass matrix have the form

0 M
M, = P , (2.18)
Mp Mg

where Mp and My are taken to be real numbers, for simplicity. Type I seesaw as-
sumes additionally that Mp is generated by the Higgs mechanism, so that its value
is of the order of the electron mass. Furthermore, M > Mp. Then, this matrix can
be easily diagonalized using

cosff —sinf 2M
0= with tan20 = b (2.19)
sinf cosf R
One obtains®
T —ny 0
OM, 0" = , (2.20)
0 o

where the eigenvalues are given as

1 /
myp = 'E ( M%{ + 4:M12) F MR) ’ . (2.21)

For Mr > Mp these are approximately
m; = — and my = Mg. (2.22)
The corresponding mass eigenstates are

2 cosf —sinf v vcosf —nsinf v
=1 = . R . (2.23)
Vs sinf cosf n vsin@ + n cos 0 n

5The minus for m, can be absorbed into a redefinition of the field v; in the mass basis.
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Thus we have for the mass of the light neutrinos

M2
My = myp = M—]z' (2.24)
and for the masses of the heavy neutrinos
my, = my = Mg. (2.25)

The case of three generations will be discussed in the next subsection, where we
calculate the type II seesaw for three generations. Type I seesaw then is a special case
of type II seesaw.

2.3.2 TypE Il SEEsAw

In type II seesaw, we take the neutrino mass matrix to be of the most general form,
as given in equation (2.16). However, we make additional assumptions, namely that
the eigenvalues of M are much smaller than the eigenvalues of Mp, which in turn
are much smaller that the eigenvalues of M. Our goal then is to block-diagonalize
M, with a unitary matrix U such that

Msiag =UTMU. (2.26)
Consider
1 A
U= , (2.27)
—At 1

where A is a 3 X 3 matrix, with all entries A;; < 1. Then we have

. 1+AA" 0
Uu = , (2.28)
0 1+A%A

which is the unit matrix up to terms quadratic in A. Thus U/ is unitary to a good
approximation. We may then calculate

1 —A*\ (M. Mp 1 A
AT 1 ML Mg —AT 1

UT MU =

(2.29)
M — MpA' — A*ML + A*MRrAT My A+ Mp — A*MEA — A*Mpg

ATM| — ATMp At + ML — MRAY ATMLA + ATMp + MLA + Mg
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With our initial assumptions on the sizes of the eigenvalues of Mp, My, and Mg,
and the fact that A < 1, we may neglect many terms, such that we arrive at

My — MpAt — A*(ML — MgAY) Mp — A*Mg

UM,U = (2.30)
ML — MgA* Mg
We may now choose
AT = M'MP, (2.31)
which has entries much smaller than one, and which gives
A" = MpMz!, (2.32)
as Mp is symmetric. Thus we finally find
Mp — MpMz'ML 0
UM = TPTRTD (2.33)

0 Mg

The block matrices in this expression are the mass matrices for the light and heavy
neutrinos, respectively. It is now easy to see that the three family case of seesaw type
I is just a special case of this formula, given by M = 0. We then have

M, = —MpMy'M}], and M, = Mg (2.34)

for the mass matrices of the light and heavy neutrinos.

2.4 NEUTRINO MIXING

From the fact that neutrinos are massive, we know that the neutrino mass eigenstates
can be different from the flavor eigenstates. We say that neutrinos mix. The flavor
tields, which enter the charged current, are given by

3
vp(x) =) Uvi(x), with I =ep,T. (2.35)
i=1

U is the 3 x 3 Pontecorvo-Maki-Nakagawa—-Sakata [1, 2, 28] (PMNS) neutrino mixing
matrix, and v;, i = 1, 2,3, are the light neutrino mass eigenstates.

In a framework containing three light neutrino species, the matrix U is assumed to
be unitary. The typical parameterization is [29]

—is
€12€13 $12C13 size” "
U= | —sipc23 — c1o823813€"°  C12€03 — s12823813¢° s23¢13 | diag (Leux,el(/ﬂ )> :
i i
$12523 — €12€23513€°  —C12523 — 512023513€"°  €23€13

(2.36)
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parameter best fit 20 30

Am?, [1075eV?] 759708 7.22-8.03 7.03—8.27
|Am2,| [1073eV?] 2401517 218 —2.64 2.07 —2.75

sin? 01, 0.318M001%  0.29-0.36 0.27 —0.38
sin? 03 0.507907 039 —0.63 0.36 — 0.67
sin” 013 001319015 <0.039  <0.053

Table 2.3: Three-flavor neutrino oscillations parameters, as calculated in [31].

Here, the usual conventions are used: ¢;; = cos0;j, s;j = sinb;j, J is the Dirac CP-
violation phase, and «,  are the two Majorana CP-violation phases.

2.5 THREE-FLAVOR NEUTRINO OSCILLATION PARAMETERS

As we already stated before, neutrino mixing leads to neutrino oscillations (and ac-
tually these are the only experimental evidence that neutrino mixing takes place).
We do not want to enter more deeply into the theory of neutrino oscillations, but
just state that by measuring neutrino oscillations of different sources (solar, atmo-
spheric, or reactor neutrinos) we have access to the mass-squared differences and the
mixing angles. There have been recent updates of the best-fit values for the three-
flavor neutrino oscillation parameters. Gonzalez-Garcia, Maltoni, and Salvado [30],
and Schwetz, Tértola, and Valle [31] have done such calculations. Table 2.3 gives the
values of the latter paper, updated in February 2010. We will use these values in the
remainder of this thesis.

2.6 NEUTRINO MAss OBSERVABLES

The PMNS matrix diagonalizes the neutrino mass matrix whose eigenvalues are the
neutrino masses m;, i = 1,2,3. There exist three observables related to these masses,
which we will shortly describe in this section. All of these observables are measured
in different experiments, which are on-going or up-coming. Besides the measurement
of an absolute neutrino mass scale, these experiments can (alone or in combination)
possibly answer the question if neutrinos are Dirac or Majorana particles.

* Kinematical mass mg: It is measurable in ordinary beta decay experiments, and
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is defined as

3
Y | U] m2. (2.37)
i=1

Its current upper limit is 2.3€eV [27]. The up-coming experiment KATRIN [32]
is expected to push this limit by about one order of magnitude.

e Effective mass |m,,|: It is measurable in neutrinoless double beta decay, and is
defined as

|Mee| = (2.38)

> 2
i=1

Note that this mass parameter actually is the modulus of the ee-entry of the
Majorana neutrino mass matrix. Its current upper limit is about 1eV (the
IGEX experiment gives |me| < (0.33 — 1.35) eV, depending on the choice of
nuclear matrix elements [9]), if one assumes that neutrinoless double beta de-
cay is mediated exclusivel