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SUMMARY

Work on animals indicates that BOLD is preferentially
sensitive to local fieldpotentials, and that it correlates
most strongly with gamma band neuronal synchroni-
zation. Here we investigate how the BOLD signal in
humans performing a cognitive task is related to
neuronal synchronization across different frequency
bands. We simultaneously recorded EEG and BOLD
while subjects engaged in a visual attention task
known to induce sustained changes in neuronal
synchronization across a wide range of frequencies.
Trial-by-trial BOLD fluctuations correlated positively
with trial-by-trial fluctuations in high-EEG gamma
power (60–80 Hz) and negatively with alpha and beta
power. Gamma power on the one hand, and alpha
and beta power on the other hand, independently
contributed toexplainingBOLDvariance.These results
indicate that the BOLD-gamma coupling observed in
animals can be extrapolated to humans performing
a task and that neuronal dynamics underlying high-
and low-frequency synchronization contribute inde-
pendently to the BOLD signal.

INTRODUCTION

Functional magnetic resonance imaging (fMRI) is now the most

widely used research tool in human cognitive neuroscience. In

this branch of science, the hemodynamic responses obtained

with fMRImeasurementsarecommonlyused to infer relationships

between brain activity and cognitive functions. However, the

exact relation between hemodynamic responses as measured

with fMRI blood-oxygenation-level-dependent (BOLD) responses

on the one hand, and underlying neuronal activity on the other, is
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not fully understood (Logothetis, 2008). Recordings in both the

anesthetized and awake monkey have shown that hemodynamic

responses are preferentially sensitive to local field potentials (LFP)

as opposed to action potentials (Goense and Logothetis, 2008;

Logothetis et al., 2001). In addition, recordings from anesthetized

cat visual cortex have revealed a strong positive correlation

between BOLD and neuronal synchronization in the gamma

frequency range (>30 Hz) together with a negative correlation

of BOLD with lower frequency bands (up to 7 Hz) (Niessing

et al., 2005). However, in order for these results to have validity

for fMRI studies in human cognitive neuroscience, an important

question ishowchanges inneural synchronizationacrossdifferent

frequency bands are related to changes in the BOLD signal in

humans performing a cognitive task. We therefore seek to repli-

cate the positive correlation between high-gamma power and

theBOLDsignal found inanimals inhumansperformingacognitive

task and to investigate whether contributions to the BOLD signal

related to high-frequency synchronization are independent from

the contributions related to low-frequency desynchronization.

Most studies with simultaneous EEG and fMRI have reported

negative correlations with BOLD in the low-frequency ranges

(roughly 4–30 Hz) of the spectrum (Goldman et al., 2002; Laufs

et al., 2003a; Scheeringa et al., 2008, 2009; Yuan et al., 2010).

Concerning the high-gamma frequency range, encouraging first

findings in this context are that the reactivity patterns of human

and monkey gamma band oscillations appear to show strong

similarity, at least in the visual cortex (Fries et al., 2008; Hall

et al., 2005). Furthermore there is some evidence suggesting

that gamma range fluctuations in electrophysiological record-

ings are also closely related to the BOLD signal in humans.

Single-unit recordings of spike trains and high-frequency LFPs

in the auditory cortex of patients watching a movie correlated

significantly with fMRI BOLD responses measured in another

set of healthy volunteers watching the same movie (Mukamel

et al., 2005). Separate recordings of intracranial EEG and fMRI

during a semantic decision task showed close spatial corre-

spondence between regions of fMRI activations and EEG

mailto:rene.scheeringa@donders.ru.nl
http://dx.doi.org/10.1016/j.neuron.2010.11.044


ok!

TIME

1100 ms

700/1050/1400/1750/2100 ms

response dependent, max 500 ms

500 ms

between trials

FIXATION

VISUAL STIMULATION

FIXATION DIMS

PROBE

FEEDBACK

Trial Trial

A

B

fMRI acquisition EEG acquisition

330 ms 3300 ms

700 ms 1400 ms 2100 ms

Trial

Figure 1. Schematic Representation of the Task

(A) Sequence of events of a single trial. A trial started at the beginning of the

acquisition of an fMRI volume with the reduction of the contrast of the fixation

dot (the warning signal). After 1100ms the fixation point is replaced by a foveal

contracting grating, with a duration of either 700, 1050, 1400, 1750, or

2100 ms. Except for the 2100 ms condition (catch trials), visual stimulation

was followed by an increase in the speed of the foveal contraction. Subjects

were instructed to push a button as soon as they detected the speed change.

Subsequently, feedback was presented for 500 ms.

(B) Illustration of the timing of the trials relative to fMRI data acquisition. Trials

were presented every two volumes. Scanning parameters were chosen such

that the visual stimulation part of the trial would always be outside the fMRI

acquisition, allowing for good quality EEG acquisition. As illustrated by the

canonical HRFs to the visual stimulation of different lengths, the second fMRI

volume after stimulation onset is close to the expected peak of the BOLD

response. Trials of different lengths were modeled with separate regressors.
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recording sites showing task effects in the high-gamma range.

A recent simultaneous EEG-fMRI study reported a positive

correlation between low-range (�40 Hz) gamma band power

and primary auditory cortex in an auditory task (Mulert et al.,

2010). Furthermore, a study with an adapted version of the

task used in our study reported that task-related parametric

modulations in gamma power correspond well with parametric

modulations in the NIRS signal, which was used as a hemo-

dynamic measure (Koch et al., 2009).

In light of this previous work, we set out to study the relation

between the BOLD signal and electrophysiological power

changes across a broad frequency spectrum for humans per-

forming a cognitive task. We therefore asked subjects to engage

in a visual attention task known to elicit strong, long-lasting (up to

several seconds) increases in rhythmic activity in a relatively

narrow high-gamma frequency band as well as decreases in

the alpha and beta band oscillations in the MEG (Hoogenboom

et al., 2006) and EEG (Fries et al., 2008). From this previous

work we know that in this task both increases in gamma power

and decreases in alpha and beta power originate from early

visual cortices. This task is therefore well suited for studying

the relationship between frequency-specific power changes in

the scalp EEG on the one hand and simultaneously measured

fMRI BOLD changes on the other hand. Moreover, the narrow-

band high-gamma increase found in this task has been observed

in human EEG and MEG data as well as monkey LFP data (Fries

et al., 2008) and therefore provides a good link with animal work.

We hypothesized a positive correlation between BOLD and

EEG gamma power in parallel to what has been observed in

animal experiments. In addition,wealsoexplored the relationship

betweenBOLDand other lower EEG frequency bands, in order to

establish whether the negative correlation between BOLD and

lower frequency neuronal synchronization observed previously

independently contributes to explaining BOLD variance.

RESULTS

Standard EEG and fMRI Analysis
To study the relation between frequency-specific EEG power

and the BOLD fMRI signal, we used a visual attention task in

which subjects had to detect a speed increase in inward-moving

circular sinusoidal gratings (see Figure 1). After applying an

independent component analysis (ICA) denoising strategy (see

Experimental Procedures), visually induced power changes in

the EEG recorded in the MR revealed a decrease in alpha

(�10 Hz) and beta (�20 Hz) power together with an increase in

gamma (60–80 Hz) power. Time-frequency representations of

the results are shown in Figure 2A and scalp topographies of

the time-frequency effects are shown in Figure 2B. A standard

analysis of the fMRI data shows BOLD activations in the early

visual cortex (Figure 2C). The locations of the BOLD activations

correspond well with the scalp topographies of the EEG

responses (Figure 2B) and estimated source localization in MEG

by using the same task (Hoogenboom et al., 2006). The reported

EEG and fMRI effects were highly consistent across subjects

(see Figure S1, available online) and the EEG effects are very

similar to those obtained with MEG and EEG measurements

outside the MR scanner by using adapted versions of the
same task used here (Hoogenboom et al., 2006; Koch et al.,

2009).

Joint EEG-fMRI Analysis
In order to test for a more direct link between hemodynamic

responses and human gamma band activity, we set up a statis-

tical model that evaluates whether trial-by-trial fluctuations in

BOLD covary with trial-by-trial fluctuations in frequency-specific

EEG power.

We constructed separate design matrices for each individual

frequency bin in the EEG signal, from2.5 to 120Hz. Each of these

design matrices included a frequency-specific regressor based

on the single-trial EEG power estimates, as well as a set of

regressorsmodeling the task and reaction time (separate regres-

sors for each trial length). The average BOLD signal in the single-

subject activations in early visual cortex for the standard fMRI

analysis was used as the dependent variable.

Investigating frequencies up to 120 Hz produces a spectrum

of beta values. Since beta values can differ by orders of
Neuron 69, 572–583, February 10, 2011 ª2011 Elsevier Inc. 573
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Figure 2. Results for EEG and fMRI Data

(A) The grand average time-frequency representa-

tions (TFRs) are shown of log-transformed EEG

power for low and high frequencies after back

reconstruction of the selected components to

channel level. ICA unmixing weights were esti-

mated on individual gamma-band-filtered EEG

data. This grand average is based on individual

averages of the channels that formed the regres-

sors in the integrated EEG fMRI analysis.

(B) The grand average topographies of the alpha,

beta, and gamma effects are shown, computed

as the average over individual power differences

normalized to the maximum of the absolute differ-

ence in the indicated frequency bands.

(C) The BOLD activations for a representative

subject are shown. Individual TFRs and BOLD

activation plots are presented in Figure S1. The

TFRs and topographies obtained by applying

ICA on 30 Hz low-pass-filtered data are shown in

Figure S2.
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magnitude between frequencies and subjects, they were con-

verted to t values in order to express the strength of the relation

between EEG power and the BOLD signal. Separate spectra for

the low (<45 Hz) and high (10–120 Hz) frequencies were con-

structedwith different spectral concentrations (see Experimental

Procedures for details and rationale). The results of this analysis

are shown in Figure 3. There is a significant positive relation

between BOLD and EEG gamma power in the 60–80 Hz

frequency range (p = 0.004, corrected for multiple comparisons)

and a negative relation between BOLD and low-frequency EEG

power in the alpha frequency range (�10 Hz; p = 0.030) and in

the beta frequency range (18–28 Hz; p = 0.002). In addition, there

is a marked correspondence between the BOLD-EEG correla-

tion spectrum on the one hand and the spectral changes

observed in the EEG compared to a baseline 200 ms before

the onset of the visual stimulation (compare Figures 3A and 3B

with Figures 3C and 3D).

In order to test whether the three observed frequency effects

in the EEG are independent of each other, we tested a general

linear model (GLM) that included regressors modeling the EEG

alpha, beta, and gamma power fluctuations. These regressors

therefore account for a unique part of the variance of the

BOLD signal, whereas variance that can be explained by more

than one band is excluded for each regressor. The results are

compared with models in which only one EEG-based regressor

is included. The analysis (Figure 3E) shows that the alpha band

only marginally contributes to explaining BOLD variance on its

own. The beta band contribution is reduced but significant,

whereas trial-by-trial fluctuations unique for the gamma band

most strongly and significantly contribute to explaining BOLD

variance. A pairwise partial correlation (correcting for mean

task and reaction-time regressors) of these EEG power regres-

sors (Figure 3F) shows why this pattern emerges. While alpha

and beta regressors show a significant positive correlation,

they both do not correlate with gamma power. Thus, while the

trial-by-trial power fluctuations in the alpha and beta regressors
574 Neuron 69, 572–583, February 10, 2011 ª2011 Elsevier Inc.
are highly correlated with each other, those in the gamma

regressor are independent from the trial-by-trial fluctuations of

power in these low-frequency bands.

For seven subjects a clear sustained lower gamma band

increase was detected. For these subjects an additional analysis

was carried out by using a subject-specific low-gamma band

regressor (see Experimental Procedures for details). The trial-

by-trial relation between BOLD and low gamma is depicted in

Figure 4. For comparison, the effects in the alpha, beta, and

high-gamma band are also depicted for these seven subjects.

This analysis revealed a positive relation (p = 0.047 uncorrected,

Wilcoxon ranked sign test; Wilcoxon, 1945) between BOLD and

low-gamma power. This should be interpreted as a clear trend,

since no correction for multiple comparisons was applied, but

on the other hand it is based on only a few subjects.

Infraslow Fluctuations
Several studies havedemonstrated that the phase of slow (<4Hz)

and infraslow electrophysiological fluctuations (roughly <0.1 Hz)

modulate the amplitude across a wide range of higher frequen-

cies (He et al., 2010; Monto et al., 2008). Especially these infra-

slow oscillations are also thought to be related to the changes

in the BOLD signal (He et al., 2008; Nir et al., 2008), because

both act on similar timescales. This therefore raises the question

whether the trial-by-trial relation between BOLD and EEG power

in the alpha, beta, and gamma bands we observed is related to

these infraslow oscillations. We investigated this by calculating

the coherence spectrum between trial-by-trial fluctuations in

both BOLD and EEG power for the same frequencies used in

creating the BOLD-EEG correlation spectra (Figures 3C and

3D). This results in a two-dimensional image that depicts in

a frequency-resolvedmanner howchanges in frequency-specific

EEG power are related to the BOLD signal (see Figure 5). If infra-

slow oscillations influence the relation between BOLD and EEG

power at higher frequencies, this should be reflected in increased

BOLD-EEG power coherence in the infraslow frequency range.
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In general, this analysis revealed elevated coherence for EEG

frequency ranges that were also observed in the BOLD-EEG

correlational approach (Figure 5A). An exception can be found

in the theta range (3–7 Hz), which is continuous with elevated

coherence in the alpha range. Figure 5B depicts the phase of

the coherence and shows that the clusters of elevated coher-

ence in the low-frequency ranges have a phase near p or – p,

which indicates that the BOLD signal and the EEG power regres-

sors are coupled in antiphase for these frequencies. For the

elevated coherence in the high-gamma range, phase values

near zero are observed, which indicates that BOLD and EEG

power regressors are in phase for these frequencies. This

pattern corresponds with the negative BOLD-EEG correlation

observed in the alpha and beta bands and positive correlations

observed in the gamma band.

If we assess the coherence profiles of the different EEG

frequency bands in more detail, different coherence profiles

can be observed for the alpha, beta, and gammabands for which

a significant EEG-BOLD correlation was detected. For the alpha

and low-beta range increased coherence is observed at the

higher end of the coherence spectrum (>0.11 Hz). This is close

to the trial rate of 0.138 Hz, and therefore the inverse relations

between alpha and low beta and BOLD probably are not modu-

lated by infraslow oscillations. For the higher beta EEG power

range (>20 Hz) elevated coherence is more broadly distributed

between 0.05 and 0.1 Hz, which could be regarded as the high

end of the ultraslow range. In the gamma range between 60

and 80 Hz a different coherence profile can be observed. Similar

to the alpha and beta bands, elevated coherence in this range

can be observed in the high end of the coherence spectrum

(>0.12 Hz). A clear difference with these bands, however, is

that elevated coherence is also observed in the very low end of

the coherence spectrum (<0.02 Hz). This indicates that both

very slow and relatively fast fluctuations over trials in the gamma

response are related to the BOLD signal. These findings support

the notion that infraslow oscillations are coupled to higher

frequency power changes and their relation to the BOLD signal.

The elevated coherence near the trial-rate frequency, however,

indicates that these fluctuations in the ultraslow range are not

the only source of trial-by-trial coupling between BOLD and

EEG power in higher frequencies.

DISCUSSION

We aimed to investigate (1) how changes in neural synchroniza-

tion in different frequency bands are related to BOLD changes in

humans performing a cognitive task and (2) whether the neuronal

dynamics underlying the different frequency bands contribute

independently to the BOLD signal. We found that in human early

visual cortex during an attentional monitoring task, trial-by-trial

BOLD fluctuations correlated positively with simultaneously

recorded trial-by-trial fluctuations in narrow-band high fre-

quency (60–80 Hz) and probably also low-frequency (30–45 Hz)

EEG gamma power. In addition, BOLD fluctuations correlated

negatively with EEG alpha and beta power. The neural processes

underlying high-gamma power on the one hand and alpha

and beta power on the other hand independently contributed

to explaining BOLD variance.
It is a frequently observed phenomenon that functional activa-

tion of a brain region leads to enhanced high-frequency power

and reduced low-frequency power. This is also what we observe

inourdata (Figures2Aand2BandFigures3Aand3B): In response

to the visual stimulation there is a strongdecrease in thealphaand

beta bands and a strong increase in the high-gamma band. This

raises the question of how alpha and beta on the one hand and

highgammaon theother can independently contribute to explain-

ing BOLD variance. This question can be answered by realizing

that instead of considering EEG power as such, our present

work focuses on how trial-by trial variability in different frequency

bands is related to trial-by-trial variability in the BOLD signal.

Crucially, we show (Figure 3F) that the trial-by-trial fluctuations

in alpha and beta power on the one hand and in high-gamma

power on the other hand, are uncorrelated, though both

contribute to the BOLD response. This strongly suggests that

these contributions are independent from each other.

Furthermore, the trial-by trial correlation between alpha and

beta power on the one hand, and high gamma on the other, is

assessed after convolution with a hemodynamic response func-

tion, which has the property of acting as a low-pass filter. This

implies that high-frequency fluctuations of power in alpha and

beta and high-gamma bands might still be dependent. These

faster power fluctuations, however, cannot contribute to the

neural influence on the BOLD signal, which is low frequency in

nature. Finally, the BOLD-EEG coherence analysis further

strengthens the notion that alpha and beta on the one hand,

and high gamma on the other hand, independently contribute

to explaining BOLD variance: the BOLD-gamma coupling is

modulated by very slow oscillations (<0.02 Hz), while the BOLD-

alpha and BOLD-beta coupling are not (Figure 5).

Taken together, our results indicate that, apart from high-

gamma band neuronal synchronization, another independent

mechanism underlying hemodynamic responses is inversely

related to neuronal dynamics in the lower (alpha and beta)

frequency ranges. This is consistent with previous work that es-

tablished a negative correlation between fMRI BOLD activations

and low-frequency (4–30 Hz) neuronal synchronization (Gold-

man et al., 2002; Laufs et al., 2003a, 2006; Mukamel et al.,

2005; Niessing et al., 2005; Scheeringa et al., 2008, 2009;

Yuan et al., 2010). The interdependence of alpha band and

beta band power fluctuations suggests that neuronal dynamics

in these two frequency ranges are related. Although this would

fit the observation that event-related changes in alpha and

beta rhythms often co-occur, e.g., during self-pacedmovements

(Pfurtscheller et al., 1996a, 1996b), these rhythms are often

considered to subserve different (though not very consistently

specified) functions (Jokisch and Jensen, 2007; Klimesch

et al., 1998, 2007; Palva and Palva, 2007; Posthuma et al.,

2001). An important implication of our observations is that alpha

and beta rhythms contribute to explaining BOLD variance inde-

pendently of high-gamma band dynamics.

Low- and high-frequency oscillations might also be brought

about by different mechanisms. By using cell-type-specific

optogenetic activation, Cardin and colleagues (Cardin et al.,

2009) were able to show a cell-type-specific double dissociation.

Whereas rhythmic driving of fast-spiking interneurons selectively

increased gamma band LFP power, the rhythmic driving of the
Neuron 69, 572–583, February 10, 2011 ª2011 Elsevier Inc. 575
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Figure 3. BOLD-EEG Power Correlations
(A and B) Spectra of the group average of the log-transformed relative power effects compared to a prestimulation baseline for low and high frequencies. Prior to

averaging over subjects, the spectra were averaged over the visual stimulation part of the trial and the same channels that were selected for regressor construc-

tion. The frequencies between 2.5 and 45 Hz in 1.25 Hz steps are depicted in (A). Each frequency bin integrates the power in a 5 Hz window (± 2.5 Hz). The

frequencies between 10 and 120 Hz in 2.5 Hz steps are depicted in (B). Each frequency bin integrates the power in a 20 Hz window (± 10 Hz).

(C and D) Relation between trial-by-trial fluctuations in BOLD and EEG power for low and high frequencies expressed in averaged t-values. The frequency reso-

lution in (C) and (D) is the same as for (A) and (B), respectively. The gray shaded area in (A)–(D) indicates the standard error of the mean; a blue line indicates

a significant deviation from zero with a cluster-based randomization technique (Maris and Oostenveld, 2007). The results of a similar analysis after applying

ICA on 30 Hz low-pass-filtered EEG data are shown in Figure S2.

(E) Average t-values are shown of one general linear model that included regressors modeling alpha, beta, and gamma power fluctuations in the same design

matrix and of separate models including only one EEG power regressor.

(F) The partial correlation between the alpha, beta, and gamma regressors is shown. The regressors modeling the visual stimulation, button presses and

feedback, and RT were separated out. The error bars in (E) and (F) indicate the standard error of the mean and the p-values are based on the Wilcoxon ranked

sign test.
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Figure 4. BOLD-EEG Power Coupling for Subjects that Show a

Sustained Low-Gamma Band Response

Separate models were estimated for the different frequency bands, for which

a design matrix as depicted in Figure 3G was used. The time-frequency anal-

yses of power in the low-gamma range for selected and nonselected subjects

are depicted in Figure S3.
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pyramidal neurons increased low-frequency power. This finding

suggests that interneurons and pyramidal cells play distinct roles

in the generation of low- and high-frequency synchronization.

Yet, both phenomena certainly involve both neuron types during

their physiological generation (Börgers and Kopell, 2005;

Hasenstaub et al., 2005). Also, local neuronal synchronization

phenomena at any frequency are rendered visible for LFP

recordings in part when they impinge on pyramidal cells with

asymmetric cell shapes, resulting in mesoscopic current fluxes.

Some evidence in humans also suggests alpha and high gamma

can be dissociated. In a task closely related to our task, larger

visual high-gamma power increases were observed with larger

contrast, while alpha and beta power remain largely unaltered

(Koch et al., 2009).

In our view, our findings of an independent contribution of low-

and high-frequency dynamics, together with the converging

evidence discussed above, may have substantial implications

for our understanding of the BOLD signal. First, our findings indi-

cate that the relationship between BOLD and neurophysiology

does not hinge primarily on neuronal dynamics in the gamma

frequency range, as recent animal work has suggested (Goense

and Logothetis, 2008; Logothetis et al., 2001; Niessing et al.,

2005). Our results support the notion that more frequency bands

should be taken into account as correlates of the BOLD signal

(Kilner et al., 2005; Laufs et al., 2006; Rosa et al., 2010).

Second, our findings contradict the hypothesis that BOLD

activation is closely related to a shift in the EEG spectral profile

to higher frequencies as a consequence of larger energy dissipa-

tion (Kilner et al., 2005). This theory would predict an inverse

trial-by-trial coupling between low- and high-frequency power,

which is clearly not observed here. We do find the expected
(G) The design matrix that is the basis for the results shown in (C) and (D) and the s

for a single measurement session for a single frequency bin. The first column depic

is different for each frequency bin. The other regressors model the various parts o

that correspond with the boxes grouping the regressors in the design matrix. The

three EEG power-based regressors instead of one.
pattern of negative correlations between BOLD and low-

frequency power and a positive correlation between BOLD and

high-frequency power. At trial-by-trial level the high- and low-

power effects are not correlated, however, as would be

expected based on this theory.

In a recent article Rosa and colleagues reported evidence for

a spectral profile shift in a simultaneous EEG-fMRI experiment

(Rosa et al., 2010). However, here only frequencies up to 40 Hz

were considered. The high-gamma band effect we observed is

of a substantially higher frequency (�60–80 Hz). It is therefore

possible that a shift in spectral profile contributes to the BOLD

signal, but the high-gamma band effect observed in our study

is clearly independent of the effects observed in lower frequency

bands and therefore probably independent of the proposed shift

in spectral profile. In our data in only a minority of the subjects

was a reliable increase in gamma activity around 40 Hz

observed, but for these subjects therewas a clear trend of a posi-

tive relation between low-gamma power and the BOLD signal,

which is in line with findings by Mulert et al. (2010). Others,

however, have reported a decoupling between gamma power

andBOLD in the low-gamma frequency range (Muthukumarasw-

amy and Singh, 2009). However, because of the limited number

of subjects that showed a clear low-gamma band power

increase, we were not able to investigate this in further detail.

Third, the independent contributions of low- and high-

frequency neuronal dynamics to the BOLD signal imply that

simultaneous recording of electrophysiology and hemodynamic

activity can potentially dissociate whether an observed BOLD

activation or deactivation is related to either low- or high-

frequencyeffects, oracombinationofboth. Inconventional hemo-

dynamic studies it is impossible to make these distinctions. The

ability to relate hemodynamic (de)activations to frequency-

specificpowerchangescansubstantiallybenefit the interpretation

of results obtained by hemodynamic studies, because neuronal

activity in different frequency bands has been hypothesized to

subserve different functions. For instance, the band-limited

gamma effects observed here have been linked to enhanced

neural communication (Fries, 2005) while alpha oscillations have

been related to functional inhibition (Klimesch et al., 2007).

Several studies have stressed the modulatory effect of slow

and infraslow (<0.1 Hz) electrophysiological fluctuations on the

amplitude of higher frequencies (He et al., 2010; Monto et al.,

2008) and related it to the BOLD signal (He et al., 2008; Nir

et al., 2008) and the brain-wide resting-state networks observed

in fMRI (Fox and Raichle, 2007). The BOLD-EEG power coher-

ence analysis revealed that indeed the coupling between high-

gamma power and BOLD is in part related to fluctuations in

a very low-frequency range (<0.02 Hz). For the higher part of

the beta band elevated coherence was observed in the high

end of the infraslow range (0.5–0.1 Hz). In addition, however,

coherent fluctuations in a frequency range close to the trial repe-

tition rate (roughly above 0.12 Hz) were observed in all three
eparate models depicted in (E). The columns of this figure depict the regressors

ts the EEG power-based regressor for that particular frequency. This regressor

f the task and potential movement artifacts that are listed on the right in colors

design matrix for the single model depicted in (E) only differed in that it included
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A B Figure 5. Coherence between EEG Power

and the BOLD Signal

For each frequency bin in the EEG spectrum for

which the EEG-BOLD correlation was calculated

and depicted in Figures 3C and 3D, the coherence

between the BOLD signal and the EEG power

regressor was calculated after the regressors

modeling the task, reaction time, movement

effects, and a linear trend (see Figure 3G) were

removed by linear regression. The y axis depicts

the EEG frequencies and the x axis the frequencies

for which the coherence between the EEG power

regressor and BOLD was calculated. The coher-

ence values masked at p = 0.001 (uncorrected)

for both high- and low-frequency ranges are

shown in (A). The associated phase of the coher-

ence depicted in (A) is shown in (B). The same

mask as in (A) was applied here.
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frequency bands that showed a relation to the BOLD signal

(alpha, beta, and gamma). This indicates that for all three

frequency bands the EEG-BOLD coupling is (in part) irrespective

of fluctuations in the infraslow frequency range. This analysis still

leaves open the question of whether fluctuations in the infraslow

frequency range contribute directly to the BOLD signal or

indirectly through its influence on the strengths of gamma or

high-beta oscillations, which cannot be addressed specifically

in this experiment.

At first glance, the very low-frequency power-BOLD coupling

in the gamma range seems to correspond well with what has

been suggested by Nir and colleagues (2008), for example.

However, there is a marked difference between the relatively

narrow-band gamma component (�20 Hz wide) that is observed

in our data and the gamma band power that is locked to the

phase of lower frequencies, which has been observed in

frequency ranges that can start in the low-gamma range and

can go up 200 Hz (He et al., 2010). These wide-band gamma

range phenomena are probably not of oscillatory nature (Kayser

and Ermentrout, 2010). The narrow-band gamma response in

our analysis does suggest an underlying oscillatory process.

The effect in the gamma frequency observed here might there-

fore reflect a different process, as the gamma band process is

usually found to be related to infraslow fluctuations.

Concerning the relationship between BOLD and gamma, the

combined results of the different analyses presented in this

work confirm previous findings from animal work (Goense and
578 Neuron 69, 572–583, February 10, 2011 ª2011 Elsevier Inc.
Logothetis, 2008; Logothetis et al.,

2001; Niessing et al., 2005), of a strong

coupling between hemodynamic re-

sponses on the one hand and high-

gamma band (60–80 Hz) neuronal

synchronization on the other hand. Our

results are in line with a recent study

that combined NIRS and EEG and that

also suggested a BOLD-gamma coupling

in humans (Koch et al., 2009). The infer-

ence in this study was primarily based

on a parametric modulation of both
BOLD and gamma, and no trial-by-trial coupling was reported.

Our results are also supported by findings from a study with

separate intracranial recordings of EEG and fMRI (Lachaux

et al., 2007; Zaehle et al., 2009). Studies with simultaneous

EEG-fMRI until now only investigated the lower gamma range

up to 40 Hz in both tasks (Mulert et al., 2010) as well as in

resting-state conditions (Giraud et al., 2007; Mantini et al.,

2007). In line with our results, these studies also yielded positive

BOLD-gamma correlations. A clear trend for a positive relation

between BOLD and gamma power in this frequency range was

also found for the subset of subjects that showed a clear

increase in power in this range. However, in our study we are

also able to show BOLD-gamma coupling in a frequency range

up to twice the frequency (80 Hz) reported in previous studies

for a region that has been identified as the source region by

MEG (Hoogenboom et al., 2006).

In the past studies have reported decoupling between task-

induced BOLD changes on the one hand and changes in the

gamma power (Muthukumaraswamy and Singh, 2008, 2009),

beta power (Stevenson et al., 2011), and intracranially recorded

event-related potentials (Huettel et al., 2004). The findings seem

at odds with our findings. We think, however, that demonstrating

trial-by-trial coupling between electrophysiological signals and

the BOLD signal, which is only possible with simultaneous

measurements, more directly addresses the issue of how the

two modalities are related. In this context, the notion we put

forward that there are multiple neural processes that
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independently contribute to the changes in the BOLD signal can

obscure the ability to observe coupling between electrophysio-

logical and hemodynamic signals that are measured separately;

it is not unlikely that the different neural processes that influence

the BOLD signal are differentially modulated by the same task

manipulations. On the other hand, it cannot be excluded that

there is a true decoupling in response to certain task or stimulus

manipulations.

In analogy to previous papers on the relationship between

BOLD and neuronal oscillations (Logothetis et al., 2001, Niessing

et al., 2005), we used the visual system here as an important (and

relatively easily accessible) model system. This raises the ques-

tion, however, of whether our results can be generalized to

reflect BOLD-EEG relationships across tasks, brain areas, and

cognitive functions. Although we are reporting here only on

BOLD-gamma relations in visual cortex, elsewhere it has been

extensively argued that gamma is a phenomenon that has

been observed across the entire cortex and in response to

different tasks and cognitive functions (Fries, 2009). Physiologi-

cally, gamma oscillations are probably caused by interactions

between pyramidal cells and interneuron (basket) cells and as

such, gamma band neuronal synchronization is probably

a generic mechanism underlying cortical functioning. For alpha

and beta powermore empirical data is available showing a nega-

tive relationship between power and the BOLD signal in a variety

of tasks and regions (Feige et al., 2005; Laufs et al., 2003a,

2003b; Meltzer et al., 2007; Moosmann et al., 2003; Scheeringa

et al., 2009; Yuan et al., 2010), although alpha oscillations have

been suggested to originate from different combinations of

cortical layers in different regions (Bollimunta et al., 2008). For

power changes in the beta range, good anatomical correspon-

dence between BOLD changes and power changes has also

been observed outside the visual system (Singh et al., 2002;

Stevenson et al., 2011; Yuan et al., 2010). Taken together we

would predict the BOLD-EEG relationships demonstrated in

this article to hold across many different brain areas, tasks,

and cognitive functions. Obviously, testing this prediction

requires additional empirical work.

In this context, it should also be noted that in the resting-state

literature on EEG-BOLD coupling in humans, an intricate picture

emerges of relationships between frequency bands and BOLD

changes across different areas (e.g., Mantini et al., 2007, Laufs

et al., 2006). However, there is one crucial difference between

the current approach and these resting-state studies. In order

to fully appreciate this difference, one should consider the

evidence by Niessing et al. (2005) that the coupling between

BOLD and neuronal activity is different when changes in stimula-

tion parameters (such as contrast) are used as the source of vari-

ance in both signals, compared to the coupling observed during

spontaneous fluctuations around the average level of, e.g.,

gamma or BOLD. In the data from Niessing and colleagues the

fluctuations around the average BOLD response gave the most

specific coupling between BOLD and neuronal activity (here

LFPs). Exactly for this reason, our present analyses focus on

spontaneous trial-by-trial fluctuations around the mean EEG

power changes and correlate this with the trial-by-trial fluctua-

tions in the BOLD signal. Furthermore, the very strong (more

than 500% increase relative to baseline in some subjects),
high-frequency, narrow-band gamma oscillations we observe

in our paradigm have not been reported yet in resting-state

EEG and it is questionable whether this phenomenon can actu-

ally be observed in EEG or MEG originating from brain regions

that are ‘‘at rest.’’

In conclusion, our data provide the most direct evidence

yet that the coupling between BOLD and high-gamma band

oscillations in animal work also holds in humans performing

a cognitive task. More importantly, our data suggest that at

least two independent neurophysiological mechanisms contri-

bute to the generation of the BOLD signal that can be observed

during cognitive neuroscientific experiments in humans: (1)

a mechanism related to high-frequency (high-gamma band)

neuronal synchronization, which correlates positively with

BOLD signal changes and (2) a mechanism reflected in low-

frequency (alpha and beta bands) neuronal synchronization,

which correlates negatively with BOLD signal changes. As

such, the present work provides a step forward in understanding

the electrophysiological underpinnings of cognition-related

hemodynamic responses in humans.

EXPERIMENTAL PROCEDURES

Subjects

Twenty right-handed subjects (13 female, 7 male, mean age 24 years, range

19–31 years) without a history of known psychiatric or neurological disorders

participated in the simultaneous EEG/fMRI session. All had normal or cor-

rected-to-normal vision. Before the start of the experiment, written informed

consent was obtained from each subject. The experiment was approved by

a local ethical committee (CMO region Arnhem / Nijmegen).

Experimental Paradigm

It has been established that neuronal synchronization in the gamma frequency

range is associated, among others, with attentional processes, most notably in

the visual system (Bichot et al., 2005; Fries et al., 2001; Lakatos et al., 2008).

Therefore, subjects engaged in a visual attention task that is known to elicit

strong, long-lasting (up to several seconds), and narrow-band gamma activity

in the MEG (Hoogenboom et al., 2006). In this task, subjects attend to circular,

inward-moving gratings and are asked to detect a change in inward speed. In

the lower frequency bands this task induces strong and long-lasting decreases

in alpha and beta power. Trials were triggered by the onset of an fMRI volume

and occurred every two volumes. fMRI images were recorded in 330 ms,

followed by a 3300 ms scan-free period. This scan-free period allowed us to

collect EEG data that were free of gradient artifacts during the visual stimula-

tion interval. In total, four blocks of 100 trials (20 of each trial length) were

administered. One block had a length of approximately 12 min, 30 s. The

experimental paradigm is illustrated in Figure 1 and described in full in the

Supplemental Experimental Procedures.

MRI Data Acquisition

Functional and structural MRI data were acquired by using a 3.0-T whole-body

MRI scanner (Siemens Magnetom Trio Tim, Siemens, Erlangen, Germany). A

custom-built eight channel array (Stark Contrast, MRI Coils, Erlangen,

Germany; Barth and Norris, 2007) covering the occipital cortex was used to

record the functional images. One volume was acquired in 330 ms, followed

by a 3300ms gap allowing for gradient-free EEG recording (see Figure 1). After

the four functional runs, an anatomical image was acquired. MRI data

acquisition is described in more detail in the Supplemental Experimental

Procedures.

EEG Data Acquisition

EEG data was recorded with a custom-made MRI-compatible cap equipped

with carbon-wired Ag/AgCl electrodes (Easycap, Herrsching-Breitbrunn,
Neuron 69, 572–583, February 10, 2011 ª2011 Elsevier Inc. 579
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Germany). Data were recorded from 29 scalp sites selected from the

128 channel international 10-10 system by using an MRI-compatible EEG

amplifier (BrainAmp MR plus, Brainproducts, Munich, Germany). The place-

ment of the electrodes was focused over posterior regions, so that signals

coming from visual regions could be recorded with greater accuracy. The

reference electrode during recording was placed at Cz. The exact details of

the EEG data acquisition can be found in the Supplemental Experimental

Procedures.

fMRI Data Analysis

For getting single subject fMRI activations related to visual stimulation, fMRI

data was preprocessed and analyzed in SPM5 (Wellcome Department of

Imaging Neuroscience, London, UK; see http://www.fil.ion.ucl.ac.uk/spm) in

a conventional way by using box-car regressors convolved with the canonical

hemodynamic response function. For each single subject, all voxels with a

t-value greater than 10 formed a region of interest for the integrated EEG-

fMRI analysis (see the right-hand panels of Figure S1 for the resulting BOLD

activation maps for each single subject). For more details, see the Supple-

mental Experimental Procedures.

EEG Data: Time-Frequency Analysis

Downsampling, re-referencing, trial extraction, and artifact rejection of the

EEG data were carried out in Vision Analyzer (BrainproductsGmbH, Germany).

The full details on the preprocessing of the EEG data are described in the

Supplemental Experimental Procedures. Further analysis of the EEG data

was carried out in Fieldtrip (Oostenveld et al., 2011). Time-frequency analysis

was carried out by using a multitaper approach (Mitra and Pesaran, 1999). In

order to optimize the trade-off between time and frequency resolution, we

carried out separate analyses for a lower frequency window (2.5–45 Hz) and

a higher frequency window (10–120 Hz). For the lower frequencies, the power

was estimated for windows of 0.8 s length moved across the data in steps of

50 ms. This resulted in a frequency resolution of 1.25 Hz, and the use of three

tapers resulted in a spectral smoothing of ± 2.5 Hz. For the higher frequencies,

the power was estimated for windows of 0.4 s length moved across the data in

steps of 50ms. This resulted in a frequency resolution of 2.5 Hz, and the use of

seven tapers resulted in a spectral smoothing of ± 10 Hz.

An initial analysis was carried out at channel level, revealing a similar

sustained gamma band response as that described by Hoogenboom and

colleagues (2006) for some of the subjects. However, because of EMG

contamination and artifacts caused by the MR recording environment, data

for most subjects was too noisy to observe this effect directly.

EEG Data: ICA-Based Denoising

To denoise the data, we used an ICA approach adapted from a similar

approach applied byDebener et al. (2005) with the extended infomax algorithm

(Lee et al., 1999) as implemented in EEGLab 5.03 (Delorme andMakeig, 2004).

In this approach, ICAunmixingweightswere estimated on individually adjusted

gamma-band-filtered EEG data. These unmixing weights thus obtained were

applied on the unfiltered EEG data. For each subject the components that

showed sustained gamma band response in time course were projected

back to channel level (1–5 components for each subject). Finally, these

channel-level data were again subjected to a time-frequency analysis, sepa-

rately for the lower and the higher frequency windows, as described in the

previous section. The results of this analysis constitute the basis for the

construction of regressors that were used in the integrated EEG fMRI analysis.

This strategy proved to be the best strategy to denoise the EEG data across

the different frequency bands that have been reported before (Hoogenboom

et al., 2006; Koch et al., 2009). For comparison, this ICA denoising strategy

analysis was repeated for 30 Hz low-pass-filtered data. Although similar

effects are observed in the alpha and beta bands, this strategy proved to be

inadequate to optimally denoise the EEG in the gamma band. The results of

this analysis are presented in Figure S2. The full details of the ICA denoising

strategy are described in the Supplemental Experimental Procedures.

Integrated EEG and fMRI Analysis: Regressor Construction

For each subject, the EEG channel with the maximal gamma power increase in

the average spectrum over trials (defined as the average increase across time
580 Neuron 69, 572–583, February 10, 2011 ª2011 Elsevier Inc.
points and trials during visual stimulation in the 55–85 Hz band, relative to

a 200ms previsual stimulation baseline) was selected. In addition, all the chan-

nels were selected that showed a gamma power increase of at least 25%of the

gamma power increase of that channel. These selected channels were used

for the construction of regressors for both the low and the high frequencies.

Next, for each frequency bin, considering the analysis of the lower and

higher frequency windows separately, EEG-based regressors were con-

structed as follows. For each single trial, the power time course during the

stimulation interval was averaged across the selected channels (no baseline

correction). These power time courses were concatenated into one time

series. This time series was subsequently convolved with the canonical hemo-

dynamic response function as implemented in SPM5 and downsampled to

one value for each scan. This resulted in one EEG-based regressor for each

frequency bin, both in the analysis on the lower frequency window and in

the analysis on the higher frequency window.

For the ICA denoising based on low-pass-filtered data represented in Fig-

ure S2, regressor construction was similar, with the only exception being the

channel selection. For this channels were included where the power decrease

in the 8–25 Hz range was at least 25%of the maximum power decrease on any

channel. Within this analysis the same selected channels were again used for

the construction of regressors for both the low and the high frequencies.

Integrated EEG and fMRI Analysis: Statistical Models

The region of interest data obtained from single-subject stimulation versus

baseline contrast were analyzed in a general linear model context by using

frequency-specific design matrices. Separate models were run for each

frequency bin (1.25 Hz bins for the low-frequency range, 2.5 Hz bins for the

high-frequency range). For each frequency bin, the regressor modeling the

single-trial power estimates of that frequency bin was included in the design

matrix. All the other regressors in the design matrix were the same for all

frequency bins. These included (1) five HRF-convolved box-car regressors

(one for each trial length) that account for the main effect of visual stimulation

on the BOLD signal, (2) five regressors modeling the button press and

feedback (one for each trial length)-related BOLD activity, (3) four regressors

modeling the reaction time as a parametric modulation (one for each trial

type with a speed change), (4) a regressor that modeled the behaviorally

incorrect trials, (5) the six realignment parameters used to control for possible

movement artifacts, and (6) one regressor accounting for a linear trend.

A graphical representation of the design matrix is shown in Figure 3G. The

four runs from each subject were modeled with separate regressors.

In the context of the regressorsmodeling the task and the parametric regres-

sors modeling the reaction time, the frequency-specific EEG power regressor

accounts for the relation between single-trial variations in EEG power and the

BOLD signal for the EEG frequency in question. At the single-subject level,

for each frequency, the relation between the EEG power regressors and the

BOLD signal is assessed by a single-sample t-contrast of these regressors

against zero. At group level we averaged these t-values over subjects and

testedwhether they significantly differed fromzero.Wechose t-valuesbecause

the beta regression weights critically depend on the scale of the power fluctu-

ations, which can differ by orders of magnitude between frequencies and

subjects. Because all sessions for all subjects had the same number of regres-

sors, the t-values do not differ between subjects a priori.

Analysis with EEG power regressors based on ICA applied on low-

pass-filtered data was carried out in the same way. The results are depicted

in Figure S2.

The results of the analysis detailed above yielded significant negative corre-

lations between alpha and beta power fluctuations and BOLD and a positive

correlation between gamma power fluctuations and BOLD. This raised the

question of whether this was due to one or more underlying processes that

correlate with the BOLD signal. To investigate this, we first ran another GLM

in which we included three regressors modeling the trial-by-trial variability in

these three frequency bands. For comparison, we computed three separate

models including only one of the EEG power-based regressors. For each

frequency band, the regressor was based on the average of the power across

the frequency bins that was part of the significant cluster in the EEG-BOLD

correlation. This analysis evaluates whether the regressors can account for

unique variance in the BOLD signal. As a second step, the partial correlations

http://www.fil.ion.ucl.ac.uk/spm
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between these three regressors were computed, separating out the regressors

modeling the main effect of visual stimulation and the response time.

In addition to a high-gamma band response, a substantial minority of the

subjects also show a clear low-gamma power increase in response in the

low-gamma range (30–45 Hz). In a separate analysis we explore the relation

between this low-gamma response. First we selected seven subjects that

had a clear sustained increase in the lower gamma range (see Figure S3 for

the time-frequency representations for all subjects). Second we formed

a single regressor for the low-gamma response for each subject. The basis

for this regressor was formed by the subject-specific single-trial low-gamma

power responses. These single-trial responses were calculated by averaging

over the frequency bin showing the maximal relative low-gamma power

increase (compared to baseline) and the bin below and above. Further

regressor construction and statistical models were similar to those described

above for the other frequency bands.

Coherence between BOLD and EEG Power Regressors

To investigate whether infraslow fluctuations are related to the trial-by-trial

coupling we observed in the alpha, beta, and gamma ranges we calculated

the coherence (Baker et al., 1997; Rosenberg et al., 1989) between the EEG

power regressors and the BOLD signal. This analysis was carried out for

each frequency bin in the EEG-BOLD correlational analysis. As a first step,

for each session of each subject, the influence the task, RT, and realignment

regressors have on both the BOLD signal and each EEG power regressor

was removed by linear regression. The power spectrum was calculated for

the residues of this regression for both BOLD and EEG power regressors

by means of a multitaper approach with a frequency smoothing of ±

0.0095 Hz, resulting in 13 tapers. The coherence between BOLD and trial-

by-trial EEG power fluctuations was calculated over all sessions of all the

subjects (80 in total). Each session has a length of 740.52 s, resulting in

a frequency resolution of 0.0014 Hz. The TR of 3.63 s restricts the analysis

to frequencies up to 0.1377 Hz. Because we use a frequency smoothing of

0.0095 Hz, coherence was estimated for frequency bins between 0.0095

and 0.1282 Hz. For statistical inference the coherence values were

z-transformed (Rosenberg et al., 1989). The coherence values were thresh-

olded at p = 0.001.

Inferential Statistics

Significance at the group level of the EEG power changes relative to baseline

(Figures 3A and 3B) and of the BOLD-EEG power relation (Figures 3C and 3D)

was evaluated by a cluster-based randomization procedure (Maris and Oos-

tenveld, 2007). This effectively controls the Type-1 error rate in a situation

involving multiple comparisons (here: all the individual frequency bins). This

procedure allows for user-defined test statistics tailored to the effect of interest

within the framework of a cluster-based randomization test. For the

BOLD-EEG power relation, our test statistic was a single-sample t test against

zero of the averaged t-value over subjects (giving uncorrected p-values).

All data points that do not exceed a preset significance level (here 5%) are ze-

roed. Clusters of adjacent nonzero frequency points were computed and for

each cluster, a cluster-level test statistic is calculated by taking the sum of

all the individual t-statistics within that cluster. This statistic was entered in

the cluster-based randomization procedure. This same procedure was also

used to test the difference of the EEG power from baseline. The test statistic

was a single-sample t test of the log-transformed relative power compared

to baseline (the 200 ms prestimulation interval). The above procedures were

applied separately to the analyses of the lower and the higher frequencies.

The Wilcoxon ranked sign test was used to test deviations from zero at

group level (Wilcoxon, 1945) for the models investigating the dependency

between regressors and the pairwise partial correlation between regressors

and for the analysis focused on the low-gamma band response.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and three figures and can be found with this article online at doi:10.1016/j.

neuron.2010.11.044.
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