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Abstract

Neutrinoless double beta decay is a very sensitive experimental probe for physics

beyond the Standard Model. In fact, this process is the only known possibility to
ascertain in the foreseeable future whether the neutrino is a Dirac or a Majorana
particle. Most theoretical results on this subject, however, have been known for many

years. In the advent of the next generation of experiments, it is worthwhile to re-
examine old results and provide some new theoretical contributions. This thesis deals

with various topics related to neutrinoless double beta decay. In particular, we focus
on a discussion of the famous Schechter–Valle (or Black Box) theorem, as well as on a
realization of neutrinoless double beta decay in universal extra dimensions, which has

not been considered in the literature so far. We find that the Schechter–Valle theorem,
although valid, is of merely academic interest, as it generates a neutrino mass which is

many orders of magnitude smaller than the one expected. Concerning universal extra
dimensions, we are able to give a new bound on their size, which is slightly weaker
but complementary to the existing constraints from electroweak precision data. Next

generation experiments are expected to improve upon the bounds we obtain.

Zusammenfassung

Der neutrinolose Doppel-Betazerfall ist ein empfindlicher experimenteller Test für

Physik jenseits des Standardmodells. Er ist im Moment die einzige denkbare Mö-
glichkeit, in naher Zukunft herauszufinden, ob das Neutrino ein Dirac- oder ein

Majorana-Teilchen ist. Die meisten theoretischen Ergebnisse auf diesem Forschungs-
gebiet sind allerdings schon seit längerer Zeit bekannt. Kurz vor dem Start der näch-
sten Generation von Experimenten ist es daher sinnvoll, die alten Ergebnisse zu über-

prüfen und neue Beiträge zu leisten. Diese Arbeit diskutiert verschiedene Themen,
die mit dem neutrinolosen Doppel-Betazerfall zusammenhängen. Hauptsächlich geht

es um das bekannte Schechter-Valle-Theorem (auch Black-Box-Theorem genannt) und
um eine bisher nicht diskutierte Realisierung des Zerfalls in Universal Extra Di-
mensions. Wir zeigen, dass das Schechter-Valle-Theorem zwar richtig ist, aber eine

Neutrinomasse liefert, die um viele Größenordnungen kleiner ist als die erwartete.
Die Extradimensionen betreffend berechnen wir eine neue obere Schranke für deren

Größe. Diese ist zwar schwächer als diejenige, die man aus Präzisionsmessungen
zur elektroschwachen Wechselwirkung erhält, kommt aber aus einer komplemen-
tären Klasse von Experimenten. Wir erwarten, dass die Experimente der nächsten

Generation diese Schranke noch verbessern.
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If we knew what it was we were doing,

it would not be called research, would it?
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Chapter 1

Introduction

The last decade was an exciting one for neutrino physics. Predicted by Pontecorvo

a long time ago for neutrino–antineutrino systems [1, 2], neutrino oscillations were
eventually found in oscillation experiments with atmospheric, solar, reactor, and ac-

celerator neutrinos. These experiments have shown without a doubt that neutrinos
have a small but non-zero mass [3–5].

This experimental result definitely exposes a shortcoming of the Standard Model
(SM) of particle physics, which was put together in the early 1970’s by Glashow,
Salam, Weinberg, and many others [6–8]. Until today, it is a remarkably successful

theory and describes Nature to a previously unknown precision. In this model, how-
ever, neutrinos are assumed to be massless. Although there are more shortcomings of

the SM to resolve (the nature of dark matter, the hierarchy problem, unification with
gravity, many unexplained parameters, etc.), this experimental result alone forces us
to find models for New Physics (NP).

Knowing, however, that neutrinos are massive directly raises the question if neu-
trinos are Dirac or Majorana particles. It is closely connected to the one if lepton

number is or is not a symmetry of Nature, because a Majorana mass term violates
lepton number by two units. This issue cannot be solved by neutrino oscillation
experiments. Therefore, other experiments have to be performed to determine the

nature of neutrinos.

Unfortunately, lepton number violating processes generically have small ampli-

tudes, as they are usually suppressed by the tiny neutrino masses. Therefore, it is
very difficult to observe these processes experimentally. At the moment, the most

promising attempts to find lepton number violation are the experiments on neu-
trinoless double beta decay (0νββ). Various experiments searching for 0νββ were
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performed (IGEX [9], Heidelberg-Moscow [10], CUORICINO [11], NEMO [12], and
others), so far without an unambiguous detection. Currently, the GERDA experi-

ment [13] is under construction and will be running soon, whereas the MAJORANA
experiment [14] is in its R&D phase. Both will use enriched Germanium as target

nucleus and will hopefully find evidence for the existence of 0νββ, but at least they
will improve the present bounds on the half-life of the isotope under consideration.
There has been a lot of previous theoretical work on neutrinoless double beta decay

and the Majorana nature of neutrinos. Much of the material, however, only has been
reviewed for decades and no new theoretical input has been provided. In the advent

of the next generation of experiments, we feel that it is necessary to re-examine some
of the old results. We will have a closer look at the well-known Schechter–Valle theo-
rem [15], whose assertion and diagram have been repeated in the literature for almost

30 years.
Concerning possible extensions of the Standard Model, a lot of candidates for New

Physics are in the game. All of them are motivated by a solution to at least one
of the problems remaining in the SM. It was recognized that the hierarchy problem
may be solved in the presence of extra spatial dimensions (EDs) [16, 17], so there has

been some theoretical effort concerning their physics in recent times. Mainly, three
forms of EDs are under consideration at the moment: The large extra dimensions

model by Antoniadis, Arkani-Hamed, Dimopoulos, and Dvali (ADD) [16, 17], the
warped extra dimensions model by Randall and Sundrum (RS) [18], and the model
by Appelquist, Cheng, and Dobrescu (ACD) [19]. In the ADD and the RS models, at

least in their minimal form, the particles of the Standard Model are confined to a four-
dimensional brane living in a higher dimensional space (the “bulk”), and only gravity

feels the extra dimension(s). In the ACDmodel, all fields universally propagate in the
extra dimension(s), therefore it is called model of universal extra dimensions (UEDs).
However, due to this feature, UEDs cannot solve the hierarchy problem.

Nevertheless, UEDs have a very right of existence. Various theories (for example
string theory) require the presence of extra spatial dimensions. Already assuming

the existence of EDs, we think that it is more natural for all fields to propagate in
them. There is another interesting feature of UEDs, a property called KK parity. It
leads to a stable dark matter candidate, the lightest KK particle, in complete analogy

to the lightest supersymmetric particle in R-parity conserving SUSY. We will see that
non-negligible contributions to 0νββ arise through KK tower particles in UEDs.

This thesis is organized as follows: We give a short introduction to neutrino theory
in chapter 2. Then, the basic facts about neutrinoless double beta decay are reviewed
in chapter 3. Our first new contribution is the discussion of the famous Schechter–

Valle theorem in chapter 4. After giving an overview of realizations of neutrinoless
double beta decay in New Physics models in chapter 5, in chapter 6 the contributions

to 0νββ in universal extra dimensions are considered. Finally, we summarize and
give an outlook in chapter 7.



Chapter 2

Neutrino Theory

This chapter gives a short introduction to neutrino theory. As neutrinos are weakly
interacting particles, we start with a concise review of the electroweak theory and

then discuss neutrino masses which are of fundamental importance for this thesis.

2.1 Electroweak Theory

The gauge group of the Standard Model (SM) is

GSM = SU(3)C × SU(2)L ×U(1)Y, (2.1)

where C stands for “color”, L for “left”, and Y is the hypercharge. The Lagrangian

density of the SM has to be invariant under all gauge transformations, which strongly
restricts its form and the possible interactions. For example, this principle called

gauge invariance forces the gauge bosons to be massless before spontaneous symme-
try breaking (SSB). The particles of the SM, which transform as different representa-
tions of the gauge group, and their transformation properties are listed in table 2.1.

Table 2.2 gives some useful parameters.
The SM contains fermions (particles with half-integer spin), the so-called quarks

and leptons. They come in three families with identical quantum numbers (an ex-
perimental fact which is unexplained from the theoretical point of view), and have a
definite chirality structure. Moreover, the SM contains gauge bosons which mediate

the strong (the gluons Ga, a = 1, . . . , 8) and electroweak (the W-bosons Wc, c = 1, 2, 3,
and the B-boson B0) interactions. Finally, there is the famous Higgs boson, the last

particle of the model which has not been detected experimentally yet. It is a scalar
boson, that is, it has spin zero.
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Type Spin Particle SU(3)C SU(2)L U(1)Y

Quarks 1
2

qL =





uL

dL



 ,





cL

sL



 ,





tL

bL



 3 2 + 1
6

uR, cR, tR 3 1 + 2
3

dR, sR, bR 3 1 − 1
3

Leptons 1
2

lL =





νeL

eL



 ,





νµL

µL



 ,





ντL

τL



 1 2 − 1
2

lR = eR, µR, τR 1 1 −1

Higgs 0 φ 1 2 + 1
2

Gauge

Bosons
1

Ga, a = 1, . . . , 8 8 1 0

Wc, c = 1, 2, 3 1 3 0

B0 1 1 0

Table 2.1: Particle content of the SM and transformation properties under the different

gauge symmetries. Here, we have adopted the Gell-Mann–Nishijima relation Q =
I3 + Y for the electric charge. I3 is the third component of the isospin.

We can see in table 2.1 that neutrinos (the electrically neutral leptons) do not have

a strong charge, and therefore do not underly strong interactions described by the
gauge group SU(3)C , the so-called quantum chromodynamics (QCD). Thus we may
explain all phenomena concerning neutrinos by the so-called electroweak (EW) theory

(or Glashow–Salam–Weinberg model of electroweak interaction), which is based on
the gauge group

GEW = SU(2)L ×U(1)Y . (2.2)

2.1.1 Interactions

The weak interaction is given by

LI = − g√
2

[

(jαl + Jα
h )W

+
α +H.c.

]

− g

cos θW
KαZ

α, (2.3)

which perfectly describes the interactions of neutrinos. Here, the charged leptonic
current is defined as

jαl = νeLγαeL + νµLγαµL + ντLγατL, (2.4)
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mu = 1.5 to 3.3MeV md = 3.5 to 6.0MeV

mc = 1.27+0.07
−0.11GeV ms = 104+26

−34MeV

mt = (171.2± 2.1)GeV mb = 4.20+0.17
−0.07GeV

me = (0.510998910± 0.000000013)MeV mτ = (1776.84± 0.17)MeV

mµ = (105.658367± 0.000004)MeV mp = (938.27203± 0.00008)MeV

mW = (80.398± 0.025)GeV mZ = (91.1876± 0.0021)GeV

GF = 1.16637(1)× 10−5GeV−2 g = 0.652

Table 2.2: Masses and constants in the SM (taken from [20]). The value of g is calcu-

lated via GF√
2

= g2

8m2
W

.

and the charged hadronic current as

Jα
h = uLγαdmix

L + cLγαsmix
L + tLγαbmix

L . (2.5)

The mixed quark fields are given by

dmix
L = ∑

q=d,s,b

VuqqL, s
mix
L = ∑

q=d,s,b

VcqqL, and bmix
L = ∑

q=d,s,b

VtqqL, (2.6)

where V is the 3× 3 Cabibbo–Kobayashi–Maskawa (CKM) mixing matrix [21, 22].
The neutral current may be written as

Kα = ∑
q

[ǫL(q)qLγαqL + ǫR(q)qRγαqR] +
1

2 ∑
ν

νLγανL +
1

2 ∑
l

lγα(g
l
V − γ5g

l
A)l. (2.7)

The parameters ǫL(q), ǫR(q), glV , and glA can be calculated in terms of the Weinberg

angle θW . We do not want to go into more detail concerning neutral current interac-
tions as double beta decay is driven by the charged currents.

2.1.2 Fermion Masses

In table 2.1 we can see that left- and right-handed fermion fields have different quan-
tum numbers. Left-handed fields are doublets under SU(2)L, whereas right-handed
fields are singlets. Hence, a bare mass term for fermions is forbidden, as it would not

be a singlet of the SM gauge group.1

1Note that gauge invariance forces all the gauge bosons to be massless, too. This situation is different
from what we observe, as we know that the gluons and the photon (a linear combination of W3



6 Chapter 2. Neutrino Theory

Experiments, however, tell us that quarks and charged leptons (we will talk about
the origin of neutrino masses later) are massive. Therefore, a mechanism has to be

introduced to generate these masses. In the SM, SSB via the famous Higgs mechanism
leads to the observed masses [23–25]. Introducing a scalar boson φ, which is a doublet

under SU(2)L (cf. table 2.1), we may form so-called Yukawa terms, for example,

LY = −Yl
abl

a
LφebR +H.c., (2.8)

where sums over repeated indices are implied. Yl is the leptonic Yukawa matrix and
a, b = e, µ, τ are family indices. When now the neutral component of φ acquires

a non-zero vacuum expectation value2 (VEV) 〈φ0〉 = v/
√
2 and SU(2)L × U(1)Y

spontaneously breaks down to U(1)em, we obtain a Dirac mass term for the charged

leptons:

LD = − v√
2
Yl
abe

a
Le

b
R + H.c. (2.9)

Note that neutrino masses cannot be generated in this way in the SM because right-

handed neutrinos are absent. The next section will be dedicated to the question of
neutrino masses.

2.2 Neutrino Masses

As was already mentioned in the last section, neutrinos are absolutely massless in
the Standard Model because right-handed neutrinos are absent and any mass term
has to connect left- and right-handed components. Thus neutrino masses require

the introduction of some kind of New Physics. We discuss possible mass terms for
neutrinos in this section. This discussion is of a general type, and we only describe

possible mass terms without referring to particular New Physics models or scalar
sectors generating these mass terms.

and B0) are massless, but there exist two electrically charged vector bosons (W±) and an electrically
neutral boson (Z0) which are massive. They obtain their masses by eating the Goldstone bosons
which appear when the gauge symmetry is spontaneously broken. We will not discuss their masses
here, as we are mainly interested in neutrino masses.

2This happens if the ground state of the Higgs potential is not invariant unter the symmetry group
of the theory.
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2.2.1 Dirac Mass Term

Although absent in the SM, we may introduce three right-handed singlet neutrinos3

nlR, in addition to the three left-handed neutrinos νlL, and form a mass term in
analogy to the ones for quarks and charged leptons:

LD = −νkLM
kl
DnlR +H.c., (2.10)

where k, l = e, µ, τ are flavor indices and MD is the 3× 3 Dirac neutrino mass matrix.

2.2.2 Majorana Mass Term

When we use the charge conjugate field (νL)
c, which is right-handed, we may build a

mass term without introducing additional right-handed singlet fields. We can write

LL
M = −1

2
νkLM

kl
L (νlL)

c + H.c. (2.11)

Although we did not have to introduce new particles in addition to the particle con-

tent of the SM to form this mass term, note that it is not possible to form Majorana
mass terms in the SM. νL and (νL)

c have the same quantum numbers, as they are in
the same representation of the gauge group. Table 2.1 shows that the SM does not

contain fermions with zero hypercharge Y. Therefore, a bare Majorana mass term
is forbidden by gauge invariance. Moreover, there is no scalar boson with the right

quantum numbers to form a gauge singlet with the bilinear νL (νL)
c, so the Majorana

mass term cannot be generated via SSB. In addition, a Majorana mass term violates
lepton number by two units. Lepton number, however, is only an accidental symme-

try of the SM.

Of course, we may also introduce the right-handed singlet fields nlR as before,4 and
write a Majorana mass term for them, too:

LR
M = −1

2
(nkR)cMkl

RnlR +H.c. (2.12)

Here, ML and MR are the 3× 3 Majorana mass matrices for left- and right-handed
neutrinos, respectively.

3We use a different symbol for the right-handed neutrinos to make clear that they are additional
particles. This becomes more important in the case of a Majorana neutrino mass term, where the
Majorana condition leads to the relation (νL)

c = νR. Note that νL is part of the lepton doublet,
whereas nR is a total singlet under the SM gauge group. We think that a different notation avoids
possible confusion.

4The right-handed neutrinos have zero hypercharge.
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2.2.3 Most General Neutrino Mass Term

Combining Dirac and Majorana mass terms, the most general neutrino mass term

may be written as

LD+M = −1

2
νkLM

kl
L (νlL)

c − νkLM
kl
DnlR − 1

2
(nkR)cMkl

RnlR + H.c. (2.13)

If we now define

NL =





νL

(nR)c



 , (2.14)

we can rewrite equation (2.13) in the form

LD+M = −1

2
(NL)cMνNL + H.c., (2.15)

with

Mν =





ML MD

MT
D MR



 , (2.16)

where MD is a complex 3× 3 matrix, and ML and MR are symmetric complex matri-

ces.

2.3 Seesaw Mechanism

The seesaw mechanism provides an interesting possibility to generate small but non-
zero neutrino masses. We want to give a short motivation for this section by showing

that in the case of Dirac masses generated via the Higgs mechanism, extreme fine
tuning would be necessary to obtain neutrino masses of the expected size. This

problem is somehow obvious, as experiment tells us that neutrino masses are by
many orders of magnitude smaller than the masses of quarks and charged leptons
(cf. sections 2.5 and 2.6).

Let us introduce, as before, right-handed neutrinos nR in addition to the fields of
the SM. Then the neutrino mass term could have the following form:

Lmass = −νLYνφnR, (2.17)

with Yν being the Yukawa coupling, νL being the SM left-handed neutrino, and φ

being the SM Higgs doublet. When φ acquires a VEV, we obtain a Dirac neutrino
mass of the size mD = Yνv/

√
2, where v ≈ 246GeV is the usual value of the SM Higgs

VEV. To obtain a neutrino mass of the desired order of 1 eV (or even less) [26, 27], the
Yukawa coupling Yν must be at most of the order 10−11. It is obvious that this value is
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an unnatural one and would require extreme fine tuning. Thus it is not very probable
that the tiny neutrino masses are generated by the Higgs mechanism. Let us discuss

situations in this section that do not suffer from these problems and provide a natural
explanation for small neutrino masses.

2.3.1 Type I Seesaw

Type I seesaw assumes a particular form of the neutrino mass matrix given in equa-
tion (2.16). We will do the calculations for the case of one generation of neutrinos

first. Let the neutrino mass matrix have the form

Mν ≡





0 MD

MD MR



 , (2.18)

where MD and MR are taken to be real numbers, for simplicity. Type I seesaw as-
sumes additionally that MD is generated by the Higgs mechanism, so that its value

is of the order of the electron mass. Furthermore, MR ≫ MD. Then, this matrix can
be easily diagonalized using

O =





cos θ − sin θ

sin θ cos θ



 with tan 2θ =
2MD

MR
. (2.19)

One obtains5

OMνOT =





−m1 0

0 m2



 , (2.20)

where the eigenvalues are given as

m1,2 =

∣

∣

∣

∣

1

2

(

√

M2
R + 4M2

D ∓ MR

)∣

∣

∣

∣

. (2.21)

For MR ≫ MD these are approximately

m1 =
M2

D

MR
and m2 = MR. (2.22)

The corresponding mass eigenstates are





ν1

ν2



 =





cos θ − sin θ

sin θ cos θ









ν

n



 =





ν cos θ − n sin θ

ν sin θ + n cos θ



 ≈





ν

n



 . (2.23)

5The minus for m1 can be absorbed into a redefinition of the field ν1 in the mass basis.
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Thus we have for the mass of the light neutrinos

mν = m1 =
M2

D

MR
, (2.24)

and for the masses of the heavy neutrinos

mn = m2 = MR. (2.25)

The case of three generations will be discussed in the next subsection, where we

calculate the type II seesaw for three generations. Type I seesaw then is a special case
of type II seesaw.

2.3.2 Type II Seesaw

In type II seesaw, we take the neutrino mass matrix to be of the most general form,
as given in equation (2.16). However, we make additional assumptions, namely that

the eigenvalues of ML are much smaller than the eigenvalues of MD, which in turn
are much smaller that the eigenvalues of MR. Our goal then is to block-diagonalize

Mν with a unitary matrix U such that

Mdiag
ν = UTMνU . (2.26)

Consider

U =





1 A

−A† 1



 , (2.27)

where A is a 3× 3 matrix, with all entries Aik ≪ 1. Then we have

U †U =





1 + AA† 0

0 1+ A†A



 , (2.28)

which is the unit matrix up to terms quadratic in A. Thus U is unitary to a good
approximation. We may then calculate

UTMνU =





1 −A∗

AT 1









ML MD

MT
D MR









1 A

−A† 1





=





ML −MDA
† − A∗MT

D + A∗MRA
† MLA + MD − A∗MT

DA− A∗MR

ATML − ATMDA
† + MT

D −MRA
† ATMLA + ATMD + MT

DA + MR



 .

(2.29)
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With our initial assumptions on the sizes of the eigenvalues of MD, ML, and MR,
and the fact that A ≪ 1, we may neglect many terms, such that we arrive at

UTMνU =





ML −MDA
† − A∗(MT

D − MRA
†) MD − A∗MR

MT
D − MRA

† MR



 . (2.30)

We may now choose

A† = M−1
R MT

D, (2.31)

which has entries much smaller than one, and which gives

A∗ = MDM
−1
R , (2.32)

as MR is symmetric. Thus we finally find

UTMνU =





ML −MDM
−1
R MT

D 0

0 MR



 . (2.33)

The block matrices in this expression are the mass matrices for the light and heavy
neutrinos, respectively. It is now easy to see that the three family case of seesaw type

I is just a special case of this formula, given by ML = 0. We then have

Mν = −MDM
−1
R MT

D and Mn = MR (2.34)

for the mass matrices of the light and heavy neutrinos.

2.4 Neutrino Mixing

From the fact that neutrinos are massive, we know that the neutrino mass eigenstates
can be different from the flavor eigenstates. We say that neutrinos mix. The flavor

fields, which enter the charged current, are given by

νlL(x) =
3

∑
i=1

UliνiL(x), with l = e, µ, τ. (2.35)

U is the 3× 3 Pontecorvo–Maki–Nakagawa–Sakata [1, 2, 28] (PMNS) neutrino mixing
matrix, and νi, i = 1, 2, 3, are the light neutrino mass eigenstates.

In a framework containing three light neutrino species, the matrix U is assumed to

be unitary. The typical parameterization is [29]

U =











c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13











diag
(

1, eiα, ei(β+δ)
)

.

(2.36)
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parameter best fit 2σ 3σ

∆m2
21 [10−5 eV2] 7.59+0.23

−0.18 7.22− 8.03 7.03− 8.27

|∆m2
31| [10−3 eV2] 2.40+0.12

−0.11 2.18− 2.64 2.07− 2.75

sin2 θ12 0.318+0.019
−0.016 0.29− 0.36 0.27− 0.38

sin2 θ23 0.50+0.07
−0.06 0.39− 0.63 0.36− 0.67

sin2 θ13 0.013+0.013
−0.009 ≤ 0.039 ≤ 0.053

Table 2.3: Three-flavor neutrino oscillations parameters, as calculated in [31].

Here, the usual conventions are used: cij = cos θij, sij = sin θij, δ is the Dirac CP-
violation phase, and α, β are the two Majorana CP-violation phases.

2.5 Three-Flavor Neutrino Oscillation Parameters

As we already stated before, neutrino mixing leads to neutrino oscillations (and ac-

tually these are the only experimental evidence that neutrino mixing takes place).
We do not want to enter more deeply into the theory of neutrino oscillations, but

just state that by measuring neutrino oscillations of different sources (solar, atmo-
spheric, or reactor neutrinos) we have access to the mass-squared differences and the
mixing angles. There have been recent updates of the best-fit values for the three-

flavor neutrino oscillation parameters. Gonzalez-Garcia, Maltoni, and Salvado [30],
and Schwetz, Tórtola, and Valle [31] have done such calculations. Table 2.3 gives the

values of the latter paper, updated in February 2010. We will use these values in the
remainder of this thesis.

2.6 Neutrino Mass Observables

The PMNS matrix diagonalizes the neutrino mass matrix whose eigenvalues are the

neutrino masses mi, i = 1, 2, 3. There exist three observables related to these masses,
which we will shortly describe in this section. All of these observables are measured
in different experiments, which are on-going or up-coming. Besides the measurement

of an absolute neutrino mass scale, these experiments can (alone or in combination)
possibly answer the question if neutrinos are Dirac or Majorana particles.

• Kinematical mass mβ: It is measurable in ordinary beta decay experiments, and
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is defined as

mβ =

√

√

√

√

3

∑
i=1

|Uei|2m2
i . (2.37)

Its current upper limit is 2.3 eV [27]. The up-coming experiment KATRIN [32]
is expected to push this limit by about one order of magnitude.

• Effective mass |mee|: It is measurable in neutrinoless double beta decay, and is
defined as

|mee| =

∣

∣

∣

∣

∣

3

∑
i=1

U2
eimi

∣

∣

∣

∣

∣

. (2.38)

Note that this mass parameter actually is the modulus of the ee-entry of the
Majorana neutrino mass matrix. Its current upper limit is about 1 eV (the

IGEX experiment gives |mee| ≤ (0.33 − 1.35) eV, depending on the choice of
nuclear matrix elements [9]), if one assumes that neutrinoless double beta de-
cay is mediated exclusively by light neutrino exchange. The up-coming ex-

periment GERDA [13] is searching for neutrinoless double beta decay in 76Ge
and is expected to be sensitive to T0ν

1/2 = 2 × 1026 y, which corresponds to

|mee| ≤ (0.09− 0.29) eV.

• Sum of neutrino masses Σ: It is extracted from cosmological observations, and
is defined as

Σ =
3

∑
i=1

mi. (2.39)

The current upper limit is 0.58 eV from the WMAP seven year data [33].

2.7 Effective Mass |mee|
In this section, we want to discuss the effective Majorana neutrino mass |mee| a little

bit further, as it is the mass parameter measured in neutrinoless double beta decay.
The amplitude of neutrinoless double beta decay is proportional to (cf. chapter 3)

∑
j

U2
ej

mj

p2 −m2
j

. (2.40)

The momentum is given by the nuclear scale, which means that we have for the

typical momentum square

〈p2〉 ≈ 1

r2
, (2.41)

where r is the distance between two nucleons. With r ≈ 10−13 cm, one finds

〈p2〉 ≈ (100MeV)2. (2.42)



14 Chapter 2. Neutrino Theory

We know that the light neutrino masses are of order 1 eV, so we can expand the
fraction inside the sum and arrive at

∑
j

U2
ej

mj

p2 −m2
j

=
1

p2 ∑
j

U2
ej

mj

1−m2
j /p

2

=
1

p2 ∑
j

U2
ejmj

(

1+
m2

j

p2
+O

(

m4
j

p4

))

=
1

p2 ∑
j

U2
ejmj +

1

p4 ∑
j

U2
ejm

3
j + . . .

(2.43)

We can see that the leading order of the amplitude indeed contains mee. Should it
vanish for some reason (for example, an accidental cancellation), the next-to-leading

order will be proportional to
M3

ee ≡ ∑
j

U2
ejm

3
j . (2.44)

Using the parameterization of the PMNS matrix given in equation (2.36), we can
rewrite mee as

mee = c213

(

m1c
2
12 + ei2αm2s

2
12

)

+ ei2βm3s
2
13. (2.45)

The neutrino oscillation data given in table 2.3 shows that the solar mass-squared
difference ∆m2

21 is much smaller than the modulus of the atmospheric mass-squared
difference ∆m2

31. Additionally, the sign of ∆m2
31 is unknown. Therefore, for three mas-

sive neutrinos, basically two different types of neutrino mass spectrum are possible:

• Normal spectrum, that means, m1 < m2 < m3. In this case, ∆m2
31 > 0.

• Inverted spectrum, that means, m3 < m1 < m2. In this case, ∆m2
31 < 0.

Of course, if the lightest mass eigenvalue (m1 or m3, depending on the spectrum) is
much bigger than the mass-squared differences, both spectra merge into the so-called

degenerate spectrum, where
m1 ≈ m2 ≈ m3. (2.46)

Here, we want to discuss the normal spectrum, as it is the only case where mee may
vanish due to accidental cancellation. For normal mass ordering, we may calculate
m2 and m3 as functions of m1:

m2 =
√

m2
1 + ∆m2

21 and m3 =
√

m2
1 + ∆m2

31. (2.47)

Now, we can write mee as a function of m1:

mee = c213

(

m1c
2
12 + ei2αs212

√

m2
1 + ∆m2

21

)

+ ei2βs213

√

m2
1 + ∆m2

31. (2.48)
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The same is possible with the expression for the next-to-leading order

M3
ee = c212c

2
13m

3
1 + s212c

2
13e

i2α(m2
1 + ∆m2

21)
3/2 + s213e

i2β(m2
1 + ∆m2

31)
3/2. (2.49)

We can then plot the leading order and the next-to-leading order of the effective

mass as a function of the smallest neutrino mass eigenvalue m1. As we do not know
anything about the Majorana phases α and β, we have to vary them over the interval
[−π,π]. Moreover, for the neutrino oscillation parameters we will use best fit values

and vary them within the 3σ bounds, respectively. Figure 2.1 shows the plots for

|mee| and
∣

∣M3
ee

∣

∣ for different values of sin2 θ13. The data for the plots was generated

using a Fortran program with a random number generator. We can see that there is
indeed a range of m1 where |mee| may vanish (depending on the Majorana phases).

This range becomes larger for higher vales of sin2 θ13. Of course, the situation is
similar for

∣

∣M3
ee

∣

∣. However, a close look at the plots reveals that the ranges where the
two expressions vanish do not necessarily coincide for a given sin2 θ13. Thus, there is

indeed the possibility that neutrinoless double beta decay is driven by
∣

∣M3
ee

∣

∣ instead
of |mee|.

Let us calculate the expected half-life, assuming that the next-to-leading order is
responsible for neutrinoless double beta decay. We will consider the case of sin2 θ13 =
0, the only case for which we may explicitly calculate the value of m1 when |mee| is
zero. From equation (2.48) we obtain in this case

m1 =

∣

∣

∣

∣

∣

∆m2
21

c212 − s212

∣

∣

∣

∣

∣

1/2

. (2.50)

Using the best fit values from table 2.3, we can calculate

m1 = 0.0109 eV. (2.51)

From figure 2.1, we can see that in this case
∣

∣M3
ee

∣

∣ is of the order 10−7. We have to
correct with a factor of 〈p2〉, an thus obtain

T0ν
1/2 =

(

∣

∣

∣

∣

M3
ee

〈p2〉

∣

∣

∣

∣

2
∣

∣

∣
M0ν

∣

∣

∣

2
G0ν

)−1

≈ 1070 y, (2.52)

a value which is far beyond experimental reach. Should the leading order of the
effective mass indeed vanish, we have almost no chance to probe neutrinoless double
beta decay experimentally (as long as there is no other mechanism giving a sizeable

contribution, cf. chapter 5).

2.8 Spinors in Four Dimensions

In this section, we will discuss basic facts about spinors in four dimensions. We will
work in the chiral basis of gamma matrices as is used for example in the textbook by
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Figure 2.1: Plot of |mee| and
∣

∣M3
ee

∣

∣ for different values of sin2 θ13.
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Peskin and Schroeder [34]. However, note that the results of the discussion will be
independent of the particular basis used.

The gamma matrices γµ (µ = 0, . . . , 3) in the chiral basis are given by

γµ =





0 σµ

σµ 0



 , where σµ = (1,σ) and σµ = (1,−σ) . (2.53)

Here, 1 is the 2× 2 identity matrix and σ = (σ1, σ2, σ3) are the conventional Pauli
matrices given in appendix A.4. As usual, we define

γ5 ≡ iγ0γ1γ2γ3 =





−1 0

0 1 . (2.54)

The projection operators for left- and right-handed spinors have the well-known form

PL =
1

2
(1− γ5) and PR =

1

2
(1 + γ5). (2.55)

Now one can decompose an arbitrary Dirac spinor ψ into two spinors ψL and ψR as

ψ = ψL + ψR =
1

2
(1− γ5)ψ +

1

2
(1 + γ5)ψ. (2.56)

Another way to write an arbitrary 4-component (Dirac) spinor is

ψ =

(

ξ

η

)

, (2.57)

where ξ and η are 2-component spinors, and η is defined as

η ≡ iσ2η∗. (2.58)

Note that this definition is different from the one of the adjoint spinor, which is given
by

ψ = ψ†γ0. (2.59)

In this formalism, a conventional Dirac mass term can be written as

Lmass
D = mDψψ = mD

(

ψRψL + ψLψR

)

= mD

(

ηTiσ2ξ − ξ†iσ2η∗
)

= mD

(

ξ†η − ηTξ
∗)

. (2.60)

From the definition in equation (2.57) one can see that ξ and η must carry the same

lepton number. Therefore, as one may easily check, this Dirac mass term preserves
lepton number.
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As in this thesis we are mainly interested in Majorana neutrinos, we have to intro-
duce a charge conjugation operation. Let us define

ψc = Cψ
T

= Cγ0ψ∗, (2.61)

where the charge conjugation matrix C satisfies

C−1γµC = −γT
µ . (2.62)

The Majorana condition
ψ = ψc (2.63)

then defines a Majorana spinor.
It is clear that ψc should be properly normalized whenever ψ is. Therefore Cγ0

should be unitary, and from the unitarity of γ0 the unitarity of C follows directly. So
we have

C† = C−1. (2.64)

Furthermore, for the definition of the charge conjugation being sensible, we must
require

(ψc)c = ψ. (2.65)

This condition gives CC∗ = −1, or alternatively

CT = −C. (2.66)

A widely used representation for the charge conjugation matrix in four dimensions
is

C = iγ2γ0 =





−iσ2 0

0 iσ2



 . (2.67)

Note that an additional minus comes from the fact that in this definition γ2 has a
lower index (γ0 = γ0, but γi = −γi, i = 1, 2, 3).

In constructing Majorana mass terms we need the charge conjugate spinor ψc. We

may write it in a slightly different way:

ψc = (ψc)† γ0 = (−γ0Cψ∗)† γ0 = −ψTC−1γ†
0γ0 = −ψTC−1. (2.68)

Using now the definitions in equations (2.57) and (2.67), we may write the Majorana
mass term as

Lmass
M = mMψcψ = −mMψTC−1ψ

= mM

(

η†iσ2η∗ − ξT iσ2ξ
)

= mM

(

ξTξ
∗ − η†η

)

. (2.69)

It can now be seen easily that the Majorana mass term violates lepton number, in

contrast to the Dirac mass term given before.



Chapter 3

Basics of Neutrinoless Double Beta Decay

This chapter is aimed to be a short review of important aspects of neutrinoless double
beta decay.

3.1 Different Beta Decays

In some special arrangement of nuclei with values of atomic number Z differing by

one, it is possible that single beta decay, that is, the transition

(A,Z) → (A,Z + 1) + e− + νe (3.1)

is energetically forbidden. Here, A is the total number of nucleons in the nucleus and
νe denotes the electron anti-neutrino. In this case, another process may be allowed,

which is called double beta decay:

(A,Z) → (A,Z + 2) + e− + e− + νe + νe. (3.2)

It is denoted by 2νββ. This process is second order in the weak Hamiltonian, and
thus occurs rarely. Nevertheless, it has been detected experimentally and half-lives

have been measured. Depending on the nucleus involved, half-lives vary roughly
between 1019 and 1021 y. Single beta decay, as well as double beta decay, conserves

lepton number and is therefore possible in the SM. Many models for physics beyond
the SM predict lepton number violation. Should lepton number indeed be broken
in Nature, another form of double beta decay is possible, the so-called neutrinoless

double beta decay (denoted by 0νββ). It is the transition

(A,Z) → (A,Z + 2) + e− + e−. (3.3)
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Figure 3.1: Energy distribution for the emitted electrons in double beta decays: (1)
2νββ, (2) 0νββ, (3) 0νββ with majoron emission (Figure taken from [35]).

W

νL

νL

W

dL

dL

uL

e−L , p2

e−L , p1

uL

p

Figure 3.2: Momentum assignment for the calculation of the amplitude of neutrino-
less double beta decay mediated by neutrino exchange.

The two different double beta decays may be distinguished by the energy distribu-

tion of the emitted electrons. Figure 3.1 gives more details.

Until today, 0νββ has not been observed experimentally.1 Nevertheless, stringent
bounds on the half-lives of different elements have been extracted from experiments.
Limits are of the order 1025 y (table 3.2 gives an overview). Thus it is clear that this

process is much rarer than 2νββ.

3.2 Amplitudes for the Neutrino Mass Mechanism

The most obvious realization of neutrinoless double beta decay of course is neutrino
exchange. However, as we will see later, this realization is not the only one which

1Note that one claim for a positive signal of 0νββ exists. A subgroup of the Heidelberg-Moscow
collaboration gives the half-life T0ν

1/2 = 1.98× 1025 y [10].
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may give 0νββ. We must find a possibility to compare different contributions, and to
decide which is the dominant one in a specific model. This is done best by comparing

the amplitudes of the decay in different realizations. In this section, we calculate and
compare the amplitudes of light and heavy neutrino exchange, which may occur

in almost any extension of the Standard Model. A diagram with the momentum
assignments used is given in figure 3.2. The matrix element for neutrino exchange
(light or heavy) is

Mµλ = ∑
i

(

eL(p1)γµUei

)

α
(eL(p2)γλUei)β S

′
Fi(p)

αβ − (p1 ↔ p2) , (3.4)

where p1 and p2 are the momenta of the outgoing electrons, and p is the momen-
tum of the virtually exchanged neutrino. S′F(p) is the propagator for the Majorana
neutrino and can be written as

S′F(p) = λ∗SF(p)C, (3.5)

where C is the charge conjugation matrix, λ is a phase, and SF(p) is the usual (Dirac)

propagator for leptons given by

SF(p) =
p/ + m

p2 −m2 + iǫ
. (3.6)

So we can write

Mµλ = ∑
i

λ∗ (eL(p1)γµUei

)

SFi(p)C (eL(p2)γλUei)
T − (p1 ↔ p2) . (3.7)

After some algebra we arrive at

Mµλ = −λ∗gµλ ∑
i

U2
eimi

p2 −m2
i

eL(p1)CeL
T(p2). (3.8)

As before, we may take 〈p2〉 ≈ (100MeV)2 for the typical momentum square [see
equation (2.42)]. So we can approximate this formula for the two extreme cases

of light (m2
i ≪ 〈p2〉) and heavy (m2

i ≫ 〈p2〉) neutrinos, and finally calculate the
amplitude for neutrinoless double beta decay by integrating out the heavy W boson

fields.

3.2.1 Light Neutrino Exchange

In the case of m2
i ≪ 〈p2〉 we can write

Mµλ = −λ∗gµλ ∑
i

U2
eimi

〈p2〉 eL(p1)CeL
T(p2). (3.9)

Thus we obtain for the amplitude

Aν =

(

g√
2

)4 1

M4
W

∑
i

U2
eimi

〈p2〉 . (3.10)
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Nucleus G0ν(Q,Z)/10−25 y−1eV−2

76Ge 0.30

100Mo 2.19

130Te 2.12

136Xe 2.26

Table 3.1: Some phase space integrals G0ν(Q,Z) for neutrinoless double beta decay
(Values taken from [38]).

3.2.2 Heavy Neutrino Exchange

In the case of m2
i ≫ 〈p2〉 we can write

Mµλ = λ∗gµλ ∑
i

U2
ei

mi
eL(p1)CeL

T(p2). (3.11)

Thus we obtain for the amplitude

AN =

(

g√
2

)4 1

M4
W

∑
i

U2
ei

mi
. (3.12)

3.3 Decay Rate

3.3.1 Light Neutrino Exchange

The total decay rate of neutrinoless double beta decay (if mediated by light neutrino

exchange) is given by [36]

Γ0ν

ln 2
=

1

T0ν
1/2

= |mee|2
∣

∣

∣
M0ν

∣

∣

∣

2
G0ν(Q,Z). (3.13)

Here, T0ν
1/2 is the half-life of 0νββ, and |mee| is the effective Majorana mass of the

electron neutrino, which was discussed in section 2.6. M0ν is the nuclear matrix
element, which depends on the nucleus under consideration, and G0ν(Q,Z) is the
corresponding phase space integral. The calculation of the total decay rate for neutri-

noless double beta decay is a rather lengthy process. It can be found in the reviews
by Bilenky and Petcov [37] and Bilenky [36]. Some phase space integrals G0ν(Q,Z)
are given in table 3.1. Limits on the half-lives T0ν

1/2 for different nuclei are given in
table 3.2.
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Experiment Nucleus T0ν
1/2

Heidelberg-Moscow [39] 76Ge ≥ 1.9× 1025 y

IGEX [9] 76Ge ≥ 1.57× 1025 y

CUORICINO [11] 130Te ≥ 0.3× 1025 y

NEMO-3 [12] 48Ca ≥ 1.3× 1022 y

NEMO-3 [12] 82Se ≥ 2.1× 1023 y

NEMO-3 [12] 96Zr ≥ 8.6× 1021 y

NEMO-3 [12] 100Mo ≥ 5.8× 1023 y

NEMO-3 [12] 150Nd ≥ 1.8× 1022 y

Table 3.2: Limits on the half-lives T0ν
1/2 of 0νββ for different nuclei.

3.3.2 Heavy Neutrino Exchange

If neutrinoless double beta decay is mediated by heavy neutrino exchange, the for-

mula for the decay rate has to be modified slightly. In the case of mediation by light
neutrinos, we have

Aν ∝
mee

〈p2〉 , (3.14)

where the typical momentum square 〈p2〉 can be taken to be 〈p2〉 ≈ (100MeV)2 as

before. In the case of mediation by heavy neutrinos, the amplitude of the process is

AN ∝
1

MN
= ∑

i

U2
ei

mi
. (3.15)

So taking the same phase space integral and nuclear matrix element as in the case of
light neutrino exchange [cf. equation (3.13)] for simplicity, we can get an approximate

formula for the total decay rate in the case of heavy neutrino exchange:

Γ0ν

ln 2
=

1

T0ν
1/2

=
(100MeV)4

|MN |2
∣

∣

∣
M0ν

∣

∣

∣

2
G0ν (Q,Z) . (3.16)

3.3.3 New Physics Processes

Usually the contribution of light neutrino exchange is taken to be the leading one.

However, there are various possible contributions from New Physics beyond the Stan-
dard Model (right-handed currents, Higgs triplets, supersymmetric particles, etc.), for
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which the formula for the measured half-life of the decay is given by (see Deppisch
and Päs [40] for a more detailed discussion):

[

TNP
1/2

]−1
= ε2NPGNP

∣

∣

∣
MNP

∣

∣

∣

2
. (3.17)

In this equation, MNP is the nuclear matrix element for the underlying New Physics
mechanism and GNP is the corresponding phase space integral. εNP denotes the
effective coupling strength of the New Physics process. Therefore, results of the

on-going experiments will crucially depend on the determination of the underlying
mechanism.

3.4 Nuclear Matrix Elements

As is easy to see from equation (3.13), a measurement of only the half-life T0ν
1/2 does

not allow to extract the effective Majorana neutrino mass |mee|. Additionally, the so-
called nuclear matrix elements (NMEs) M0ν have to be calculated. Their calculation

is a problem of nuclear physics, and a many-body problem. Hence approximations
have to be used. At the moment, there are two approaches being under consideration:

The Nuclear Shell Model (NSM) [41] and the Quasi-Particle Random Phase Approxi-
mation (QPRA) [42, 43]. The outcomes of the two approaches differ significantly, but
it is difficult to say which one gives the better values. A nice review of the different

approaches and an informative discussion can be found in [44].
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The Schechter–Valle Theorem

In this chapter, we re-examine the well-known Schechter–Valle theorem (often called
Black Box theorem) [15]. We find that the theorem is of merely academic interest,

as the mass generated via the well-known diagram (see figure 4.1) is many orders
of magnitude smaller than the expected size of the neutrino masses. We also com-

ment on the extended Black Box theorem, which is an extension of the usual Black
Box theorem in the presence of arbitrary lepton number and lepton flavor violating
processes.

4.1 Schechter–Valle Theorem (Black Box Theorem)

The famous Schechter–Valle theorem (Black Box theorem) [15], which was established
in 1982, relates neutrinoless double beta decay and a non-zero effective Majorana
electron neutrino mass. The argument of Schechter and Valle can easily be explained

using figure 4.1.
Effectively, neutrinoless double beta decay may be seen as a scattering amplitude

for 0 → d d u u e e, as under the assumption that the weak interaction is described

νe

W

e−

d u u

e−

d

νe

W

Figure 4.1: Contribution to the Majorana neutrino mass, as suggested in [15].
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by a local gauge theory, crossing symmetry will hold (this result is a rather general
one from quantum field theory, a proof can be found in the textbook by Peskin and

Schroeder [34], p. 222 ff.). One only has to assume additionally that the gauge theory
includes interactions of W gauge bosons with left-handed electrons and neutrinos,

as well as with left-handed u and d quarks. Then, it will be possible to draw the
diagram in figure 4.1, so that neutrinoless double beta decay can be used to generate
a non-zero effective Majorana mass for the electron neutrino, no matter which is the

underlying mechanism of the decay. The Black Box may contain any mechanism
imaginable in New Physics scenarios.

There is one subtlety: The diagram in figure 4.1 is certainly not the only one that
could generate a non-zero effective Majorana mass for the electron neutrino. Other
diagrams (albeit including more loops) do exist. So there is the possibility of a cancel-

lation. Clearly, the precise cancellation of all diagrams which include the Black Box
would require some form of fine tuning of parameters, and would therefore be un-

natural. There is, however, the possibility of a symmetry protecting the cancellation
to all orders in perturbation theory.

Taking into account this possibility of cancellations, Takasugi [45] and Nieves [46]

improved the argument of Schechter and Valle [15], and showed that there cannot
be a continuous or discrete symmetry protecting a vanishing Majorana mass to all

orders in perturbation theory. We will follow the arguments of Takasugi [45] here.
He assumed an unbroken discrete symmetry protecting the Majorana neutrino mass
together with the two additional assumptions that

1. the u and d quarks and the electron are massive and

2. the standard left-handed interaction
(

νeLγµeL + uLγµdL
)

Wµ exists.

These two assumptions are necessary to assure that two identical neutrinos are cre-

ated. This can be seen in the following way: We do not know anything about the
chirality of the electrons and quarks produced by neutrinoless double beta decay.
The first assumption, however, assures that we can make the particles running in the

loops in figure 4.1 left-handed, by mass insertion if necessary. Thus the standard left-
handed interaction from the second assumption produces the same neutrino at both

vertices. Otherwise it would be possible that a neutrino and an antineutrino would
be created, which would give a Dirac mass term.

We may then check whether the discrete symmetry introduced by Takasugi [45] is

compatible with 0νββ decay. The symmetry is the following (the η’s are global phase
factors):

νeL → ηννeL, eL → ηeeL, qL → ηqqL(q = u, d), W
+µ
L → ηWW

+µ
L . (4.1)

To forbid the Majorana mass term, one needs to have

η2
ν 6= 1 (4.2)
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and the invariance of the left-handed interaction requires

η∗
ν ηeηW = η∗

uηdηW = 1. (4.3)

However, the existence of 0νββ (that is, the process dL + dL → uL + uL + eL + eL)
implies

η2
uη∗2

d η2
e = 1. (4.4)

It is easy to see that the equations (4.2), (4.3), and (4.4) cannot be solved simul-
taneously. Thus, if the Majorana mass term is forbidden by an unbroken discrete

symmetry, there will be no neutrinoles double beta decay. On the other hand, if
neutrinoless double beta decay exists, there cannot be a symmetry protecting the Ma-

jorana mass and the term will be induced (the possibility of accidental cancellation
to all orders in perturbation theory is not excluded, but appears to be very unlikely).

The statement of this theorem is a strong one. This becomes particularly clear when

we think of contributions to neutrinoless double beta decay from New Physics beyond
the Standard Model. Besides the usual and well-known mass mechanism involving

a virtual neutrino, in almost all New Physics models neutrinoless diagrams giving a
contribution to neutrinoless double beta decay exist. Thus the theorem states that it
is not possible to construct models without massive neutrinos but with 0νββ decay.

However, it cannot be overemphasized that the theorem so far is only a qualitative
one and does not say anything about the size of the Majorana neutrino mass. There-

fore, it is an interesting question what the mass generated by the diagram in figure 4.1
will be for different realizations of the Black Box. We will do such a calculation for
different operators using an effective field theory (EFT) approach independent of the

underlying model in section 4.3. The results will be interesting, as they reveal some
problems of the Black Box theorem.

4.2 Extended Black Box Theorem

As the classical Black Box theorem only establishes a relation between neutrinoless
double beta decay and the effective Majorana mass of the electron neutrino, but does
not take into account the mixing of νe with νµ and ντ, an extension of the theorem

to the three-generation Majorana neutrino mass matrix is needed. This was done by
Hirsch et al. [47]. Moreover, they extended the theorem to arbitrary lepton number

and lepton flavor violating processes. They found that there exists a general set of
one-to-one correspondence relations between the effective operators generating these
processes and the elements of the neutrino mass matrix.

Especially, they discussed ∆L = 2 processes described by Φk → lαlβ conserving
baryon number, which means that lepton number violation manifests itself via two

external charged leptons in the final state. Φk is a set of external particles with
B = L = 0 and electrical charge Q = −2. Note that, for a lepton number violating
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Φk

lα

lβ

W

W

ν

ν

S Mν
αβ

Figure 4.2: Contribution of the Mν
αβ entry of the Majorana neutrino mass matrix to

the effective lepton number and lepton flavor violating vertex Γαβ (Figure as in [47]).

να
νcβlα

W

Φk

lcβ

W

Γαβ

S

Figure 4.3: Contribution of the effective lepton number and lepton flavor violating
vertex Γαβ to the Mν

αβ entry of the Majorana neutrino mass matrix (Figure as in [47]).

process with the same flavor states lα and lβ different sets of external particles Φk

are possible. With a symmetry argument, similar to the one used before to prove the
classical Black Box theorem, they have shown that the following relation between the
effective lepton number and lepton flavor violating vertex Γαβ and the entry Mν

αβ of

the Majorana neutrino mass matrix exists:

Mν
αβ = 0 ⇔ Γαβ = 0. (4.5)

The corresponding diagrams are shown in figures 4.2 and 4.3.
There has been some more work on the Black Box theorem: Hirsch et al. proved

a supersymmetric version of it in [48, 49]. This version extends the relation of the
theorem to the lepton number violating scalar neutrino mass. We will not discuss

their work further, as it is not of great importance to us.

4.3 Neutrino Mass Generated by the Black Box Diagram

Now we want to calculate the mass correction which is induced by the Black Box

diagram shown in figure 4.1. We will first give a general parameterization of 0νββ

decay in terms of effective operators, and then calculate the diagram in dimensional

regularization. We will find that the Schechter–Valle theorem is not as useful as it
might seem: The mass which is generated by the diagram in figure 4.1 is many orders
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νc(p) ec(p + k1) e(p− k2)

u(k1 + q1) u(k2 + q2)

ν(p)

W(k1) d(q1) W(k2)d(q2)

Figure 4.4: Diagram to be calculated in section 4.3.

of magnitude smaller than what is expected for the neutrino mass. Moreover, there
exist operators generating 0νββ decay, but giving zero contribution to the Majorana

neutrino mass via this particular diagram. Of course, other diagrams, although more
stronly suppressed, may give a nonzero contribution also for these operators.

4.3.1 Parameterization of Neutrinoless Double Beta Decay

Reference [50] gives the most general Lorentz invariant Lagrangian contributing to
neutrinoless double beta decay, which has the following form:

L =
G2
F

2
m−1

p

(

ǫ1 J Jj + ǫ2 J
µν Jµν j + ǫ3 J

µ Jµ j + ǫ4 J
µ Jµν j

ν + ǫ5 J
µ Jjµ

)

, (4.6)

where GF is the Fermi coupling constant, and mp is the proton mass. The hadronic

currents required are given by

J = u (1± γ5) d, Jµ = uγµ (1± γ5) d, Jµν = u
i

2
[γµ,γν] (1± γ5) d, (4.7)

and the leptonic currents required are given by

j = e (1± γ5) e
c, jµ = eγµ (1± γ5) e

c. (4.8)

For all currents, different chirality structure is permitted. Note that in equation (4.6)

we have already left out the following terms which are Lorentz invariant, too:

L′ =
G2
F

2
m−1

p

(

ǫ6 J
µ Jν jµν + ǫ7 J J

µν jµν + ǫ8 Jµα J
να j

µ
ν

)

, (4.9)

where the leptonic tensor current is given by

jµν = e
i

2
[γµ,γν] (1± γ5) e

c. (4.10)

These terms were included in the Lagrangian density in [50], but neglected in the

final analysis, as the authors worked in the s-wave approximation where these con-
tributions vanish. In [51], it was pointed out that all operators proportional to

eγµe
c, e

i

2

[

γµ,γν

]

ec, and eγ5
i

2

[

γµ,γν

]

ec (4.11)
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|ǫ1| |ǫ2| |ǫLLz3 |, |ǫRRz3 | |ǫLRz3 |, |ǫRLz3 | |ǫ4| |ǫ5|

3× 10−7 2× 10−9 4× 10−8 1× 10−8 2× 10−8 2× 10−7

Table 4.1: Upper bounds for the coupling parameters in equation (4.6), calculated

in [50]. They were evaluated “on axis,” meaning that all other contributions were
set to zero to extract the limits on one of the parameters. Different chiralities in the
hadronic currents lead to different values in the case of ǫ3 only.

vanish identically because the electron fields are Grassman variables. Therefore, the
terms in equation (4.9) are not relevant for neutrinoless double beta decay.

We may have to distinguish different chiralities of the involved currents, as in
some cases the decay rate depends on them. Therefore, the authors of [50] used

the parameters ǫ
xyz
i with x, y, z = L/R to define the chiralities of the hadronic and

leptonic currents in order of appearance in equation (4.6). A suppressed chirality
index indicates that it is not necessary to distinguish different chiralities. The limits

obtained for the parameters ǫi are given in table 4.1.

4.3.2 Vertices and Propagators

The diagram we have to calculate (figure 4.4) is a non-standard one. At the effective

vertex, lepton number is violated and two electrons are produced, which leads to two
outgoing neutrinos. We want to have a continuous fermion line in our diagram, so

we have to rewrite some of the outgoing fields as incoming charge conjugate fields.
The leptonic part of the standard electroweak vertex is given by

g√
2

(

eγµPLνWµ + H.c.
)

. (4.12)

We are interested in the Hermitian conjugate part, which is responsible for the anni-
hilation of an incoming electron and the creation of an outgoing neutrino, and can be
written as

(

eγµPLνWµ

)†
= νγµPLeWµ. (4.13)

To rewrite it in terms of incoming charge conjugate fields, we have to transpose this
expression. We obtain

(νγµPLe)
T = ecγµPRνc, (4.14)

using the relations

CγµTC−1 = −γµ, CγT
5 C

−1 = γ5, (4.15)

and

ψc = −ψTC−1. (4.16)
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We additionally have to calculate the propagator of the charge conjugate electron
fields:

ec(y)ec(x). (4.17)

Starting from the usual electron propagator

e(x)e(y) = iSF(x− y) (4.18)

with

SF(x− y) =
∫

d4p

(2π)4
p/ + m

p2 −m2 + iǫ
e−ip(x−y), (4.19)

it is easy to see that

eT(y)eT(x) = iSTF (x− y). (4.20)

If we now rewrite expression (4.17) with the help of

ec(y) = CeT(y) (4.21)

and the relation

CSTF (x− y)C−1 = SF(y− x), (4.22)

which follows directly from equation (4.15), we obtain

ec(y)ec(x) = iSF(y− x). (4.23)

In the remainder of this section, we will work in momentum space. Therefore, a look

at equation (4.19) reveals that the change of sign in the argument of SF changes the
sign of the momentum p/. We thus have in momentum space

ec(y)ec(x) ∼ i
−p/ + m

p2 −m2 + iǫ
. (4.24)

4.3.3 Decay Mediated by the Operator JL JL jL

To calculate the diagram in figure 4.4, we have to write down the matrix element. Let
us define the weak leptonic current

jαl = νγαPLe (4.25)

and the weak hadronic current

J
µ
h = dγµPLu. (4.26)

We thus have to find all possible contractions in

〈 f |JL JL jL jνTl Wν J
µ
hWµ j

α
l Wα J

β
hWβ|i〉. (4.27)
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It is easy to see that all contractions lead to the same diagram given in figure 4.4. We
find

〈 f |νγαPLeePLe
cecγνPRνcuPLddγµPLuuPLddγβPLuWνWµWαWβ|i〉. (4.28)

Different contractions lead to 8 diagrams (there are 4 ways to contract the quark
fields, and independently there are 2 ways to contract the W boson fields). Using the

information from the last subsection and including all necessary factors, we directly
can write down the matrix element of the decay:

8g4G2
Fǫ1

mp

∫

dk̃1dk̃2dq̃1dq̃2ν(p)γαPLi
p/− k/2 + me

(p− k2)2 −m2
e
PLi

−p/− k/1 + me

(p + k1)2 −m2
e

γνPRνc(p)

tr

(

i
k/1 + q/1 + mu

(k1 + q1)2 −m2
u
PLi

q/1 + md

q21 −m2
d

γβPL

)

tr

(

i
k/2 + q/2 + mu

(k2 + q2)2 −m2
u
PLi

q/2 + md

q22 −m2
d

γµPL

)

−igαβ

(k21 −M2
W)

−igµν

(k22 −M2
W)

, (4.29)

where we have used the short-hand notation dk̃ = d4k
(2π)4

. Let us calculate the traces

first, where we have to simplify the expression

tr
{

[(k/1 + q/1) + mu] PL (q/1 + md) γβPL

}

. (4.30)

Moving PL to the right and splitting up the expression in square brackets, we obtain

tr
{

[(k/1 + q/1) + mu] q/1γβPL

}

= tr
[

(k/1 + q/1)q/1γβPL

]

+ tr
[

muq/1γβPL

]

. (4.31)

The first term on the r.h.s. contains an odd number of gamma matrices (as γ5, which
is contained in PL, is a product of four gamma matrices), so it vanishes. For the

second term on the r.h.s. we use the relations

tr
[

γαγβ
]

= 4gαβ (4.32)

and

tr
[

γαγβγ5

]

= 0, (4.33)

so that we find

tr

(

i
k/1 + q/1 + mu

(k1 + q1)2 −m2
u
PLi

q/1 + md

q21 −m2
d

γβPL

)

= − 2(q1)
βmu

[(k1 + q1)2 −m2
u](q

2
1 −m2

d)
. (4.34)

In an analogous manner we can calculate

tr

(

i
k/2 + q/2 + mu

(k2 + q2)2 −m2
u
PLi

q/2 + md

q22 −m2
d

γµPL

)

= − 2(q2)
µmu

[(k2 + q2)2 −m2
u](q

2
2 −m2

d)
. (4.35)
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We may simplify the first line of equation (4.29) by moving the PL’s to the right. We
thus project out the terms containing me. We finally obtain the expression

Σ(p) =
32g4G2

Fǫ1m
2
um

2
e

mp
I , (4.36)

where the integral I is given by

I = I1 × I2, (4.37)

with

I1 =
∫

dk̃1dq̃1
q/1

[(p + k1)2 −m2
e ][(k1 + q1)2 −m2

u](q
2
1 −m2

d)(k
2
1 −M2

W)
(4.38)

and

I2 =
∫

dk̃2dq̃2
q/2

[(p− k2)2 −m2
e ][(k2 + q2)2 −m2

u](q
2
2 −m2

d)(k
2
2 − M2

W)
. (4.39)

Integrals of this kind typically arise in two-loop calculations, which is not surprising.
Our four-loop diagram is symmetric and basically consists of two two-loop diagrams.

These integrals may be calculated analytically in terms of Spence functions, for which
extensive literature exists. The calculations have for example been done in [52–54], in
the framework of Higgs physics. For us it suffices to know that the integrals are well

behaved. To extract the dependence on masses and momenta, we will go another
way: We can calculate I1 and I2 separately with the help of Feynman parameters

and dimensional regularization (some basic formulae are given in appendix A). As
an example, let us calculate the integral

I1 =
∫

dq̃1
q/1

(q21 −m2
d)
I ′
1, (4.40)

where

I ′
1 =

∫

dk̃1
1

[(p + k1)2 −m2
e ][(k1 + q1)2 −m2

u](k
2
1 − M2

W)
. (4.41)

Using Feynman parameterization, we can rewrite

I ′
1 =

∫ 1

0
dx
∫ 1−x

0
dy

×
∫

dk̃1
2

{

x[(p + k1)2 −m2
e ] + y[(k1 + q1)2 −m2

u] + (1− x− y)(k21 − M2
W)
}3

. (4.42)
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We may rewrite the denominator

x[(p + k1)
2 −m2

e ] + y[(k1 + q1)
2 −m2

u] + (1− x− y)(k21 − M2
W)

= [k1 + (xp + yq1)]
2 − ∆′

1, (4.43)

where
∆′
1 = (xp + yq1)

2 − xp2 − yq21 + (1− x− y)M2
W . (4.44)

Here, we have neglected m2
e and m2

u in comparison to M2
W . Thus we can write

I ′
1 =

∫ 1

0
dx
∫ 1−x

0
dy
∫

dk̃1
2

{

[k1 + (xp + yq1)]2 − ∆′
1

}3
. (4.45)

Performing a linear substitution k1 → k1 − (xp + yq1), we arrive at

I ′
1 =

∫ 1

0
dx
∫ 1−x

0
dy
∫

dk̃1
2

(k21 − ∆′
1)

3

=
−i

16π2

∫ 1

0
dx
∫ 1−x

0
dy

1

(xp + yq1)2 − xp2 − yq21 + (1− x− y)M2
W

.

(4.46)

We may now plug this result back into the expression for I1 and obtain

I1 =
−i

16π2

∫ 1

0
dx
∫ 1−x

0
dy
∫

dq̃1
q/1

(q21 −m2
d)

× 1

[(xp + yq1)2 − xp2 − yq21 + (1− x− y)M2
W ]

. (4.47)

If we introduce a third Feynman parameter, we get

I1 =
−i

16π2

∫ 1

0
dx
∫ 1−x

0
dy
∫ 1

0
dz

×
∫

dq̃1
q/1

{

(1− z)(q21 −m2
d) + z[(xp + yq1)2 − xp2 − yq21 + (1− x− y)M2

W ]
}2

. (4.48)

After completing the square and neglecting md ≪ MW , we may write the denomina-

tor as

(1− z + zy2 − zy)

[

(

q1 +
xyz

1− z + zy2 − zy
p

)2

− ∆1

]

, (4.49)

where

∆1(x, y, z) =

(

xyz

(1− z + zy2 − zy)
p

)2

− 1

(1− z + zy2 − zy)

(

zx2p2 − zxp2 + (1− x− y)zM2
W −m2

d

)

.

(4.50)
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Plugging this result back into the expression for I1, performing again a linear sub-
stitution, and kicking out the terms linear in q1 (as they vanish under symmetrical

integration), we obtain

I1 =
i

16π2

∫ 1

0
dx
∫ 1−x

0
dy
∫ 1

0
dz

xyz

(1− z + zy2 − zy)3
p/
∫

dq̃1
1

(q21 − ∆1)2
. (4.51)

Performing the integral over q1, we arrive at

I1 =
p/

16π2

∫ 1

0
dx
∫ 1−x

0
dy
∫ 1

0
dz

xyz

(1− z + zy2 − zy)3

×
(

2

ǫ
− log∆1 − γ + log 4π + O(ǫ)

)

. (4.52)

Calculating the integral I2 goes along the same lines. We finally obtain

I = − p2

(16π2)4

×
∫ 1

0
dx
∫ 1−x

0
dy
∫ 1

0
dz

xyz

(1− z + zy2 − zy)3

(

2

ǫ
− log∆1 − γ + log 4π +O(ǫ)

)

×
∫ 1

0
da
∫ 1−a

0
db
∫ 1

0
dc

abc

(1− c + cb2 − cb)3

(

2

ǫ
− log∆2 − γ + log 4π + O(ǫ)

)

. (4.53)

In this expression, ǫ = 4− d and γ is Euler’s constant. ∆1 was given before [see
equation (4.50)], and for ∆2 we have

∆2(a, b, c) =

(

abc

(1− c + cb2 − cb)
p

)2

− 1

(1− c + cb2 − cb)

(

ca2p2 − cap2 + (1− a− b)cM2
W −m2

d

)

.

(4.54)

In the case of p2 = 0, these expressions simplify to

∆1(x, y, z) = − 1

(1− z + zy2 − zy)

(

(1− x− y)zM2
W −m2

d

)

(4.55)

and

∆2(a, b, c) = − 1

(1− c + cb2 − cb)

(

(1− a− b)cM2
W −m2

d

)

. (4.56)

The expression in equation (4.53) can be renormalized via the MS scheme, where we

set
2

ǫ
− log∆ − γ + log 4π +O(ǫ) → − log

∆

M2
. (4.57)
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Here, M is the renormalization scale.

We are now able to give an expression for the correction to the neutrino mass
generated by the diagram in figure 4.4 assuming that there is no bare Majorana mass

term in the Lagrangian.1 Plugging equation (4.53) into equation (4.36), we get

δmν = Σ(p/ = mν) ∝ m2
um

2
e p

2
∣

∣

∣

p/=mν

, (4.58)

where mν is the physical neutrino mass. We have neglected the dependence on p2

inside the logarithms, but as the physical neutrino mass mν is much smaller than
MW , this should be no problem. The physical mass mν is the solution to the equation

p/− Σ(p/)|p/=mν
= 0. (4.59)

One solution of this equation is mν = 0. The second solution mν = α−1, where α is
the proportionality factor from equation (4.58), is huge due to the smallness of α and

is therefore unphysical. Thus we obtain

δmν = 0. (4.60)

This means that the operator JL JL jl does not give a contribution via the diagram

shown in figure 4.4. One may now wonder if there exists an operator generating
a non-zero contribution via the well-known Black Box diagram at all. It does, and

we want to give an example for such a diagram in the next subsection. The result,
however, will be many orders of magnitude smaller than the expected light neutrino
mass.

Let us point out that the result of this subsection does not mean that all thinkable
diagrams involving the operator JL JL jl will give a zero contribution like the one we
calculated. Any other diagram, however, will include more loops and therefore be

suppressed more strongly. Thus, the mass we expect to find will be even smaller
than the one we find in the next section for a different operator. However, one should

keep the result of this subsection in mind when arguing for the Majorana nature of
the electron neutrino via the diagram in figure 4.4 (something that is regularly done
in review papers and talks). Depending on the operator (that is, the underlying mech-

anism) of 0νββ, one possibly draws a zero mass. Clearly, this does not support the
hypothesis of a Majorana neutrino (although there might be other diagrams giving a

non-zero contribution for the same operator).

1Note that our calculation is only useful in the case where no bare Majorana mass term for the
electron neutrino in the Lagrangian exists. Would there be such a term, then necessarily also a
counterterm, which cancels all loop divergences, would exist. The neutrino mass then would be a
parameter to be determined by experiment and put into the theory by hand.
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4.3.4 Decay Mediated by the Operator J
µ
R JµR jL

In the previous subsection we have seen that the diagram calculated vanishes. How-

ever, there are of course operators responsible for neutrinoless double beta decay
which give non-zero contributions to the mass correction. In this subsection, we want

to calculate the diagram assuming that the vertex is proportional to ǫ3 from equa-
tion (4.6). Additionally, we may choose the chirality structure in the following way:

Jσ
R JRσ jL = uγσPRduγσPRdePLe

c. (4.61)

As in the former case, we have to find all contractions possible. So we can directly

write down the matrix element of the diagram:

8g4G2
Fǫ3

mp

∫

dk̃1dk̃2dq̃1dq̃2ν(p)γαPLi
p/− k/2 + me

(p− k2)2 −m2
e
PLi

−p/− k/1 + me

(p + k1)2 −m2
e

γνPRνc(p)

tr

(

i
k/1 + q/1 + mu

(k1 + q1)2 −m2
u

γσPRi
q/1 + md

q21 −m2
d

γβPL

)

tr

(

i
k/2 + q/2 + mu

(k2 + q2)2 −m2
u

γσPRi
q/2 + md

q22 −m2
d

γµPL

)

−igαβ

(k21 − M2
W)

−igµν

(k22 − M2
W)

. (4.62)

Calculating the traces in a similar manner as before, we obtain

tr

(

i
k/1 + q/1 + mu

(k1 + q1)2 −m2
u

γσPRi
q/1 + md

q21 −m2
d

γβPL

)

= − 2mumdg
σβ

[(k1 + q1)2 −m2
u][q

2
1 −m2

d]
(4.63)

and

tr

(

i
k/2 + q/2 + mu

(k2 + q2)2 −m2
u

γσPRi
q/2 + md

q22 −m2
d

γµPL

)

= − 2mumdg
µ
σ

[(k2 + q2)2 −m2
u][q

2
2 −m2

d]
. (4.64)

We can now rewrite the expression for the diagram as before

Σ(p) =
128g4G2

Fǫ3m
2
um

2
em

2
d

mp
Ĩ , (4.65)

where the integral Ĩ is given by

Ĩ = Ĩ1 × Ĩ2, (4.66)

with

Ĩ1 =
∫

dk̃1dq̃1
1

[(p + k1)2 −m2
e ][(k1 + q1)2 −m2

u](q
2
1 −m2

d)(k
2
1 −M2

W)
(4.67)
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and

Ĩ2 =
∫

dk̃2dq̃2
1

[(p− k2)2 −m2
e ][(k2 + q2)2 −m2

u](q
2
2 −m2

d)(k
2
2 −M2

W)
. (4.68)

The factor 4, which appears in equation (4.65) but not in equation (4.36) arises from
a contraction

γµγµ = 4. (4.69)

The numerators in equations (4.67) and (4.68) do not contain loop momenta, which
is a difference to the case discussed in the last subsection. Therefore, the only de-

pendence on p is in the logarithms inside the integral (compare the last subsection),
which may be neglected. The integral Ĩ is well behaved, as already stated before, and

therefore we expect a non-zero mass contribution in this case:

δmν = Σ(p/ = mν) ∝ m2
um

2
dm

2
e . (4.70)

It is interesting to estimate the order of magnitude of this mass correction. Com-
parison with the integrals calculated for the Higgs propagator in [53] shows that we
may expect Ĩ to be of the order 1

(16π2)4
. So incorporating all prefactors from equa-

tion (4.65), we obtain a neutrino mass mν = δmν of the order 10−32 eV. Here, we used
the values for masses and constants given in table 2.2. It is obvious that this correc-
tion is far too small to be the main contribution to the neutrino masses we expect to

have. Therefore, another mechanism must give the leading contribution of neutrino
masses. However, if we know that a Majorana neutrino mass is generated in a New

Physics model anyway, we do not need the Schechter–Valle theorem anymore.



Chapter 5

Neutrinoless Double Beta Decay in New Physics

Models

In this chapter, we give a short overview of mechanisms contributing to neutrinoless
double beta decay in New Physics models. All of them are discussed in the literature.

The aim of this survey is merely to show that contributions to 0νββ arise in many
models for physics beyond the SM. This chapter may be seen as a preparation for the
following, where the realizations of 0νββ in universal extra dimensions, which have

not been considered in the literature so far, are discussed.

5.1 0νββ in Seesaw Type I Models

5.1.1 The Models

To account for the small but non-zero neutrino masses, one may introduce n ≥ 2
heavy right-handed Majorana neutrinos niR, which are SU(2)L singlets, in addition

to the SM fields. For example, in the minimal seesaw model (MSM), which was
proposed by Frampton, Glashow, and Yanagida [55], n = 2 right-handed neutrinos

are added. This way is the most efficient to address neutrino masses. In the MSM,
one light neutrino will be massless which is perfectly allowed by oscillation data.
Note that one could introduce only one right-handed neutrino, but then two of three

light neutrinos would be massless, a situation excluded by neutrino oscillation exper-
iments. Adding n = 3 right-handed neutrinos leads to the standard seesaw scenario,

but in principle one could include an arbitrary number n > 3 of right-handed neutri-
nos into the model to account for the small neutrino masses.
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Let us denote the right-handed charged leptons by lR, then the part of the La-
grangian containing the mass terms can be written as

−Lmass = lLYl lRφ + lLYνnRφ̃ +
1

2
(nR)cMRnR + H.c. (5.1)

In this formula, φ̃ = iσ2φ∗. After the spontaneous breaking of gauge symmetry, we

obtain the mass term

−Lmass = eLMleR +
1

2
(νL (nR)c)





0 MD

MT
D MR









(νL)
c

nR



+ H.c., (5.2)

where e symbolically stands for e = e, µ, τ. Here, Ml = vYl/
√
2 is the charged lepton

mass matrix and MD = vYν

√
2 is the Dirac neutrino mass matrix, with v ≈ 246GeV

being the VEV of the neutral component of the Higgs doublet. MR ist the heavy

right-handed Majorana neutrino mass matrix, a complex and symmetric n× n matrix.
Without loss of generality, we may work in the basis where Ml and MR are diagonal:

Ml = diag(me,mµ,mτ) and MR = diag(M1, . . . ,Mn). (5.3)

The general form of MD is

MD =











a1 . . . an

b1 . . . bn

c1 . . . cn











, (5.4)

where ai, bi, ci (i = 1, . . . , n) are complex.
This model gives an elegant realization of seesaw type I: The masses of the right-

handed neutrinos are not given by electroweak symmetry breaking. Thus, they may

be arbitrarily high and generate the small masses for the left-handed neutrinos.

5.1.2 Possible Realizations

When we add heavy right-handed neutrinos, neutrinoless double beta decay can

procede via two different realizations, light neutrino exchange and heavy neutrino
exchange. This observation can easily be made from the charged current Lagrangian,

which is given by

−L =
g√
2
(e µ τ)Lγµ











V











ν1L

ν2L

ν3L











+ R











(n1R)c

...

(nnR)c





















W−
µ . (5.5)
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Here, the (3 + n) × (3 + n) mixing matrix is parameterized as

U =





V R

S T



 . (5.6)

There is nothing new in the decay amplitudes, they have already been given in chap-

ter 3, together with the corresponding Feynman diagram.

5.1.3 Leading Contribution

Unitarity of the total Lagrangian requires1 = UU † =





VV† + RR† VS† + RT†

SV† + TR† SS† + TT†



 . (5.7)

This condition directly translates into

VV† + RR† = 1 (5.8)

or, expanding in components,

|Ve1|2 + |Ve2|2 + |Ve3|2 + |Re1|2 + . . . + |Ren|2 = 1. (5.9)

Antusch et al. [56] showed that unitarity bounds on the light neutrino mixing matrix
provide the constraints

|Ve1|2 + |Ve2|2 + |Ve3|2 = 0.994± 0.005, (5.10)

so we conclude

|Re1|2 + . . . + |Ren|2 = 0.006± 0.005. (5.11)

Let Aν be the amplitude of light neutrino exchange and An be the amplitude of
heavy neutrino exchange. We then obtain for the total amplitude of neutrinoless

double beta decay:

A0νββ = Aν + An

∝
3

∑
i=1

V2
ei

mi

〈p2〉 +
n

∑
i=1

R2
ei

1

Mi
,

(5.12)

where mi are the light neutrino mass eigenvalues and Mi are the heavy neutrino mass

eigenvalues. We can see from this formula that there is a possibility of cancellations,
as the Vei’s and the Rei’s include phases.
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Let us check if the two contributions may become comparable in size. Any seesaw
model is aiming to reproduce the light neutrino masses of order 1 eV. To achieve this

goal, a mass of the right-handed neutrinos of at least 1012GeV is needed if the Yukawa

coupling is not much smaller than 1. Using a typical value 〈p2〉 ≈ (100MeV)2, we

then obtain
〈p2〉
Mi

/mi =
〈p2〉
miMi

≈ 10−5. (5.13)

As |Ve1|2 + |Ve2|2 + |Ve3|2 ≈ 1, we would need |Re1|2 + |Re2|2 + |Re3|2 ≈ 105 for the

two contributions to cancel. A value that big, however, is not allowed by the unitarity
bounds given above.

Note that in this case not only there is no possibility of cancellations, but also
because of the small value of 1

Mi
there is approximately no contribution of An and

the relevant mechanism for neutrinoless double beta decay in this model is the light

neutrino exchange. Of course, the improbable case of an accidental cancellation, so
that ∑V2

eimi = 0, is not excluded. Then, the leading contribution would indeed be

the one from heavy neutrinos, which however would be small and difficult to detect
experimentally.

5.2 0νββ in the Higgs Triplet Model

5.2.1 The Model

The salient feature of this model is the enlargement of the Higgs sector of the SM
consisting of one Higgs doublet φ by a Higgs triplet ∆ which can be parameterized

as follows:

∆ =





δ+/
√
2 δ++

δ0 −δ+/
√
2



 ∼ (1, 3, 1). (5.14)

The Lagrangian responsible for the generation of neutrino masses can then be written

Lmass = (Dµφ)T(Dµφ) + Tr
[

(Dµ∆)†(Dµ∆)
]

+ LY −V(φ,∆), (5.15)

where

LY = −Yij(lL)
c
i iσ2∆lLj + H.c. (5.16)

and

V(φ,∆) = −m2
φφ†φ +

λ

4
(φ†φ)2 + M2

∆Tr
(

∆†∆
)

+ (αφTiσ2∆†φ +H.c.)

+ λ1(φ†φ)Tr
(

∆†∆
)

+ λ2

[

Tr(∆†∆)
]2

+ λ3Tr
[

(∆†∆)2
]

+ λ4φ†∆∆†φ. (5.17)
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One can see that lepton number is explicitly broken in this model: It is not possible
to assign consistent lepton numbers to all fields because of the coexistence of LY and

the α-term in V(φ,∆).
Usually, it is assumed that the Higgs triplet is heavy (M2

∆ > v20/2). Then we may
neglect the terms proportional to λ1, λ2, λ3, λ4 in the Higgs potential. When now the

Higgses acquire VEVs,

〈H〉 =





0

v0/
√
2



 and 〈∆〉 =





0 0

v∆/
√
2 0



 , (5.18)

we arrive at

V(v0, v∆) = −m2
H

v20
2

+
λ

4

v40
4

+ M2
∆

v2∆
2

− 1

2
√
2

αv20v∆. (5.19)

From the minimization of this potential we obtain the relation

v∆ =
αv20√
2M2

∆

. (5.20)

Thus, the neutrinos acquire a Majorana mass matrix

ML =
√
2Yv∆ = Y

αv20
M2

∆

. (5.21)

5.2.2 Possible Realizations

Two possible decay modes exist in the Higgs triplet model: light neutrino exchange

and Higgs triplet exchange (in which no neutrinos are involved). The Feynman dia-
gram for Higgs triplet exchange is shown in figure 5.1.

The amplitude for light neutrino exchange is the same as given before. For the

Higgs triplet exchange, after integrating out the heavy fields, one obtains for the
amplitude

A∆ =
g4√
2

Yv∆

M4
WM2

∆

. (5.22)

5.2.3 Leading Contribution

In the Higgs triplet model, there are no cancellations possible between the diagrams

from light neutrino exchange and Higgs triplet exchange because there are no phases
involved. If the Higgs triplet is responsible for the light neutrino masses via the

formula in equation (5.21), its contribution will be negligible due to its small VEV
and its huge mass.
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W

W

δ−−

dL

dL

uL

e−L

e−L

uL

Figure 5.1: Diagram for 0νββ medi-
ated via Higgs triplet exchange in the

Higgs triplet model.
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Figure 5.2: Diagram for 0νββ accom-
panied by majoron emission in the sin-

glet majoron model.

5.3 0νββ in the Singlet Majoron Model

5.3.1 The Model

This model was first discussed by Chikashige, Mohapatra, and Peccei [57]. In addi-
tion to the SM field content, we introduce right-handed neutrinos nR and a singlet

scalar field χ which will eventually drive the spontaneous breakdown of lepton num-
ber. We do not want to consider all the details of this model, just note that a neutrino
mass matrix similar to the seesaw type I case is generated after SSB.

The singlet field χ obtains a vev, 〈χ〉 = f , so that we may write

χ =
1√
2

(

f + σ + iη0
)

, (5.23)

where σ is an additional massive boson and η0 is the massless majoron. χ only

couples to the right-handed neutrinos nR, not to the left-handed ones, and so does
η0.

The singlet majoron is only one possible model leading to spontaneous breaking of
lepton number as a global symmetry. One could also introduce doublet majorons and
triplet majorons, both possibilities were discussed in the literature. However, there

are stronger bounds on these models than on the singlet majoron model. The triplet
majoron model is basically ruled out by the Z width, whereas a mixture of singlet

and doublet majoron still would be viable.

5.3.2 Possible Realizations

There are three possible realizations of neutrinoless double beta decay in the singlet

majoron model, which are light neutrino exchange, heavy neutrino exchange, and
heavy neutrino exchange with simultaneous emission of a majoron. The first two
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realizations will lead to the usual 0νββ peak at 2E0, whereas the third one will lead
to an continuous spectrum, as the majoron can take away an arbitrary amount of

energy and leave undetected. However, the majoron emitting mode will be distin-
guishable from the two neutrino decay mode of double beta decay, as the peak of the

continuous spectrum will be at higher energies compared to the two neutrino mode.
See figure 3.1 in chapter 3 for more details. The Feynman diagram for the majoron
accompanied realization is shown in figure 5.2. The diagrams for light and heavy

neutrino exchange are the same as before. The half-life for majoron emission is given
by

(

T
0ν,η0

1/2

)

= ǫ2νη0

∣

∣

∣
M0ν

∣

∣

∣

2
G0ν,η0

, (5.24)

where ǫνη0 is the effective coupling strength between neutrinos and the majoron, M0ν

is the same matrix element as for the light neutrino exchange, but the phase space

integral G0ν,η0
may differ from the one for the light neutrino case. As we deal with

three particles in the final state, whereas in the case of light neutrino exchange only

two particles are in the final state, this conclusion is obvious.
Limits on the effective neutrino-majoron coupling constants have been obtained

from the NEMO-3 experiment [58]: For the majoron accompanied decay of 100Mo

(T1/2 > 2.7× 1022 y) and 82Se (T1/2 > 1.5× 1022 y), the bounds are
∣

∣

∣
ǫνη0

∣

∣

∣
< (0.4−

1.9)× 10−4 and
∣

∣

∣
ǫνη0

∣

∣

∣
< (0.66− 1.7)× 10−4, respectively.

5.4 0νββ in Left–Right Symmetric Models

5.4.1 The Model

Left–right symmetric models [59–61] are especially interesting, because they provide

a natural realization of the seesaw mechanism.
In the left–right symmetric model with the gauge group

GLR ≡ SU(2)L × SU(2)R ×U(1)B−L, (5.25)

we have left-handed and right-handed fermion doublets (family indices will be sup-

pressed throughout the whole section):

lL =





νL

eL



 ∼ (2, 1,−1) and lR =





νR

eR



 ∼ (1, 2,−1). (5.26)

Here, we use the electric charge formula

Q = I3L + I3R +
B− L

2
, (5.27)
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where I3L and I3R are the third component of the weak isospin of SU(2)L and SU(2)R ,
respectively.

The Higgs sector of this model contains one complex bidoublet

φ =





φ0
1 φ+

1

φ−
2 φ0

2



 ∼ (2, 2∗, 0) (5.28)

and two complex triplets

∆L =





δ+
L /

√
2 δ++

L

δ0L −δ+
L /

√
2



 ∼ (3, 1, 2) and ∆R =





δ+
R /

√
2 δ++

R

δ0R −δ+
R /

√
2



 ∼ (1, 3, 2).

(5.29)
The Higgs fields eventually obtain VEVs:

〈φ〉 =





κ1/
√
2 0

0 κ2/
√
2



 and 〈∆L,R〉 =





0 0

vL,R/
√
2 0



 . (5.30)

The original gauge symmetry is broken in two steps down to U(1)em:

SU(2)L × SU(2)R ×U(1)B−L
〈∆R〉6=0−−−−→ SU(2)L ×U(1)Y

〈φ〉6=0−−−→ U(1)em. (5.31)

The terms in the Lagrangian responsible for the lepton masses are

Lmass = f lLφlR + hlLφ̃lR +H.c.

+ ik
(

lTLC
−1σ2∆LlL + lTRC

−1σ2∆RlR

)

+H.c.,
(5.32)

where φ̃ = σ2φ∗σ2. We assume f , h, k to be real for simplicity (keep in mind that
we suppress family indices, so in the three family version f , h, k would be real 3× 3
matrices).

With the Higgs fields acquiring their VEVs, we finally obtain

Lmass =

(

f
κ1√
2

+ h
κ2√
2

)

νLνR +

(

h
κ1√
2

+ f
κ2√
2

)

eLeR + H.c.

+ k

(

vL√
2
(νL)cνL +

vR√
2
(νR)cνR

)

+ H.c.

(5.33)

Noting that νLC
−1 = (νL)c, the mass term for the neutrinos is

Lneutrino
mass =

(

f
κ1√
2

+ h
κ2√
2

)

νLνR +
kvL√
2
(νL)cνL +

kvR√
2
(νR)cνR + H.c. (5.34)
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Define now the Dirac neutrino mass as

MD ≡ f
κ1√
2

+ h
κ2√
2

(5.35)

and the Majorana masses as

ML,R ≡
√
2kvL,R, (5.36)

and define the self-conjugate Majorana fields

ν =
1√
2

[νL + (νL)
c] and N =

1√
2

[νR + (νR)c] . (5.37)

We then can write

Lneutrino
mass = (ν N)





ML MD

MD MR









ν

N



 . (5.38)

Comparison with equation (2.16) shows that in this model the most general neutrino
mass term is generated.

5.4.2 Possible Realizations

In the left–right symmetric model, there are five possible diagrams for neutrinoless
double beta decay, three of which are shown in figure 5.3.

For the light neutrino exchange, there is no difference to the cases discussed before.
In the left–right symmetric model, right-handed neutrinos couple mainly to “right-
handed” W bosons (as it is always the case when right-handed currents are present).

We then have for the amplitude for heavy neutrino exchange

AN =

(

g√
2

)4( 1

MWR

)4 1

MN
. (5.39)

For possible values and a discussion thereof, see Mohapatra [62].
A new realization is the heavy-light neutrino mixing. Recall that we have neutrino

mixing in the following form




ν1

ν2



 =





cos θ − sin θ

sin θ cos θ









ν

N



 =





ν cos θ − N sin θ

ν sin θ + N cos θ



 . (5.40)

Only mass eigenstates propagate, and couple according to their mixing at the dif-
ferent vertices. Assume that the lightest neutrino ν ≈ ν1 is propagating. We then find

for the matrix element

Mµλ = sin θ cos θ

[

e(p1)γµPL
q/ + mν

q2 −m2
ν

γλPLe(p2)− (1 ↔ 2)

]

≈ sin θ

[

e(p1)γµPL
q/

q2 −m2
ν

γλPLe(p2)− (1 ↔ 2)

]

.

(5.41)
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Figure 5.3: Diagrams for 0νββ decay in the left–right symmetric model.

Comparison with the light and heavy neutrino exchange gives

Amix =

(

g√
2

)4 1

M2
WL

M2
WR

sin θ
1

〈q/〉 . (5.42)

The other new contribution is the Higgs triplet exchange. The contribution of the

left-handed triplet is negligible, due to its small VEV. For the amplitude of the right-
handed triplet we obtain

A∆ =
g4

2

(

1

MWR

)4 MWR

gM2
∆R

. (5.43)

The factor g in the denominator arises because of the fact that MWR
= gvR.

5.5 0νββ in Supersymmetric Models

At the end of this chapter about neutrinoless double beta decay in New Physics
models let us just shortly mention that of course contributions to neutrinoless double
beta decay exist in supersymmetric models. If R-parity is violated, lepton number

violating processes may occur. Therefore, observable amplitudes for 0νββ may arise,
even for a very small neutrino mass. Unfortunately, an introduction to the minimal

supersymmetric standard model (MSSM) or to R-parity violation is far beyond the
scope of this thesis. Therefore, we will not give explicit diagrams or amplitudes.

However, stringent bounds on R-parity violating couplings have been deduced

from data on neutrinoless double beta decay in 76Ge by the Heidelberg-Moscow
group [10]. A discussion of various realizations may be found in [63]. The cur-

rent bounds on SUSY accompanied neutrinoless double beta decay may be found in
[64].



Chapter 6

Neutrinoless Double Beta Decay in Extra Dimensions

We have seen in the last chapter that many New Physics scenarios will give consid-

erable contributions to 0νββ decay, so limits on half-lives obtained from experiment
may give constraints on the parameters of these models. In scenarios with extra di-

mensions, the only free parameter is the size (the radius R) of the extra dimension(s).
So, if a model of extra dimensions gives relevant contributions to 0νββ, one can find
bounds on R.

There has been some previous work concerning the relation between neutrinoless
double beta decay and extra dimensions. Gozdz et al. [65, 66] worked in the ADD

model, whereas Bhattacharyya et al. [67] used a particular model of one sterile right-
handed neutrino in one extra spatial dimension to account for the observed half-lives

of 0νββ. However, the model of universal extra dimensions has not been considered
yet, and we will see in this chapter that non-negligible contributions to 0νββ arise
through Kaluza–Klein (KK) tower particles in UEDs. This is not as surprising as it

may seem, because in many models of extra dimensions such contributions may be
generated. Dienes et al. [68] implement a seesaw model in extra dimensions which

allows for 0νββ, too.

Using present data on the half-life of 0νββ, the bounds we calculate are slightly
weaker than these from electroweak precision data. However, future experiments

are expected to push the bounds on the half-life of 0νββ by at least one order of
magnitude, so our limits may become competitive to or even stronger than the bounds

from electroweak precision data.

The chapter is organized as follows: In section 6.1 we review shortly the basic

facts on universal extra dimensions used in this thesis. In section 6.2 we discuss the
issue of neutrinos and neutrino masses in UEDs. In section 6.3 we will calculate the
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influence of universal extra dimensions on neutrinoless double beta decay.

6.1 Universal Extra Dimensions

The basic feature of extra dimensions we will use in this chapter is that, from a 4d

point of view, extra dimensions appear as towers of new particles, the so-called KK
towers. One can compare this feature to ordinary quantum mechanics, where a 1d

box leads to an infinite number of modes for the particle confined in it. In this section,
we will review the relevant facts of universal extra dimensions and derive the mode
expansions for scalar particles, fermions, and gauge bosons.

6.1.1 Why an Extra Spatial Dimension Must Be Compactified

The first thing we need to think about is the question if extra spatial dimensions are

compactified or not. Assume we would have an extra spatial dimension that extends
from −∞ to +∞, that means, it is not compactified in any way. The differential
equation for the gravitational potential Φ(r) is Poisson’s equation

∆Φ(r) = 4πG̺(r), (6.1)

where G is Newton’s gravitational constant and ̺ is the mass distribution in the

problem under consideration. Here r is a spatial vector in d dimensions, as all the
other vectorial entities in this subsection are.

We can define the gravitational field (which is equal to the gravitational accelera-
tion) by

g = −∇Φ. (6.2)

Thus we arrive at the differential equation for g

∇ · g = −4πG̺. (6.3)

Integrating this equation over the volume V, we obtain for the r.h.s.

− 4πG
∫

V
dV̺ = −4πGM, (6.4)

with M being the total mass in V. For the l.h.s. we find

∫

V
dV∇ · g =

∮

∂V
dA · g, (6.5)

by Gauss’ law. We may assume that the gravitational field is spherically symmetric,
so that we may write

g(r) = g(r)er, (6.6)
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where er is the unit vector in radial direction. As the surface element dA has radial
direction, we have

er · dA = dA. (6.7)

dA is given by

dA =
dV

dr
= rd−1dΩd, (6.8)

where dΩd is the d-dimensional unit surface element and dV = rd−1drdΩd. Thus we

arrive at
∫

V
dV∇ · g = g(r)rn−1

∮

∂V
dΩd. (6.9)

The unit sphere in d dimensions is given by

∮

dΩd =
2πd/2

Γ(d/2)
. (6.10)

Putting all together, we obtain for the gravitational field

g(r) = −2πgMΓ(d/2)

πd/2

1

rd−1
. (6.11)

In three (spatial) dimensions, this formula reduces to the well-known expression

g(r) = −GM

r2
. (6.12)

It is clear now that any extra spatial dimension must be compactified, as for large
distances the gravitational force law falls off as 1/r2 and not as 1/r3, or some other

power related to the number of extra dimensions.

6.1.2 Compactification and Orbifolding

As we have seen in the last subsection, any extra spatial dimension must be compact-
ified. For one extra dimension, this compactification is often done on a circle S1 with

radius R. It is possible to describe this compactification in two equivalent ways (here
we follow closely the presentation of Agashe in Chapter 1 of [69]):

1. y (the variable of the extra dimension) unrestricted (−∞ < y < +∞) but impos-

ing periodic boundary conditions on all fields, F(y) = F(y + 2πR), or

2. the range of y restricted to 0 ≤ y ≤ 2πR and imposing boundary conditions
F(y = 0) = F(y = 2πR) on all fields.
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In this thesis we will work with the first description, so that we can Fourier expand
any 5d field F as follows (with xµ being the ordinary 4d space-time coordinate, and y

being the coordinate of the extra dimension):

F(x, y) =
1√
2πR

+∞

∑
n=−∞

f (n)(x)einy/R. (6.13)

It turns out that such a compactification does not lead to the chiral fermions known
from the Standard Model. In addition to the identification y ≡ y + 2πR we impose a
Z2 symmetry on the circle S1, identifying −y ≡ y. Thus, the physical domain extends

only within 0 ≤ y ≤ πR. This compactification scheme is denoted as S1/Z2 and
called an orbifold. We can see that the end points of the orbifold (y = 0, y = πR) do

not transform under Z2, which means they are fixed points of this orbifold. Moreover,
they are not identified (as opposed to y = 0 and y = 2πR).

On this orbifold, we can rewrite the decomposition of our field F in terms of func-

tions that are even and odd under the Z2 as follows

F(x, y) =
1√
2πR

+∞

∑
n=−∞

f (n)(x)einy/R

=
1√
2πR

f (0)(x) +
1√
2πR

∞

∑
n=1

(

f (n)(x)einy/R + f (−n)(x)e−iny/R
)

=
1√
2πR

f (0)(x) +
1

2
√
2πR

∞

∑
n=1

(

f (n)(x)einy/R + f (n)(x)e−iny/R

+ f (−n)(x)einy/R + f (−n)(x)e−iny/R

+ f (n)(x)einy/R − f (n)(x)e−iny/R

− f (−n)(x)einy/R + f (−n)(x)e−iny/R
)

=
1√
2πR

f (0)(x) +
1√
πR

∞

∑
n=1

[

1√
2

(

f (n)(x) + f (−n)(x)
) einy/R + e−iny/R

2

+
i√
2

(

f (n)(x) − f (−n)(x)
) einy/R − e−iny/R

2i

]

.

(6.14)

If for n > 0 we define

f
(n)
+ =

1√
2

(

f (n) + f (−n)
)

and f
(n)
− =

i√
2

(

f (n) − f (−n)
)

, (6.15)

we may finally write

F(x, y) =
1√
2πR

f (0) +
∞

∑
n=1

1√
πR

[

f
(n)
+ cos

ny

R
+ f

(n)
− sin

ny

R

]

. (6.16)
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Physics must be invariant under Z2, so we can define a parity transformation

F(x,−y) = PyF(x, y), (6.17)

where Py = +1 for F even and Py = −1 for F odd. Thus we have f
(n)
− = 0 for Py = +1

and f
(n)
+ , f (0) = 0 for Py = −1. Therefore, the compactification on an orbifold leads

to two effects that will prove useful in the further analysis:

• reduction of the mode number by a factor of two and

• removal of the zero mode for odd 5d fields.

Let us discuss the relation between orbifolds and boundary conditions (BCs) in

some more detail. Assume that F is a scalar field living in an extra dimension which
is an orbifold, so that the physical domain is y ∈ [0,πR]. The discussion for the other

fields (fermions, gauge fields) would be the same. The current in y direction is given
as

Jy = iF†∂yF. (6.18)

As long as there are no additional sources at the boundaries, the current should

vanish there. This constraint can be achieved by the boundary condition

∂yF|y=0,πR = 0, (6.19)

which is called Neumann1 boundary condition, or by

F|y=0,πR = 0, (6.20)

which is called Dirichlet2 boundary condition. Imposing one of these boundary con-
ditions at the fixed points is equivalent to the field being even or odd under the Z2

symmetry. We will prove this fact now. Let us call the field F+ if it is even under the

Z2 and F− if it is odd. From
F+(−y) = F+(y) (6.21)

it follows directly that
∂yF+(−y) = −∂yF+(y), (6.22)

such that we must have

∂yF+(y = 0) = ∂yF+(y = πR) = 0, (6.23)

which are Neumann BCs. On the other hand, from

F−(−y) = −F−(y) (6.24)

1After Carl Neumann, a German mathematician.
2After Johann Peter Gustav Lejeune Dirichlet, a German mathematician, too.
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it follows directly that we must have

F−(y = 0) = F−(y = πR) = 0, (6.25)

which are Dirichlet BCs.
In the following subsections, we will shortly give the boundary conditions and

mode expansions for all types of fields. These can be found in a similar manner for

example in [70].

6.1.3 Scalar Fields

As a scalar field can be even or odd under the orbifold Z2 symmetry, it has to fullfill
the following boundary conditions at y = 0,πR:

∂yφ+ = 0 for even fields,

φ− = 0 for odd fields.
(6.26)

Then we have the corresponding KK mode expansions,

φ+(x, y) =
1√
2πR

φ
(0)
+ (x) +

1√
πR

∞

∑
n=1

φ
(n)
+ (x) cos

ny

R
,

φ−(x, y) =
1√
πR

∞

∑
n=1

φ
(n)
− (x) sin

ny

R
.

(6.27)

It is easy to check that these fields indeed fulfill equation (6.26).

6.1.4 Fermion Fields

Dirac spinors must satisfy at y = 0,πR either the conditions

∂yψ+R = 0,

ψ+L = 0,
(6.28)

or

∂yψ−L = 0,

ψ−R = 0.
(6.29)

Then the KK mode expansions for fermions are

ψ+(x, y) =
1√
2πR

ψ
(0)
R (x) +

1√
πR

∞

∑
n=1

(

ψ
(n)
R (x) cos

ny

R
+ ψ

(n)
L (x) sin

ny

R

)

,

ψ−(x, y) =
1√
2πR

ψ
(0)
L (x) +

1√
πR

∞

∑
n=1

(

ψ
(n)
L (x) cos

ny

R
+ ψ

(n)
R (x) sin

ny

R

)

.

(6.30)
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It can easily be seen that the zero-mode is either left-handed or right-handed.
Therefore, this model reproduces the chiral fermions of the SM (chiral means that

left-handed and right-handed fields transform differently under the gauge group of
the SM). In higher modes, left-handed and right-handed fields mix. We have vector-

like fermions (meaning that left-handed and right-handed fields transform in the
same way under the gauge group of the SM).

6.1.5 Gauge Fields

For the vector fields, we choose Aµ to be even under the orbifold Z2 symmetry and
A5 to be odd, which is necessary to get the correct behavior of the gauge bosons. We
then have the following boundary conditions at y = 0,πR:

∂yAµ = 0,

A5 = 0.
(6.31)

These conditions give the mode expansions

Aµ(x, y) =
1√
2πR

A
(0)
µ (x) +

1√
πR

∞

∑
n=1

A
(n)
µ (x) cos

ny

R
,

A5(x, y) =
1√
πR

∞

∑
n=1

A
(n)
5 (x) sin

ny

R
.

(6.32)

6.1.6 KK Number Conservation

Having a massless particle propagating in a compactified (spacelike) 5th dimension

looks like a massive particle in 4d. That can easily be seen in the following way:
Assuming that 5d Lorentz invariance holds, then the 5d momentum for this particle

is given by

0 = p2 = p20 − p2 − p25. (6.33)

Here p0 is the energy of the particle, p2 is the square of the particle three-momentum,

and p5 is its momentum along the fifth dimension. Rewriting this equation, one
obtains:

p20 − p2 = p25. (6.34)

Comparing this equation to the well-known equality

p20 − p2 = m2, (6.35)

the above statement is obvious. Note that it is crucial for the extra dimension to
be spacelike, as otherwise there would be particles with negative mass square, also
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known as “tachyons”. It is not desirable for different reasons to have a theory con-
taining tachyons, so we will take the extra dimension to be spacelike in the remainder

of this thesis.

As p5 will be quantized in the compactified extra dimension (compare the parti-
cle in a box from ordinary quantum mechanics), one obtains a tower of states with

masses

mn =
n

R
. (6.36)

These states are called KK excitations, and the integer quantum number n is usually
referred to as KK number. As long as 5d Lorentz invariance holds, the KK number

is a good quantum number and needs to be conserved in all processes seen in 4d.
Compactifying the extra dimension on an orbifold with fixed points, this conclusion

is no longer true. Having fixed points destroys translation invariance in the extra
dimension and therefore necessarily violates 5-momentum conservation, too. A sub-
group of S1/Z2, however, remains unbroken, which is called KK parity. In 4d, it is a

discrete Z2 symmetry under which only KK modes with odd quantum number are
charged, while KK modes with even quantum numbers remain uncharged.

This result can easily be proven in the following way: Taking into account the

fixed points, translation by πR remains a symmetry of the orbifold. Using the mode
expansions for fermions given in equation (6.30) and translating y by πR, we obtain

ψ+(x, y + πR) =
1√
2πR

ψ
(0)
R (x)

+
1√
πR

∞

∑
n=1

(

ψ
(n)
R (x) cos

n(y + πR)

R
+ ψ

(n)
L (x) sin

n(y + πR)

R

)

. (6.37)

Due to the translational properties of the trigonometric functions, KK modes with
even KK number n are invariant under this translation, whereas the KK modes with

odd KK number change sign. Thus mixing between different KK modes is possible.
Only KK modes with odd numbers need to be produced in pairs at vertices, whereas

KK modes with even number may be produced in arbitrary numbers. This result
can be stated in a slightly different form: With ni being the KK number of particle i

interacting at a vertex, at this vertex the following relation has to hold,

∑
i

ni ≡ 0mod 2. (6.38)

A short example should make this point clear: We are interested in heavy KK

neutrinos contributing to neutrinoless double beta decay. Therefore we are interested
in the vertex ν(n)-W−-e−. We will see later that it vanishes, but it may or may not be

allowed by KK parity, depending on the KK number of the neutrino. See figure 6.1
for more details.
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Figure 6.1: Left: Vertex involving only one odd KK mode. This vertex is forbidden
by KK parity. Odd KK modes may only interact in pairs at vertices. Right: Vertex
involving a single even KK mode. This vertex is perfectly allowed by KK parity. Even

KK modes may be produced in arbitrary numbers at vertices.

6.2 Fermions and Fermion Masses in Universal Extra

Dimensions

6.2.1 Spinors in Five Dimensions

In this subsection, we want to generalize the spinor from four dimensions (cf. section

2.8) to five dimensions and carry over as many properties as possible. First note that
we have to introduce one more gamma matrix to satisfy the Dirac-Clifford algebra in

five dimensions
{ΓM, ΓN} = 2ηMN, M,N = 0, 1, 2, 3, 5. (6.39)

Therefore, we define the gamma matrices

Γµ = γµ, µ = 0, 1, 2, 3, and Γ5 = iγ5. (6.40)

The construction of Majorana spinors is not directly possible in five dimensions.

To understand this statement, have a look at the defining equation for the charge
conjugation matrix in odd dimensions

C−1ΓµC = (−1)(d−1)/2ΓT
µ . (6.41)

It is clear that on the r.h.s. we obtain a + in five dimensions instead of −, so the

Majorana condition cannot be consistently imposed. However, we may introduce the
so called symplectic Majorana condition between a pair of Dirac spinors,

ψc
1 = −ψ2 and ψc

2 = ψ1. (6.42)

To calculate the relations which this equation imposes on the spinor components, we

should find a representation of the charge conjugation matrix in five dimensions. One
possibility is

C5 = Γ0Γ2Γ5 = iγ0γ2γ5 =





−ǫ 0

0 −ǫ



 , where ǫ =





0 −1

1 0



 . (6.43)
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As in the four-dimensional case, we may write the spinors

ψ1 =





ξ1

η1



 =





ξ1

iσ2η∗
1



 and ψ2 =





ξ2

η2



 =





ξ2

iσ2η∗
2



 . (6.44)

It is now straightforward to check that the symplectic Majorana condition gives the
relations

ξ2 = η1 and η2 = −ξ1. (6.45)

With these alterations in mind, we may now write a so called symplectic Majorana
mass term, using the symplectic Majorana condition. It is given by

ψT
1C

−1
5 ψ2 = −ξT1 η∗

1 − η†
1ξ1. (6.46)

6.2.2 Toy Model for Neutrinos in Universal Extra Dimensions

In this section, we want to show (as a proof of principle) that it is possible to construct
a model of neutrinos in one universal extra dimension which includes lepton number

violation and therefore allows for processes such as neutrinoless double beta decay.
For simplicity, we stick to one generation of SM neutrinos. As in UEDs all fields

propagate in the higher dimensional space (called the “bulk”), we do not need to
introduce additional fields to see effects beyond the SM. Remember that the extra
spatial dimension is compactified on an S1/Z2 orbifold. This model is inspired by

the one discussed in [71], but differs in many important points: The authors of [71]
have discussed an iso-singlet right-handed neutrino propagating in the bulk, with all

SM fields confined to a 3-brane. Nevertheless, the formalism is somehow similar.
Let us introduce the neutrino

ν(x, y) =





ξ(x, y)

η(x, y)



 , (6.47)

where, as before, ξ and η are 2-component spinors and η = iσ2η∗. x is the 4-

dimensional coordinate, and the y-coordinate is compactified such that we have

ν(x, y) = ν(x, y + 2πR), (6.48)

with R being the radius of the extra dimension. The 2-component spinors may be

chosen to have different parity under the Z2, such that

ξ(x, y) = ξ(x,−y) and η(x, y) = −η(x,−y). (6.49)

Note that this neutrino is the usual SM neutrino and therefore is not an SM singlet.
In this way our model differs strongly from these considered elsewhere [67, 68, 72].
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Note also that we work in UEDs, so that all SM fields and gravity experience the extra
dimension. Therefore there is no need for the neutrino to be a singlet, which in other

models is taken to be the reason why it may propagate in the extra dimension.
A usual Dirac mass term for ν then would have the form

mDνν = mD

(

ηTiσ2ξ − ξ†iσ2η∗
)

. (6.50)

It can easily be seen that this term is forbidden by the Z2, as under parity transfor-
mation it transforms into

mD

(

ξ†iσ2η∗ − ηTiσ2ξ
)

= −mDνν. (6.51)

So for the Lagrangian of the neutrino we may write (including a Majorana mass
term and A running over 0, 1, 2, 3, 5)

Lν =
∫ 2πR

0
dy

[

νiΓA∂Aν − 1

2
mν

(

νTC−1
5 ν + H.c.

)

]

. (6.52)

We will use the following KK expansions for even and odd fields:

ξ(x, y) =
1√
2πR

ξ(0)(x) +
1√
πR

∞

∑
n=1

ξ(n)(x) cos
ny

R
,

η(x, y) =
1√
πR

∞

∑
n=1

η(n)(x) sin
ny

R
.

(6.53)

With these expansions and after integrating out the y-coordinate, we obtain (a de-

tailed calculation is given in appendix B.2)

Lν = ξ(0)†iσµ∂µξ(0) − 1

2
mν

(

ξ(0)ξ(0) +H.c.
)

+
∞

∑
n=1

[

ξ(n)†iσµ∂µξ(n) + η(n)†iσµ∂µη(n)

+
n

R

(

ξ(n)η(n) + ξ
(n)

η(n)
)

− 1

2
mν

(

ξ(n)ξ(n) + η(n)η(n) +H.c.
)

]

. (6.54)

From the definition of ν(x, y) it is clear that ξ and η have the same lepton number.

Thus in this Lagrangian, lepton number is explicitly broken and lepton number vio-
lating processes are allowed. We now can see that the part of the Lagrangian giving
mass to the particles is given by

−LKK
mass =

1

2
mνξ(0)ξ(0) +H.c.

−
∞

∑
n=1

[

n

R

(

ξ(n)η(n) + ξ(n) η(n)
)

+
1

2
mν

(

ξ(n)ξ(n) + η(n)η(n) + H.c.
)

]

=
1

2
mνξ(0)ξ(0) +

1

2

∞

∑
n=1

(

ξ(n), η(n)
)





mν −n/R

−n/R mν









ξ(n)

η(n)



+ H.c.

(6.55)
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If we now define

χ(0) ≡ ξ(0),

χ(±n) ≡ 1√
2

(

ξ(n) ± η(n)
)

,
(6.56)

we can write

−LKK
mass =

1

2
mνχ(0)χ(0)

+
1

2

∞

∑
n=1

(

χ(+n), χ(−n)
)





mν − n/R 0

0 mν + n/R









χ(+n)

χ(−n)



+ H.c.
(6.57)

Rearranging the spinors into a vector as follows

ψ =
(

χ(0), χ(+1), χ(−1), χ(+2), χ(−2), . . .
)T

, (6.58)

we may rewrite the mass part of the Lagrangian as

LKK
mass = −1

2
ψTMKK

ν ψ + H.c. (6.59)

The resulting neutrino mass matrix then is

MKK
ν =































mν 0 0 0 0 · · ·
0 mν − 1

R 0 0 0 · · ·
0 0 mν + 1

R 0 0 · · ·
0 0 0 mν − 2

R 0 · · ·
0 0 0 0 mν + 2

R · · ·
...

...
...

...
...

. . .































. (6.60)

6.2.3 Adding a Higgs Triplet

So far in our toy model, it is unexplained where the Majorana mass term mν comes
from. We may add, as is usually done, a Higgs triplet to generate this term. As we
work in the model of universal extra dimensions, the Higgs triplet will propagate in

the extra dimension, too. The Lagrangian of the Higgs sector is the same as the one
in the Higgs triplet model, which was given in equation (5.15). The only difference

is that all the fields experience the extra spatial dimension, which means that they
depend on the additional coordinate y.
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Vertex vertex factor

(eL)ceLδ++ iY

δ++δ−− −iM2
∆

eeAa
µ igγµt

a

eeA5 −igta

Wµee − 1√
2
igγµ

WµWνφφ 2ig2gµν

φ+δ−−φ+ iα

WµWνδ−− −
√
2iv∆g

2gµν

Table 6.1: Vertices for the Higgs triplet model in universal extra dimensions.

Writing out the fields in components, it is easy to give the Feynman rules. The

vertices we are interested in are given in table 6.1.

For illustration, let us calculate one vertex in the language of KK modes

L ⊇
∫

dyeL(x, y)δ−−(x, y)(eL)
c(x, y). (6.61)

We can expand the electrons into a sum over KK modes

eL(x, y) =
1√
2πR

e
(0)
L (x) +

1√
πR

∞

∑
n=1

(

e
(n)
L (x) cos

ny

R
+ e

(n)
R (x) sin

ny

R

)

. (6.62)

The Higgs triplet must be even to have a zero mode (which is necessary to create the

Majorana neutrino mass). So we may expand

δ−−(x, y) =
1√
2πR

δ−−
(0)

(x) +
1√
πR

∞

∑
n=1

δ−−
(n)

(x) cos
ny

R
. (6.63)

Plugging these expansions into equation (6.61) and using the integrals given in ap-
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pendix B.1, we obtain

L ⊇ 1√
2πR

e
(0)
L (x)δ−−

(0)
(x)(e

(0)
L )c(x)

+
1√
2πR

e
(0)
L (x)

∞

∑
n=1

δ−−
(n)

(x)(e
(n)
L )c(x)

+
1√
2πR

δ−−
(0)

(x)
∞

∑
n=1

(

e
(n)
L (x)(e

(n)
L )c(x) + e

(n)
R (x)(e

(n)
R )c(x)

)

+
1√
2πR

∞

∑
n=1

e
(n)
L (x)δ−−

(n)
(x)(e

(0)
L )c(x)

+
1

2
√

πR

∞

∑
n,m,l=1

e
(n)
L (x)δ−−

(m)
(x)(e

(l)
L )c(x)(δl,m+n + δm,l+n + δn,l+m)

+
1

2
√

πR

∞

∑
n,m,l=1

e
(n)
R (x)δ−−

(m)
(x)(e

(l)
R )c(x)(−δl,m+n + δm,l+n + δn,l+m).

(6.64)

We see that KK number conservation restricts the possible interactions.

6.3 Neutrinoless Double Beta Decay in Universal Extra

Dimensions

6.3.1 KK Number Violating Couplings

Our aim is to discuss contributions to neutrinoless double beta decay from KK tower

particles. As the involved external quarks and leptons are the SM particles (that is, the
zero KK mode particles), diagrams that contain higher KK modes as virtual particles
necessarily involve at least two KK number violating vertices.

First we need to note that, at tree-level, all KK number violating couplings vanish.

As an example, let us discuss the A
(2n)
µ -ψ(0)-ψ(0) vertex: The relevant term in the

Lagrangian is

∝ ψL(x)ψL(x)A
(2n)
µ (x, y)

∝ ψL(x)ψL(x)A
(2n)
µ (x) cos

2ny

R
.

(6.65)

Integrating out the fifth dimension via
∫ 2πR
0 dy, it is clear that this term vanishes, as

∫ 2πR

0
dy cos

ky

R
= 0, for k ∈ N. (6.66)

The same is true for other vertices allowed by KK parity.
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Such vertices, however, can be created at loop-level. The resulting couplings were
discussed by Cheng, Matchev, and Schmaltz [73]. We state their results and calculate

the additional couplings needed in appendix B.

6.3.2 Neutrinoless Double Beta Decay Mediated by Heavy KK Neutrinos

Figure 6.2 (a) shows the most general diagram for neutrinoless double beta decay
mediated by heavy KK neutrinos. As only even KK modes can violate KK number,

we may reduce the number of possible diagrams. A corrected diagram is shown in
figure 6.2 (b). We already stated before that KK number violating couplings are loop-

suppressed. Therefore, we want to consider only diagrams which involve two KK
number violating vertices. So we can reduce the number of possible diagrams even
further. The two diagrams to consider are shown in figure 6.2 (c) and (d).

The first realization possible of neutrinoless double beta decay would be the vertex

ψ(2n)-ψ(0)-A
(0)
µ (resulting in the vertex ψ(2n)-ψ(0)-W

(0)
µ ), so that only the virtual neu-

trino would be a higher KK mode, the rest of the involved particles were the usual SM
fields. The corresponding diagram is shown in figure 6.2 (c). This vertex, however,

vanishes (see appendix B.4.1 for more details).
Taking the gauge fields Aa

µ or the W bosons, respectively, to be higher KK modes,
too, there are now two vertices involving KK modes [cf. figure 6.2 (d)]. The vertex

ψ(2n)-ψ(0)-A
(2n)
µ , where neutrino, electron and W boson interact is allowed by KK

parity and therefore not suppressed. We do not have to discuss this vertex further.
The KK number violating coupling now involves the quarks and theW boson. As the
quarks are necessarily the SM particles (that is, zero KK modes), we have to examine

the vertex ψ(0)-ψ(0)-A
(2n)
µ . This vertex does not vanish and thus we will lead to a

realization of neutrinoless double beta decay. In appendix B.4.1 we obtain for the

ψ(0)-ψ(0)-A
a(2n)
µ interaction vertex:

(−iγµgtaPL)
√
2

g2

64π2
ln

Λ2

µ2

[

23

3
C2(G) − 1

3 ∑
real scalars

(C(r)even − C(r)odd)− 9C2(r)

]

.

(6.67)

The KK number violating vertex ψ(0)-ψ(0)-W
−(2n)
µ between the quarks and the W-

boson can directly be deduced from this expression. Using the generators of SU(2)
given in appendix A.9, we can see that

t1A
1(2n)
µ + t2A

2(2n)
µ =

1

2





0 A
1(2n)
µ − iA

2(2n)
µ

A
1(2n)
µ + iA

2(2n)
µ 0





=
1√
2





0 W
+(2n)
µ

W
−(2n)
µ 0



 ,

(6.68)
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(a) Arbitrary KK modes.
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(b) Even KK modes.
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(d) Same even KK mode.

Figure 6.2: (a) Diagram for 0νββ decay mediated by the exchange of KK neutrino

modes from universal extra dimensions. With the modes for the virtual particles be-
ing completely arbitrary, the diagram is either forbidden or strongly suppressed, as

there are several KK number violating vertices involved. (b) Diagram for 0νββ decay
mediated by the exchange of KK neutrino modes from universal extra dimensions
with a reduced number of KK number violating vertices. By only including even KK

numbers, diagrams that are forbidden by KK parity are already excluded. (c) Dia-
gram for 0νββ decay mediated by the exchange of KK neutrino modes from universal

extra dimensions with the minimal number of KK number violating vertices (two).
Only the neutrinos are higher KK modes, the gauge bosons are zero modes. This
diagram vanishes. (d) Diagram with two KK number violating vertices, which will

be calculated in this section.
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where

W
∓(2n)
µ =

1√
2

(

A
1(2n)
µ ± iA

2(2n)
µ

)

. (6.69)

So the desired vertex including the KKmodes of theW-boson differs from the original

vertex in equation (6.67) only by a factor of 1/
√
2.

We have to calculate the square brackets in our vertex formula, determined by
group theory. We are working with particles in representations of SU(2), so we

have C2(G) = 2 (with G being the adjoint representation of SU(2)) and C2(r) =
3/4 (with r being the fundamental representation of SU(2)). To calculate the term

1/3∑real scalars (C(r)even − C(r)odd) we need to determine all scalar fields of our the-
ory. The only scalars we have in the extra dimensional version of the SM are the
Higgs scalars and the A5. The Higgs boson is a complex scalar, which is even under

the Z2, whereas the A5 is odd, to have a consistent assignment. So for this factor we
have

1

3 ∑
real scalars

(C(r)even − C(r)odd) =
1

3
(2− 1)

1

2
=

1

6
. (6.70)

All in all we find
[

23

3
C2(G) − 1

3 ∑
real scalars

(C(r)even − C(r)odd) − 9C2(r)

]

=
101

12
. (6.71)

As higher KK modes are heavier than the light neutrino (the zero KK mode), the

resulting amplitude for neutrinoless double beta decay can be calculated using the
approximate propagator for heavy neutrino exchange. For one KK neutrino con-
tributing, the propagator of the neutrino is proportional to 1/mk ≈ R/2k, with 2k

being the number of the corresponding KK mode. So for the amplitude we get

A(2k)
UEDs = 2

(

g√
2

)2
(

g3
√
2

64π2
ln

Λ2

µ2

101

12

1√
2

)2
1

(

M2
W + (2k)2

R2

)2

R

2k

=
g10

642π4

(

ln
Λ2

µ2

)2(
101

12

)2 R5

2k(M4
WR4 + 4k2M2

WR2 + 16k4)
.

(6.72)

The factor 2 on the r.h.s. of the equation comes from the fact that in our toy model

(see section 6.2.2) the neutrinos with mass matrix entries mν − 2k/R and mν + 2k/R
will contribute equally to the amplitude. Their physical mass is mk ≡ 2k/R ≈
|mν − 2k/R| ≈ |mν + 2k/R|, for mν being the small neutrino mass.

Let us calculate the value for k = 1, that is, the contribution of the second KK mode
only. We obtain

A(2)
UEDs =

g10

642π4

(

ln
Λ2

µ2

)2(
101

12

)2 R5

2(M4
WR4 + 4M2

WR2 + 16)
. (6.73)
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We may now plug this result into formula (3.17) for the decay rate Γ0ν. However, for
this purpose we need to know the effective coupling constant ǫNP. Recalling that the

amplitude for light neutrino exchange is

Aν =

(

g√
2

)4 1

M4
W

mee

〈p2〉 , (6.74)

which leads to the decay rate

Γ0ν

ln 2
=

1

T0ν
1/2

= |mee|2
∣

∣

∣
M0ν

∣

∣

∣

2
G0ν, (6.75)

we can see that

ǫ
(2)
UEDs =

〈p2〉M4
W

(g/
√
2)4

g10

642π4

(

ln
Λ2

µ2

)2 (
101

12

)2 R5

2(M4
WR4 + 4M2

WR2 + 16)
. (6.76)

Thus we arrive at

Γ0ν
(2)

ln 2
=

1

T0ν
1/2

=
∣

∣

∣
M0ν

∣

∣

∣

2
G0ν

×
[

〈p2〉M4
W

(g/
√
2)4

g10

642π4

(

ln
Λ2

µ2

)2(
101

12

)2 R5

2(M4
WR4 + 4M2

WR2 + 16)

]2

.

(6.77)

For simplicity, we will use the same NMEs as in light neutrino exchange. There
should be no problem with that, as the nuclear physics involved in our problem is
practically the same as in light neutrino exchange and NMEs are of order 1 anyway.

The phase space factor G0ν is determined by the final states and is therefore the same
as the one used in light neutrino exchange. We can now derive an equation of degree

5 in R, the radius of the extra dimension,

AR5 − 1
√

T0ν
1/2

R4 − 8
√

T0ν
1/2M

2
W

R2 − 16
√

T0ν
1/2M

4
W

= 0. (6.78)

The factor A is given by

A =
2〈p2〉
g

g10

642π4

(

ln
Λ2

µ2

)2(
101

12

)2 ∣
∣

∣
M0ν

∣

∣

∣
G0ν1/2. (6.79)

Using 〈p2〉 ≈ (100MeV)2, g = 0.652, Λ = 15 TeV,3 µ = 100MeV,4 a matrix element
M0ν = 4 [42], and the half-life from the Heidelberg-Moscow experiment given before,

3Usually, about 50 KK modes are taken to contribute. This limit is calculated via the QCD coupling
g3 in a 4d effective theory obtained from the 5d universal extra dimensions model (see [74] for a
more detailed discussion). With an approximate size of 300GeV each, we obtain Λ = 15 TeV.

4We consider a nuclear process, so the renormalization scale µ should be taken to be near the nuclear
momentum scale.
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we obtain as a limit
1

R
≥ 155GeV. (6.80)

We will discuss the relevance of this limit after we have considered the contribution

of all KK modes in the next step. As more modes will contribute, the limit on the
radius of the extra dimension gets stronger. Remember that we had for one KK mode

contributing the amplitude given in equation (6.72). To get the total amplitude, we
need to sum up all contributing KK modes. We obtain

Atot ∝
∞

∑
k=1

R5

2kM4
WR4 + 16k3M2

WR2 + 32k5
. (6.81)

The sum on the r.h.s. may be summed up analytically, and we find

∞

∑
k=1

R5

2kM4
WR4 + 16k3M2

WR2 + 32k5
=

R

16M4
W

[

8γ + 4Ψ

(

1− iMWR

2

)

(6.82)

+4Ψ

(

1+
iMWR

2

)

+ iMWRΨ(1)

(

1− iMWR

2

)

− iMWRΨ(1)

(

1+
iMWR

2

)]

.

(6.83)

In this expression, γ is Euler’s constant, which has a numerical value

γ ≈ 0.577216. (6.84)

Ψ(z) is the digamma function (see Abramowitz and Stegun [75] for a detailed discus-

sion) with z as a complex variable, which is defined as

Ψ(z) =
d

dz
ln Γ(z), (6.85)

where Γ(z) is the usual gamma function. For |z| < 1, Ψ(z) may be expanded as

Ψ(1 + z) = −γ +
∞

∑
n=2

(−1)nζ(n)zn−1 . (6.86)

Here, ζ(n) is the Riemann zeta function. Ψ(1)(z) is the so-called trigamma function,
defined as

Ψ(1)(z) =
d

dz
Ψ(z). (6.87)

This function is a special case of the polygamma function, given by

Ψ(n)(z) =
dn

dzn
Ψ(z). (6.88)
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For |z| < 1, Ψ(n)(z) may be expanded as

Ψ(n)(1 + z) = (−1)n+1

[

n!ζ(n + 1)− (n + 1)!

1!
ζ(n + 2)z +

(n + 2)!

2!
ζ(n + 3)z2 − . . .

]

.

(6.89)
In our case it is

∣

∣

∣

∣

iMWR

2

∣

∣

∣

∣

< 1, (6.90)

as follows directly from the well-motivated assumption

MW <
1

R
. (6.91)

Expanding the gamma functions to fourth order in iMWR
2 and collecting terms, one

obtains
∞

∑
k=1

R5

2kM4
WR4 + 16k3M2

WR2 + 32k5
≈ ζ(5)

32
R5. (6.92)

We could have found this result more easily, as for 1/R > MW the most important
contribution in the denominator comes from the term 32k5. We thus have

∞

∑
k=1

R5

2kM4
WR4 + 16k3M2

WR2 + 32k5
≈ R5

∞

∑
k=1

1

32k5
. (6.93)

As ∑
∞
k=1

1
k5

converges, we do not have to think about a cutoff (usually done after 50
KK modes), so that we finally obtain

∞

∑
k=1

R5

2kM4
WR4 + 16k3M2

WR2 + 32k5
≈ R5

32
ζ(5), (6.94)

which is the same as in the more detailed analysis above. The numerical value of the

Riemann zeta function is

ζ(5) = 1.03693. (6.95)

We can now plug this value into the formula for the decay rate and get

Γ0ν

ln 2
=

1

T0ν
1/2

=

[

〈p2〉M4
W

(g/
√
2)4

]2

A2
tot

∣

∣

∣
M0ν

∣

∣

∣

2
G0ν. (6.96)

Calculating the radius R, we obtain

1

R
=

[

(

2AM4
W

)2
(

ζ(5)

32

)2

T0ν
1/2

]
1
10

. (6.97)
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With the values used before, we finally conclude

1

R
≥ 160GeV. (6.98)

This bound is just slightly stronger than the limit obtained from the contribution of
the second KK mode. This result should be intuitively clear, as the higher KK modes

are strongly suppressed and the biggest contribution indeed comes from the lowest
modes contributing.

It is now interesting to see what happens if we additionally take into account the

decay mediated by the light neutrinos. The amplitude must be added to the ampli-
tude of the decay mediated by heavy KK modes calculated before. We obtain

Atot =
g10

642π4

(

ln
Λ2

µ2

)2(
101

12

)2 ζ(5)

32
R5 +

(

g√
2

)4 1

M4
W

mee

〈p2〉 . (6.99)

Plugging this expression into the formula for the decay rate and solving for 1/R, we
arrive at

1

R
=

[

(2AM4
W)

ζ(5)

32

(T0ν
1/2)

1
2

1− |mee| |M0ν| (G0ν)
1
2 (T0ν

1/2)
1
2

]

1
5

. (6.100)

This function is plotted for different values of |mee| in figure 6.3. It can easily be seen

that depending on the mass assumed, the limits on the radius R get stronger.
There exist limits on the size of extra dimensions from experiments testing the

inverse-square law of gravity. The most stringent bound comes from Kapner et al.
[76], who conclude that an extra dimension must have a size R ≤ 44 µm. Using

(2 fm)−1 ≈ 100MeV, (6.101)

or alternatively
1

eV
≈ 0.2 µm, (6.102)

we can see that the radius given above corresponds to

1

R
≥ 4.55× 10−12GeV. (6.103)

This limit is much weaker than the limit we obtain from double beta decay. There

are, however, more stringent bounds: At the moment, best constraints come from
electroweak precision tests [77, 78] and give for a Higgs mass mH = 115GeV (and a

top quark mass of mt = 173GeV)

1

R
& 600GeV. (6.104)
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Figure 6.3: Lower limit on 1/R as a function of the half-life of 0νββ for different
values of |mee|.

For a heavier Higgs, the constraints could be as low as

1

R
& 250− 300GeV. (6.105)

Both limits are marked in figure 6.3.

However, we would like to point out that the constraints we obtain from neutri-
noless double beta decay are complementary to the ones from electroweak precision
data, as they are obtained from a different class of experiments. Furthermore, with

the next generation of experiments, limits on extra dimensions will improve consid-
erably. With the GERDA experiment [13] it is planned to reach sensitivities of order

T0ν
1/2 > 2× 1026 y (phase II). This value would directly translate into a limit on the

size of one universal extra dimension,

1

R
≥ 203GeV. (6.106)

There are more 0νββ experiments on the way, which as a side effect will improve
the bounds given. With better limits for the half-lives of 0νββ, we expect the bounds

for the size of the extra dimension to become competitive in the future. This fact can
be seen from the plot in figure 6.3. The situation will improve, if we find evidence
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Figure 6.4: Diagrams for 0νββ decay in the Higgs triplet model in universal extra

dimensions. The vertices 1, 1′, and 2 are KK number violating. We want to consider
the least suppressed contributions. The diagrams on the left and in the center contain
two KK number violating vertices. The diagram on the right contains three or more

KK number violating vertices, depending on the choice of the numbers l,m, n. As
KK number violating couplings are loop suppressed, we will consider the first two

diagrams only.

for a Majorana neutrino mass different from zero. Figure 6.3 nicely illustrates that in
this case bounds on the size of the extra dimension will be much stronger.

Of course, new bounds on the size of extra dimensions are to be expected from

LHC in the next years, too.

6.3.3 Neutrinoless Double Beta Decay Mediated by Higgs Triplets

Putting a Higgs triplet into the extra dimension gives a tower of KK Higgs triplets.
These may mediate neutrinoless double beta decay, in analogy to the Higgs triplet

model. We want to concentrate on the least suppressed realizations, which only
involve two KK number violating vertices. Figure 6.4 gives more details. We can see
that the vertices 1, 1′, and 2 are KK number violating.

We can now perform the same analysis as we did in the last subsection for the
heavy KK neutrinos. For the amplitude of the left diagram in figure 6.4 (where only
the triplet is of higher KK modes) we find

A1 =

(

g√
2M2

W

)2

V1V2

∞

∑
k=1

R2

R2M2
∆

+ 4k2
. (6.107)
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Here, the vertex factors were calculated in the appendices B.4.2 and B.4.3 to be

V1 =
g2α

64π2
ln

Λ2

µ2
[4+ 6C(r)], (6.108)

V2 =
g2Y

64π2
ln

Λ2

µ2
6C(r). (6.109)

For the fundamental representation, we have C(r) = 1
2 . The sum on the r.h.s. of

equation (6.107) may be summed up analytically, and we obtain

∞

∑
k=1

R2

R2M2
∆

+ 4k2
=

−2+ M∆πR coth
(

M∆πR
2

)

4M2
∆

. (6.110)

For any sensible value of M∆, it is

M∆πR

2
≥ 2. (6.111)

For this argument, however, we have

coth

(

M∆πR

2

)

≈ 1. (6.112)

Thus we find

A1 ≈
(

g√
2M2

W

)2

V1V2
−2 + M∆πR

4M2
∆

. (6.113)

For the diagram in the center of figure 6.4 (where one of the gauge bosons is a higher
KK mode, too), we can write down the amplitude

A2 =

(

g√
2

)√
2v∆g

2V ′
1V2

1

M2
W

∞

∑
k=1

1

M2
W + (2k)2

R2

1

M2
∆

+ (2k)2

R2

=
g3v∆

M2
W

V ′
1V2R

4
∞

∑
k=1

1

R4M2
WM2

∆
+ 4k2R2(M2

W + M2
∆
) + 16k4

.

(6.114)

The vertex factor V ′
1 was already used in the case of the decay mediated by heavy KK

neutrinos and is given by

V ′
1 =

g3

64π2
ln

Λ2

µ2

[

23

3
C2(G) − 1

3 ∑
real scalars

(C(r)even − C(r)odd) − 9C2(r)

]

. (6.115)

We have to recalculate the group theory factor in square brackets, as we have a dif-
ferent scalar sector now. The complex Higgs triplet is in the adjoint representation of
SU(2), so we have C(r) = 2. All in all we find

[

23

3
C2(G) − 1

3 ∑
real scalars

(C(r)even − C(r)odd) − 9C2(r)

]

=
85

12
. (6.116)
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As before, we can approximate the sum on the r.h.s. of equation (6.114), as the most
important term in the denominator is the one proportional to k4. Thus we find

∞

∑
k=1

1

R4M2
WM2

∆
+ 4k2R2(M2

W + M2
∆
) + 16k4

≈
∞

∑
k=1

1

16k4
=

ζ(4)

16
=

π4

1440
. (6.117)

Summing up the amplitudes and including the amplitude

A0 =

(

g√
2M2

W

)2 √
2g2Yv∆

M2
∆

(6.118)

for the diagram containing only zero modes (the usual particles), we find for the total
amplitude

Atot = A0 +A1 + A2

=

(

− g2V1V2

4M4
WM2

∆

+
g4Yv∆√
2M4

WM2
∆

)

+
g2V1V2π

8M4
WM∆

R +
g3v∆V

′
1V2π4

1440M2
W

R4.
(6.119)

Plugging this expression into the formula for the half-life

1

T0ν
1/2

=

(

〈p2〉M4
W

(g/
√
2)4

)2

|Atot|2
∣

∣

∣
M0ν

∣

∣

∣

2
G0ν, (6.120)

we arrive at an equation of degree 4 in R:

(

− g2V1V2

4M4
WM2

∆

+
g4Yv∆√
2M4

WM2
∆

)

+
g2V1V2π

8M4
WM∆

R +
g3v∆V

′
1V2π4

1440M2
W

R4

=
g4

4〈p2〉M4
W(T0ν

1/2)
1/2 |M0ν| (G0ν)1/2

. (6.121)

This equation may be solved for 1/R. However, the parameters of the Higgs triplet
model are less constrained than for other models. Let us choose the parameters such
that

√
2Yv∆ = 0.1 eV, which is of the order of the light neutrino mass. For the Higgs

triplet mass we chose a value M∆ = 1 TeV, and a numerical analysis shows that the
solution does not depend too much on the triplet mass, as long as it is of the order

100GeV to TeV. Plugging in the values given before [see equation (6.80)], we obtain
using the limit on the half-life of the Heidelberg-Moscow experiment (1.9× 1025 y):

1

R
≥ 0.4GeV. (6.122)

We can see that the constraints we obtain here are weaker than the ones from KK

neutrino mediation calculated before.





Chapter 7

Summary and Outlook

We have investigated various topics related to neutrinoless double beta decay, a field

which remained a little bit static during the past years. And indeed, there are some
news to report.

We saw that the Schechter-Valle (or Black Box) theorem is not as strong as it may
seem. It is of merely academic interest, and one has to be a little bit careful when
using its assertion to explain the Majorana nature of neutrinos. If a mass is generated

via the the well-known diagram in figure 4.1, it is far too small to account for the neu-
trino masses we expect to have. Moreover, we found an operator mediating 0νββ, but

giving zero contribution to the neutrino mass via this diagram. Of course, other dia-
grams (which, however, will be more strongly suppressed) may give some non-zero
contribution for the same operator. But this mass will be many orders of magnitude

smaller than the expected one, too. Note that our finding does not invalidate the
Schechter-Valle theorem, as the proof presented in section 4.1 excludes that a Majo-

rana mass term is forbidden by symmetry and still neutrinoless double beta decay
takes place. We, however, found that such a mass term from the well-known diagram
is not forbidden but may vanish for some operators giving neutrinoless double beta

decay. Therefore, we can say that we indeed need to know more about the underlying
mechanism triggering neutrinoless double beta decay before we may safely interpret

the results from up-coming experiments and extract a neutrino mass.

Concerning our second topic, neutrinoless double beta decay in universal extra

dimensions, we have found limits on the size of one extra dimension from the exper-
imental bounds on the half-life of neutrinoless double beta decay. It is well known

that bounds on universal extra dimensions are generally low due to the approximate
KK number conservation. However, the limits we obtained from neutrinoless double
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beta decay were slightly weaker than these obtained from electroweak precision data.
Nevertheless, we would like to point out that constraints from 0νββ are complemen-

tary to these ones, as they come from a different class of experiments. Moreover, next
generation experiments are expected to improve the bounds we found.

So all in all, we think that neutrinoless double beta decay is a research area with
interesting perspectives, from the theoretical side as well as from the experimental
point of view. Hopefully, during the next years there will be more news to report.



Appendix A

Notations and Conventions

The notations and conventions mainly follow these of the textbook written by Peskin
and Schroeder [34]. To be clear, however, we will list the used ones in this appendix.

A.1 Tensors

The metric tensor is given by

(gµν) = (gµν) = diag(+1,−1,−1,−1). (A.1)

This convention is the same as used by Bjorken and Drell [79, 80], and Peskin and

Schroeder [34], but differs frome the one used by Weinberg [81]. Greek indices run
over 0, 1, 2, 3, corresponding to t, x, y, z. Roman indices usually run only over the
three spatial components. Einstein summation convention is assumed, meaning that

repeated indices are summed over in all cases.
The totally antisymmetric tensor ǫµνρσ is defined by

ǫ0123 = +1. (A.2)

A.2 Units

Throughout the whole thesis, we work in natural units, setting

h̄ ≡ c ≡ 1. (A.3)

Therefore, dimensions are as follows:

[length] = [time] = [energy]−1 = [mass]−1. (A.4)
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A.3 Delta Distribution

The four-dimensional delta distribution may be represented in the following form:
∫

d4x eik·x = (2π)4δ(4)(k). (A.5)

A.4 Pauli Matrices

The Pauli sigma matrices are traceless and Hermitian. They are given by

σ1 =





0 1

1 0



 , σ2 =





0 −i

i 0



 , and σ3 =





1 0

0 −1



 . (A.6)

Products of the Pauli matrices satisfy the identity

σiσj = δij + iǫijkσk. (A.7)

A.5 Gamma Matrices

The four gamma matrices satisfy

{γµ,γν} = 2gµν (A.8)

and

γ†
µ = γ0γµγ0. (A.9)

We may introduce an additional gamma matrix

γ5 ≡ iγ0γ1γ2γ3 = − i

4!
ǫµνρσγµγνγργσ. (A.10)

The following properties can be verified easily:

(

γ5
)†

= γ5, (A.11)
(

γ5
)2

= 1, (A.12)
{

γ5,γµ
}

= 0. (A.13)

Contractions of gamma matrices in d dimensions are given by

γµγµ = d,

γµγνγµ = −(d− 2)γν,

γµγνγργµ = 4gνρ − (4− d)γνγρ,

γµγνγργσγµ = −2γσγργν + (4− d)γνγργσ.

(A.14)
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In four dimensions, these reduce to the well-known formulae

γµγµ = 4,

γµγνγµ = −2γν,

γµγνγργµ = 4gνρ,

γµγνγργσγµ = −2γσγργν.

(A.15)

A.6 Trace Formulae

It is straight forward but tedious to show the following trace formulae:

Tr(1) = 4, (A.16)

Tr(any odd number of γµ’s) = 0, (A.17)

Tr(γµγν) = 4gµν, (A.18)

Tr(γµγνγργσ) = 4 (gµνgρσ − gµρgνσ + gµσgνρ) , (A.19)

Tr(γ5) = 0, (A.20)

Tr(γ5γµγν) = 0, (A.21)

Tr(γ5γµγνγργσ) = −4iǫµνρσ. (A.22)

A.7 Feynman Parameterization

In loop calculations in quantum field theory, we often have to calculate integrals
over fractions with a product of polynomials Ai in the denominator. These may be

simplified by a trick invented by Feynman:

1

A1A2 . . . An
= (n− 1)!

∫ 1

0
dx1

∫ 1

0
dx2 . . .

∫ 1

0
dxn

δ(1− x1 − . . .− xn)

[A1x1 + A2x2 + . . .+ Anxn]n
. (A.23)

Using the delta distribution, we may directly perform one of the integrations. How-

ever, we have to be careful, as not only the variables inside the integral have to be
replaced, but also integration limits change. In the case of three Feynman parameters,

which is used often in this thesis, we obtain

∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dx3

δ(1− x1 − x2 − x3)

[A1x1 + A2x2 + A3x3]3

=
∫ 1

0
dx1

∫ 1−x1

0
dx2

1

[A1x1 + A2x2 + A3(1− x1 − x2)]3
.

(A.24)
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A.8 Dimensional Regularization

In dimensional regularization (as opposed to regularization via cutoff), we compute
the Feynman diagram of a physical process as an analytic function of the dimension-

ality d of spacetime. Every observable quantity should have a well-defined limit for
d → 4.
In this thesis, we often need the following general integrals

∫

ddl

(2π)d
1

(l2 − ∆)n
=

(−1)ni

(4π)d/2
Γ(n− d

2)

Γ(n)

(

1

∆

)n− d
2

,

∫

ddl

(2π)d
l2

(l2 − ∆)n
=

(−1)n−1i

(4π)d/2
d

2

Γ(n− d
2 − 1)

Γ(n)

(

1

∆

)n− d
2−1

.

(A.25)

We may expand the combination

Γ(2− d
2)

(4π)d/2

(

1

∆

)2−d/2

=
1

(4π)2

(

2

ǫ
− γ + log(4π) − log∆

)

. (A.26)

Here, γ is Euler’s constant and ǫ = 4− d. We can now renormalize this expression
by the so-called modified minimal subtraction (MS) scheme and obtain

1

(4π)2

(

2

ǫ
− γ + log(4π) − log(∆)

)

→ 1

(4π)2

(

− log
∆

M2

)

, (A.27)

where M is an arbitrary mass parameter (the so-called renormalization scale).

A.9 Group Theory

Let the matrices ta form a representation of a Lie algebra G. That means, they obey
the relation

[ta, tb] = i f abctc, (A.28)

where f abc are called the structure constants. They are totally antisymmetric, and
form a representation of the Lie algebra, called the adjoint representation, which is
denoted by the symbol G, too. There exist two invariants of a representation r, which

are defined as
tr[tatb] = C(r)δab, taikt

a
kj = C2(r)δij. (A.29)

Here, C2(r) is called quadratic Casimir operator and C(r) is called Dynkin index. The
following relations hold:

tatbta = [C2(r) −
1

2
C2(G)]tb,

f acd f bcd = C2(G)δab,

f abctbtc =
i

2
C2(G)ta .

(A.30)
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In SU(N) groups, the fundamental representation is denoted by N, and the invariants
are given by

C(N) =
1

2
,

C2(N) =
N2 − 1

2N
,

C(G) = C2(G) = N.

(A.31)

In this thesis, we often consider the group SU(2), which has two widely used
irreducible representations. The spin-12 representation is given by

t1/21 =
σ1
2

=
1

2





0 1

1 0



 , t1/22 =
σ2
2

=
1

2





0 −i

i 0



 ,

and t1/23 =
σ3
2

=
1

2





1 0

0 −1



 .

(A.32)

The spin-1 representation is given by

t11 =
1√
2











0 1 0

1 0 1

0 1 0











, t12 =
1√
2











0 −i 0

i 0 −i

0 i 0











, and t13 =











1 0 0

0 0 0

0 0 −1











. (A.33)
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Extra Dimensions

B.1 Integrals

The following integrals repeatedly arise in calculations in extra dimensions:

∫ 2πR

0
dy cos

ny

R
= 0, (B.1)

∫ 2πR

0
dy sin

ny

R
= 0, (B.2)

∫ 2πR

0
dy cos

ny

R
cos

my

R
= πRδn,m, (B.3)

∫ 2πR

0
dy sin

ny

R
sin

my

R
= πRδn,m, (B.4)

∫ 2πR

0
dy sin

ny

R
cos

my

R
= 0, (B.5)

∫ 2πR

0
dy cos

ny

R
cos

my

R
cos

ly

R
=

πR

2
(δl,m+n + δm,l+n + δn,l+m) , (B.6)

∫ 2πR

0
dy sin

ny

R
sin

my

R
sin

ly

R
= 0, (B.7)

∫ 2πR

0
dy sin

ny

R
sin

my

R
cos

ly

R
=

πR

2
(−δl,m+n + δm,l+n + δn,l+m) , (B.8)

∫ 2πR

0
dy sin

ny

R
cos

my

R
cos

ly

R
= 0. (B.9)
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B.2 Lagrangian of the Toy Model

In this appendix, we will give the calculations for the Lagrangian of the toy model
from section 6.2.2. Let us rewrite the Lagrangian as

Lν = Lkin +Lmass, (B.10)

where we define (with A running over 0, 1, 2, 3, 5)

Lkin =
∫ 2πR

0
dy νiΓA∂Aν and Lmass = −

∫ 2πR

0
dy

1

2
mν

(

νTC−1
5 ν +H.c.

)

. (B.11)

We want to calculate Lkin first. We can write

Lkin =
∫ 2πR

0
dy ν

(

iγµ∂µ + γ5∂y
)

ν

=
∫ 2πR

0
dy
(

ξ†, η†
)

γ0





−∂y1 iσµ∂µ

iσµ∂µ ∂y1 ξ

η





=
∫ 2πR

0
dy
(

η†, ξ†
)





iσµ∂µη − ∂yξ

iσµ∂µξ + ∂yη





=
∫ 2πR

0
dy
(

η†iσµ∂µη + ξ†iσµ∂µξ − η†∂yξ + ξ†∂yη
)

.

(B.12)

The second term in the last line already has the desired form. The first term can be

rewritten in the same form

η†iσµ∂µη = ηT(−iσ2)iσ
µiσ2∂µη∗ = ηα [σ2iσ

µσ2]αβ

(

∂µη∗)β

(∗)
= −

(

∂µη∗)β
[

(σ2iσ
µσ2)

T
]

βα
ηα = −

(

∂µη∗)β
[

σ2iσ
µTσ2

]

βα
ηα

= −∂µ

{

(η∗)β
[

σ2iσ
µTσ2

]

βα
ηα

}

+ (η∗)β
[

σ2iσ
µTσ2

]

βα
∂µηα.

(B.13)

The minus in step (∗) arises because the two fermions ηα and
(

∂µη∗)β
are exchanged.

The total derivative which arises in the last step can be omitted, as the Lagrangian

will be integrated over all space. To rewrite the matrix
[

σ2iσ
µTσ2

]

, first note that

(σ0)
T = σ0, (σ1)

T = σ1, (σ2)
T = −σ2, and (σ3)

T = σ3. (B.14)

Furthermore,

[σi, σ0] = 0 and
{

σi, σj

}

= 2δij. (B.15)
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Thus we obtain (using σ2σ2 = 1)
σ2iσ

µTσ2 =































for µ = 0 : σ2iσ0σ2 = iσ0

for µ = 1 : σ2iσ1σ2 = −iσ1

for µ = 2 : σ2(−iσ2)σ2 = −iσ2

for µ = 3 : σ2iσ3σ2 = −iσ3































= iσµ, (B.16)

Finally we have

(η∗)β
[

σ2iσ
µTσ2

]

βα
∂µηα = (η∗)βi(σµ)βα∂µηα = η†iσµ∂µη. (B.17)

So the kinetic part of the Lagrangian now has the form

Lkin =
∫ 2πR

0
dy
(

η†iσµ∂µη + ξ†iσµ∂µξ − η†∂yξ + ξ†∂yη
)

. (B.18)

We can plug in the KK expansions for the even and odd fields given in equation (6.53)

and calculating term by term, we find for the first term

∫ 2πR

0
dy η†iσµ∂µη =

∫ 2πR

0
dy

1

πR

∞

∑
n,m=1

η(n)† sin
ny

R
iσµ∂µη(m) sin

my

R

=
∫ 2πR

0
dy

1

πR

∞

∑
n,m=1

η(n)†iσµ∂µη(m) e
i
ny
R − e−i

ny
R

2i

ei
my
R − e−i

my
R

2i

= − 1

4πR

∞

∑
n,m=1

η(n)†iσµ∂µη(m)
∫ 2πR

0
dy
(

ei(n+m)y/R − ei(n−m)y/R

−ei(m−n)y/R + e−i(n+m)y/R
)

= −1

2

∞

∑
n,m=1

η(n)†iσµ∂µη(m) (δn,−m − δn,m − δn,m + δm,−n)

=
∞

∑
n=1

η(n)†iσµ∂µη(m).

(B.19)

For the second term from equation (B.18) we have

2πR
∫

0

dy ξ†iσµ∂µξ =
∫ 2πR

0
dy

(

1

2πR
ξ(0)†iσµ∂µξ(0) +

1√
2πR

ξ(0)†iσµ∂µ

∞

∑
n=1

ξ(n) cos
ny

R

+
1√
2πR

∞

∑
n=1

ξ(n)† cos
ny

R
iσµ∂µξ(0) +

1

πR

∞

∑
n,m=1

ξ(n)† cos
ny

R
ξ(m) cos

my

R

)

. (B.20)
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The second and third term on the r.h.s. vanish, as
∫ 2πR
0 dy cos

ny
R ≡ 0, so we find

∫ 2πR

0
dy ξ†iσµ∂µξ

=
∫ 2πR

0
dy

(

1

2πR
ξ(0)†iσµ∂µξ(0) +

1

πR

∞

∑
n,m=1

ξ(n)† cos
ny

R
ξ(m) cos

my

R

)

= ξ(0)†iσµ∂µξ(0) +
∫ 2πR

0
dy

1

πR

∞

∑
n,m=1

ξ(n)†iσµ∂µξ(m) e
i
ny
R + e−i

ny
R

2

ei
my
R + e−i

my
R

2

= ξ(0)†iσµ∂µξ(0) +
1

4πR

∫ 2πR

0
dy

∞

∑
n,m=1

ξ(n)†iσµ∂µξ(m)
(

ei(n+m)y/R + ei(n−m)y/R

+ei(m−n)y/R + e−i(n+m)y/R
)

= ξ(0)†iσµ∂µξ(0) +
1

2

∞

∑
n,m=1

ξ(n)†iσµ∂µξ(m) (δn,−m + δn,m + δn,m + δm,−n)

= ξ(0)†iσµ∂µξ(0) +
∞

∑
n=1

ξ(n)†iσµ∂µξ(n).

(B.21)

Finally, for the second last term from equation (B.18) we obtain

−
∫ 2πR

0
dy η†∂yξ

=
∫ 2πR

0
dy

(

− 1√
2πR

∞

∑
n=1

η(n)
†
sin

ny

R
∂yξ(0) +

1

πR

∞

∑
n,m=1

η(n)
†
sin

ny

R
ξ(m)m

R
sin

my

R

)

(∗)
=

1

πR

∫ 2πR

0
dy

∞

∑
n,m=1

η(n)
†
ξ(m) sin

ny

R
sin

my

R

(∗∗)
=

∞

∑
n=1

n

R
η(n)

†
ξ(n).

(B.22)

Step (∗) is possible, as
∫ 2πR
0 dy sin

ny
R ≡ 0. Step (∗∗) comes from equation (B.19). An

analogous calculation gives

∫ 2πR

0
dy ξ†∂yη =

∞

∑
n=1

n

R
ξ(n)†η(n). (B.23)

Thus we find

Lkin =ξ(0)†iσµ∂µξ(0)

+
∞

∑
n=1

[

ξ(n)†iσµ∂µξ(n) + η(n)†iσµ∂µη(m) +
n

R

(

η(n)
†
ξ(n) + ξ(n)†η(n)

)]

.
(B.24)
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Often this expression is rewritten in supersymmetry (SUSY) language, where for two
Weyl spinors conventionally is defined

ξη ≡ ξαηα = ξαǫαβηβ, (B.25)

with

(ǫαβ) = −(ǫαβ) = −iσ2. (B.26)

We then have

η(n)
†
ξ(n) + ξ(n)†η(n) = η(n)T (−iσ2) ξ(n) + ξ(n)†(−iσ2)iσ2η(n)

= ξ(n)η(n) + ξ(n) η(n).
(B.27)

So we may finally write

Lkin =ξ(0)†iσµ∂µξ(0)

+
∞

∑
n=1

[

ξ(n)†iσµ∂µξ(n) + η(n)†iσµ∂µη(m) +
n

R

(

ξ(n)η(n) + ξ(n) η(n)
)]

.
(B.28)

For the mass term, we have

Lmass = −1

2
mν

∫ 2πR

0
dy
(

νTC−1
5 ν + H.c.

)

= −1

2
mν

∫ 2πR

0
dy





(

ξT , ηT
)





−iσ2 0

0 −iσ2









ξ

η



+ H.c.





=
1

2
mν

∫ 2πR

0
dy
(

ξTξ
∗
+ η†η + H.c.

)

.

(B.29)

Plugging in the KK expansions, and rewriting the result in SUSY language, we obtain

Lmass = −
∞

∑
n=1

1

2
mν

(

ξ(n)ξ(n) + η(n)η(n) +H.c.
)

. (B.30)

So all in all we find

Lν = ξ(0)†iσµ∂µξ(0) − 1

2
mν

(

ξ(0)ξ(0) +H.c.
)

+
∞

∑
n=1

[

ξ(n)†iσµ∂µξ(n) + η(n)†iσµ∂µη(n)

+
n

R

(

ξ(n)η(n) + ξ
(n)

η(n)
)

− 1

2
mν

(

ξ(n)ξ(n) + η(n)η(n) +H.c.
)

]

. (B.31)
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Diagram a1 a2 a3

(a)
[

19
6 − (ξ − 1)

]

C2(G)
[

11
3 − (ξ − 1)

]

C2(G)
[

9
2 + 9

4(ξ − 1)
]

C2(G)

(b) 0 0
[

3+ 3
4(ξ − 1)

]

C2(G)

(c) 1
3C2(G) 1

3C2(G) [−1 + (ξ − 1)]C2(G)

(d) 1
6C2(G) − 1

3C2(G) − 1
2C2(G)

(e) C2(G) 0
[

−3− 3
2(ξ − 1)

]

C2(G)

(f) C2(G) 0 [1− (ξ − 1)]C2(G)

(g) 0 0 0

(h) ∓ 1
3C(rs) ∓ 1

3C(rs) ±C(rs)

(i) 0 0 ∓C(rs)

Table B.1: Contributions of the diagrams in figure B.1 (Values taken from [73]). In
this and the following tables, C2(r) is the quadratic Casimir operator, and C(r) is the

Dynkin index. Both are group theory constants for a given representation r. More
details on group theory may be found in appendix A.9.

B.3 One-Loop Diagrams

B.3.1 Diagrams for the Gauge Boson Self Energy

Figure B.1 shows the contributing diagrams. The logarithmically divergent contribu-
tions may be written as (for p′5 = p5 + 2n

R )

Πµν =
g2

64π2
ln

Λ2

µ2

{

gµνp
2a1 − pµpνa2 + gµν

p25 + p′25
2

a3

}

. (B.32)

Here and in the following subsections, Λ is the cutoff scale and µ is the renormaliza-
tion scale. Both scales arise in the calculation of divergent loop diagrams. Their role

becomes more clear in subsection B.3.5, where we calculate the divergent contribu-
tions explicitly.

Table B.1 gives the values for a1, a2, and a3. For completeness, these are given in
general Rξ-gauge, but in this thesis we will use Feynman gauge, which means that
we set ξ = 1. Thus we do not have to worry about the fact that Aλ and A5 do not

decouple in Rξ-gauge. In this case, the two additional diagrams shown in figure B.2
would exist.

Note that in table B.1 from fermion loops no contributions arise at one-loop level.
This result is due to the cancellation between Z2 even and Z2 odd fermion compo-
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Aκ

Aλ

(a) Aλ-Aκ loop

A5

Aλ

(b) Aλ-A5 loop

A5

A5

(c) A5-A5 loop

ghost

ghost

(d) ghost loop

Aλ

(e) Aλ loop

A5

(f) A5 loop

(g) fermion loop (h) scalar-scalar loop (i) scalar loop

Figure B.1: One-loop diagrams for the gauge boson self energy (Figures as in [73]).

Aλ

AκA5

(a) Aλ-Aκ-A5 loop

A5

AκA5

(b) A5-Aκ-A5 loop

Figure B.2: Additional diagrams in Rξ-gauge (Figures as in [73]). The coefficients

are given as: (a) a1 = 0, a2 = 0, a3 = 3
2(ξ − 1)C2(G) and (b) a1 = 0, a2 = 0, a3 =

−2(ξ − 1)C2(G).
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(a) gauge boson loop

h∗ h

(b) scalar boson loop

Figure B.3: One-loop diagrams for the fermion self energy (Figures as in [73]).

Diagram b1 b2

(a) [−1− 2(ξ − 1)] g2C2(r) [5+ (ξ − 1)] g2C2(r)

(b) ∓h2 ∓h2

Table B.2: Contributions of the diagrams in figure B.3 (Values taken from [73]).

nents. For the scalar loops in (h) and (i), the upper (lower) sign is for the Z2 even
(odd) components. All results are for the real components and must be multiplied by
a factor of 2 for complex scalars.

Adding up all contributions, we obtain (for p′5 = p5 + 2n
R )

Πµν =
g2

64π2
ln

Λ2

µ2

{

(

gµνp
2 − pµpν

)

[(

11

3
− (ξ − 1)

)

C2(G)

− 1

3 ∑
real scalars

(C(r)even − C(r)odd)

]

+ gµν
p25 + p′25

2
[4+ (ξ − 1)]C2(G)

}

.

(B.33)

B.3.2 Diagrams for the Fermion Self Energy

Figure B.3 shows the contributing diagrams. The logarithmically divergent contribu-
tions may be written as (for p′5 = p5 + 2n

R )

Σ =
1

64π2
ln

Λ2

µ2

[

p/
1± γ5

2
b1 −

(

ip5
1± γ5

2
− ip′5

1∓ γ5

2

)

b2

]

. (B.34)

Table B.2 gives the values for b1 and b2. As before, in (b) the upper (lower) sign is for
the Z2 even (odd) components.
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Aλ

(a) Aλ-scalar loop

A5

(b) A5-scalar loop

Aλ

(c) Aλ loop

A5

(d) A5 loop

h∗ h

(e) fermion loop

λ

(f) scalar loop

Figure B.4: One-loop diagrams for the scalar boson self energy (Figures as in [73]).

B.3.3 Diagrams for the Scalar Boson Self Energy

Figure B.4 shows the contributing diagrams. The logarithmically divergent contribu-

tions may be written as

1

64π2
ln

Λ2

µ2

[

p2c1 +
p25 + p′25

2
c2

]

, for p′5 = p5 +
2n

R
. (B.35)

Table B.3 gives the values for c1 and c2 (in Feynman gauge). As before, in (f) the upper
(lower) sign is for the Z2 even (odd) components. For an odd scalar, only boundary

kinetic terms arise:
1

64π2
ln

Λ

µ2
p5p

′
5d1, for p

′
5 = p5 +

2n

R
. (B.36)

Table B.3 gives the values for d1.

B.3.4 Diagrams for the Fermion–Gauge Boson Interaction

KK number violating couplings may only arise at one-loop level. In this subsection

we give the contributions from the one-loop vertex corrections for the fermion–gauge
boson interaction. The corresponding diagrams are shown in figure B.5. The loga-
rithmically divergent contributions to the vertex can be written as

f1
√
2

g2

64π2
ln

Λ2

µ2
gψγµtaPLψAa

µ. (B.37)
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Diagram c1 c2 d1

(a) 4g2C(r) 2g2C(r) 0

(b) 0 3g2C(r) 5g2C(r)

(c) 0 −4g2C(r) 4g2C(r)

(d) 0 g2C(r) −g2C(r)

(e) 0 0 0

(f) 0 ∓λ
2 ±λ

2

Table B.3: Contributions of the diagrams in figure B.4 for even scalars (c1, c2) and for

odd scalars (d1) (Values taken from [73]).

Aλ

(a) Aλ-fermion-fermion loop

A5

(b) A5-fermion-fermion loop

Aλ Aκ

(c) Aλ-Aκ-fermion loop

A5 A5

(d) A5-A5-fermion loop

Figure B.5: One-loop diagrams for the fermion–gauge boson interaction (Figures as

in [73]).



B.3. One-Loop Diagrams 93

Diagram f1

(a) [2C2(r) − C2(G)][1 + (ξ − 1)]

(b) −C2(r) + 1
2C2(G)

(c) C2(G)[3 + 3
2(ξ − 1)]

(d) − 1
2C2(G)

Table B.4: Contributions of the diagrams

in figure B.5 (Values taken from [73]).

Diagram g1

(a) C2(r)[8− 2(1− ξ)]

(b) 2C2(r)

(c) neglected

(d) 0

(e) 0

(f) 0

Table B.5: Contributions of the dia-
grams in figure B.6.

Table B.4 gives the values for f1. We will not give the calculations for these con-
tributions. They may be found (in Feynman gauge) in the textbook by Peskin and

Schroeder [34], p. 521 ff. We will do explicit calculations in the next subsections,
which are very similar to the ones to be done here.

Summing over all values for f1, we obtain (in Rξ gauge)

f1(total) = C2(r)[1 + 2(ξ − 1)] + C2(G)[2 +
1

2
(ξ − 1)]. (B.38)

B.3.5 Diagrams for the Triplet Scalar–Fermion Interaction

In this subsection, we give the contributions of the one-loop vertex corrections for

triplet scalar–fermion interaction. The corresponding diagrams are shown in fig-
ure B.6. The logarithmically divergent contributions to the vertex can be written

g1
g2Y

64π2
ln

Λ2

µ2
. (B.39)

Table B.5 gives the values for g1, which we want to calculate now. Concerning the

prefactors, we adopt the convention used by Cheng, Matchev, and Schmaltz [73], so
that our results are consistent with their results given in the previous sections. Let

us start with the fermion–fermion–gauge boson loops. Momentum assignments are
given in figure B.7 (a). We have, for the gauge boson being Aa

µ,

1

2

∫

d4p

(2π)4
igγτtb

i

(p/ + k/′)
iY

i

(p/ + k/)
igγνta

(−i)

p2

(

gντ −
pνpτ

p2
(1− ξ)

)

δab

=
g2Y

2
tata

∫

d4p

(2π)4
γτ(p/ + k/′)(p/ + k/)γν

(p + k′)2(p + k)2p2

(

gντ −
pνpτ

p2
(1− ξ)

)

.

(B.40)
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δ(2n)

e(0)

Aa
µ

e(0)

(a) Aµ-fermion-fermion loop

δ(2n)

e(0)

A5

e(0)

(b) A5-fermion-fermion loop

δ(2n)

e(0)

e(0)

(c) scalar-fermion-ferm. loop

δ(2n)

e(0)

Wν

Wµ

e(0)〈δ〉

(d) Wµ-Wν-fermion loop

δ(2n)

e(0)

A5

A5

e(0)〈δ〉

(e) A5-A5-fermion loop

δ(2n)

e(0)

e(0)

(f) scalar-scalar-fermion loop

Figure B.6: One-loop diagrams for the triplet scalar–fermion interaction. In the cal-

culations, we neglect diagram (c), as the scalar–fermion couplings are expected to be
much weaker than gauge boson–fermion couplings. Diagram (f) vanishes anyway.

k′

k

k′ − k

p + k

p + k′

p

b, τ

a, ν

(a) gauge boson-fermion loop

k′

k

p + k′

p− k

k + k′

(b) scalar loop

k′

k

p− k′
k + k′

p

p + k

(c) fermion loop

Figure B.7: Momentum assignments for the diagrams to be calculated in sections

B.3.5 and B.3.6.
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We can now easily see by counting powers that this integral is logarithmically di-
vergent. Thus it will be sufficient to consider the limit where the integration variable

p is much bigger than the external momenta. Moreover, therefore it is justified that
in the beginning we assumed all particles to be massless. We then find for the value

of the diagram [with tata = C2(r)]

g2Y

2
C2(r)

∫

d4p

(2π)4
γτγν

(p2)2

(

gντ −
pνpτ

p2
(1− ξ)

)

=
g2Y

2
C2(r)[4− (1− ξ)]

∫

d4p

(2π)4
1

(p2)2

(B.41)

We now need to Wick rotate the momentum p in the integral in the last line to
Euclidean momentum pE, and obtain

∫

d4p

(2π)4
1

(p2)2
=

i

(2π)4

∫

d4pE
1

(p2E)2
=

i

(2π)4

∫

dΩ4

∫ ∞

0
dpE

p3E
(p2E)2

=
i

16π2

∫ ∞

0
dpE2pE

1

p2E
=

i

16π2

∫ ∞

0
d(pE)2

1

p2E
=

i

16π2
ln

Λ2

µ2
,

(B.42)

where Λ is the cutoff scale, and µ is the renormalization scale. We thus obtain for our
vertex

i

64π2
g2YC2(r)[8− 2(1− ξ)] ln

Λ2

µ2
. (B.43)

With the same momentum assignment [cf. figure B.7 (a)], but now having A5 in the

loop, we obtain for the vertex

1

2

∫

d4p

(2π)4
(−igta)

i

(p/ + k/′)
iY

i

(p/ + k/)
(−igta)

(−i)

p2

=
g2Y

2
C2(r)

∫

d4p

(2π)4
1

(p2)2
=

i

64π2
g2Y2C2(r) ln

Λ2

µ2
.

(B.44)

In the same manner, we may calculate the rest of the diagrams, which are zero or

may be neglected.
Summing over all values for g1, we obtain

g1(total) = C2(r)[10− 2(1− ξ)]. (B.45)

B.3.6 Diagrams for the Triplet Scalar–Gauge Boson Interaction

In this subsection, we give the contributions from the one-loop vertex corrections for
the triplet scalar–gauge boson interaction. The corresponding diagrams are shown in

figure B.8. The logarithmically divergent contributions to the vertex can be written as

h1
g2αgµν

64π2
ln

Λ2

µ2
. (B.46)



96 Appendix B. Extra Dimensions

W
(0)
µ

W
(0)
ν

δ(2n)

(a) scalar loop

W
(0)
µ

W
(0)
ν

δ(2n)

(b) fermion loop

W
(0)
µ

W
(0)
ν

δ(2n)

(c) gauge boson loop

Figure B.8: One-loop diagrams for the triplet scalar–gauge boson interaction.

We want to calculate the values for h1 now. The momentum assignments are given

in figure B.7. For the first diagram, (b) in figure B.7, we obtain

1

2

∫

d4p

(2π)4
2ig2gµν i

(k′ + p)2
iα

i

p− k)2

= αg2gµν
∫

d4p

(2π)4
1

(p2)2
=

i

64π2
4αg2gµν ln

Λ2

µ2
.

(B.47)

For the second one, (c) in figure B.7, we can calculate

(−1)
1

2

∫

d4p

(2π)4
Tr

[(

−i
g√
2

γµ

)

i

(p/ + k/)
iY

i

(p/− k/′)

(

−i
g√
2

γν

)

i

p/

]

=
g2

4
Y
∫

d4p

(2π)4
Tr

[

γµ(p/ + k/)(p/ − k/′)γνp/

(p + k)2(p− k′)2p2

]

.

(B.48)

Neglecting, as before, all external momenta, we obtain

g2

4
Y
∫

d4p

(2π)4
Tr

[

γµp/p/γνp/

(p2)3

]

=
g2

4
Y
∫

d4p

(2π)4
pα

(p2)2
Tr
[

γµγνγα

]

≡ 0.

(B.49)

An analogous calculation for the gauge boson loop in diagram B.8 (c) gives

h1 = [4+
1

2
(ξ − 1)]C2(G). (B.50)

So in total, we obtain

h1(total) = 4+ [4 +
1

2
(ξ − 1)]C2(G). (B.51)
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ψ(0) ψ(0)

A(2n)

(a) one-loop vertex

ψ(0) ψ(0)

A(2n)

A(0)

(b) A(2n)-A(0) kin. mixing

ψ(0) ψ(0)

A(2n)

A(0)

(c) A(2n)-A(0) mass mixing

ψ(0) ψ(2n) ψ(0)

A(2n)

(d) ψ(0)-ψ(2n) mass mixing

ψ(0) ψ(2n) ψ(0)

A(2n)

(e) ψ(0)-ψ(2n) mass mixing

Figure B.9: The KK number violating coupling ψ(0)ψ(0)A
a(2n)
µ (Figures as in [73]).

B.4 KK Number Violating Couplings

In this section, we will give the explicit formulae used for the KK number violat-
ing vertices in section 6.3.1. Parts of these were discussed by Cheng, Matchev, and

Schmaltz [73].

B.4.1 Fermion–Gauge Boson Vertex

Here we consider the two vertices ψ(0)ψ(0)A
a(2n)
µ and ψ(2n)ψ(0)A

a(0)
µ , which are given

in figures B.9 and B.10, respectively. In addition to the one-loop vertex corrections, the
KK number violating mass and kinetic mixing effects on the external legs, which are
one-loop effects, too, have to be included to obtain the couplings between the physical

mass eigenstates. For the first (figure B.9) of the two vertices, the contributions from
the shown diagrams are

√
2g

g2

64π2
ln

Λ2

µ2
k1. (B.52)

The values of k1 are given in table B.6. Summing up all the contributions, we obtain

√
2g

g2

64π2
ln

Λ2

µ2

{

23

3
C2(G) − 1

3 ∑
real scalars

(C(r)even − C(r)odd) − 9C2(r)

}

. (B.53)

The additional factor
√
2 comes from the different normalization of the KK modes.
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Diagram k1

(a) C2(r) [1+ 2(ξ − 1)] + C2(G)
[

2+ 1
2(ξ − 1)

]

(b)
[

11
3 − (ξ − 1)

]

C2(G) − 1
3 ∑real scalars(C(r+)− C(r−))

(c)
[

2+ 1
2(ξ − 1)

]

C2(G)

(d),(e) {− [5+ (ξ − 1)] C2(r)} × 2

Table B.6: Contribution of the diagrams in figure B.9 (Values taken from [73]).
ψ(2n) ψ(0)

A(0)

(a) one-loop vertex

ψ(2n) ψ(0) ψ(0)

A(0)

(b) ψ(2n)-ψ(0) kin. mixing

ψ(2n) ψ(0)

A(0)

A(2n)

(c) A(2n)-A(0) mass mixing

ψ(2n) ψ(0) ψ(0)

A(0)

(d) ψ(2n)-ψ(0) mass mixing

ψ(2n) ψ(2n) ψ(0)

A(0)

(e) ψ(0)-ψ(2n) mass mixing

Figure B.10: The KK number violating coupling ψ(2n)ψ(0)A
a(0)
µ (Figures as in [73]).

Diagram l1

(a) C2(r) [1+ 2(ξ − 1)] + C2(G)
[

2+ 1
2(ξ − 1)

]

(b) − [1+ 2(ξ − 1)] C2(r)

(c) −
[

2+ 1
2(ξ − 1)

]

C2(G)

(d) [5+ (ξ − 1)] C2(r)

(e) − [5+ (ξ − 1)] C2(r)

Table B.7: Contribution of the diagrams in figure B.10 (Values taken from [73]).
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For the second (figure B.10) of the two vertices, the contributions from the shown
diagrams are

√
2g

g2

64π2
ln

Λ2

µ2
l1. (B.54)

The values of l1 are given in table B.7. Summing up all contributions, we see that the
vertex indeed vanishes.

B.4.2 Scalar Triplet–Fermion Vertex

Here we give the vertex e(0)e(0)δ(2n), which is shown in figure B.11. The contributions
from the shown diagrams are

g2Y

64π2
ln

Λ2

µ2
m1. (B.55)

The values for m1 are given in table B.8. Summing up all the contributions, we obtain

m1(total) = 6C(r). (B.56)

B.4.3 Scalar Triplet–Gauge Boson Vertex

Here we give the vertex W(0)W(0)δ(2n), which is shown in figure B.12. The contribu-
tions from the shown diagrams are

g2α

64π2
ln

Λ2

µ2
n1. (B.57)

The values for n1 are given in table B.8. Summing up all the contributions, we obtain

n1(total) = 4+ 6C(r). (B.58)

Diagram m1 n1

(a) C2(r)[10 + 2(ξ − 1)] 4+ [4+ 1
2(ξ − 1)]C2(G)

(b),(c) {−[5 + (ξ − 1)]C2(r)} × 2 {−[2 + 1
2(ξ − 1)]C2(G)} × 2

(d) 4C(r) 4C(r)

(e) 2C(r) 2C(r)

Table B.8: Contributions m1 of the diagrams in figure B.11 and contributions n1 of the
diagrams in figure B.12.
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(e) δ(2n)-δ(0) kinetic mixing

Figure B.11: The KK number violating coupling e(0)e(0)δ(2n).
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Figure B.12: The KK number violating coupling W(0)W(0)δ(2n).
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