Researcher Portfolio
Boom, Jurrian Esmond
Plasma Edge and Wall (E2M), Max Planck Institute for Plasma Physics, Max Planck Society, Tokamak Scenario Development (E1), Max Planck Institute for Plasma Physics, Max Planck Society
Researcher Profile
Position: Tokamak Scenario Development (E1), Max Planck Institute for Plasma Physics, Max Planck Society
Position: Plasma Edge and Wall (E2M), Max Planck Institute for Plasma Physics, Max Planck Society
Researcher ID: https://pure.mpg.de/cone/persons/resource/persons108748
External references
WorldCat
Search for Boom, Jurrian Esmond
Google Scholar
Search for Boom, Jurrian Esmond
Publications
(1 - 25 of 72)
: Dafermos, M., & Rendall, A. D. (2016). Strong cosmic censorship for surface-symmetric cosmological spacetimes with collisionless matter. Communications on Pure and Applied Mathematics, 69(5), 815-908. doi:10.1002/cpa.21628. [PubMan] : Rendall, A. D., & Velazquez, J. J. L. (2014). Dynamical properties of models for the Calvin cycle. Journal of dynamics and differential equations, 26, 673-705. doi:10.1007/s10884-014-9385-y. [PubMan] : Rendall, A. D. (2014). Construction of oscillatory singularities. In A. García-Parrado (Ed. ), Proceedings of the Spanish Relativity Meeting (ERES 2012) Progress in Mathematical Relativity, Gravitation and Cosmology, Springer Proceedings in Mathematics & Statistics 60 (pp. 95-105). Berlin Heidelberg: Springer. [PubMan] : Lee, H., & Rendall, A. D. (2013). The spatially homogeneous relativistic Boltzmann equation with a hard potential. Communications in Partial Differential Equations, 38(12), 2238-2262. doi:10.1080/03605302.2013.827709. [PubMan] : Liebscher, S., Rendall, A. D., & Tchapnda, S. B. (2013). Oscillatory singularities in Bianchi models with magnetic fields. Annales Henri Poincare, 14(5): 012-0207-7, pp. 1043-1075. doi:10.1007/s00023-012-0207-7. [PubMan] : Lee, H., & Rendall, A. D. (2013). The Einstein-Boltzmann system and positivity. Journal of hyperbolic differential equations, 77(1), 77-104. doi:10.1142/S0219891613500033. [PubMan] : Rendall, A. D. (2013). Multiple steady states in a mathematical model for interactions between T cells and macrophages. Discrete and Continuous Dynamical Systems - Series B, 18(3), 769 -782. doi:10.3934/dcdsb.2013.18.769. [PubMan] : Rendall, A. D. (2012). Mathematics of the NFAT signalling pathway. SIAM journal on applied dynamical systems, 11(3), 988-1006. doi:10.1137/120866488. [PubMan] : Rendall, A. D. (2012). Dynamics of solutions of the Einstein equations with twisted Gowdy symmetry. Journal of Geometry and Physics, 62(3), 569-577. doi:10.1016/j.geomphys.2011.04.016. [PubMan] : Rendall, A. D., & Velazquez, J. J. L. (2011). A class of dust-like self-similar solutions of the massless Einstein-Vlasov system. Annales Henri Poincare, 12(5), 919-964. doi:10.1007/s00023-011-0094-3. [PubMan] : LeFloch, P. G., & Rendall, A. D. (2011). A global foliation of Einstein-Euler spacetimes with Gowdy-symmetry on T3. Archive for Rational Mechanics and Analysis, 201(3), 841-870. Retrieved from http://arxiv.org/abs/1004.0427. [PubMan] : Hwang, H. J., Rendall, A. D., & Velazquez, J. J. L. (2011). Optimal gradient estimates and asymptotic behaviour for the Vlasov-Poisson system with small initial data. Archive for Rational Mechanics and Analysis, 200 (1), 313-360. doi:10.1007/s00205-011-0405-3. [PubMan] : LeFloch, P. G., & Rendall, A. D. (2011). A global foliation of Einstein-Euler spacetimes with Gowdy symmetry on T^3. Archive for Rational Mechanics and Analysis, 201(3), 841-870. doi:10.1007/s00205-011-0425-z. [PubMan] : Rendall, A. D. (2010). Analysis of a mathematical model for interactions between T cells and macrophages. Electronic journal of differential equations, 2010: 115, pp. 1-10. Retrieved from http://arxiv.org/abs/1006.2527. [PubMan] : Allen, P. T., & Rendall, A. D. (2010). Asymptotics of linearized cosmological perturbations. Journal of Hyperbolic Differential Equations, 7 (2), 255 -277. doi:10.1142/S0219891610002141. [PubMan] : Nungesser, E., & Rendall, A. D. (2009). Strong cosmic censorship for solutions of the Einstein-Maxwell equations with polarized Gowdy symmetry. Classical and Quantum Gravity, 26: 105019. doi:10.1088/0264-9381/26/10/105019. [PubMan] : Rendall, A. D., & Stahl, F. (2008). Shock Waves in Plane Symmetric Spacetimes. Communications in Partial Differential Equations, 33(11), 2020-2039. doi:10.1080/03605300802421948. [PubMan] : Rendall, A. D. (2007). Late-time oscillatory behaviour for self-gravitating scalar fields. Classical and Quantum Gravity, 24, 667-677. Retrieved from http://www.iop.org/EJ/abstract/0264-9381/24/3/010. [PubMan] : Heinzle, J. M., & Rendall, A. D. (2007). Power-law Inflation in Spacetimes without Symmetry. Communications in Mathematical Physics, 269(1): 15. 1. doi:10.1007/s00220-006-0133-y. [PubMan] : Heinzle, J. M., Rendall, A. D., & Uggla, C. (2006). Theory of Newtonian self-gravitating stationary spherically symmetric systems. Mathematical Proceedings of the Cambridge Philosophical Society, 140, 177-192. [PubMan] : Bauer, S., Kunze, M., Rein, G., & Rendall, A. D. (2006). Multipole Radiation in a Collisionless Gas Coupled to Electromagnetism or Scalar Gravitation. Communications in Mathematical Physics, 266, 267-288. [PubMan] : Rendall, A. D. (2006). Mathematical properties of cosmological models with accelerated expansion. In J. Frauendiener, D. J. Giulini, & V. Perlick (Eds. ), Analytical and Numerical Approaches to Mathematical Relativity (pp. 141-156). Berlin u.a: Springer. [PubMan] : Rendall, A. D. (2006). Dynamics of k-essence. Classical and Quantum Gravity, 23(5), 1557-1569. [PubMan] : Tegankong, D., & Rendall, A. D. (2006). On the nature of initial singularities for solutions of the Einstein-Vlasov-scalar field system with surface symmetry. Mathematical Proceedings of the Cambridge Philosophical Society, 141(3), 547-562. [PubMan] : Rendall, A. D. (2005). The nature of spacetime singularities. In A. Ashtekar (Ed. ), 100 Years of Relativity - Space-Time Structure: Einstein and Beyond (pp. 76-92). Singapore u.a.: World Scientific. [PubMan]